

faculty of mathematics
and natural sciences

Identity-based encryption
using supersingular curves
with the Weil pairing

Bachelor Project Mathematics

March 2014

Student: R. W. Mak

First supervisor: Prof.dr. J. Top

Second supervisor: Prof.dr. H. Waalkens

Abstract

In this paper we examine identity based encryption using the Weil pairing
for supersingular elliptic curves over finite fields Fp with p suitable, large,
primes. We examine a specific algorithm suggested in Washington [2008] and
describe why and how it works. We show an implementation of this algorithm
in Magma. Finally, we show that it is possible to perform this algorithm for
different elliptic curves and offer examples of such curves.

2

Contents

1 Introduction 4

2 The Weil pairing 4
2.1 Properties of the Weil pairing . 7

3 The algorithm 8

4 Explaining the algorithm 8
4.1 The requirement that p ≡ 5 (mod 6) . 9
4.2 Finding the element of order 3, ω . 10
4.3 Where can the `th roots of unity be found? 13
4.4 An example H1 . 13
4.5 An example H2 . 14
4.6 Decrypting the message . 16
4.7 A note on the curve used . 16
4.8 An actual implementation of the algorithm 16

5 Generalising the algorithm to more curves 16
5.1 The j-invariant . 17
5.2 Endomorphisms of degree 2 . 18
5.3 When are these curves supersingular? 18

5.3.1 Curves with j-invariant 8000 19
5.4 Are the endomorphisms suitable? . 21
5.5 Final note on the algorithm . 21

A Magma code for the implementation 23

3

1 Introduction

Elliptic curves are seeing more and more frequent use in cryptography. These are
curves of the form

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 (1)

By a change of coordinates we can show that this is equivalent to y2 = x3 + Ax + B
over fields of characteristic not equal to 2 or 3 as shown in Silverman [2009]. In
this paper we examine an example of identity based encryption which uses the
Weil pairing. The algorithm, described on page 184-186 of Washington [2008], uses
elliptic curves that are supersingular over finite fields Fp for specific primes p. Note
that in this paper, O will be the symbol used to refer to the identity element in
elliptic curves.

Definition An elliptic curve E : y2 = x3 + Ax + B is supersingular over a field K of
characteristic p if O is the only point of order p in E(K)

We start off by defining and constructing the Weil pairing. We will also mention
a few important properties of this bilinear pairing. Then we will describe the
algorithm and explain why it works. Finally, we look at extensions of this algorithm
to more supersingular curves.

This paper assumes a basic knowledge of elliptic curves and their structure.

2 The Weil pairing

Given a field K with characteristic not dividing a positive integer n and an elliptic
curve E over K, we would like to construct a pairing

en : E[n] × E[n]→ {x ∈ K
×

|xn = 1} (2)

where E[n] = {P ∈ E(K)|nP = O} (that is, the points of order n over E). This is called
the Weil pairing and in this section we will construct it. The method of construction
largely is adapted from Washington [2008].

Definition A divisor is a formal sum of points∑
i

ai[Pi] ∈ Z[E(K)]

for P j ∈ E(K) for some elliptic curve E over a field F and ai ∈ Z.
For a divisor

D =
∑

i

ai[Pi],

4

the degree is the sum of the integer coefficients

deg(D) =
∑

i

ai ∈ Z,

and the sum is the sum of points

sum(D) =
∑

i

aiPi ∈ E(K).

Definition For a function f on an elliptic curve E and a point P ∈ E:

• f has a zero at P if f (P) = 0.

• f has a pole at P if f (P) = ∞.

For a given point P we can always write f in the form

f = ur
P f ′

where uP is a rational function on E with a zero of multiplicity 1 at P and f ′(P) , 0,∞.
Then the order of f at the point P is defined as

ordP(f) = r

The divisor of f is defined as

div(f) =
∑

P∈E(K)

ordP(f)[P] ∈ Z[E(K)]

Theorem 2.1. Given a divisor D of degree 0 on an elliptic curve E, there exists a function
f on E with

div(f) = D

if and only if
sum(D) = O

A proof of this theorem can be found on page 343-344 of Washington [2008]. By
this theorem, given a T ∈ E[n] we know that there exists a function f such that

div(f) = n[T] − n[O]

since then sum(div(f)) = nT − nO = O − nO = O and div(f) is of degree zero. This
means that the function f has a zero of order n at the point T, and a pole of order n
at the point O.

Similarly, given a T′ ∈ E[n2] such that nT′ = T we can find a function g such that

div(g) =
∑

R∈E[n]

[T′ + R] − [R]

5

since div(g) is of degree zero and

sum(div(g)) =
∑

R∈E[n]

T′ + R − R =
∑

R∈E[n]

T′ = n2T′ = nT = O.

This is because #E[n] = n2 by the following theorem:

Theorem 2.2. Given a field K with a characteristic that does not divide a positive integer
n, the set E[n] � Z/nZ ⊕Z/nZ and hence contains exactly n2 elements.

A proof of this is on p. 80-86 of Washington [2008].
Now define the function h to be ’multiply by n’. f ◦ h will then have a zero of

order n at all points T′ + R, R ∈ E[n] as

n(T′ + R) = nT′ + nR = T + O = T

In addition, f ◦ h will have a pole of order n at all points R ∈ E[n]. In other words,

div(f ◦ h) =
∑

P∈E(K)

ordP(f)[P] =
∑

R∈E[n]

n[T′ + R] −
∑

R∈E[n]

n[R]

=
∑

R∈E[n]

n[T′ + R] − n[R]

By a similar argument, we know that g has n2 zeros of order 1, the points T′ + R,
R ∈ E[n]. It also has n2 poles of order 1, the points R ∈ E[n]. In other words,

g = u1
T′+Rg′ ⇒ gn = un

T′+R(g′)n

g = u−1
R g′′ ⇒ gn = u−n

R (g′′)n

where uT′+R, uR, g′ and g′′ are defined as before. This means that gn has zeros and
poles of order n and −n respectively. However, here these zeros and poles are the
same points as for g. Therefore

div(f ◦ h) =
∑

R∈E[n]

n[T′ + R] − n[R]

= div(gn)

Using the following theorem we can show that div(f ◦ n) = div(gn) implies that
c · (f ◦ n) = g for some constant c.

Theorem 2.3. (See page 342 in Washington [2008]). A function f over an elliptic curve
E for which div(f) = 0 is a constant function.

6

Corollary 2.4. Given functions f and g over an elliptic curve E for which div(f) = div(g),
we know that for some constant c,

f = cg

Proof. By contradiction: suppose that we have two functions f and g over an elliptic
curve E for which div(f) = div(g) but f , cg for a constant c. Then there must be a
function h that is not constant such that f = hg. However, since div(f) = div(g) we
know that f and g have the same poles and zeros. Hence h cannot have any zeros
and poles and must be a constant function. �

This means that indeed c · (f ◦ n) = gn for some constant c. Therefore if we take
some S ∈ E[n] and a point P ∈ E(K) we have that

g(P + S)n = c(f ◦ n)(P + S) = c f (nP + nS) = c f (nP) = g(P)n

g(P + S)n

g(P)n = 1

and hence
g(P + S)

g(P)

is an nth root of unity.

2.1 Properties of the Weil pairing

The Weil pairing has several interesting properties, but the three most relevant
properties here are that

1.
en(T,T) = 1,

2.

en(S1 + S2,T) = en(S1,T)en(S2,T)
en(S,T1 + T2) = en(S,T1)en(S,T2)

for all Si,Ti ∈ E.

Note that this also means that

en(mS,T) = en(S,T)m = en(S,mT) (3)

for all S,T ∈ E and m ∈ Z>0.

3. Finally, if en(S,T) = 1 for a given T and every S, then T = O. Similarly, if
en(S,T) = 1 for given S and every T, then S = O.

7

3 The algorithm

This algorithm was taken from Washington [2008]. The elliptic curve used here
is the supersingular curve y2 = x3 + 1. In addition we define 2 hash functions.
First of all H1, a hash function that takes a string of bits and outputs a point of
order ` on the elliptic curve E. H2 is a hash function that takes an element in Fp2

of order ` and outputs a binary string. Finally, we define a modified Weil pairing
ẽn(P,Q) = en(P, β(Q)) where ω ∈ Fp2 such that ω is an element of order 3 and for a
Q = (x, y), β(Q) = (ωx, y).

1. Setting up the system
1: Choose a large prime ` > 3 such that p = 6` − 1 is also a prime of the form

2 (mod 3) and a point P of order ` in E(Fp).
2: Choose a random s ∈ F×` .
3: Compute Ppub = sP.
4: Make p, H1, H2, P, Ppub public but keep s secret (i.e. only the central authority

knows s).

2. Creating a private key User with identity ID
1: Compute QID = H1(ID) ∈ E(Fp)
2: Compute DID = sQID ∈ E(Fp)
3: Send DID to the user.

3. Encrypting a message Message M sent to a user of identity ID
1: Compute QID = H1(ID)
2: Choose a random r ∈ F×`
3: Compute gID = ẽ`(QID,Ppub)
4: Let the cyphertext be (u, v) = (rP,M⊕H2(gr

ID)) where⊕ indicates bitwise addition
mod 2, also known as bitwise XOR.

4. Decrypting the message
1: Compute hID = ẽ`(DID,u)
2: Compute m = v ⊕H2(hID)

4 Explaining the algorithm

In this section I will discuss parts of the algorithm.

8

4.1 The requirement that p ≡ 5 (mod 6)

Equivalent to setting p = 6` − 1 is requiring that p ≡ 5 (mod 6). We do this because
of the following theorems:

Theorem 4.1. An elliptic curve E over Fp for a prime p ≥ 5 is supersingular if and only if
#E(Fp) = p + 1.

A proof of this theorem can be found on page 131 of Washington [2008].

Theorem 4.2. An elliptic curve E over Fp given by y2 = x3 +B for a ∈ Fp is supersingular
if p = 5 (mod 6).

Proof. By theorem 4.1 we know that if E has p + 1 over Fp it is supersingular. Since
Fp is cyclic, x 7→ x3, x3

7→ x3 + B and y 7→ y2 are all bijections. Thus every point x in
Fp has a unique y such that y2 = x3 + B. In addition, we have the point O, meaning
that we have p + 1 points on this curve. Therefore it is supersingular. �

Another important result is the following:

Theorem 4.3. For an elliptic curve over a finite field Fp we have that either

E(Fp) � Z/nZ

for n = #E(Fp) or
E(Fp) � Z/n1Z ×Z/n2Z

with n1 | n2 and n1n2 = #E(Fp).

A proof for this theorem can be found on page 97 of Washington [2008], except
for the requirements that n = #E(Fp) and that n1n2 = #E(Fp). However, this follows
from the fact that these are isomorphisms and hence must have the same number
of elements. Additionally we use the fact that Z/n1Z ×Z/n2Z has n1n2 elements.

Because of these theorems we know that for this particular elliptic curve over
this finite field, we have that

E(Fp) � Z/6`Z

After all, neither 2 | 3`, 3 | 2` nor 6 | `, and ` of course cannot be factored as it is
prime. By the Chinese Remainder Theorem we thus know that

E(Fp) � Z/2Z ×Z/3Z ×Z/`Z

Hence 6E(Fp) � Z/`Z has only elements of order ` (and one element of order 1,
the identity element) and it is trivial to find such an element. What’s more, Z/`Z
is cyclic and hence so is E(Fp).

9

4.2 Finding the element of order 3, ω

We know that there is no element of order 3 inF×p , because #F×p = p−1 = 6`−2 which
is not divisible by 3. In order to find such an element we want to find an extension
of Fp. All solutions to the polynomial X3

− 1 are elements of order 3. However,
as X = 1 is an element of Fp this is not an irreducible polynomial. Factoring out
this solution we find X3

− 1 = (X − 1)(X2 + X + 1). Solutions of X2 + X + 1 must be
elements of order 3, and this is an irreducible polynomial. Since the degree of this
polynomial is 2,

Fp[X]/(X2 + X + 1) = Fp2

In other words, such an ω is one of the solutions to the irreducible polynomial in
Fp2 . Since ω is a nontrivial cube root, we also know the following:

Theorem 4.4. The mapping β : (x, y) 7→ (ωx,−y), β(O) = O is an automorphism on the
curve E : y2 = x3 + B.

Proof. We need to show that β (1) sends points on E to E, (2) is a homomorphism,
and (3) is invertible. We are looking at points P = (x1, y1) and Q = (x2, y2), both in
E(Fp).

1. In order to show that β sends E(Fp) to itself, we only need to show that if
ωx,−y is a point on E(Fp) then so is (x, y). Indeed

(−y)2 = (ωx)3 + B⇒ y2 = ω3x + B⇒ y2 = x3 + B

meaning that (x, y) ∈ E(Fp).

10

2. To show that β is a homomorphism we need to show that β(P+Q) = β(P)+β(Q).
There are four different possibilities for addition (Washington [2008] defines
these additions on page 14):

(a) x1 , x2, y1 , y2. In this case P + Q = (m2
− x1 − x2,m(2x1 + x2 −m2) − y1)

with m =
y2−y1
x2−x1

.

β(P + Q) = β
(
m2
− x1 − x2,m(2x1 + x2 −m2) − y1

)
=

(
ω(m2

− x1 − x2),−m(2x1 + x2 −m2) + y1

)
β(P) + β(Q) = (ωx1,−y1) + (ωx2,−y2)

= β

((
−y2 + y1

ωx2 − ωx2

)2
− ωx1 − ωx2,

(
−y2 + y1

ωx2 − ωx2

) (
2ωx1 + ωx2 −

(
−y2 + y1

ωx2 − ωx2

)2
)

+ y1

)
= β

((
−1
ω

m
)2
− ωx1 − ωx2,

(
−1
ω

m
) (

2ωx1 + ωx2 −

(
−1
ω

m
)2)

+ y1

)
= β

(1
ω2 m2

− ωx1 − ωx2,
−1
ω

m
(
2ωx1 + ωx2 −

1
ω2 m2

)
+ y1

)
= β

((1
ω2

)
m2
− ωx1 − ωx2,m

(
2x1 + x2 −

(1
ω3

)
m2

)
+ y1

)
= β

((1
ω3

)
ω(m2

− x1 − x2),−m
(
2x1 + x2 −

(1
ω3

)
m2

)
+ y1

)
=

(
ω(m2

− x1 − x2),−m(2x1 + x2 −m2) + y1

)
So indeed β(P + Q) = β(P) + β(Q).

(b) x1 = x2, y1 , y2. In this case Q = −P and P + Q = O.

β(P + Q) = β(O) = O

β(P) + β(Q) = β(P) + β(−P)
= (ωx,−y)) + (−ω(x),−y)
= β(P) − β(P)
= O

11

(c) P = Q, y1 , 0. In this case P + Q = (m2
− 2x1,m(3x1 − m2) − y1) with

m =
3x2

1
2y1

.

β(P + Q) = β(m2
− 2x1,m(3x1 −m2) − y1)

= (ω(m2
− 2x1),−m(3x1 −m2) + y1)

β(P) + β(Q) = (ωx1,−y1) + (ωx2,−y2)

=

(3(ωx1)2

−2y1

)2

− 2ωx1,

(
3(ωx1)2

−2y1

) 3ωx1 −

(
3(ωx1)2

−2y1

)2 + y1


=

(
ω4m2

− 2ωx1,−ω
2m

(
3ωx1 − ω

4m2
)

+ y1

)
=

(
ωm2

− 2ωx1,−m
(
3ω3x1 − ω

6m2
)

+ y1

)
=

(
ω(m2

− 2x1),−m
(
3x1 −m2

)
+ y1

)
So again, β(P + Q) = β(P) + β(Q)

(d) P = Q, y1 = 0. In this case P + Q = O.

β(P + Q) = β(O) = O

β(P) + β(Q) = (0, 0) + (0, 0) = O

This proves that β is indeed a homomorphism.

3. In order to show that β is invertible we can simply find an inverse. We try
β−1((x, y)) = (ω2x,−y):

β(β−1((x, y))) = β((ω2x,−y)) = (ω(ω2x),−(−y)) = (ω3x, y) = (x, y)

β−1(β((x, y))) = β−1((ωx,−y)) = (ω2(ωx),−(−y)) = (ω3x, y) = (x, y)

Therefore this is indeed an inverse, meaning that β is invertible and thus is a
bijection.

Therefore β is an automorphism. �

It is of importance that this element is not in Fp. Suppose we simply took the
normal Weil pairing of the points QID and Ppub. We saw before that 6E(Fp) � Z/`Z
and by construction both QID and Ppub are in 6E(Fp). This is a cyclic group and
hence we can find an integer m such that QID = mPpub. Therefore

e`(QID,Ppub) = e`(mPpub,Ppub) = e`(Ppub,Ppub)m = 1m = 1

Theorem 4.5. ẽ`(P,P) results in a nontrivial root of unity when P , O.

12

Proof. We know that P ∈ E(Fp) andωP < E(Fp) and so there is no element a ∈ Fp such
that aP = ωP. By the theorem 2.2, we know that E[`] � Z/`Z ×Z/`Z as ` certainly
does not divide p. Since these groups are cyclic and we have two independent
elements, we also have two generators of those groups. Hence Z/`Z × Z/`Z �
〈P〉 × 〈ωP〉. Since all elements in E[`] are in this direct sum of cyclic groups,
e`(P, ωP) = 1 would mean that e`(P,Q) = 1 for any given Q ∈ 〈ωP〉. We previously
showed that it would also be 1 for any Q ∈ 〈P〉. Therefore this pairing results in
the trivial root of unity for any Q ∈ E[`]. By the third property of the Weil pairing
stated in section 2.1 we then know that P = O. Then we know that the modified
Weil pairing will always result in a nontrivial root of unity. �

4.3 Where can the `th roots of unity be found?

Theorem 4.6. For a finite field Fp with p = a` − 1 for an integer a and a prime `, all `th

roots of unity are in F×
p2

Proof. First we check if all elements of order ` are in F×p . In fact, there are no points
of order ` in F×p , as #F×p = p − 1 = a` − 2 which is not divisible by `.

Now we check if all elements of order ` are in F×
p2 instead. #F×

p2 = p2
− 1 =

a2`2
−2a`which is indeed divisible by `. Hence there is at least one element of order

` as ` is prime. Additionally, F×
p2 is cyclic, meaning that all points of order ` will be

contained there. Hence all elements of order ` can be found in F×
p2 . �

4.4 An example H1

In step 2.1 we first use the hash function H1. This is a function that has as input a
string of bits of arbitrary length and outputs a point of order ` on E. The function
used here is one suggested in Washington [2008].

H1 Input a string of bits ID and output a point on E
1: Use some hash function H to send ID to H(ID) ∈ Fp.
2: Let H(ID) be the y coordinate y of a point on E.
3: Calculate the corresponding x = (y2

− 1)1/3.
4: H2(ID) = 6(x, y) ∈ E(Fp2)

Theorem 4.7. This H1 will always result in a unique xID such that the point lies on E(Fp2).

Proof. First we define two bijections on Fp:

f : x 7→ x3

g : y 7→ y + 1

13

Since these are both bijections, g(f (x)) = x3 + 1 is also a bijection. Since y 7→ y2 is
also a bijection on Fp for every element y there must then also exist an x such that
y2 = x3 + 1. Since these are all bijections, such an x is also unique. �

Theorem 4.8. This H1 will result in a point of order ` or 1.

Proof. We already showed at the end of section 4.1 that 6E(Fp) � Z/`Z. Since ` is
prime, there are only points of order 1 or ` in Z/`Z. �

In fact, we can easily find all the points in E(Fp) that are are mapped to O, the
point of order 1. This is the only point of order 1 in Z/`Z is 1 since ` is prime. The
elements are the points of order 6,

E(Fp)[6] = {(2,±3), (0,±1), (−1, 0),O}.

Since our hash function doesn’t map anything to O, there are only 5 elements that
could be mapped to: the elements with y-coordinate 0,±1, and ±3. In other words,
we could prevent an element of order 1 resulting from the hash function if we don’t
get any of the above y-coordinates. In any case, however, the chance of getting a
point of order ` is 1/` which is very small for large `.

4.5 An example H2

In order to send points from Fp2 to a string of bits, we first use the trace to send it
to Z. First we need to know two things:

Theorem 4.9 (Page 482, Washington [2008]).

Fpn = {x ∈ Fp | xpn
= x}

Definition (Page 54, Lidl and Niederreiter [1997]) The trace is defined as

TrFpn (x) = x + xp + · · · + xpn−1

It turns out that the trace always sends elements to Fp and that it is a linear
transformation over Fp. (Page 55-56, Lidl and Niederreiter [1997])

In our case, we are dealing with elements of the form c + dω where ω is our
element of order 3. However, this will work for any element in a finite field of the
form Fp2 = F[

√
b] for some b ∈ Fp, and this is what we will be dealing with for the

rest of this paper. Additionally, since we are only interested in the trace over Fp2 ,
we will simply use Tr(x) to mean TrFp2 (x). We use the following theorem:

Theorem 4.10.
(c + d

√

b)P = c − d
√

b

for c, d ∈ Fp,
√

d ∈ Fp2\Fp

14

Proof. We start out by calculating, remembering that xp
≡ x mod p for x ∈ Fp:

(c + d
√

b)p = (c + d
√

b)p

= cp + dp(
√

b)p

= c + db
p−1

2
√

d

Note that bp−1 = 1 in Fp, and so b
p−1

2 is a second root of unity, i.e. +1 or −1. In

addition, b
p−1

2 cannot equal +1, as this would mean that

(
√

b)p = b
p−1

2
√

b =
√

b

which would imply by theorem 4.9 that
√

b ∈ Fp which we showed not to be true.

Hence b
p−1

2 = −1 and hence

(c + d
√

b)p = c − d
√

b

�

Therefore have that Tr(c + d
√

b) = 2c, as

Tr(c + d
√

b) = (c + d
√

b) + (c + d
√

b)p

= c + d
√

b + cp + dp(
√

b)p

= c + d
√

b + c − d
√

b
= 2c

However, in our case ω is a solution to X2 + X + 1, where we have that ω =

−
1
2 ±

√
−3
2 . This means that

Tr(c + dω) = Tr(c −
d
2
±

√
−3
2

) = 2c − d

This means that we need to do some basic maths to find that in the case ω =
1
2 +

√
−3
2 (we will not discuss the other case here as it is essentially the same)

d =
2(c + dω) − Tr(c + dω)

2ω + 1

Finally define
H2 : (c + dω) 7→ 2c − d + pd

The most important property is that that this is injective, so there will be no
collisions. At this point we have a point in Z and from this point on it is trivial to
send such an integer to a string of bits (by for example representing the integer in
base 2).

15

4.6 Decrypting the message

Theorem 4.11. Part 4 of the algorithm correctly decrypts the encrypted message.

Proof. Indeed, Washington [2008] shows that m = M, since

m = v ⊕H2(gID) = (M ⊕H2(gr
ID)) ⊕H2(ẽ`(DID,u))

= (M ⊕H2(gr
ID)) ⊕H2(ẽ`(sQID, rP))

= (M ⊕H2(gr
ID)) ⊕H2(ẽ`(QID,P)rs)

= (M ⊕H2(gr
ID)) ⊕H2(ẽ`(QID, sP))

= (M ⊕H2(gr
ID)) ⊕H2(ẽ`(QID,Ppub)r)

= (M ⊕H2(gr
ID)) ⊕H2(gr

ID)
= M

because the Weil pairing is bilinear as shown in (3) and this also applies to our
modified Weil pairing as

ẽ`(mS,nT) = e`(mS, ω(nT)) = e`(mS,n(ωT)) = e`(S, ωT)mn = ẽ`(S,T)mn

�

4.7 A note on the curve used

All of the previous arguments actually work for any curve y2 = x3 + B with B ∈ F×p .
It turns out that all of these curves have the same j-invariant which means that they
are isomorphic to each other. However, we will discuss exactly what the j-invariant
is and its implications in the next section.

4.8 An actual implementation of the algorithm

Using all the above, Magma (http://magma.maths.usyd.edu.au/) code was writ-
ten to implement this algorithm. The code, along with inline explanations of exactly
how things were implemented, is in appendix A.

5 Generalising the algorithm to more curves

As can be seen from the in-depth discussion of the algorithm, all that is really
necessary is a supersingular elliptic curve and a homomorphism σ : E → E for
which all elements in E(Fp) are mapped to elements in E(Fp2). Such a mapping is
called an endomorphism.

Definition Page 50-51, Washington [2008]. An endomorphism is a homomorphism
α : E(K) → E(K) such that α(x, y) = (r1(x), r2(x)y) where r1 and r2 are rational
functions of the form p(x)/q(x).

16

The degree of an endomorphism α(x, y) = (r1(x), r2(x)y) with r1(x) = p(x)/q(x) is
deg(α(x, y)) = max{ deg(p(x)), deg(q(x)) }. In fact, this maximum equals deg(p(x)),
since otherwise Owould not be mapped to O.

Washington [2008] shows that any endomorphism of the form

(x, y) 7→ (R1(x, y),R2(x, y))

can be reduced to the form stated in the definition which is why only that form is
used.

Earlier we looked at the mapping (x, y) 7→ (ωx,−y). This is, as was stated, an
automorphism, which is an invertible endomorphism. However, we have no need
for an invertible mapping, as no part of the algorithm depends on it. This means
that we can instead look for curves on which are defined suitable endomorphisms.
Suitable in this case means that for an endomorphism α : E → E we have that
ẽ`(P,Q) = e`(P, α(Q)) results in a nontrivial `th root of unity for P,Q ∈ E(Fp). In
addition, we would like curves for which E[`] is contained in E(Fpk) for small k so
that we know where we can find all the `th roots of unity.

5.1 The j-invariant

In order to be able to talk about elliptic curves more generally we will use the
j-invariant.

Definition The j-invariant of a curve E : y2 = x3 + Ax + B is defined to be

j(E) =
1728(4A3)
4A3 + 27B2

The j-invariant can be determined for more general elliptic curves of the form (1),
but this is a rather large equation which can be constructed based on information
given on page 42 in Silverman [2009] so we will leave it out.

The j-invariant is very useful because of the following theorem, the proof of
which can be found on page 45 of Silverman [2009].

Theorem 5.1. Two elliptic curves E and E′ are isomorphic over a field K if and only if

j(E) = j(E′)

Because of this theorem, we can describe endomorphisms for a single curve and
then extend this to all curves with the same j-invariant.

17

5.2 Endomorphisms of degree 2

Now we will describe some classes of curves and corresponding endomorphisms.
In this paper we will look at endomorphisms of degree 2 as they are described
in detail by Silverman [1994]. Silverman shows that there are exactly 3 classes of
curves for which an endomorphism of degree 2 exists:

1. y2 = x3 + x, j = 1728, α = 1 +
√

−1

(x, y) 7→
(
α−2

(
x +

1
x

)
, α−3y

(
1 −

1
x2

))
2. y2 = x3 + 4x2 + 2x, j = 8000, α =

√

−2

(x, y) 7→
(
α−2

(
x + 4 +

2
x

)
, α−3y

(
1 −

2
x2

))
3. y2 = x3

− 35x + 98, j = −3375, α =
1 +
√
−7

2

(x, y) 7→
(
α−2

(
x −

7(1 − α)4

x + α2 − 2

)
, α−3y

(
1 +

7(1 − α)4

(x + α2 − 2)2

))
In other words, for the classes of curves with j-invariant 1728, 8000, and -3375

we have the endomorphism of degree 2 described above. We must determine
several things before these curves can be used, however: over which finite fields Fp
are these curves supersingular, and do these endomorphisms result in a nontrivial
root of unity when used with the modified Weil pairing?

5.3 When are these curves supersingular?

Washington [2008] shows that curves with j-invariant 1728 are supersingular over
Fp if and only if p ≡ 3 (mod 4). For j-invariant 8000 and -3375, however, we need to
look at the endomorphism ring End(E). We require one definition and two theorems
(taken and adapted from Silverman [2009]):

Definition (Silverman [2009]) A definite quaternion algebra is an algebra K of the
form

K = Q +Qγ +Qδ +Qγδ

with the following properties:

1. γ2, δ2
∈ Q

2. γ2 < 0

3. δ2 < 0

4. δγ = −γδ

18

Note that because of this last property, quaternion algebras are not commutative.

Theorem 5.2 (Page 102, Silverman [2009]). The endomorphism ring of an elliptic curve
over a field with characteristic not zero is either

1. Z.

2. An order in an imaginary quadratic field, i.e. a subring of the form

{m + nα | n,m ∈ Z, α =
√

−d for some d ∈ Z>0} ⊂ Z[i]

3. An order in a quaternion algebra, i.e. a subring of the form

{k + lε + mη + nεη | k, l,m,n ∈ Z} ⊂ K

Theorem 5.3 (Page 145, Silverman [2009]). If End(E) is an order in a quaternion algebra,
E is supersingular.

In other words, if we can find primes p such that for E(Fp), End(E) is not
commutative we know that E is supersingular. We do this by taking the suggested
endomorphism and the Frobenius endomorphism which is defined as follows:

F(x, y) = (xp, yp).

We would like to see when the given endomorphisms of degree 2 (we will call
this endomorphism β) do not commute with the Frobenius endomorphism, i.e.:

F ◦ β , β ◦ F.

We will only work out the example for curves with j-invariant 8000 as the case with
j-invariant -3375 is very much alike.

5.3.1 Curves with j-invariant 8000

We would like to check when F and β : (x, y) 7→
(
α−2

(
x + 4 + 2

x

)
, α−3y

(
1 − 2

x2

))
don’t

commute. We will use Fermat’s little theorem (xp
≡ x (mod p) for x ∈ Fp) and the

fact that (x + y)p
≡ xp + yp (mod p).

(F ◦ β)(x, y) = (β ◦ F)(x, y)

F
(
α−2

(
x + 4 +

2
x

)
, α−3y

(
1 −

2
x2

))
= α(xp, yp)(

(α−2)p
(
x + 4 +

2
x

)p
, (α−3)pyp

(
1 −

2
x2

)p)
=

(
α−2

(
xp + 4 +

2
xp

)
, α−3yp

(
1 −

2
(xp)2

))
(
(α−2)p

(
xp + 4p +

2p

xp

)
, (α−3)pyp

(
1p
−

2p

(x2)p

))
=

(
α−2

(
x + 4 +

2
x

)
, α−3y

(
1 −

2
x2

))
(
(αp)−2

(
x + 4 +

2
x

)
, (αp)−3y

(
1 −

2
x2

))
=

(
α−2

(
x + 4 +

2
x

)
, α−3y

(
1 −

2
x2

))

19

In other words, End(E) is commutative when α ≡ αp (mod p). This is only true
when α =

√
−2 ∈ Fp, i.e. when -2 is a square in F×p . In other words, End(E) is not

commutative when -2 is not a square in F×p . This is what we will use.
First, we look at squares of -2 in Fp2 . We know that #Fp2 = p2

− 1 is divisible by
8 for odd primes p, as p2

− 1 (mod 4) = (p + 1)(p − 1) mod 4. Since p is odd, either
p + 1 or p − 1 is 2 (mod 4) = 0 (mod 2), and the other will be 0 (mod 4) = 4 (mod 4).
Hence (p + 1)(p − 1) ≡ 0 (mod 8). Hence all elements of order 8 are in F×

p2 . Let us

take the element ζ = 1
2

√
2 + 1

2

√
−2. This is indeed an element of order 8, and so

ζ4 = 1. We will show that this is a square root of -2.

(ζ − ζ−1)2 = ζ2
− 2 + ζ6

= ζ2(1 + ζ4) − 2
= −2

In order to see when−2 is a square inF×p as well, we will check when ζ−ζ1
∈ F×p .

This element is inF×p if and only if (ζ−ζ−1)p = ζ−ζ−1 as we used earlier. In addition,
remember that ζ has order 8, so ζp = ζp (mod 8). There are four possibilities:

1. p ≡ 1 (mod 8)

(ζ − ζ−1)p = ζ − ζ−1

So indeed -2 is a square in F×p and our curve is not supersingular.

2. p ≡ 3 (mod 8)

(ζ − ζ−1)p = ζ3
− ζ5

= ζ + ζ3

= ζ − ζ−1

Again we find that -2 is a square and our curve is not supersingular.

3. p ≡ 5 (mod 8)

(ζ − ζ−1)p = ζ5
− ζ3

= −ζ + ζ−1

−ζ + ζ−1 , ζ − ζ−1 because if it were true, 2(ζ + ζ−1) = 0, meaning that
ζ = ζ−1

⇒ ζ2 = 1. Hence -2 is not a square and our curve is supersingular.

4. p ≡ 7 (mod 8)

(ζ − ζ−1)p = −ζ + ζ−1

This is the same as the previous case, so we know that again our curve is
supersingular.

20

We see that curves of j-invariant are supersingular over Fp precisely when p ≡ 5
or 7 (mod 8).

We will describe how to choose ` to get desirable primes. In the case p ≡
5 (mod 8), take a prime ` ≡ 3 (mod 4) such that p = 2` − 1 is prime. In the case
p ≡ 7 (mod 8), take any prime ` such that p = 8` − 1 is prime.

5.4 Are the endomorphisms suitable?

We saw that the curves are supersingular if and only if α < Fp. In this case, the
endomorphism β will send points of order ` with coordinates in Fp to points of
order ` with coordinates not in Fp.

5.5 Final note on the algorithm

By theorem 4.3 we know that we either have

E(Fp) � Z/a`Z⇒ aE(Fp) = Z/`Z

or, for b, c ∈ Fp such that a = bc,

E(Fp) � Z/bZ ×Z/c`Z⇒ aE(Fp) = Z/`Z

In other words, if we take p = a` − 1 for an a such as we have determined earlier,
we know that aE(Fp) = Z/`Z, which is exactly what we require.

21

References

Paulo L.M. Barreto, Ben Lynn, and Michael Scott. Constructing elliptic curves
with prescribed embedding degrees. In Stelvio Cimato, Giuseppe Persiano, and
Clemente Galdi, editors, Security in Communication Networks, volume 2576 of
Lecture Notes in Computer Science, pages 257–267. Springer Berlin Heidelberg,
2003. ISBN 978-3-540-00420-2. doi: 10.1007/3-540-36413-7 19.

David Freeman. Constructing pairing-friendly elliptic curves with embedding
degree 10. In Florian Hess, Sebastian Pauli, and Michael Pohst, editors, Al-
gorithmic Number Theory, volume 4076 of Lecture Notes in Computer Science,
pages 452–465. Springer Berlin Heidelberg, 2006. ISBN 978-3-540-36075-9. doi:
10.1007/11792086 32.

Rudolf Lidl and Harald Niederreiter. Finite Fields (Encyclopedia of Mathematics and
its Applications). Cambridge University Press, 1997. ISBN 0521392314.

Alfred J. Menezes, Tatsuaki Okamoto, and Scott A Vanstone. Reducing elliptic
curve logarithms to logarithms in a finite field. IEEE Transactions on Information
Theory, 39(5):1639–1646, 1993.

René Schoof. Nonsingular plane cubic curves over finite fields. Journal of combina-
torial theory, Series A, 46(2):183–211, 1987.

Joseph Silverman. The arithmetic of elliptic curves. Springer-Verlag, New York, 2009.
ISBN 9780387094939.

Joseph H Silverman. Advanced topics in the arithmetic of elliptic curves, volume 151.
Springer Science & Business Media, 1994.

Lawrence Washington. Elliptic Curves: Number theory and cryptography. Chapman
& Hall/CRC, Boca Raton, FL, 2008. ISBN 1420071467.

22

A Magma code for the implementation

Words in blue are names of variables. Words in red are algebraic structures. Lines
in green are comments.

1 //We start off by determinging ell. RandomPrime(n)

2 //gives us a prime of size n bits.

3

4 ell:=RandomPrime(200);

5

6 //We loop until we find an ell such that 6*ell - 1 is prime

7

8 while not IsPrime(6*ell-1)

9 do ell:=RandomPrime(200);

10 end while;

11

12 p:=6*ell-1;

13

14 //We define several structures here:

15 // F_p is the finite field with p elements

16 // PR<x> is the polynomial ring over F_p

17 // F_pˆ2 is the finite field with pˆ2 elements

18 // E is the elliptic curve yˆ2 = xˆ3 + 1 over F_p

19 // E2 is the same curve over F_p2

20 F_p:=GF(p);

21 PR<x>:=PolynomialRing(F_p);

22 F_p2<a>:=ext<F_p | xˆ2 + x + 1>;

23 E:=EllipticCurve([F_p!0,F_p!1]);

24 E2:=EllipticCurve([F_p2!0,F_p2!1]);

25

26 //CREATING THE PRIVATE KEY

27

28 //Random(E) gives us a random point in E

29 //As we showed, this will give us a point of order 1 or ell,

30 //with a point of order 1 being very rare.

31 P:=6*Random(E);

32

33 //Random(ell) gives us a random number less than ell

34 //We check to make sure it is not zero, then determine Ppub

35 s:=Random(ell);

36 while s eq 0

37 do s:=Random(ell);

38 end while;

23

39

40 Ppub:=s*P;

41

42 //Here we determine the ID. Since we are not that interested

43 //in the hash functions H1 and H2 I simply chose an integer

44 //to be the identity. Usually we would have an identity in

45 //the form of a string of bits which we would then need to

46 //hash to F_p

47 ID:=2;

48

49 //This is half of the hash function H1, the part that sends

50 //elements of F_p to E. H1IDy and H1IDx are the x and y

51 //coordinates of the resulting point respectively

52 H1IDy:= F_p!ID;

53 H1IDx:= Root(H1IDyˆ2 - 1, 3);

54 QID:= 6*E![H1IDx, H1IDy];

55

56 //Determine DID and make it a point in E(F_p2) because

57 //Magma requires two points to be over the same field for the

58 //Weil pairing

59 DID:=s*QID;

60 DID:=E2!DID;

61

62

63 //SENDING A MESSAGE M

64 //This is our message M. Again this would usually be a string

65 //of bits, but for our purposes an integer will suffice.

66 M:=2500000;

67

68 //As we chose F_p2 to be the extension of F_p over xˆ2 + x + 1

69 //our element a turns out to be a nontrivial cube root of unity

70 //so we may use it for our modified Weil pairing. Note that

71 //Magma requires we specify the orders of the points for which

72 //we perform this pairing. In this case, ell.

73 betaPpub:=E2![a*Ppub[1],-Ppub[2]];

74 QID:=E2!QID;

75 gID:=WeilPairing(QID, betaPpub, ell);

76 r:=Random(ell);

77 u:=r*P;

78 Z:= Integers();

79

80 //Here we take gIDˆr and send it to the integers. Since this

24

81 //element lies in F_p2, Magma will not simply convert it.

82 //However, it can be shown that for gIDr = c + a*d,

83 //Trace(gIDr) = c - d/2 and

84 //d = (2a - Trace(gIDr))/(2*a + 1)

85 //Since we are only interested in this hashing resulting in

86 //the same value every time, we can simply send gIDr to

87 // c - d/2 + p*d

88 //This is in fact an injective homomorphism

89 gIDr:= gIDˆr;

90 gIDrc:= Trace(gIDr);

91 gIDrd:= (2*gIDr - gIDrc)/(2*a + 1);

92 H2gIDr:= Z!gIDrc + p*(Z!gIDrd);

93

94 //We take the bitwise XOR of M and H2gIDr

95 v:=BitwiseXor(M, H2gIDr);

96

97 //DECRYTING THE MESSAGE

98

99 //Here we again apply the modified Weil pairing.

100 betau:=E2![a*u[1],-u[2]];

101 hID:=WeilPairing(DID,betau, ell);

102

103 //Here we apply the same H2 as previously.

104 hIDc:= Trace(hID);

105 hIDd:= (2*hID - hIDc)/(2*a + 1);

106 H2hID:= Z!hIDc + p*(Z!hIDd);

107

108 //We calculate the bitwise XOR of v and H2hID and output

109 //the resulting m. This m should be the same as our

110 //original message M.

111 m:=BitwiseXor(v, H2hID);

112 m;

25

