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Abstract

In this paper we investigate the question: “Can a meta-cognitive model
for a mixed-motive bargaining task outperform humans when contesting
human players?”. In our experiment two parties had to negotiate, with a
computer model taking the role of one of the negotiators on half of our
trials. Participants were asked to rate their counterpart’s agreeability,
without knowing whether this was a human or the model. No significant
difference in agreeability and absolute score was found, yet the model
gained a significantly higher relative score. These findings suggest that
even if it only helps to improve relative economical gains, teaching people
the meta-cognitive strategy can help them become better negotiators, and
will not impair their performance on other relevant performance measures.

Introduction

During a negotiation, two or more parties attempt to agree on a division of
goods, earnings, costs, tasks or on a selling price for an item or service. Negoti-
ations are an important part of our lives: we do not only use them when buying
or selling goods, we also use them in a diverse set of other cases, such as dividing
chores in a household, making a task division in group projects, splitting gas
and electricity bills, deciding who can use the car at what time, and in many
other things (Liebert et al. (1968), Galinsky and Mussweiler (2001)).

Previous work

In previous work, two negotiation strategies are usually distinguished: an ag-
gressive, competitive or tough strategy, and a cooperative or soft strategy (e.g.,
Hüffmeier et al. (2014)). An aggressive strategy is used to maximize personal
gains at the expense of the other negotiator(s), and is usually accompanied by
a demanding first offer and few and small concessions (Yukl, 1974; Esser and
Komorita, 1975). A concession occurs when a negotiator makes a new offer
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which decreases his gains or increases his losses, while, in return, increasing the
gains or decreasing the losses of the other negotiator(s). A cooperative strategy
aims to split the profits equally between all negotiators and tries to maximize
the total profits across all negotiators. Someone using a cooperative strategy
will, in general, make a less demanding initial offer and will make more frequent
and larger concessions (Gray, 1977).
When trying to get the best economical gain from a negotiation, the aggressive
strategy is usually recommended (Yukl, 1974; Huang et al., 2006), since small
and few concessions and a demanding initial offer can lead to a more profitable
final agreement. On the other hand, a cooperative strategy can lead to better
socio-emotional outcomes, that is, a cooperative negotiator will be seen as more
agreeable (Hüffmeier et al., 2014). This, in turn, can lead to more cooperation
in the future.
This paper focuses on a third, more recent strategy: the meta-cognitive strat-
egy. The meta-cognitive strategy employs theory of mind, that is, thinking about
another person’s beliefs and reasoning, to find out what the other negotiator’s
strategy is. The meta-cognitive negotiator then changes his own strategy based
on the other negotiator’s perceived strategy. It has been found that a meta-
cognitive strategy outperforms a wide variety of other strategies in a three-agent
cooperative game in Reitter et al. (2010). In Galinsky and Mussweiler (2001) it
is found that taking the other negotiator’s perspective can help counter biases
in bargaining situations. Lastly, Zohar and Peled (2008) suggest that teaching
of meta-strategic reasoning, reasoning about one’s own strategy and adapting
it where necessary, can improve experimentation abilities in elementary school
pupils.
In this paper we investigate the effect of using a meta-cognitive strategy on the
economical and socio-emotional outcomes of a negotiation. A purely cooper-
ative negotiator cannot defend itself against an aggressive negotiator, whereas
a meta-cognitive negotiator can resist exploitation by responding to toughness
with toughness (Esser and Komorita, 1975). On the other hand, a purely ag-
gressive negotiator cannot improve his socio-emotional outcomes and cannot
improve his gains through cooperation when possible, and will force the other
negotiator to also use an aggressive strategy, making the negotiation more dif-
ficult. Due to these shortcomings I suspect a meta-cognitive negotiator can get
better economic and socio-emotional outcomes. If this is the case, it will be
useful to teach people the meta-cognitive strategy.
To investigate these negotiation strategies, we use Kelley’s Game of Nines (Kel-
ley et al., 1967), a bargaining game where two negotiators have to divide a
reward under incomplete information.

Model descriptions

Overview

Cognitive models capable of performing the Game of Nines task using each of
the three strategies have been developed in the ACT-R cognitive architecture
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(Anderson et al., 2004). They play by retrieving instances of an in-game situa-
tion from their memory. The meta-cognitive model uses these instance both to
select its actions and to infers its opponent’s strategy. Once the meta-cognitive
model has inferred which strategy its opponent is using, it will employ the same
strategy.

Detailed description

Each model plays by retrieving chunks, specifying a certain situation in the
game, from their declarative memory to decide on their next action based on the
other negotiator’s last move and the distance between the model’s current offer
and his MNS. The chunk most similar to the current situation is retrieved. Since
not all possible in-game situations are represented in chunks, partial matching
is often required. With partial matching, a chunk is selected where one or more
fields match the current situation, favoring chunks with more matching fields.
Each model’s initial set of chunks has been coded by hand, and is based on
previous work regarding negotiations (Kelley et al. (1967), Liebert et al. (1968),
Schoeninger and Wood (1969)). There are chunks corresponding to both strate-
gies, as well as “neutral chunks”, which fall between both strategies
The meta-cognitive model uses instance-based learning, learning by comparing
new instances of a problem with instances previously encountered and stored in
memory (see Aha et al. (1991)). It starts with cooperative, aggressive and neu-
tral chunks, and has two “substrategies”: cooperative and aggressive. It uses
its chunks for two purposes: identifying its opponent’s strategy, and selecting
actions to perform. When identifying its opponent’s strategy, it tries to match
its opponent’s actions with their most similar chunks. If this is an aggressive
chunk, it can infer that its opponent is using and aggressive strategy, and vice
versa for cooperative chunks. Neutral chunks ensure ambiguous actions aren’t
classified as aggressive or cooperative. When the model recognizes its oppo-
nent’s strategy as aggressive or cooperative, it will switch to its corresponding
substrategy. Neutral actions are ignored. Like the two other models, the meta-
cognitive model matches the current situation with chunks in its memory to
select an action. However, selecting chunks highly depends on the substrategy
the model is currently using: chunks corresponding to its current strategy have
a high probability of being selected, neutral chunks have a low probability and
chunks corresponding to the substrategy it is currently not using have a very
slim chance of being selected. Using this structure, the meta-cognitive model
reciprocates, that is, matches its opponent’s strategy.
The cooperative chunks specify less demanding initial offers and lower lowest
acceptable gains, the smallest gains it will still agree to, whereas the aggres-
sive chunks specify more demanding initial offers and higher lowest acceptable
gains. Neutral chunks have intermediate initial offers as well as intermediate
lowest acceptable gains. For a more complete description, see Stevens (2015).
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Previous experiment

In a previous experiment (Stevens, 2015), the three models played against two
agents. The agents used formulae to calculate their next move. The fair agent
tried to equally split the profits between himself and the other negotiator,
whereas the unfair agent tried to maximize his profits at the expense of the
other negotiator. It was found that the aggressive and cooperative model per-
formed better against the unfair and fair agent, respectively. However, the
meta-cognitive model performed equal to or better than the other two mod-
els against either agent. Moreover, when compared with human performance
against both agents, the meta-cognitive model performed as well as the top 25%
of the participants. This substantiates our suspicions that a meta-cognitive ne-
gotiation strategy can yield a better economic outcome than the aggressive or
cooperative strategy alone, and provides some evidence that teaching people the
meta-cognitive strategy will make them better negotiators.

Research question

In this paper we build on these previous findings by comparing the meta-
cognitive model with humans when playing against (other) human negotiators.
We aim to answer the question “Can a meta-cognitive model for a mixed-motive
bargaining task outperform humans when contesting human players?”, with
“performance” referring to both profits and socio-emotional outcomes. Since
we also wish to know how well the meta-cognitive model represents a human
negotiator we’ll use a set-up similar to a Turing test (Turing, 1950). This will
also help us in measuring socio-emotional outcomes, as “agreeability”, when
describing another negotiator, might have a different meaning when the other
negotiator is perceived as a computer instead of a human.

Method

Overview

In each experiment, two players played the Game of Nines against each other
over fourteen rounds. Our primary manipulation was whether player 2 played
against a human partner or a confederate operating the meta-cognitive model.
Player 2 was never informed whether he was playing against a human or the
model.

The game

The game which was used is Kelley’s Game of Nines (Kelley et al., 1967). In
the Game of Nines, two negotiators had to agree on a division of nine points.
However, both participants also received a Minimum Necessary Share (MNS)
which was subtracted from their part of the agreed division. Both negotiators
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only knew their own MNS, and were not allowed to reveal it to the other nego-
tiator. If a negotiator agreed on receiving a number of points under his MNS,
he would receive a negative number of points which was subtracted from his
points acquired over multiple bargaining rounds with the other negotiator. Sin-
gle points were not divisible: both negotiators had to agree on a whole number
of points on each round. Points could also not be “left on the table”: all nine
points had to be divided between the negotiators. Negotiators could quit during
a negotiation: if one of the negotiators quit during a round, both received zero
points for this round, regardless of their MNS. To limit the total duration of
a trial, each round could only take three minutes. If these three minutes were
exceeded, both participants received zero points, regardless of their MNS, for
the current round.

Introduction

Each trial was performed with two participants, a dyad. Before a trial started,
the game was explained to the participants. The participants were asked if they
had any more questions about the rules, and if they understood them. The
participants were told one of them would be taking the role of the confederate,
who would either play by himself or would control a model. The other player, to
be referred to as the player, always played by himself. To eliminate any effects
the messages might have had on agreeability ratings, both participants had to
use a predefined set of messages to communicate, one for each action (these are
“Deal.”, “I quit.”, “Final offer.” and the numbers 1 through 9). They received a
sheet with these messages for quickly looking them up. Since the model can only
play in a turn-based Game of Nines, the players had to take turns performing
actions. First the participants played three introductory rounds to ensure they
understood the rules. The points gained during these rounds were discarded,
and the model, if used, was reset before the actual rounds started. To prevent
priming effects (as found by Burnham et al. (2000)) the term “counterpart” was
always used when describing the other negotiator.
Before any rounds were played (this includes introductory rounds), both nego-
tiators were separated so they could not see or hear each other. If the confederate
operated the model, he had to use the same moves as the model.

Experimental set-up

Negotiation was performed using an open source instant messaging client called
LAN Messenger. During the experiment, three channels were used: one for the
player and the experimenter, which the experimenter used to send the player
his MNS and score, one for the confederate and the experimenter which was
used in a similar manner, and one shared between all three parties, which was
used for negotiation between the player and confederate, and for announcing
who would make the first offer, which round is being played and the division of
points at the end of each round.
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Experimental conditions

Each set of two participants played fourteen rounds, using the following set of
tuples:
(1,1) (2,2) (3,3) (4,4) (1,3) (3,1) (1,5) (5,1) (3,4) (4,3) (2,6) (6,2) (4,5) (5,4)
To ensure neither party gained a “low man’s advantage” (Kelley et al., 1967)
during a block, an advantage over the other player because your MNS values are
lower than his, we always used both the original and the mirrored MNS tuple for
each tuple with unequal MNS values. To prevent order effects the tuple order
was randomized for each set of participants. Participants took turns in making
the first offer.
There were two conditions: either the confederate played by himself or he oper-
ated a model. The first will be referred to as the “human vs. human condition”,
abbreviated “hvh” whereas the latter is the “human vs. model condition”, or
“hvm”.

Participants

Thirty-eight participants were recruited from a Facebook group for people who
are interested in participating in paid experiments in Groningen. Twenty of
these played in the human vs. human condition and the other eighten played
in the human vs. model condition. In the human vs. model condition, four
confederates were used, of which two confederates were used for most trials,
without the other participant knowing their counter-player had participated
before. There were ten dyads, and thus ten trials, for the human vs. human
condition, and fourteen trials for the human vs. model condition. The partici-
pants were given ten euros for participating, the two returning confederates for
the human vs. model trials were given ten euros for each trial they participated
in.

Evaluation

After each trial, the non-confederate player was given a questionnaire asking
to rate their counterpart’s agreeability and how much they suspected they were
playing against a human player on a scale from 1 to 10. Three different questions
were used to rate agreeability, and one question was used to rate “humanity”.
The questions were the following:

• Based on the actions of the other negotiator, how “agreeable” was this
negotiator on a scale from 1 to 10? 1 means they weren’t agreeable at all,
10 means they were incredibly agreeable.

• How much did you enjoy playing against the other negotiator on a scale
from 1 to 10? 1 means you didn’t enjoy it at all, 10 means you enjoyed it
a lot.

• Did you like the other player’s strategy on a scale from 1 to 10? 1 means
you didn’t like it at all, 10 means you liked it a lot.
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• On a scale from 1 to 10, how much do you think you were playing against
a human? 1 means you’re absolutely certain it was a computer model, 10
means you’re absolutely certain it was the other participant.

Data to be collected

Several points of data were collected: first of all, ratings of agreeability and hu-
manity were explicitly requested after each trial. Secondly, the total number of
points earned by the player and model, the number of rounds quit by each player
and the number of final offers made by each player were tracked throughout the
experiment. For each human vs. model trial, a factor was calculated specifying
the number of turns in which the model was using its cooperative substrategy,
divided by the total number of turns. This factor specifies how cooperative the
model was during a trial: if it was cooperative on each turn it would have a
value of one, if it was aggressive on each turn it would have a value of zero.

Results

In total, twenty-four pairs of subjects participated in the experiment, ten in the
human vs. human condition and fourteen in the human vs. model condition.
In three of the fourteen human vs. model trials, the model’s operator made an
error. These trials have been excluded from our data analysis, leaving eleven
human vs. model trials for analysis.
In each trial, the following data was collected: the condition, each player’s final
score, each player’s number of final offers, the number of times each player has
quit, three questionnaire ratings on agreeability and one questionnaire rating
on humanity. For human vs. model trials, the model’s cooperativeness was
calculated, as discussed more thoroughly in the previous section.
The distribution of players across conditions can be found in Table 1 on page
8. It can be seen that player 1 in the human vs. model condition was always

player 1 player 2
human vs. human human human
human vs. model model human

Table 1: Conditions and participants

the model, which was operated by a confederate. All other players were ac-
tual participants. In our analysis we use the following terminology for several
subgroups of participants: “the model” is player 1 in the hvm condition. “all
humans” are all cells except the player 1, hvm cell. “The model’s counterparts”
are all humans who played against the model, so the hvm, player 2 cell. “hvh
players” are all players who played in the hvh condition, so the union of the
player 1, hvh cell and the player 2, hvh cell.
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Exploratory data analysis

For total scores, the means, minima and maxima for each (sub)group of play-
ers can be seen in Table 2 on page 9. The standard deviations are displayed
alongside the means between brackets. All values have been rounded to two
decimals. Although the model’s mean score is higher than its counterparts and
all humans, it stays under the mean score of all hvh players.

The total number of points which could be obtained over all fourteen trials

all model model counterparts all humans hvh players
mean 13.12 (4.14) 13.91 (3.62) 9.73 (2.95) 12.84 (4.33) 14.55 (4.05)
minimum 3 7 3 3 6
maximum 21 21 13 21 21

Table 2: Means, maxima and minima

is equal to 9 × 14, minus the sum of all MNS values, 88, so the total number
of points available is 38. If two players were perfectly cooperative, they could
obtain 19 points each. In certain rounds one player had to accept gaining zero
points, whereas the other would gain only one point. This, however, is very
unlikely as players often reject any request in which they do not gain at least
one point. If someone had acquired more than 19 points, it is likely this player
has taken advantage of his counterpart.
To get more insight into the data and the average behaviour of players we also
looked at mean quitting and final offers, as seen in Table 3 on page 9, again
all rounded to two decimals, with standard deviations between brackets. Over

all model counterparts humans hvh players
mean quits 3.71 (1.74) 4.27 (1.95) 4.45 (1.98) 3.52 (1.65) 3.00 (1.21)
mean final requests 4.93 (2.09) 5.73 (2.61) 5.09 (2.34) 4.65 (1.84) 4.40 (1.50)

Table 3: Mean quitting and final offers

all trials, a player quit 3.71 times on average, so 2 × 3.71 = 7.42 rounds were
quit in total, on average. In the rounds with MNS tuples (4,5) and (5,4), no
points could be obtained, so quitting was to be expected. In the rounds with
MNS tuples (4,4), (6,2) and (2,6) one player had to agree to obtaining zero
points, so quitting also occured very often (although there have been trials in
which participants reached an agreement in these rounds). In all (sub)groups
of participants, the mean number of final requests was higher than the mean
number of quits. In very few rounds participants quit without a final request.
The three questions on agreeability or denoted are “agr1”, “agr2” and “agr3”
respectively. The humanity score is denoted as “hum”. Player 2 filled in the
questionnaire concerning player 1, so there are only agreeability and humanity
ratings concerning player 1. Mean questionnaire ratings can be found in Table
4 on page 10. Again, all values have been rounded to two decimals and stan-
dard deviations are displayed between brackets. It can be seen that on average,
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all model hvh player 1
mean agr1 4.90 (1.73) 4.36 (1.91) 5.50 (1.35)
mean agr2 6.67 (1.71) 6.45 (2.30) 6.90 (0.74)
mean agr3 4.57 (1.96) 4.45 (2.46) 4.70 (1.34)
mean hum 5.71 (2.45) 5.82 (2.82) 5.60 (2.12)

Table 4: Mean questionnaire results

human players have been rated as more agreeable across all three questions on
agreeability. However, the mean humanity rating is higher for the model.
Lastly, the mean cooperativity factor of the model was approximately 0.33,
with a standard deviation of approximately 0.29, suggesting the model used its
aggressive substrategy in about two-thirds of its turns throughout the entire
experiment. This factor ranged between 0.08 and 0.93: against some players
it played almost exclusively aggressively, whereas against others it played very
cooperatively.

Statistical analysis

Scores

In our statistical analysis we compared the model’s mean score with both the
human counterparts and all hvh players. To perform a t-test, data must be
drawn from a normal distribution. To test whether the data is drawn from
a normal distribution, we used a Shapiro-Wilk test of normality over all total
scores. In this test, and in all further tests, we used a significance threshold
of α = 0.05. According to a Shapiro-Wilk test’s null-hypothesis, the data is
normally distributed. We obtained a non-significant p-value with W = 0.97 and
p > 0.05. We can not reject the null-hypothesis, so we assume the data is drawn
from a normal distribution.
First we performed a comparison of means between the model’s scores (µm)
and the scores of all players in the hvh condition (µh) with H0 : µh = µmand
Ha : µh 6= µm, using a Welch two-sample t-test. The model’s scores did not
differ significantly from the score in the hvh condition, with t(22.80) = −0.45.
Secondly we compared the mean of the model’s scores with the means of the
model’s counterpart’s scores. Whereas the previous test can be seen as a
comparison of absolute score, this test looks at relative score. The mean of
the model’s counterpart’s scores is denoted as µc. Our null-hypothesis was
H0 : µm = µc, our alternative hypothesis was two-sided, Ha : µm 6= µc,
once again we used a Welch two-sample t-test. The model’s scores differed
significantly from the model’s counterpart’s scores, with t(19.19) = 2.98 and
p = 0.007693. To further investigate this difference, we performed another
Welch two-sample t-test, this time using Ha : µm > µc. The model’s score is
significantly greater than the model’s counterpart’s score, with t(19.19) = 2.98
and p = 0.003847.
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Agreeability

At the end of each trial, player 2 was asked to fill out a questionnaire concerning
player 1, before revealing to player 2 whether he was playing against another
player or the model. Before comparing agreeability scores, we ensured the model
could not be discerned from human players, and therefore the agreeability rating
was not influenced by this knowledge. A Shapiro-Wilk test of normality on all
humanity ratings resulted in W = 0.95 with p > 0.05, so we can not accept the
test’s alternative hypothesis that the data is not drawn from a normal distribu-
tion, and assume it is. We used a Welch two-sample t-test on the mean humanity
score for the model (µm) and the human players (µh). Our null-hypothesis was
H0 : µh = µm, our alternative hypothesis was Ha : µh 6= µm. The model’s
humanity rating did not differ significantly from the human humanity rating,
with t(18.39)= -0.20146.
First, we tested the correlations between all three agreeability ratings, to see if
they could be combined. We performed a Pearson’s product-moment correlation
test on each combination of two agreeability ratings, and used Ha : R > 0 as
alternative hypotheses. The results of this test can be found in Table 5 on page
11, with correlation coefficients R rounded to two decimals. According to Table

agr1 and agr2 agr1 and agr3 agr2 and agr3
R 0.71 0.65 0.73
t-value 4.45 3.73 4.63
degrees of freedom 19 19 19
p 0.0001362 0.0007144 9.057× 10−5

Table 5: Correlation test results for agreeability ratings

5, each combination of agreeability ratings is significantly positively correlated,
with p-values of p < 0.05 on each test. Since all three agreeability ratings are
positively correlated, we computed the mean agreeability for each trial and used
these in our statistical analysis.
We once again used a Shapiro-Wilk test of normality to test if the mean agree-
ability ratings are drawn from a normal distribution. We found W = 0.97 with
p > 0.05, so we could not reject the null-hypothesis that the data is drawn
from a normal distribution, and proceeded with a comparison of means between
the model’s and human mean agreeability. We performed a Welch two-sample
t-test, using Ha : µh 6= µm. There was no significant difference between mean
agreeability for the model and the human player with t(14.53) = 0.89.

Discussion

The results of our experiment show that the meta-cognitive model does not per-
form significantly worse than human players on any of our relevant metrics. Our
experiment adheres to the previous experiment (Stevens (2015)) as discussed in
the introduction, as it either performs equal to or better than the other players.
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As mentioned in the results section, we tested both absolute and relative dif-
ferences in score. A relative difference indicates that the model obtains less or
more points than its counterpart, regardless of their total amount of points: it
shows which player “beat” the other player. An absolute difference indicates
who obtains the highest total gain when pitted against others instead of each
other. No significant difference of means was found in absolute scores of the
model and the human players, indicating the model can gain as much points as
others in negotiations.
We did observe a significant difference of means in relative scores of the model
and human players. More specifically, the model’s mean score was significantly
higher than their counterparts’ mean score. This indicates the model is adept at
“beating” its opponents. This adheres to the findings in (Stevens, 2015), where
the meta-cognitive model fits the data of the top quartile of human participants:
the model is better than the average participant.
In an actual negotiation setting, absolute gain can be more important than
relative gain. For example, most people would prefer a deal where they gain
twenty euros and the other gains twenty-five euros over a deal where they gain
ten euros and the other gains five euros. In the latter, they have beaten the
other negotiator, but this leaves them with less total gain. Overall we can say
the meta-cognitive model’s economic outcome is equal to or better than the eco-
nomic outcome of our average participant, as we aspired. From this we might
deduce that the meta-cognitive strategy can provide better economic outcomes,
or at least better relative economic outcomes.
Our results also indicate that the meta-cognitive model, if disguised properly,
cannot be significantly distinguished from human players, which may be useful
for future experiments concerning socio-emotional performance of this model.
We did not observe a significant difference between the model and human play-
ers concerning mean agreeability. We could infer that the model is not less
agreeable than human players, so the meta-cognitive strategy’s socio-emotional
outcomes are not worse than those of human players. In future research, the
model’s socio-emotional gains could be compared to those of a purely cooper-
ative or aggressive model, which would provide proof that the meta-cognitive
strategy, even if it sometimes uses aggressive actions, performs equal to or bet-
ter than the cooperative strategy concerning socio-emotional outcomes.
We set out to provide evidence that teaching people the meta-cognitive strategy
can help them become better negotiators. This paper supports this statement:
although the meta-cognitive strategy may not have obtained a better absolute
economic outcome or a better socio-emotional outcome, it did achieve a better
relative economic outcome. On none of these metrics the meta-cognitive model
did worse than the human negotiators, so even if it only improves their relative
economic outcome, teaching people the meta-cognitive strategy will still benefit
them.
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Appendices

Instructions and questionnaire

The instruction sheet, which also contains the questionnaire, can be seen on
Figures 1 through 6 on pages 1, 2, 3, 4, 5 and 6.

Data in .csv-format

In this section all data is presented in .csv-format.

1 ” p1 to ta l ” , ” p2 to ta l ” , ” p1qu i t s ” , ” p2qu i t s ” , ”coop” , ” p 1 f i n a l s ”
, ” p 2 f i n a l s ” , ”game” , ”mnum” , ”hnum” , ” agr1 ” , ” agr2 ” , ” agr3 ” ,
”hum” , ” void ”

2 12 ,10 ,7 , 3 , 0 . 928571428571429 ,1 ,7 , 2 , 1 , 0 , 3 , 4 , 4 , 3 , 1
3 28 ,3 , 0 , 6 , 0 . 916666666666667 ,0 , 0 , 2 , 2 , 0 , 6 , 7 , 5 , 2 , 1
4 14 ,10 ,1 , 7 , 0 . 117117117117117 ,11 ,2 , 2 , 3 , 0 , 3 , 5 , 5 , 4 , 0
5 14 ,9 , 5 , 4 , 0 . 19047619047619 ,6 , 5 , 2 , 4 , 0 , 2 , 3 , 2 , 4 , 0
6 11 ,7 , 7 , 3 , 0 . 0823529411764706 ,4 ,9 , 2 , 5 , 0 , 5 , 9 , 4 , 1 , 0
7 14 ,13 ,6 , 2 , 0 . 584269662921348 ,4 ,6 , 2 , 6 , 0 , 4 , 5 , 4 , 10 ,0
8 16 ,12 ,5 , 3 , 0 . 181818181818182 ,4 ,8 , 2 , 7 , 0 , 7 , 9 , 6 , 10 ,0
9 13 ,12 ,3 , 6 , 0 . 464788732394366 ,7 ,2 , 2 , 8 , 0 , 2 , 4 , 1 , 5 , 0

10 7 ,10 ,5 , 6 , 0 . 154929577464789 ,7 , 7 , 2 , 9 , 0 , 3 , 6 , 5 , 4 , 0
11 11 ,9 ,2 , 7 , 0 . 0909090909090909 ,8 ,4 , 2 , 10 ,0 , 6 , 8 , 4 , 7 , 0
12 21 ,3 ,2 , 6 , 0 . 115789473684211 ,7 ,3 ,2 , 11 ,0 , 6 , 10 ,10 ,7 , 0
13 15 ,13 ,6 , 2 , 0 . 703703703703704 ,2 ,6 , 2 , 12 ,0 , 3 , 5 , 2 , 4 , 0
14 17 ,9 , 5 , 3 , 0 . 933333333333333 ,3 , 4 , 2 , 13 ,0 , 7 , 7 , 6 , 8 , 0
15 12 ,11 ,5 , 3 , 0 . 860759493670886 ,1 ,4 , 2 , 14 ,0 , 5 , 7 , 5 , 4 , 1
16 16 ,20 ,2 ,2 , −1 ,2 ,3 ,1 ,0 ,1 ,7 ,7 ,5 ,6 ,0
17 6 ,17 ,2 ,3 , −1 ,5 ,5 ,1 ,0 ,2 ,6 ,8 ,5 ,7 ,0
18 7 ,15 ,3 ,5 , −1 ,7 ,3 ,1 ,0 ,3 ,6 ,7 ,5 ,3 ,0
19 16 ,12 ,2 ,4 , −1 ,4 ,4 ,1 ,0 ,4 ,5 ,7 ,4 ,5 ,0
20 14 ,16 ,5 ,2 , −1 ,3 ,6 ,1 ,0 ,5 ,4 ,6 ,2 ,8 ,0
21 13 ,21 ,3 ,2 , −1 ,4 ,6 ,1 ,0 ,6 ,7 ,8 ,7 ,9 ,0
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22 14 ,8 ,6 ,3 , −1 ,4 ,5 ,1 ,0 ,7 ,3 ,7 ,4 ,4 ,0
23 16 ,16 ,3 ,2 , −1 ,6 ,5 ,1 ,0 ,8 ,7 ,6 ,5 ,3 ,0
24 16 ,16 ,2 ,4 , −1 ,5 ,6 ,1 ,0 ,9 ,5 ,6 ,4 ,4 ,0
25 20 ,12 ,2 ,3 , −1 ,4 ,1 ,1 ,0 ,10 ,5 ,7 ,6 ,7 ,0

R code

The R code used in our statistical analysis is as follows:

1 #Reading the data from newlogs . csv
2 r e a d f i l e = read . csv ( f i l e=” newlogs . csv ” , head=TRUE, sep=” , ” )
3
4 #Removing vo id t r i a l s
5 newlogs = r e a d f i l e [which( newlogs$void == ”0” ) , ]
6
7 #Adding mean a g r e e a b i l i t y
8 newlogs$agrmean = ( newlogs$agr1 + newlogs$agr2 + newlogs$

agr3 )/3
9

10 #Tests and va lues , uncomment to perform a t e s t .
11
12 #Mean , s tandard dev ia t i on , minimum and maximum po in t s o f

subgroups
13 #a l l
14 #mean( c ( newlogs$p1 to t a l , newlogs$ p 2 t o t a l ) )
15 #sd ( c ( newlogs$p1 to t a l , newlogs$ p 2 t o t a l ) )
16 #min( c ( newlogs$p1 to t a l , newlogs$ p 2 t o t a l ) )
17 #max( c ( newlogs$p1 to t a l , newlogs$ p 2 t o t a l ) )
18 #model
19 #mean( newlogs$ p 1 t o t a l [ which ( newlogs$game==2) ] )
20 #sd ( newlogs$ p 1 t o t a l [ which ( newlogs$game==2) ] )
21 #min( newlogs$ p 1 t o t a l [ which ( newlogs$game==2) ] )
22 #max( newlogs$ p 1 t o t a l [ which ( newlogs$game==2) ] )
23 #model coun t e rpar t s
24 #mean( newlogs$ p 2 t o t a l [ which ( newlogs$game==2) ] )
25 #sd ( newlogs$ p 2 t o t a l [ which ( newlogs$game==2) ] )
26 #min( newlogs$ p 2 t o t a l [ which ( newlogs$game==2) ] )
27 #max( newlogs$ p 2 t o t a l [ which ( newlogs$game==2) ] )
28 #a l l humans
29 #mean( c ( newlogs$p2 to t a l , newlogs$ p 1 t o t a l [ which ( newlogs$

game==1) ] ) )
30 #sd ( c ( newlogs$p2 to t a l , newlogs$ p 1 t o t a l [ which ( newlogs$game

==1) ] ) )
31 #min( c ( newlogs$p2 to t a l , newlogs$ p 1 t o t a l [ which ( newlogs$game

==1) ] ) )
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32 #max( c ( newlogs$p2 to t a l , newlogs$ p 1 t o t a l [ which ( newlogs$game
==1) ] ) )

33 #hvh p l a y e r s
34 #mean( c ( newlogs$ p 1 t o t a l [ which ( newlogs$game==1) ] , newlogs$

p 2 t o t a l [ which ( newlogs$game==1) ] ) )
35 #sd ( c ( newlogs$ p 1 t o t a l [ which ( newlogs$game==1) ] , newlogs$

p 2 t o t a l [ which ( newlogs$game==1) ] ) )
36 #min( c ( newlogs$ p 1 t o t a l [ which ( newlogs$game==1) ] , newlogs$

p 2 t o t a l [ which ( newlogs$game==1) ] ) )
37 #max( c ( newlogs$ p 1 t o t a l [ which ( newlogs$game==1) ] , newlogs$

p 2 t o t a l [ which ( newlogs$game==1) ] ) )
38
39 #mean q u i t s and f i n a l r e qu e s t s f o r each subgroup , and

standard d e v i a t i on s
40 #a l l
41 #mean( c ( newlogs$p1qu i t s , newlogs$ p2qu i t s ) )
42 #sd ( c ( newlogs$p1qu i t s , newlogs$ p2qu i t s ) )
43 #mean( c ( newlogs$ p1 f i na l s , newlogs$ p 2 f i n a l s ) )
44 #sd ( c ( newlogs$ p1 f i na l s , newlogs$ p 2 f i n a l s ) )
45 #model
46 #mean( newlogs$ p1qu i t s [ which ( newlogs$game==2) ] )
47 #sd ( newlogs$ p1qu i t s [ which ( newlogs$game==2) ] )
48 #mean( newlogs$ p 1 f i n a l s [ which ( newlogs$game==2) ] )
49 #sd ( newlogs$ p 1 f i n a l s [ which ( newlogs$game==2) ] )
50 #model coun t e rpar t s
51 #mean( newlogs$ p2qu i t s [ which ( newlogs$game==2) ] )
52 #sd ( newlogs$ p2qu i t s [ which ( newlogs$game==2) ] )
53 #mean( newlogs$ p 2 f i n a l s [ which ( newlogs$game==2) ] )
54 #sd ( newlogs$ p 2 f i n a l s [ which ( newlogs$game==2) ] )
55 #a l l humans
56 #mean( c ( newlogs$p2qu i t s , newlogs$ p1qu i t s [ which ( newlogs$

game==1) ] ) )
57 #sd ( c ( newlogs$p2qu i t s , newlogs$ p1qu i t s [ which ( newlogs$game

==1) ] ) )
58 #mean( c ( newlogs$ p2 f i na l s , newlogs$ p 1 f i n a l s [ which ( newlogs$

game==1) ] ) )
59 #sd ( c ( newlogs$ p2 f i na l s , newlogs$ p 1 f i n a l s [ which ( newlogs$

game==1) ] ) )
60 #hvh p l a y e r s
61 #mean( c ( newlogs$ p1qu i t s [ which ( newlogs$game==1) ] , newlogs$

p2qu i t s [ which ( newlogs$game==1) ] ) )
62 #sd ( c ( newlogs$ p1qu i t s [ which ( newlogs$game==1) ] , newlogs$

p2qu i t s [ which ( newlogs$game==1) ] ) )
63 #mean( c ( newlogs$ p 1 f i n a l s [ which ( newlogs$game==1) ] , newlogs$

p 2 f i n a l s [ which ( newlogs$game==1) ] ) )
64 #sd ( c ( newlogs$ p 1 f i n a l s [ which ( newlogs$game==1) ] , newlogs$
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p 2 f i n a l s [ which ( newlogs$game==1) ] ) )
65
66 #mean agr1 , agr2 , agr3 and hum fo r each hvm subgroup
67 #a l l
68 #mean( newlogs$agr1 )
69 #mean( newlogs$agr2 )
70 #mean( newlogs$agr3 )
71 #mean( newlogs$hum)
72 #model
73 #mean( newlogs$agr1 [ which ( newlogs$game==2) ] )
74 #mean( newlogs$agr2 [ which ( newlogs$game==2) ] )
75 #mean( newlogs$agr3 [ which ( newlogs$game==2) ] )
76 #mean( newlogs$hum[ which ( newlogs$game==2) ] )
77 #hvh p l aye r 1
78 #mean( newlogs$agr1 [ which ( newlogs$game==1) ] )
79 #mean( newlogs$agr2 [ which ( newlogs$game==1) ] )
80 #mean( newlogs$agr3 [ which ( newlogs$game==1) ] )
81 #mean( newlogs$hum[ which ( newlogs$game==1) ] )
82
83 #Standard d e v i a t i on s f o r agr1 , agr2 , agr3 and hum fo r

each hvm subgroup
84 #a l l
85 #sd ( newlogs$agr1 )
86 #sd ( newlogs$agr2 )
87 #sd ( newlogs$agr3 )
88 #sd ( newlogs$hum)
89 #model
90 #sd ( newlogs$agr1 [ which ( newlogs$game==2) ] )
91 #sd ( newlogs$agr2 [ which ( newlogs$game==2) ] )
92 #sd ( newlogs$agr3 [ which ( newlogs$game==2) ] )
93 #sd ( newlogs$hum[ which ( newlogs$game==2) ] )
94 #hvh p l aye r 1
95 #sd ( newlogs$agr1 [ which ( newlogs$game==1) ] )
96 #sd ( newlogs$agr2 [ which ( newlogs$game==1) ] )
97 #sd ( newlogs$agr3 [ which ( newlogs$game==1) ] )
98 #sd ( newlogs$hum[ which ( newlogs$game==1) ] )
99

100 #mean and range o f c o o p e r a t i v i t y
101 #mean( newlogs$coop [ which ( newlogs$game==2) ] )
102 #sd ( newlogs$coop [ which ( newlogs$game==2) ] )
103 #min( newlogs$coop [ which ( newlogs$game==2) ] )
104 #max( newlogs$coop [ which ( newlogs$game==2) ] )
105
106 #Test f o r normal i ty
107 #shap i ro . t e s t ( c ( newlogs$p1 to t a l , newlogs$ p 2 t o t a l ) )
108

17



109 #Compare model to a l l hvh p l a y e r s
110 #t . t e s t ( newlogs$ p 1 t o t a l [ which ( newlogs$game==2) ] , c ( newlogs

$ p 1 t o t a l [ which ( newlogs$game==1) ] , newlogs$ p 2 t o t a l [ which
( newlogs$game==1) ] ) , a l t=”two . s i ded ”)

111
112 #Compare model to counterpar t
113 #t . t e s t ( newlogs$ p 1 t o t a l [ which ( newlogs$game==2) ] , newlogs$

p 2 t o t a l [ which ( newlogs$game==2) ] , a l t=”two . s i ded ”)
114 #t . t e s t ( newlogs$ p 1 t o t a l [ which ( newlogs$game==2) ] , newlogs$

p 2 t o t a l [ which ( newlogs$game==2) ] , a l t=”g r ea t e r ”)
115
116 #Normality o f humanity
117 #shap i ro . t e s t ( newlogs$hum)
118
119 #humanity means are equa l
120 #t . t e s t ( newlogs$hum[ which ( newlogs$game==1) ] , newlogs$hum[

which ( newlogs$game==2) ] )
121
122 #Normality o f a g r e e a b i l i t y
123 #shap i ro . t e s t ( c ( newlogs$agr1 , newlogs$agr2 , newlogs$agr3 ) )
124
125 #Test c o r r e l a t i o n
126 #cor . t e s t ( newlogs$agr1 , newlogs$agr2 , a l t=”g r ea t e r ”)
127 #cor . t e s t ( newlogs$agr1 , newlogs$agr3 , a l t=”g r ea t e r ”)
128 #cor . t e s t ( newlogs$agr2 , newlogs$agr3 , a l t=”g r ea t e r ”)
129
130 #Normality o f mean a g r e e a b i l i t y
131 #shap i ro . t e s t ( newlogs$agrmean )
132
133 #Compare model and human mean a g r e e a b i l i t y
134 #t . t e s t ( newlogs$agrmean [ which ( newlogs$game==1) ] , newlogs$

agrmean [ which ( newlogs$game==2) ] )
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Figure 1: Instruction sheet page 1
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Figure 2: Instruction sheet page 2
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Figure 3: Instruction sheet page 3
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Figure 4: Instruction sheet page 4
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Figure 5: Instruction sheet page 5
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Figure 6: Instruction sheet page 6
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