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Abstract

In this thesis an introduction to bootstrap percolation and some applications
will be given and an attempt will be made to determine the magnitude of the
so-called ε-window, which is length of the transition from being unlikely to
percolate to being the likely to percolate.
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0.1 Introduction

0.1.1 What is bootstrap percolation
In a few words one can describe the process of bootstrap percolation as the
following deterministic process on a grid. In the initial state sites(or points)
are either infected or healthy. When a site has sufficient(for example 3) direct
neighbours being infected it becomes infected as well. Afterwards sites which
gets infected can infect other sites in the same way. One could for example
wonder whether the final state consists of all sites being infected or not [1]. In
the rest of the thesis the use of the notion occupied will be preferred to infected.
In the rest of this section a more mathematical notation will be used to get the
reader acquainted with the notation, which is similar to the one used in [2].

This bachelor thesis will consider bootstrap percolation on a cubic grid con-
tained in Z3. Initially a one or zero is put at each site of the grid. To the sites
with ones will be referred as occupied (also called infected in the literature [3])
and to the sites with zeros as unoccupied. On this grid an iterative process is
defined. This process keeps every one unchanged and changes a zero into a one
if at least half of its neighbouring sites contain a one. In some cases all sites
will be occupied after some time, in such a case the system is said to percolate.

The bootstrap percolation process can be regarded as a discrete iterative
process. The process is discrete in both time and space. In the notation of this
thesis xi will be used for discrete coordinates at a grid in 3-dimensions with
length l and t for the discrete time starting at zero. The following function can
be defined for the bootstrap process.

Xt(x1, x2, x3) : N ∪ {0} × {1, 2, ..., l}3 → {0, 1}

In this notation time is represented by N∪ {0} and the discrete coordinates are
represented by {1, 2, ..., l}3.

The time evolution rule is given by:

Xt+1(x1, x2, x3) =

{
1 if Xt(x1, x2, x3) = 1 or Σ6

i=1Xt(yi) ≥ 3
0 else

Where yi are the next neighbours of x = (x1, x2, x3), given by: yi+ 3±3
2

=

x± ei, where ei are the basis vectors on the cubic grid.
So for a given initial state at t = 0 all later states are fixed. A random initial

state will be considered and statements are made about limt→∞Xt. One says
that if ∀(x1, x2, x3) : limt→∞Xt(x1, x2, x3) = 1 the system percolates. With
Xt the set of all occupied sites will be denoted.

As in [3] this bachelor thesis will be concerned with the chance to percolate
for a q − random initial state. This q-random initial state is obtained in the
following way: Each site on the grid has a chance of q to be initially occupied.
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The chance that a q-random initial state at a cubic grid Gn with sides of
length l percolates is denoted by PGn(q). It will in some case be preferred to use
n = l3. Note that when PGn(q) is considered as a function of q, it is a function
with the following properties. PGn(q) is increasing. The map PGn(q) maps zero
to zero and maps the value one to the value one. PGn(q) is continuous. PGn(q)
maps the interval [0, 1] to [0, 1] in a one-to-one manner.

In the notation of this thesis there is a chance denoted by qGn(α) such that
PGn(qGn(α)) = α. An illustration of a sketch of such a graph is given below.

Figure 1: Possible graph of P (Gn) vs. q

By virtue of the notation for any x ∈ [0, 1] holds that x = qGn(PGn(x)).

0.1.2 Relevance to physics
The bootstrap percolation model as explained has a few physical properties.
The model should be considered as a nearest neighbour interaction. In physics
nearest neighbour approximations are not uncommon. However in reality the
influence of non-nearest neighbours is most often not zero, but in some cases
negligible. Another property of the bootstrap percolation model is being a two-
states model. The model assumes a grid and therefore discretization of space.
As noted in [1] this feature seems to be present in physical systems such as a
crystals. The bootstrap percolation model should be regarded as a simplification
for real world problems.

The notion of bootstrap percolation is introduced in 1978 by J.Chalupa,
P.L. Leath, P.L. and G.R Reich [1]. In their article bootstrap percolation is
suggested as a model for state transition between a magnetic and anti-magnetic
state. The bootstrap percolation model is a simplification of the Ising model and
they therefore share several characteristics. Instead of bootstrap percolation on
a grid, as done in this thesis, they considered bootstrap percolation on the Bethe
lattice, a graph without loops where any site has a fixed number of neighbours.
In 1988 M. Aizenman and J.L. Lebowitz [4] gave the first result for a finite
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grid. Their motivation was given by the study of metastability. Both articles
were published in the Journal of Physics. As mentioned before, the bootstrap

percolation model is a simplification of the Ising model for magnetic spins [5].
The Ising model is a well-known model in Physics and has applications as well
in other fields of science. The Ising model is as the bootstrap percolation model
a model for sites at a grid. The sites in the Ising model represent particles with
non-zero magnetic moment. As in the bootstrap percolation process, each site
can be in two states. These states are often referred to as spin up(+1) or spin
down(-1). Particles interact with their nearest neighbour by their spin. The spin
of a particle interact with an external magnetic field as well. The Hamiltonian
of the system is given by:

H = ΣjΣyi,jE
i,jσyi,jσj − ΣjBσj

j is the index that runs over the number of particles and yi,j are the nearest
nearest neighbours of the particle corresponding to index j. Ei,j is the inter-
action constant between particle i and its neighbour. σi represents the spin
of particle i. For B = 0 and Ei,j = Ek,l for all i, j, k and l the system can
analysed. As outlined in [5] perturbation theory can be used if B 6= 0. The
bootstrap percolation model can be thought of a situation where B 6= 0 and has
such a magnitude such that the spins up don’t flip to spin down.

In [6] a relation in biology about the saturation of hemoglobin is confirmed
by use of the Ising model. In this article the authors use a lattice of four sites,
which represent places where oxygen can bind to hemogloblin. As the model is
quite small it seems to be solvable, which gives the same result as obtained in
an earlier article.

Even some scientist have tried to apply Ising-like models to sociology as de-
scribed in [7]. The most noticeable example given in the article is a model about
business confidence. The sites represent managers who share their confidence
and the external field is replaced by the economical facts.

Another social application is given in [8]. In this article the authors consider
a modified bootstrap percolation model. In this model a site has far-away-
neighbours, the interaction decreases with the distance. For example: a number
of n occupied far-away-neighbours at distance d are needed to have the same
effect as an occupied nearest neighbour. Unoccupied sites become occupied if
an equivalent of k its nearest neighbours are occupied. However in contrast with
this thesis, the authors are computing results for finite simulations, where the
interest of this article concerns asymptotic behaviour.

In [9] the bootstrap percolation model is used to describe jamming transi-
tions. These are transitions between non-equilibrium states such as glasses and
gels. In this model a site becomes jammed if a certain amount of it neighbours
are jammed. Comparable to the bootstrap percolation model it is assumed that
jammed sites stay jammed over all time.

In 2009 Tim Hulshof [10] used the bootstrap percolation model to describe
state transitions in a physical systems for his master thesis. He considered
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phase transitions between phases(solid, liquid and gas) and transitions between
a paramagnetic and ferromagnetic state.

Theoretical results about asymptotic behaviour for the bootstrap percolation
does not give accurate results [9], if the number of lattice points for asymptotic
behaviour is not reached. Therefore relying at Theoretical results for asymptotic
behaviour.

0.1.3 Aims of this thesis
When the function PGn(q) is considered as a function of q, there is a sharp
threshold, i.e. there is a sudden increase of the chance of percolation at some
point. The quantity of qGn(1−ε)−qGn(ε) is referred to as the ε-window. Balogh
and Bollobas[3] have proven that for any dimension larger than one the threshold
is sharp, in case an unoccupied site gets occupied if it has at least two occupied
neighbours. Friedgut and Kalai[11] have proven a more general statement for
the presence of a sharp threshold. This theorem will be used to show that the
bootstrap percolation process has a sharp threshold, for the case an unoccupied
site gets occupied if at least half of it neighbours is occupied. In this thesis the
considered grid will have dimension 3.

0.2 Theorem of Friedgut and Kalai
As mentioned earlier a theorem of Friedgut and Kalai [11] will be used. To state
this theorem a few concepts need to be mentioned first. This theorem deals with
properties of subgraphs of graphs. Such properties can be for example: set A
has a diameter of at least l or set A will lead to percolation using the bootstrap
percolation process. In the bootstrap percolation the graph will be the grid and
the subgraph will be the random initially occupied sites. A graph is a collection
of sites and edges, where an edge connects two sites.

Definition 0.2.1. A property P is increasing if for every set B containing set
A and set A satisfies property P, then set B also satisfies property P.

Note the property of a set leading to percolation is increasing. To state
the next theorem the notion of symmetric is needed. In this thesis the same
definition as in Balogh and Bollobas[11] will be used.

Definition 0.2.2. A property P in a space S is symmetric if for every x, y in
S, there is a permutation σ of S, such that σ(x) = y and the set of all sets
satisfying property P is invariant.

Using this definition of symmetric it won’t be easy to find whether the boot-
strap percolation on a large grid is not symmetric.

To state the next theorem the following notation of Friedgut and Kalai[11] is
used. Let µq(P) be the chance that a random set satisfies property P when the
edge probability is q. Edge probability is the chance that for a given lattice an
edge is active. A lattice consist of both edges and sites. For the edge probability
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case, all sites are present, instead there is a probability of q for an edge to be
active. In the notation introduced earlier for bootstrap percolation PGn(q) will
be used, which is the probability of percolation when each initial site has chance
q to be occupied.

The following theorem is by Friedgut and Kalai [11] and its proof will not
be given in this thesis.

Theorem 0.2.1. There is a constant c such that for every symmetric increasing
property P on a graph with n sites with µq(P) > ε then

µ
q+c·q log(1/ε) log(1/q)

log(n)

(P) ≥ 1− ε

This theorem is trivial if ε ≥ 1
2 , so it is only useful if ε < 1

2 . This theorem
will be applied to the torus. The torus will be introduced in the next section.
After the desired relation for the torus is obtained it will be shown that the
result can be converted to the grid.

0.3 Introducing the torus
An important object in this thesis will be the higher-dimensional torus. As
an illustration it is shown below how to turn a two dimensional surface in a
torus. This procedure includes connecting the top side to the bottom side and
connecting the left and right side.

Figure 2: Turning a two dimensional plane into a torus (the intersections still
need to be connected)

In a similar way if one wants to turn a normal grid into a torus, one should
connect the edges of the object. In three dimension this means that to turn a
box into a torus, one should connect the top side with the bottom, the front
side with the back side and the left side with the right side. If coordinates
are assigned to all sites on the grid. sites which are on the edges on a grid
have coordinates (..., 1, ...) or (..., k, ...), where k is the length of the grid in
that certain direction. At the torus (..., k, ...) is considered to be a neighbour
of (..., 1, ...) and the other way around. This means that every site which was
on an edge, gets at least one extra neighbour. On the torus all sites have equal
amount of neighbours.

The torus is denoted by Tn. For the torus we will use comparable notation
as for grid. The chance of percolation is given by PT(q) and the required value
of q to have a certain chance of percolation P is given by qTn(P ).
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It is important to note that any initial state leading to percolation on the
grid also leads to percolation on the torus. Therefore the following relation
holds:

qTn(P ) < qGn(P )

Similary the following relation holds.

PT(q) > PG(q)

Another important property of the torus is related to symmetric properties.

Proposition 0.3.1. The property for initial states to lead to percolation on the
torus is symmetric.

Proof Take sites x,y in the torus with sides of length l and dimension d.
Assign the spatial coordinates to every site. A site a has coordinates given by
(a1, a2, ..., ad), where 1 ≤ ai ≤ l. Define the permutation σ by

σ(a) = (a1 + (y1 − x1)(modl), a2 + (y2 − x2)(modl), ..., ad + (yd − xd)(modl))

Clearly σ(x) = y and the set of sets satisfying the property of percolation is
invariant, as sites which are neighbours stay neighbours after the permutation.

0.4 Applying the theorem of Friedgut and Kalai
at the torus

In this section it will be shown that theorem 1 can be used for the bootstrap
percolation process on the torus. Recall that the 3-dimensional torus can be
considered to have the same structure as the grid, except for the difference that
the sites on the top are considered to be neighbours of the sites on the bottom.
The same relation holds for sites on the front side and back side and sites on
the left side and right side of the box. The following corollary holds.

Corollary 0.4.1. There is a constant c such that for sufficiently large n if
1
2 ≥ PTn(q) > ε then

PT(q + cqTn(1/2) · log( 1
ε )

log(1/qTn (1/2))
log(n) ) ≥ 1− ε

Proof As shown earlier: The property of an initial state leading to per-
colation on the torus is symmetric. Obviously the property is monotone. In
theorem 1 edge probability is used. For l ≥ 2 there are more edges than sites.
So to every site an edge can be assigned. To get a q-random site probability one
should check whether the edge assigned to the site is active. So an active edge
can be related to a 1 in the initial state of the bootstrap percolation process.
So theorem 1 can be used. This theorem states that there is a constant c such
that q + c · q log(1/ε) log(1/q)

log(n) suffices.
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First it will be shown that

qTn log(1/qTn(1/2))) > q log(1/q) (1)

Note that PTn(q) ≤ PTn(qTn(1/2)) = 1/2. As the function PT (x) is in-
creasing in x, it can be found that q < qTn(1/2). Moreover we will use that
qTn(1/2) is typically smaller than 1

10 for large n. This is confirmed by [12]. For
0 < q < 1

10 we find that q · log(1/q) is increasing. This leads to the following
q · log(1/q) < qTn(1/2) · log(1/qTn(1/2)). For the given range of q, all terms are
positive. So ·q · log(1/q) < ·qTn(1/2) · log(1/qTn(1/2)). this leads to equation
(1).

Recall that theorem 1 stated that q + c · q log(1/ε) log(1/q)
log(n) suffices. Because of

the inequality given by (1) it is clear that c log( 1
ε · q

log(1/q)
log(n) also suffices.

0.5 Deriving the relation for the grid
The interest of this article is showing that there is a number k such that

qGn(1− ε)− qGn(ε) ≤ k (2)

To achieve such a result we start with the following:

qGn(1− ε) = qTn

(
PTn(qGn(1− ε))

)
= qTn

(
1−

(
1− PTn(qGn(1− ε))

))
The corollary of the previous section leads to the existence of a constant c:

qTn

(
1−

(
1− PTn(qGn(1− ε))

))

≤ qTn
(

1−PTn(qGn(1− ε))
)

+ c log(
1

1− PTn(qGn(1− ε))
) · qTn(

1

2
)
− log(qTn( 1

2 ))

log(n)

Note that:

PTn(qGn(1− ε)) ≥ PGn(qGn(1− ε)) = 1− ε

So
1− PTn(qGn(1− ε)) ≤ 1− PTn(qGn(1− ε)) = ε

Using the previous line and the fact that qTn(x) is increasing we get:

qTn

(
1− PTn(qGn(1− ε))

)
≤ qTn(ε)
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Adding an extra term to the previous line gives

qTn

(
1− PTn(qGn(1− ε))

)
+ c log(

1

1− PTn(qGn(1− ε))
) · qTn(

1

2
)
− log(qTn( 1

2 ))

log(n)

≤ qTn(ε) + c log(
1

1− PTn(qGn(1− ε))
) · qTn(

1

2
)
− log(qTn( 1

2 ))

log(n)

≤ qGn(ε) + c log(
1

1− PTn(qGn(1− ε))
) · qTn(

1

2
)
− log(qTn( 1

2 ))

log(n)

After connecting the top line with the previous line the following is obtained:

qGn(1− ε) ≤ qGn(ε) + c log(
1

1− PTn(qGn(1− ε))
) · qTn(

1

2
)
− log(qTn( 1

2 ))

log(n)

This is the form which resembles the desired form given in (2). The next
goal is to determine the magnitude of

qGn(1− ε)− qGn(ε)

From the previous line it is clear that this is smaller than

c log(
1

1− PTn(qGn(1− ε))
) · qTn(

1

2
)
− log(qTn( 1

2 ))

log(n)
(3)

In [13] the magnitude qTn( 1
2 ) is determined.

To determine the magnitude of qTn( 1
2 ) the following notation will be used.

The statement x = O(y) means that there is a bounded constant C such that
x < Cy.

Let d be the dimension of the grid and r be the required number of occupied
neighbours needed to turn a zero in one. Then according to [13] qTn( 1

2 ) =

O
(

1
logr−1(n)

)d−r+1

, where logr−1 is an r − 1 times iterated logarithm. Using
this (3) can be rewritten as :

qTn(
1

2
)

− log(qTn( 1
2 ))(

1− PTn(qGn(1− ε))
)

log(n)
= O

( logr(n)

logr−1(n) log(n)

)
log(

1

1− PTn(qGn(1− ε))
)

(4)
To find the magnitude of 1

1−PTn (qGn (1−ε))
is not trivial. In the next section

this magnitude will be discussed.

0.6 Final step to the magnitude of the ε-window
This section will continue on the previous one, with the aim to determine the
magnitude of 1

1−PTn (qGn (1−ε))
.

First an extra definition will be given.
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Definition 0.6.1. Let x be an occupied site, then the connected occupied neigh-
bourhood of x at time t, denoted with Yt(x), is the set of sites such that it
contains x and all occupied next neighbours of any site in the set.

Note that by definition, if x is in Yt(x), there are no occupied next neighbours
who are not in Yt(x). The statement in the previous sentence will be used a
few times. If Xt denotes the set of all occupied sites, there is a one-to-one
correspondence with the set of all distinct sets Yt(x), where x is an occupied
site, denoted by Ξt. To update Ξt to Ξt+1 the following updates need to occur
[4]:

• If there is are unoccupied sites xj , such that xj has at least 3 neighbours
in k distinct connected occupied neighbourhoods, Yt(xi) where i = 1, ..., k
and j = 1, ..., γ. Then the new connected neighbourhood is given by
the union of xj and Yt(xi) with i = 1, ..., k. Mathematically this can
be defined as Ξt+1,j =

(
Ξt,j\{Yt(x1), ..., Yt(xk)}

)
∪ {Yt(x1), ..., Yt(xk) ∪

xj}. One should remember that Ξt,j is a set of sets and Yt(xi) and
{Yt(x1), ..., Yt(xk) ∪ xj} are possible elements of such a set of sets.

• If there is after the previous process occupied sites yp in Yt(yr) and it has
a occupied neighbour zp which is not in Yt(xr), where p = 1, .., ρ. Then
those occupied connected neighbourhoods should merge to a new occupied
connected neighbourhood. In mathematical notation one could define it
in this way: Ξt+1,γ+p =

(
Ξt,γ+p−1\{Yt(yp), Yt(zp)}

)
∪ {Yt(yp) ∪ Yt(zp)}

• If no such site exists, the algorithm stops.

Note that Ξt,γ+ρ = Ξt+1 and that all sets in Ξt,τ are connected occupied
neighbourhoods.

Let x = (x1, x2, x3) and y = (y1, y2, y3) be two sites in a set A. Then define
Di(A) = max{|xi − yi|,∀x, y ∈ A}, where 1 ≤ i ≤ 3 Using this notation the
following lemma can be proved, which is similar to a lemma from [4].

Lemma 0.6.1. If an initial state percolates, then ∀k there is a t, τ such that in
Ξt,tau is a set such that k ≤ max(D1, D2, D3) < 3k

Proof At any stage during the algorithm a set in Ξt,tau can at most magnify
its length by a factor 3. However for the largest set at the end of the algorithm
it will hold that max(D1, D2, D3) = l.

In [4] it is shown that there is a value λc such that if p log(L) > λ then
there is a constant c such that the chance that a two dimensional rectangle with
length L percolates is larger than 1− e−cL and in [14] it is shown that λ = π2

18 .

From [2] is follows that qTn(1− ε
6 ) = Θ

(
1

log(log(L))

)
, where y = Θ(x) means that

there are two constants c1 ≤ c2 such that c1x ≤ y ≤ c2x.
An object used in the next proof will be the square plate with side length

d. This is a Cuboid with one side of length 1 and two others side of length d.
These observations will lead to the proof of the theorem. The proof following
theorem will be the final step to determining the length of the ε-window.
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Theorem 0.6.1. For 1
2 > epsilon > 0 and sufficiently large l and if it can be

assumed that that the largest plate that has a chance of 1 − ε
6 to be present in

a set, generated by the bootstrap percolation process, with length ε
18 l has length

larger than 1
log(l) , then the following equation holds qGn(1− ε) < qTn(1− ε

6 )

Before proving this theorem lets take a look at the relevance of this result.
If the theorem holds, clearly 1

1−PTn (qGn (1−ε))
< 1

1−PTn (qTn (1− ε
a ))

= a
ε . Inserting

this in (4) completes the goal of the thesis. However the theorem needs first to
be proven.

Proof of theorem 6.1 To show that qGn(1− ε) < qTn(1− ε
6 ) it is sufficient

to show that PGn(qGn(1− ε)) < PGn(qTn(1− ε
6 )) = 1− ε.

By the previous lemma it can be found that there is a set A with ε
18 ≤ L2 =

max{D1(A), D2(A), D3(A)} ≤ ε
6 , if the initial state percolates.

By assumption it holds that it can be assumed that that the largest plate
that has a chance of 1 − ε

6 to be present in a set, generated by the bootstrap
percolation process, with length ε

18 l has length larger than 1
log(l) .

Recall that qTn(1 − ε
6 ) = Θ

(
1

log(log(l))

)
. Using this it can be shown that

qTn(1 − ε
6 ) log(L1) > λ. So the chance that a rectangle with side length L1

percolates is 1− e−cL1 .
On the edge of the plate the bootstrap percolation process is the following:

All points have 1 occupied neighbour in the plate 4 on the edge of the plate and
one more. If the neighbour that is not on the edge is neglected, the three-
dimensional bootstrap percolation process is similar to the two-dimensional
bootstrap percolation. This process can be repeated until l− 1 slabs are added.
Afterwards there is an occupied area of thickness L1 and length l. Comparable
to the plate this occupied area can grow in the other directions. Let bxc denote
the integer part of x. The chance at a sufficiently large plate filling the area will
be at least (1 − e−cL1)l+b

l
L1
cl+l ≥ (1 − (l + b lL1

cl + l)e−cL1). For sufficiently
large L this is larger than 1− ε

6 .
If all the previous is combined it can be found that: There is a chance of

at least 1− ε
6 the system percolates at the torus. There is a chance of at least

(1 − ε
6 )3 that the occupied connected neighbourhood does not cross the edges

of the grid, as its position is random in the torus. There is a chance of at
least 1− ε

6 that there is a plate of length L1 in the largest connected occupied
neighbourhood. For sufficient large l the chance that the presence of such a
plate leads to percolation is larger than 1− ε

6 . So the total chance is larger than
(1− ε

6 )6 > 1− ε.

0.7 Relevance of the ε-window to computer sim-
ulations

Since it is shown that the ε-window approaches zero and logarithmically depends
on ε, it should be discouraged to think that any ε-window is a good measure for
the error in a computer simulations, unless it is know that the error goes faster
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to zero than the size of the ε-window. Before an analytical expression was given
in [12] some computer simulations were done to determine the value of qGn( 1

2 ).
In [15] and [16] computer simulations were done to determine the asymptotic
value of the bootstrap percolation model in two and three dimensions.

0.8 Conclusion and outlook
It is a pity that to obtain the result I had to assume that the largest plate
that has a chance of 1 − ε

6 to be present in a set, generated by the bootstrap
percolation process, with length ε

18 l has length larger than 1
log(l) , instead of

proving it.
It can be understood that if the longest side of the set A given in the proof

is in the x3 direction then D1(A) > 1
3 log(log(l)) and D2(A) > 1

3 log(log(l)).
The surface of an occupied connected neighbourhood does not increase during
the bootstrap percolation process. So to end with a surface of 2D3(A)D1(A) +
2D3(A)D2(A) + 2D2(A)D1(A) one needs to start with an equal surface. There-
fore one needs 2D3(A)D1(A)+2D3(A)D2(A)+2D1(A)D2(A)

6 initially occupied sites. The
expected number of initially occupied sites is V ·p ≤ D1(A)D2(A)D3(A) 1

log(log(l) .

This number should be as large as D3(A)D1(A)+D3(A)D2(A)+D1(A)D2(A)
3 . There-

fore

D1(A) >
1

3
log(log(l)) and D2(A) >

1

3
log(log(l))

However this result wasn’t sufficient to show the validation of the assump-
tion.

From the derivation of section 5 it is clear that

qGn(1−ε) ≤ qTn
(

1−PTn(qGn(1−ε))
)

+c log(
1

1− PTn(qGn(1− ε))
)·qTn(

1

2
)
− log(qTn( 1

2 ))

log(n)

So a sharper approximation of the ε-window would be
qGn(1−ε)−qGn(ε) ≤

(
qTn

(
1−PTn(qGn(1−ε))

)
−qGn(ε)

)
+c log( 1

1−PTn (qGn (1−ε))
)·

qTn( 1
2 )
− log(qTn (

1
2 ))

log(n)

This is just to say that it is unknown to me whether the ε-window is the
largest part of c log( 1

1−PTn (qGn (1−ε))
)·qTn( 1

2 )
− log(qTn (

1
2 ))

log(n) or−
(
qTn

(
1−PTn(qGn(1−

ε))
)
− qGn(ε)

)
Further research could include the validation of the assumption for the final

theorem or the ratio between the ε-window and −
(
qTn

(
1− PTn(qGn(1− ε))

)
−

qGn(ε)
)
.

If a validation is given for the assumption in the final theorem and that
assumption could be generalised to higher dimension, then it is likely that the
result obtained in this thesis also might be generalised to higher dimensions.
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0.10 Appendix, validation of an assumption
In this appendix a validation of the assumption in theorem 6.1 will be given.
The assumption which needs to be validated is that if there is a set with one side
such thatD3(A) > εl, then for an arbitrary large chance (1−ε), there is an l such
that it contains a plate with sides at least log(l) with chance 1− ε. It is useful
to realise that it doesn’t matter whether you initially skip some updates to the
total state of the system during the bootstrap percolation process. Therefore the
bootstrap percolation process on a set can be considered, and the outer sites can
be considered a q-random. To estimate some quantities, Wolfram Mathematica
has been used. The following definition will be given to state some concepts.

Definition 0.10.1. Let A be a set, which is a connected occupied neighbourhood,
then for i = 1, 2, 3 a slice of A, denoted by Si(y), is the set Si(y) = {x ∈
A such that xi = y}.

Lemma 0.10.1. Let l be the length of the grid and A a set generated by the
bootstrap percolation process with D3(A) > εl for some ε > 0. ∀a > 0 ∃l such
that there are less than l

a(log(l))2 sites zi such that both D1(S3(zi)) <
4
√

log l and
D2(S3(zi)) <

4
√

log l

sketch to proof The idea behind this proof is that if the result does not
hold, then it is unlikely that a set with D3(A) > εl exists anywhere on the grid.

Let a > 0. Assume that there are more than l
a log(l) of sites zi such that both

D1(S3(zi)) <
4
√

log l and D2(S3(zi)) <
4
√

log l. For the proof of this lemma it is
useful to consider slices of A. To determine whether a slice S3(x3) is filled the
following construction is used. Impose that if for some x ∈ A if x = (x1, x2, x3) ∈
S3(x3) then (x1, x2.x3 + 3) ∈ S3(x1 + 1) and if y = (y1, y2, y3) ∈ S3(y1 + 1)
then (y1, y2, y3 − 1) ∈ S3(y1). A site v = (v1, v2, v3) with v3 < x3 is at most
occupied, so every empty site in S3(x3) needs at least two neighbours in S3(x3)
to become occupied(by construction a site in S3(x3) is only empty if it neighbour
in S3(x3 +1) is empty). For the sites in S3(x3 +1) holds a similar relation, with
the remark that a sites v with v3 > y1 + 1 is at most occupied. Note that the
modification is only a useful mathematical tool to get a ’bound’ on the influence
of S3(x3 + 1) on S3(x3).

Some points have neighbours with the same coordinate in the third direction,
but not in the slice of A. These points are by construction empty, or do not
affect the bootstrap percolation process(in case the modification is not applied).
If these points affected the bootstrap percolation process, there would be a
connection between the occupied point and the slice, contradicting the fact that
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A is occupied connected neighbourhood and the assumption that this site is not
in the slice of A.

Note that this resembles a two-dimensional bootstrap percolation problem,
with a sites initially being occupied with a chance of 2q−q2 < 2q. Suppose there
is a largest occupied connected neighbourhood in S3(y1) with at most D1(A) =
4
√

log(l) and D2(A) = 4
√

log(l). If in two dimensions an occupied connected
neighbourhood is present, then the smallest rectangle surrounding it percolates.
So the chance, that the smallest rectangle surrounding it percolates, is smaller
than the chance of on occupied connected neighbourhood to be present. If
(2q − q2) log(l) < π2

18 , then the chance for a rectangle to percolate is given by
[4][14]

exp
(
− (

π2

18
− (2q − q2) log(l) + o(1))

1

p

)
≤ exp

(
− (

π2

18
− (2q − q2) log(l) + o(1))Θ

(
log(log(l))

))
= Θ

(
log(l)−(

π2

18 −(2q−q
2) log(l)+o(1))

)
Where o(1) approaches zero in the limit if log(l) → ∞. Since qTn(1 − ε

6 ) =

Θ
(

1
log(log(l))

)
[2] this condition is met. For shorter notation in the following the

following will be introduced b = −
(
π2

18 − (2q − q2) log(l) + o(1)
)
. For l → ∞ it

holds that b→ −π
2

18
If in S3(y1) there is a connected occupied neighbourhood, then there is a

smallest rectangle containing that neighbourhood. The rectangle has at least a
chance of 1− log(l)b at not percolating for sufficiently large l. If we characterise
a rectangle by its side lengths and the coordinates of the lower right corner, then
there are in a square area of 4

√
log l at most log l rectangles. The chance that at

least one set in S3(y1) is an occupied connected neighbourhood is therefore less
than 1− (1− log(l)b)log l.

Now it can be shown that it is unlikely that there are more than l
a(log(l))2

of sites zi such that either D1(S3(zi)) <
4
√

log l or D2(S3(zi)) <
4
√

log l. There
needs to be a set, that percolates in two dimensions, in every of these slices.
Furthermore it needs to be so unlikely that it is not only unlikely to happen for
a single case, but even so unlikely that there isn’t likely to happen anywhere
on the grid. A good measure to determine whether it doesn’t happen anywhere
on the grid is considering the chance that it doesn’t happen and raise it to the
power l3. In the end it is likely that there is no such a set which violates the
result, as for l→∞:(

1−
(
1− (1− log(l)b)log l

) εl
a(log(l))2

)l3
→ 1

As a larger value of D1(S3(zi)) does not affect D2(S3(zi)) in a negative way
(but rather are positively correlated), it is reasonable to say that the chance
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for Di(S3(zi)) (i=1,2) to be smaller than 4
√

log l is at most the square root the
chance of both being smaller than 4

√
log l.

This result shows that the largest part of the sides of a face-to-face connected
set B withD3(B) > εl are larger than 4

√
log l. To continue on this result, squares

on the sides of B will be considered. These squares have an occupied neighbour
inside set B. So they need only two neighbours to percolate. Therefore it can
again be considered as a two dimensional problem. The chance that a square
will percolate on the edge is not very large Θ

(
log(l)b

)
). As a result of the

length of B, there is still a reasonable chance that there is at least one. For the
next step there should ’grow’(percolate) log(l) squares with sides 4

√
log l on each

other. The probability that this happens at some position is:

1−
(

1−Θ
(

log(l)b log(l)
)) εl

4
√

log(l)

Up to now it is shown that if the set B has D3(B) > εl, then at the majority
of places D1(S3(zi)) ≥ 4

√
log l and D2(S3(zi)) ≥ 4

√
log l, and it is likely to have

a pile of occupied squares on it. This pile has ’height’ log(l) and has a width
of D3(B) > εl. On the corner of the pile and the rest of set B, sites have at
least two occupied neighbours(at least one in the pile and one in set B). As the
corner has length log(l), there is a chance at 1 − (1 − 1

log(log(l)) )
4
√

log(l) that at
least one site is initially occupied. The sites next to an initially occupied site(at
the corner) have at least 3 neighbours (at least one in the pile and one in set
B and the one which is initially occupied) and become occupied as well. This
continues until that entire row in the corner is occupied. Once the entire row is
occupied, any site above or next to percolated row has 2 occupied neighbours.
So these rows each need only one initially occupied point to percolate. The idea
is that in this way a cuboid with sides log(l) × log(l) × 4

√
log l will be formed.

The chance that this happen is
(

1−(1− 1
log(log(l)) )

4
√

log(l)
)(log(l))2

→ 1 if l→∞.
This block contains the desired plate.

in the last two paragraphs, it might have seemed whether a set B with flat
surfaces was considered. It doesn’t have to be the case that B has a flat surface.
However if this is not the case, there are points outside B on its edge with two or
more neighbours. Comparable arguments can be used if this the surface is not
flat, but the adjustments should be quite case-specific. For example: if there is
a flat surface with a few occupied sites on top, the ones on top can be neglected
and it can be treated in the proof as a flat surface, with random occupation on
the top. Making a few occupied sites randomly occupied, lowers the chance at
the presence of a plate and therefore can be done, without drastically changing to
the proof. In case there are a sufficient occupied sites on top, then the occupied
sites are likely to make a square on top percolate. If there isn’t anything at all
looking at a flat surface (for example: diagonal plane), it means that most sites
have at least 2 neighbours. If most sites have at least 2 neighbours, only a few
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extra sites are needed to make the surface grow. For the argument of piling
squares on set B it is sufficient if B contains l

alog(l) plates with side length
4
√

log l, which haven’t any sites above a site in another one. The sets containing
only a few plates with sufficient side length are probably unlikely to exist.

To estimate the limiting behaviour of some quantities given earlier, the fol-
lowing codes in Wolfram Mathematica are used.

• Plot[(1− (1− (1− 1/Sqrt[x])ˆx)ˆ(Eˆx/(xˆ2)))ˆ(Eˆx), {x, 0, 20}]

• Plot[(1− 1/(xˆ(x/2)))ˆ(Eˆx/(xˆ0.25)), {x, 0, 1000}]

• Plot[(1− (1− 1/(Log[x]))ˆ(xˆ0.25))ˆ(xˆ2), {x, 0, 2 ∗ 10ˆ12}]
These equations are written in a slightly different form. In these equation
x = log(l) and it is used that for large l it holds that b < −1/2.
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