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1 Introduction

Inflation is a theory which explains the properties of the early universe and provides
a quantum origin for the primordial density perturbations that seeded the large-
scale structure observed nowadays. One could argue that inflation can be realised
in so many different models, it could fit any observation we make of the current
state of the universe. There are however still some model-independent predictions
from inflation. In this thesis I will discuss the old Big Bang model, its problems
and how inflation solved many of these problems. Furthermore I will discuss
which predictions inflation made, how these predictions are proven or disproven
throughout the years, and which predictions are still to be confirmed or falsified.
Then I will continue to explain the concept of eternal inflation and the implications
of an eternally inflating universe for the inflationary paradigm.

2 History of the Big Bang model

First I will give a brief history of how scientists came to the conclusion that there
must have been some sort of Big Bang which created our universe. The foundation
for any theory describing our universe should be the theory of general relativity
(GR), published by Einstein in 1915. This theory describes gravitation not as a
gravitational field but as the distortion of space and time themselves. For describ-
ing a universe you need a metric, which captures all the geometric and causal struc-
tures of spacetime. In the 1920’s and 1930’s Friedmann, Robertson, Walker and
Lemâıtre all found a metric of an expanding isotropic and homogeneous universe
independently [1, 2, 3, 4, 5, 6]. This does not require the Einstein field equations,
but just the assumption that the universe is isotropic and homogeneous. When
you insert this metric in the field equations and assume the the universe is a perfect
fluid, you obtain the so-called Friedmann equations. These equations describe the
time-evolution of the expansion of the space in our universe. In 1929 Hubble found
the first evidence that galaxies far away from us are traveling away with a velocity
which is proportional to the distance [7]. This was the first evidence that our
universe is indeed expanding and was later confirmed by other observations. After
they found out that the universe was expanding, there were two theories which
could explain the expansion and are in accordance with the Friedmann equations;
the Big Bang theory and the Steady State theory. The Big Bang theory was the
most logical solution to the expansion of the universe, because if you trace the
expansion back in time you get, as Lemâıtre called it, a ’primordial atom’. The
idea is that the universe started in a hot, high density state and then expanded
and cooled. There were many people which could not digest the idea that there
was some beginning of the universe, which introduced according to them religious
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concepts into physics. Therefore they created another model which could explain
the expansion of the universe. The steady state theory wanted to keep the ’wide
cosmological principle’: the universe should be the same at any time and at any
place. To make up for the fact that the universe was expanding, they proposed
that new matter continuously was created. Evidence favoured the Big Bang theory
more, through the counting of radio sources in our universe. When in 1964 Penzias
and Wilson discovered the Cosmic Microwave Background Radiation (CMB) [8],
cosmologists generally accepted the Big Bang theory. If you look at any direction
in the sky, you can detect a faint glow of microwave radiation which does not come
from any stars or galaxies. This CMB was the first light that was created in our
universe. This observation supports the Big Bang theory because the Big Bang
theory predicts a time of photon decoupling. At first the universe was a very hot
and dense plasma where the photons mean free path was very small because they
encountered many electrons. After the universe expanded and cooled, the forma-
tion of the hydrogen atom was energetically favoured and electrons were captured
by the hydrogen. Therefore the photons could decouple of matter and were free
to travel through the universe without interacting with matter. These photons
are the CMB we measure nowadays. One very interesting property of the CMB
is that no matter at which direction in the sky you look, it always has the exact
same temperature. It is completeley homogeneous.

3 Big Bang model

3.1 Success of the Big Bang model

For a long time the Big Bang theory was the model which cosmologists thought
was a correct description of the evolution of the universe we live in. They thought
so because its implications agreed to a great extent with the observations made.
Some key observations at that time were:

· The universe is expanding.· The existence and spectrum of the CMB radiation.· The abundances of light elements in the Universe (nucleosynthesis).· The predicted age of the universe is comparable to direct age measurements of
the objects within the universe.· That given irregularities in the CMB there exists a reasonable explanation for
the development of structure in the universe, through gravitational collapse.

All these observations considered, the Big Bang model seems a good explana-
tion of the evolution of the universe. However, there are some crucial problems
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which the Big Bang model still leaves unanswered. But first, let us explain the
physics which govern the Big Bang model.

3.2 FRW metric

The central premise of modern cosmology is the ”cosmological principle”: nobody
is at the center of the universe, and the cosmos from any point looks the same
as from any other point. This implies that the universe is homogeneous and
isotropic. This principle is supported by the observational data from the last
decades. The CMB and large scale structure surveys show that the universe is
indeed homogeneous and isotropic on sufficiently large scales (>100 Mpc). The
average spacetime in an isotropic and homogeneous universe is described by the
Friedmann-Robertson-Walker (FRW) metric:

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
(3.1)

where a(t) is the time-dependent cosmic scale factor, and k = −1, k = 0 and
k = 1 indicate an open (positively curved), flat, or closed (negatively curved)
universe respectively. Throughout this thesis I will mostly assume k = 0, which
is in agreement with experiments. A particle at rest at a given set of coordinates
(r, θ, φ) and which has no external forces acting on it, will have constant (r, θ, φ).
These coordinates are then called comoving coordinates. You can calcultate the
physical distance between particles at (t, 0) and (t, r) by:

d(r, t) =

∫
ds = a(t)

∫ r

0

dr√
1− kr2

. (3.2)

3.3 Friedmann equations

The expansion of the universe is determined by the properties of the material
within it. These properties can be specified by the energy density ρ(t) and the
pressure p(t). For a perfect fluid these two are related by an equation of state,
which gives p as a function of ρ, defined as:

ω =
p

ρ
. (3.3)

Some classical examples of equations of state are:

ω =
1

3
, Radiation (3.4)

ω = 0, Non-relativistic matter. (3.5)
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For an entire universe there need not be a simple equation of state. For example
there can be different mixtures of material, such as a combination of radiation and
non-relativistic matter.

The crucial equations for describing the evolution of the scale factor a(t) are
the Friedmann equations:

H2 =

(
ȧ

a

)2

=
1

3M2
pl

ρ Friedmann equation (3.6)

ρ̇+ 3H(ρ+ p) = 0 Fluid equation (3.7)

Ḣ +H2 =
ä

a
= − 1

6M2
pl

(ρ+ 3p) Acceleration equation (3.8)

where MPl =
√

~c
8πG

is the Planck mass1 and H(t) ≡ ȧ
a

is the Hubble parameter.

The Hubble parameter is used in Hubble’s law, which states that galaxies recede
from each other with a velocity that is proportional to the distance.

3.4 Standard cosmological solution

The Friedmann equations can be solved for the two equations of state given earlier
(equation (3.4) and (3.5)), which give the classic cosmological solutions:

Matter Domination ω = 0 : ρ ∝ a−3 a(t) ∝ t2/3 (3.9)

Radiation Domination ω =
1

3
: ρ ∝ a−4 a(t) ∝ t1/2. (3.10)

In both cases the density falls as t−2. When k = 0 we have the freedom to rescale
a and it is normally chosen to be equal to unity at the present, so that physical
and comoving scales coincide. We can then fix the proportionality constants by
setting the density to be ρ0 at time t0, where subscript 0 denotes the present value.

A more interesting solution appears for the case of the so-called cosmological
constant, because this ensures that there is an quasi-exponential expansion in our
universe. This corresponds to an equation of state p = −ρ. Equation (3.7) then
gives ρ̇ = 0 and hence ρ = ρ0, leading to:

a(t) ∝ exp(Ht). (3.11)

1Throughout this thesis I will assume ~ and c to be equal to 1, so M−2
pl = 8πG.
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3.5 Critical density and the density parameter

Consider adding spatial curvature to the Friedmann equation (3.6):

H2 =
ρ

3M2
pl

− k

a2
. (3.12)

If we divide both sides by the Hubble parameter squared, we can write this as:

1− Ω =
−k

(aH)2
. (3.13)

where:

Ω ≡ ρ

ρcrit
, ρcrit ≡ 3M2

plH
2. (3.14)

The deviation of the density parameter Ω from unity is a measurement for the
curvature of the universe. As you can see, to have a flat universe, ρ = 3M2

plH
2.

3.6 Problems of the Big Bang model

The Big Bang model is a very convincing theory for the evolution of the universe,
but there are some crucial problems which it cannot solve. Most of these problems
are concerned with the initial conditions of the universe. That is the reason why
cosmologists started to look into the theory of inflation, coined by A. Guth [9].
While historically these problems were very important, they are now somewhat
marginalized because inflation nowadays is most important due to its relevance in
the origin of the cosmic structure.

3.6.1 The horizon problem

Probably the most important observation which the Big Bang model cannot ex-
plain is the uniformity of the CMB. In the Big Bang cosmology the CMB consisted
of 104 causally independent patches at the time of decoupling. This means that
points on the sky which have a seperation of 2 degrees should have never been
in causal contact, but they are observed to have the same temperature to an ex-
tremely high precision. There was no time for these regions to interact, because
of the finite horizon size: ∫ tdec

t∗

dt

a(t)
�
∫ t0

tdec

dt

a(t)
(3.15)

where t∗ is the beginning of the universe, tdec is the time of the decoupling of
photons and t0 is the present time. The Big Bang model has no way to explain
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how these patches can have an equal temperature if they were never in causal
contact.

3.6.2 The flatness problem

Let us consider the Friedmann equations written in the form of (3.13). In the
standard Big Bang description of the universe (aH)−1 is increasing so 1

(aH)2
is

decreasing. This means that the curvature of the universe grows in time. If
we extrapolate our current value of |1 − Ω| to the beginning of the universe, we
discover that the value which |1 − Ω| must have had is extremely close to zero.
From observations we know that today |1 − Ω| . 0.01 [10]. According to this
current value, we have to explain a much more extreme flatness at early times, e.g.
|1 − Ω| . 10−55. It is very hard to explain why |1 − Ω| had such a precise value,
with a small margin for error. For all we care, its value was 0.1 or 105, because the
physical laws in the universe will still be the same. The Big Bang model cannot
explain why we need to have such precise initial conditions in our universe.

3.6.3 The monopole problem

It is likely that the universe went through different phase transitions. There are
for example the electroweak and QCD phase transitions, and possibly others at
even higher scales, like the grand unified theory (GUT). The problem is, there
are expected to be phase transitions which create ’unwanted relics’. Unwanted
relics are particles which are predicted by modern particle theories, but have not
yet been observed. These include magnetic monopoles and cosmological defects.
Monopoles are heavy pointlike objects, which behave as cold matter ρ ∝ a−3.
The energy density of monopoles decreases slower than the radiation background
(ρ ∝ a−4), so it would become the dominant substance in our universe at some
point, in contradiction to our observations. One has to get rid of these monopoles
without harming the conventional matter in the universe.

4 Cosmological inflation and the Big Bang prob-

lems

The horizon and the flatness problem of the Big Bang model are problems of the
initial conditions of the universe. These problems can be solved by finetuning
these initial conditions, but it must be done by such an enormous amount that it
is very unlikely.
Inflation, the concept that the universe went through a period of quasi-exponential
expansion in its earliest stages, solves all problems of the Big Bang model very
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convincingly. The isotropy and homogeneity of the CMB and the flatness of the
universe emerge dynamically. They are not specific values of the initial condi-
tions anymore. Even the monopole problem is addressed by inflation. It explains
why our universe is so big, flat and homogeneous. One of the most remarkable
consequences of inflation is that it can provide the seeds for large scale structure
formation through quantum fluctuations.
As stated earlier, inflation is a period of accelerated expansion. Another way to
define inflation is to say that inflation is a period where the comoving Hubble
radius is decreasing:

d

dt
(aH)−1 < 0. (4.1)

The decreasing Hubble radius is a more logical definition of inflation, because if
we define it this way it will be easier to understand why inflation is a solution to
the horizon problem. Of course we can show that a decreasing Hubble radius is
the same as accelerated expansion:

d

dt
(aH)−1 =

d

dt
(ȧ−1) = − ä

ȧ2
< 0. (4.2)

because ȧ2 is always positive, ä > 0. So a shrinking Hubble radius implies an
accelerated expansion.

4.1 The horizon problem

Everything that exists inside the Hubble radius can be in causal contact. The hori-
zon problem was the problem that the CMB had many independent patches which
would have never been in causal contact. A shrinking Hubble radius in the earliest
stages of the universe solves this problem. You can imagine that the Hubble radius
was very big before the period of inflation. This area is inside the Hubble radius
so it can reach thermal equilibrium. During inflation, the Hubble radius decreases,
which you can see as a zooming in to a small part of the enormous area which is
in thermal equilibrium. Nowadays, when the Hubble radius increases, we observe
the CMB to have almost the exact same temperature in every direction, because
it was in causal contact at the earliest stages of the universe. In the same way,
irregularities on scales much bigger than the observable universe can be caused by
causal processes, given that they were created at sufficiently early times that those
scales were within causal contact. Of course there should be a minimal amount of
e-folds2 of expansion during inflation to solve the horizon problem. The minimal
amount of expansion during inflation should be equal to the amount of expansion

2The number of e-folds N is defined as
∫
Hdt, such that a(t) = a0e

∫
Hdt = a0e

N .
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after inflation. [11]. This translates to an amount of e-folds, which is dependent on
the energy scale during inflation. If we take the upper bound of the energy scale
1.9× 1016 GeV as measured by Planck satellite [12], we get a minimal amount of
67 e-folds of expansion during inflation. Of course this value of inflation is a lower
bound, it could be that there was much more inflation, so much more e-folds of
expansion.

Figure 1: In this figure you can nicely see how inflation is a solution to the horizon
problem and how quantum fluctuations could be in the Hubble radius. Figure
from [13].

4.2 The flatness problem

The flatness problem was the problem that in our current universe |1 − Ω| is
driven away from 0, while observations show that it is nowadays very close to
zero. It is driven away from zero because (aH)−1 > 0 in our Friedmann universe.
|1−Ω| = 0 is an unstable state. Inflation solves this problem almost by definition.
As explained above inflation is defined as a period where the Hubble radius is
decreasing, so (aH)−1 < 0 (see also figure 1). Because the denominator in equation
(3.13) is increasing, |1 − Ω| is driven towards zero. So for inflation, |1 − Ω| = 0
is actually an attractor, as one can see in figure 2. It is true that inflation must
happen for a sufficiently long time to reach a state close enough to |1 − Ω| = 0,
but that is surely possible. If it is close enough, then it will stay very close to zero,
even though in the post-inflationary period it is repelled from this state. To solve
the flatness problem, we need some amount of inflation which turns out to be the
same as for the horizon problem; 67 e-folds of expansion [11].
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Figure 2: Evolution of the density parameter Ω, during and after inflation. Figure
from [14].

4.3 The monopole problem

The monopole problem refers to the problem that we expect phase transitions in
the early universe which create monopoles, but we do not observe these nowadays.
Inflation also takes care of this problem, because inflation rapidly dilutes the un-
wanted relics. The energy density during inflation falls slower (a−2 or slower) than
that of unwanted relics (a−3). So their energy density becomes negligible very
quickly.

5 The physics of inflation

In the previous chapter I discussed the idea behind the concept of inflation, and
now we turn to the physics which drives inflation. To obtain inflation, we need to
have a substance which has ω = −1, so ρ = −p, because that produces exponential
expansion, as shown in (3.11). Something that can fulfil this property is a scalar
field, which in the case of inflation is often called the inflaton.
For a universe filled with a homogeneous scalar field φ(t), the energy density and
pressure are given by:

ρφ =
1

2
φ̇2 + V (φ) (5.1)

pφ =
1

2
φ̇2 − V (φ). (5.2)
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If we substitute these definitions for the energy density and pressure in the Fried-
mann equation (equation (3.6)), we get:

H2 =
1

3M2
Pl

[V (φ) +
1

2
φ̇2]. (5.3)

Because the inflaton is a scalar field, the time evolution of the field φ(t) is governed
by the Klein-Gordon equation:

φ̈+ 3Hφ̇ = −V ′. (5.4)

5.1 Slow roll approximation

The standard approximation used for inflation is the slow-roll approximation. The
slow-roll approximation assumes that T � V , which ensures ρ = −p. It turns out
that experiments agree with the predictions made by slow-roll. . You can define
two conditions which, if they hold, make sure that inflation is happening for a
sufficiently long time. As said earlier, inflation is defined as a period where ä > 0:

ä

a
> 0⇒ Ḣ +H2 > 0⇒ εH ≡ −

Ḣ

H2
< 1.

This εH < 1 ensures us that accelareted expansion is happening. For exponential
expansion, we need εH � 1. We also want inflation to happen a sufficiently long
time (around 50-60 e-folds) to solve the cosmological problems the Big Bang model
had. To make sure this happens, we define:

ηH =
ε̇H
HεH

. (5.5)

If |ηH | � 1, the change of εH per Hubble time is small and inflation persists. From
equation (5.3) and (5.4), we can derive the continuity equation:

Ḣ = −1

2

φ̇2

M2
Pl

. (5.6)

With these equations we can very easily see why it is called the slow-roll approxi-
mation. If we combine equation (5.3), (5.1) and (5.6), we get:

εH = − Ḣ

H2
=

1
2
φ̇2

3[1
2
φ̇2 + V ]

� 1. (5.7)

So we can see that for εH � 1, the kinetic term must be much lower than the
potential term, hence slow-roll (see figure 3).
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Another way to define the slow-roll parameters, is not in terms of the Hubble
parameter H, but in terms of the scalar potential V :

εV =
M2

Pl

2

(
V ′

V

)2

(5.8)

ηV = M2
Pl

V ′′

V
. (5.9)

Where a prime is a derivative with respect to the scalar field φ. We can calculate
the scalar spectral index in terms of the Hubble slow-roll parameters:

ns − 1 = −2εH − ηH . (5.10)

The spectral index says something about the scale dependence of the primordial
perturbations. The primordial perturbations are the perturbations in the early
universe which we get by treating the inflaton quantum mechanically. These per-
turbations are the seed for the large-scale structure in our present universe. Be-
cause the power spectrum of the primordial perturbations P (k) ∝ kns−1, ns = 1
means scale-invariant primordial perturbations. According to slow-roll inflation,
primordial perturbations should be almost scale invariant; ns should be very close
to one.

5.2 Quantum fluctuations

As we have seen in the previous subsection, the inflaton φ(t) governs the energy
density ρ of the early universe. You can imagine φ as a microscopic clock reading
off the amount of inflation remaining. Because microscopic quantum mechnanical
objects are under influence of the uncertainty principle, the field φ(t) can have
some spatially varying fluctuations, as one can see in figure 3. These variations
have the consequence that different regions of space undergo inflation by different
amounts. These quantum fluctuations therefore lead to fluctuations in the energy
densitiy δρ. These variations in energy densities lead to temperature anisotropies
∆T (x) in the CMB, because photons from denser regions have to overcome a bigger
gravitational force and therefore lose energy. In this way, temperature anisotropies
arise naturally from a quantum description of inflation.

5.2.1 Scalar, vector and tensor perturbations

The quantum fluctuations of the inflaton can be of three types, namely scalar, vec-
tor and tensor perturbations. Scalar fluctations are the simplest form, which are
caused by energy density fluctuations and therefore lead to temperature anisotropies.
Vector fluctuations are another type of perturbation which are caused by vorticity
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Figure 3: The typical scalar potential for slow-roll inflation. On top of the classical
evolution of φ you also have the quantum fluctuations δφ. Figure from [15].

Figure 4: The different perturbations; scalar, vector and tensor. Figure from [16].

in the primordial plasma. Because vorticity is brought to a very low value by
inflation (see section (6.1.1)) there will be almost no vector fluctuations left in
the CMB. The third and last perturbation you can have is tensor fluctuations,
which are caused by gravity waves who stretch and squeeze space in orthogonal
directions. The three types of perturbations are represented in figure 4.

Another important property of the CMB which is caused by scalar, vector
(negligible) and tensor perturbations is the polarization. The polarization can be
split into E-modes and B-modes, similar to an electromagnetic wave which you
can split into an electric and magnetic part. The scalar perturbations only create
an E-mode polarization. This is because scalar perturbations cause temperature
anisotropies. When an electromagnetic wave is incident on a free electron, the
scattered wave is polarized perpendicular to the incidence direction. If there were
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no anisotropies in temperature, no polarization can be made. But because of
the anisotropies, photons from different angles have different intensities, which
gives you a linear E-mode polarization. Vector perturbations only cause B-mode
polarization, but as said earlier these will be negligible. Tensor perturbations
give rise to E-mode and B-mode polarization. But because the amount of E-
mode polarization from scalar perturbations is much more than that of E-mode
polarization from tensor perturbations, we are looking for B-mode polarization in
the CMB to detect gravitational waves. We can measure this value by measuring
the value r, the tensor-to-scalar ratio, which is defined as:

Figure 5: In the top side you can see the temperature power spectrum as seen in
the CMB. In the bottom side you can see the correlation spectrum between the
temperature anisotropies and the E-mode polarization. Figure from [17].
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r ≡ ∆2
t

∆2
s

(5.11)

where ∆2
t is the dimensionless tensor spectrum and ∆2

s is the dimensionless scalar
spectrum, both of the primordial perturbations.

In figure 5 one can see in the top side the temperature anisotropies power
spectrum and in the bottom side the TE- correlation power spectrum. In the
top side one sees the points of the temperature anisotropies power spectrum we
measure in the CMB. The peaks and troughs are exactly what inflation predicts.
By treating the scalar field quantum mechanically we end up with primordial
perturbations, which then lead to the CMB temperature power spectrum we see
in figure 5.

6 Predictions and observational tests

Of course inflation is not just a purely theoretical model, it also has its predictions
about the current state of the universe. Most of the observations which cannot be
explained by the Big Bang model, like the horizon problem, the flatness problem
and the monopole problem, supported the theory of inflation. In this chapter I
will discuss what inflationary models in general predict, what the observational
tests were and still are, and what future observations can tell us about the validity
of inflation.

6.1 Predictions of inflation

The main reason for Guth to introduce the inflationary model in 1981 was of course
the problems of the initial conditions the Big Bang model had. But inflation would
not be a good scientific theory if it did not have some predictions about the state
of the present universe which we can observe. These predictions can in some cases
be tested to see if inflation can serve as the best theory so far for the origin of the
universe.

6.1.1 Rotation of the universe

One of the properties of the universe which was not certain at the time inflation
was invented was the so-called rotation of the universe. Inflation had a specific
prediction about this property. If the vorticity (rotation) of the early universe was
low enough to allow inflation, the vorticity would be driven towards an extremely
low value due to inflation [18]. During the inflationary era it is estimated that the
factor by which the vorticity decays is of the order 10−142 [19]. This means that
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if they observed at that time a significant rotation of the universe, it would make
the inflationary model extremely implausible.

6.1.2 Anisotropies in the CMB

Until the early 90’s it seemed like the CMB was completely homogeneous. This was
a very big problem for inflation. As was said in the previous chapter, perturbations
in the scalar field cause energy density fluctuations in the photon-baryon fluid, so
there must be anisotropies. In the slow-roll models I discussed in section 5.1 these
anisotropies must have specific properties; they must be consisted with adiabaticity
and Guassianity [20]. If these anisotropies were not observed, inflation would lose
a great part of its plausibility. This prediction was for the first time tested by the
COBE satelite. Another thing inflation predicts about the primordial fluctuations,
is that they must be almost scale invariant [21]. As said earlier, this is measured
by the spectral index ns. If ns = 1, the perturbations are scale-invariant. Inflation
predicts ns very close to one.

6.1.3 Flatness of the universe

As explained in the previous chapter, Ω = 1 is an attractor in the inflationary
model. All of the earlier inflationary models predicted that Ω should be very close
to 1, so that the universe would be flat. Later on there were inflationary models
which could explain an open universe, but almost all inflationary models predict
Ω = 1 [22]. For a long time it did not look like Ω = 1, because until 1998 people
had not found out about dark energy [23]. In our universe ΩΛ = 0.692 ± 0.0103

[10], so before 1998 it was thought that the matter in our universe only came to an
Ω = 0.3 [24]. This was a problem for inflation, because it predicts a flat universe
with Ω = 1.

6.1.4 T-mode and E-mode correlation

The CMB does not only have temperature anisotropies, but also differing polar-
ization angles. Adiabatic density fluctuations only produce E-mode polarization.
This is because density fluctuations cause the temperature differences in the CMB.
At the time of recombination photons interact with free electrons. A unique test
for inflation would be the correlation between the T-mode and E-mode spectrum.
The T-mode and E-mode spectrum should be out of phase, a peak in the temper-
ature spectrum should mean an trough in the E-mode spectrum.

3ΩΛ is density of dark energy in our universe.
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6.1.5 Gravitational waves

Another important prediction inflation makes is the existence of gravitational
waves, which are produced by ripples in the spacetime. While scalar perturba-
tions cause density anisotropies and therefore temperature anisotropies, tensor
perturbations are the source of gravitational waves. Gravitational waves are an
important prediction because it is completely model independent. If there was
inflation in the early universe, there must be gravitational waves in the CMB. The
downside of the gravitational waves are that they are very hard to detect. One
way to detect gravitational waves is through B-mode polarization in the CMB.

6.2 Observational status

6.2.1 Rotation of the universe

One of the first experiments which could make a precise measurement of the ro-
tation of the universe was the COBE satellite. It was only possible to lower the
boundary the global rotation of the universe has, it was not possible to completely
rule out any rotation of the universe. After one year of observing the sky the limits
of the global rotation of the universe were lowered to ω

H0
< 10−6 [18]. This was at

a level that begins to probe upper limits of inflationary models. After the 4-year
sky map of COBE they could lower the limit of rotation to an even smaller value,
namely ω

H0
< 6 × 10−8 [25]. Further observations did not show a rotation of the

universe, so inflation overcame this observational test.

6.2.2 Anisotropies in the CMB

The Cosmic Background Explorer (COBE) satellite was also searching for aniso-
tropies in the CMB, which was a must for inflation because that is what it predicts.
After one year of observing the CMB, anisotropies were still not found. After 4
years of observing the sky they found anisotropies in the CBM, with temperature
2.725 ± 0.020K [26]. Of course these anisotropies were not the only test. They
could use the data from the COBE satellite also for testing the prediction that the
perturbations must be adiabatic, Gaussian and scale-invariant. As it turned out,
they could verify that the anisotropies are consistent with Gaussian statistics, and a
spectral index of ns = 1.2±0.3. So COBE was of great importance for cosmologists
for showing the anisotropies in the CMB. But predictions of inflation could be
tested to a greater precision, which is exactly what the Wilkinson Microwave
Anisotropy Probe (WMAP) did. Of course it was already sure that there were
anisotropies, but if you measure them with greater precision, you can improve
the bounds on non-Gaussianity and adiabaticity of the anistropies. They also
measured smaller scales, which allows for a better determination of cosmological
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parameters. The results confirmed what inflation predicted; the perburbations
were still consistent with Gaussianity and adiabatic [27]. From the WMAP data
they could also determine the spectral index much more precise: ns = 0.971±0.010.
After WMAP there came another satellite which could measure the anisotropies
to an even higher precision, the Planck satellite (see also figure 6). The results
from Planck are in good agreement with Gaussian and adiabatic fluctuations in
the CMB. The spectral index they measured was ns = 0.9608 ± 0.0054 [10]. So
far everything inflation predicted was measured; the CMB had anisotropies, which
are consistent with Gaussianity and adiabatic, and almost scale-invariant, because
ns is slightly less than one.

Figure 6: CMB sky as observed by the COBE, WMAP and Planck satellite. One
can see by eye that each satellite measured the anisotropies with greater precision.
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6.2.3 Flatness of the universe

For a long time it seemed like the density Ω was equal to 0.3 ± 0.1. This was
of course a big problem for inflation, which predicted Ω = 1. Then, in 1998,
Perlmutter et al found through looking at distant supernovae, that the universe
will expand forever by means of a positive cosmological constant, called dark energy
[23]. With the data from Perlmutter, they found that Ωm = 0.25+0.18

−0.12 and ΩΛ =
0.63+0.17

−0.23 [28]. These results strongly favoured a nearly spatially flat universe.
This was a big success for inflation. A few years later WMAP measured Ω to be
0.9973+0.0039

−0.0038 [27]. This was even better for inflation, because the density parameter
was very close to one. It seems like our universe is extremely flat and the prediction
of inflation was right.

6.2.4 T-mode and E-mode correlation

When you look at the TT spectrum (see figure ??), you see that the peaks and
troughs, which are what inflation predicts, only start at l > 200 (first peak), which
corresponds to angular scales θ < 1◦ [15]. This is a scale which is within the causal
horizon at the time of recombination. The feature which the TE spectrum brings
extra is the negative peak around 100 < l < 200. This is a scale not within
causal contact at the time of recombination. Therefore, one is forced to consider a
theory like inflation, where there is a horizon exit and re-entry. This TE spectrum
therefore is an observation which makes inflation much more likely than any other
theory about the origin of the universe.

6.2.5 Gravitational waves

Gravitational waves is the so-called smoking gun for inflation. These waves are
measured through the parameter r, called the tensor-to-scalar ratio. It measures
the ratio of tensor perturbations to scalar perturbations, and is given in (5.11) The
absence of tensor perturbations is signaled by r = 0. WMAP found the tensor-to-
scalar ratio to be r < 0.22 [27]. Then later on Planck lowered the value to r < 0.11
[10]. This means that if there are tensor waves, they are not very abundant in the
CMB. Of course in future observations, this value can be measured more precise.
It is worth mentioning that in March 2014 the Background Imaging of Cosmic
Extragalactic Polarization (BICEP2) published a paper where they claimed to
have found the first evidence of the primordial B-mode polarization in the CMB
[29]. After inspection of the BICEP2 and Planck data combined the researchers
found that they had to withdraw their claim, as it turned out that the B-modes
they detected were from dust in the Milky Way [30]. If they ever find a value of
r > 0, it is very positive for the theory of inflation. If not, then it is not a disaster.
It makes the theory of inlation only very slightly less possible.
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7 Discussion on the observational evidence

As shown in the previous chapter, inflation had and still has many predictions
which could have been falsified. Making such predictions is a condition which must
be satisfied to be called a good scientific theory. Inflation could have been falsified
by a measurement of the rotation of the universe, but it passed this observational
test. Another property of the CMB which we had to measure and eventually was
measured by the COBE sattelite was the existence of temperature anisotropies
due to scalar perturbations. Even another generic prediction of all models of
inflation, that the universe must be spatially flat, turned out to be the case. Later,
when they began to measure the polarization of the CMB, it turned out that you
definitely need inflation to explain the TE-spectrum. Gravitational waves or tensor
perturbations in the CMB spectrum is another prediction of all inflationary models,
but they have not been found yet.

So what is the observational status of the paradigm of inflation? You can say
that almost all predictions are already confirmed, so what is left? Of course it is
true that most of the predictions are already observed and cannot be changed, like
the rotation of the universe. But the anisotropies in the CMB could always be
measured with a greater precision, which gives you better bounds on Gaussianity
and the spectral index, so you can build better models. Also the flatness of the
universe can be measured more precise, which can tell you more about the amount
of e-folds inflation minimally needs. And the existence of gravitational waves is
still a very inflation-specific prediction, which if observed, almost assures us that
inflation must have happened.

It seems like nowadays inflation is a well supported scientific theory which can,
through changing the potential of the scalar field, predict all possible universes
within our current measurement errors. But I think that specific quality, that it
can predict anything by changing its potential, is also something which is negative
for the inflationary paradigm. As you may remember, inflation was proposed to
solve the problem of the initial conditions. Inflation is a theory which can predict
almost any universe, but nowadays cosmologists only make models which can give
the parameters we measure in our universe. Therefore it seems like the problem
of the initial conditions has not changed that much. Why of all the inflationary
potentials possible is it just the ones we construct in our models that must have
been present in the early universe? It seems like you still need very specific ini-
tial conditions, for inflation to produce the results we measure today. While this
argument may sound compelling, its not entirely correct. Because inflation does
make some generic predictions, which are discussed in chapter 6. Inflation always
drives the universe to spatial flatness and always has perturbations, which should
be seen in the CMB. The critique which still stands, is the critique that there is
no reason to assume a scalar field with negative pressure in the early universe. It
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seems like putting in the special initial conditions in the Big Bang theory (flatness,
homogeneity and anistropies in CMB) have shifted towards putting in the special
condition that there must have been some very specific kind of scalar field with
negative pressure. What favours inflation is that when the early universe had this
special scalar field, the evolution of the whole universe follows naturally, governed
by the laws of physics. But still, the problems of inflation are maybe not the obser-
vational tests, but the very logical foundation on which it is based. In chapter (8)
I will show that if inflation happens it almost always is eternal; if inflation started
in a universe it will keep inflating forever. This fact also has many implications
for the likelihood that inflation is indeed the correct theory.

8 Eternal inflation

By now it should be clear that inflation must be driven by a scalar field and that
this scalar field has quantum fluctuations. Another important feature of inflation
which is the direct effect of these quantum fluctuations is that inflation, once it
has started, must be eternal. Eternal in the sense that it must go on forever in
the future. There are two mechanisms by which inflation can be eternal, for new
inflation (small field) and for chaotic inflation (large field).

8.1 New inflation

The first models of new inflation were proposed by Steinhardt [31] and Linde [32],
while later Vilenkin [33] showed that eternal inflation is a generic feature of new
inflation. With new inflation the scalar field is at a metastable state on the poten-
tial, which is called the false vacuum. The false vacuum is the inflationary stage.
When the scalar field rolls down from this metastable state, it ends inflation and
a universe is created. The decay from the metastable state is an exponentially
suppressed process [34]. However, at the same time that it exponentially decays,
the false vacuum also exponentially expands. For new inflation to work, the ex-
ponential expansion must be much larger than the exponential decay. Therefore,
while the inflaton decays at some points, it exponentially expands at other points,
which makes the amount of false vacuum always grows in the time that a universe
is created. A figure which explains this process nicely is figure 8. First there is
only the false vacuum, which eventually decays into a universe, as you can see in
the second line of figure 8.

In this second line the two false vacuum regions are just as big as the false
vacuum region from the first line, because the false vacuum exponentially grows.
In the third and fourth line the false vacuum regions undergo the same process,
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Figure 7: In this figure you can see the scalar potential of new inflation. The
inflaton stays on top of a metastable state where it is inflating. Figure from [34].

Figure 8: The fractal structure of new inflation. Figure from [34].

creating many different universes. One can imagine that this process will go on
forever. Of course this figure is a simplified one-dimensional description of a three
dimensional process. The assumption that the decay is systematic is false too,
but it makes it easier to think and understand the process. But even when one
corrects for these simplifications, we are left with an fractal structure with different
universes.

8.2 Chaotic inflation

In 1983 Linde proposed a new model of inflation where inflation would be a natural
consequence of chaotic initial conditions in the early universe, hence the name
chaotic inflation. Chaotic inflation does not depend on the scalar field lingering
on the top of the hill, but on the scalar field rolling down the potential (see figure
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9). The easiest way to think about the mechanism of eternal inflation for chaotic
inflation is to see what happens during a time interval of duration ∆t = H−1 (one
Hubble time). By definition, during one Hubble time interval the space will expand
by a factor e. Consider a field φ in a Hubble volume of H−3, while we assume the
average value is φ0 in this region. During one Hubble time it will expand by a
factor e3, which corresponds roughly to a factor 20. So after one time interval the
region will be divided in 20 independent Hubble-sized regions.

When the scalar field φ is running down the hill, it follows the classical path
in addition to the the quantum fluctuations. These quantum fluctuations can be
downhill or uphill on the trajectory. So you can describe the evolution of φ during
one time interval as:

∆φ = φcl + φqu (8.1)

where φcl is the classical trajectory and φqu are the quantum fluctuations during
one time interval. One can imagine that if in one of the 20 regions the quantum
fluctuation uphill is bigger than the classical evolution downhill, φ > φ0, and there
will always be more inflating regions after a time interval ∆t than there were
before. This process will go on forever, so in this way chaotic inflation will also
create eternal inflation.

Let’s see if the quantum fluctuations can indeed bring the scalar field uphill by
a greater amount than the classical trajectory brings it downhill. During a time
interval ∆t the field will be reduced by ∆φcl = 2

φ
[35]. The quantum fluctuations

can be estimated to be |∆φqu(x)| ≈ H
2π

= mφ

2π
√

6
. So you can see that if φ is smaller

than φ∗ ∼ 5√
m

, then the motion downhill from the classical path is much greater

than the quantum fluctuation. However, if φ � φ∗, you have ∆φqu(x) � ∆φcl.
Because the flucutations have a Gaussian distribution, in half of the 20 domains
after time interval ∆t the field increases with |∆φqu(x)| −∆φcl ≈ |∆φqu(x)| = H

2π
,

rather than decreases. This leads to 10 times as much inflating fields after ∆t
than before. After two time intervals the total volume of the growing scalar field
is already 100 times bigger. The universe thus enters an eternal inflationary process
of self-reproduction.

8.3 Implications for the inflationary paradigm

At first eternal inflation seems like a very interesting theory, although without any
testable predictions. This is because all the universes eternal inflation create, are
out of causal contact. For any observation which could prove or disprove eternal
inflation, we must observe beyond our own universe. There is however an impor-
tant implication of eternal inflation. Due to the eternal process, there will be an
infinite amount of pocket universes. Maybe they have the same laws of physics
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Figure 9: The characteristic potential of chaotic inflation. On top of the classical
motion you have the quantum fluctuations. Figure from [34].

like our universe, maybe a little different, or maybe the universe does not look in
the slightest amount like our universe. Because eternal inflation is in fact eternal,
there will be an infinite amount of different universes created an infinite amount of
times. One scientist who is for this reason quite sure that inflation is the a wrong
theory, is Paul Steinhardt [36]. According to him, because eternal inflation make
all possible universes with all the possible properties, inflation loses its predictive
power. Because any physically possible cosmic property will occur in this multi-
verse, there is no way to falsify inflation. It is quite a philosophical problem. Let
us assume that eternal inflation is correct and we live in a pocket universe within
a multiverse where every possible universe physically possible exists. With this
assumption the problem is that you can argue both ways. One way is to say that
because inflation predicts every possible universe and thus also ours, inflation is
the right theory. Another way, which Steinhardt takes, is to argue that due to
the multiverse, inflation loses its predictive power because it predicts any possible
universe. Here we have to ask ourselves what a good scientific theory should look
like. Is it enough to explain the observations we make today, or does it have to
make predictions which can be tested?

One property which is assumed in this reasoning is that inflation does produce
all possible universes with all possible properties. As far as I understand the sub-
ject, inflation as we understand it today does make some falsifiable predictions, for
example the anisotropies in the CMB and the gravitational waves. Therefore I tend
to favour the conclusion that inflation is a good scientific theory with falsifiable
predictions.
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9 Conclusion

There were a few problems for the Big Bang model and the concept of inflation
seemed an answer to all of them. It solved the horizon problem, the flatness
problem and the monopole problem. Inflationary theories also made general pre-
dictions about our current state of the universe. The global rotation of the universe
could disprove inflation, but turned out not to. Inflation predicted that there were
anisotropies in the CMB, which were found by COBE and measured to higher
precision by WMAP and the Planck satellite. These anisotropies were Gaussian,
adiabatic and almost scale-invariant, like inflation predicts. Another prediction
inflation made was a flat universe. Until 1998 it looked like this was not the case,
but due to the existence of dark energy this prediction from inflation was true too.
The TE mode spectrum showed us that we need a concept like inflation to explain
the anti-correlation between causally disconnected regions in space. Gravitational
waves will be a big support for inflation, but are not yet observed.

Eternal inflation is in both new inflation and in chaotic inflation an unavoidable
outcome. New inflation is eternal because while it exponentially decays, the false
vacuum also exponentially grows. This way the inflating region keeps growing.
Chaotic inflation is eternal if φ is big enough for the quantum fluctuations to be
bigger than the classical directory. There are people who argue that eternal infla-
tion has an implication for the inflationary paradigm, but in my opinion inflation
is still a good scientific theory.
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