
University of Groningen

Astronomy Bachelor thesis

Directional calibration of LOFAR

Using Statistically Efficient and Fast Calibration

Author:
Nikki Arendse

Supervisors:
Tammo Jan Dijkema

Dr. John McKean

July 13, 2015



Abstract

Interferometers such as LOFAR provide a way to increase the diameter of radio telescopes, hence
increasing the angular resolution. Since the radio waves enter the ionosphere at different positions,
they experience a different phase shift. To produce one consistent image all the data from the stations
needs to be calibrated for this phase shift. In the measurement equation the corruption of the data
is represented by a gain matrix, and solving for this matrix gives a quadratic matrix equation. The
approach used in my thesis to approximate the true value of the gain matrix is inspired by the
work of Cyril Tasse and is a direction dependent extension of ’StEFCal’: Statistically Efficient and
Fast Calibration. The method used is Alternating Direction Implicit, combined with a relaxation
step after every second iteration. The aim of this thesis is to explain the underlying principles of
interferometry and directional calibration, provide an algorithm that can successfully calibrate the
data of LOFAR and evaluate the effects of different frequencies, numbers of stations and numbers of
directions on the convergence of the gain matrices.
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1 Astronomical background

1.1 Introduction

Astronomy is our view on the Universe and ev-
erything in it. By collecting light from the sky
humans are discovering more and more about the
processes that drive stars, the extreme conditions
near black holes and pulsars, the expansion of the
Universe and much more unanswered questions.
Radio astronomy plays an important role in this
process, since a lot of the light from space is emit-
ted in the radio regime. Radio interferometers
such as LOFAR consist of multiple telescopes
combined to accomplish a large diameter. An
unresolved challenge is the calibration of all the
different signals coming in from the telescopes.

In this thesis a method of direction dependent
calibration is evaluated to correct the incoming
data. This chapter explains the theory behind
radio interferometers, describes the influence of
the ionosphere and introduces the measurement
equation.

1.2 Radio astronomy

Let us start with a brief overview of the history
of radio astronomy, which started with James
Maxwell and Heinrich Hertz in the 19th cen-
tury. Maxwell discovered that electrical fields
and magnetic fields can couple together to form
electromagnetic waves, and proposed his four
famous equations to describe how these waves
propagate. The speed that followed from these
equations was equal to the speed of light. In ’A
Dynamical Theory of the Electromagnetic Field’,
he commented:

“The agreement of the results seems to show that
light and magnetism are affections of the same
substance, and that light is an electromagnetic
disturbance propagated through the field accord-
ing to electromagnetic laws.”

His theory predicted that light should exist at
any wavelength, not only in the visible range.
Hereby Maxwell had in theory described radio
waves, but not yet proven that they did indeed
exist. Heinrich Hertz provided the solution, when
he created a radio wave by using two rods as a
receiver and a spark gap as the receiving antenna.

For years people unsuccessfully tried to detect
radio waves from space, until in 1930 Karl Jan-
sky accidentally discovered radio waves from the

densest part of the Milky Way. It took some time
before astronomers started to see the importance
of radio astronomy. At first they were hesitant,
because of technical difficulties and because they
didn’t immediately see the use of it.

Stars are the main source of radiation in the
sky, and even the coolest stars send most of their
radiation in the visible and infra-red spectra,
leaving only a small amount in the radio regime.
However, radio radiation turned out to be of
great importance in several different aspects of
astronomy.

Cold gas clouds in the interstellar medium emit
radio waves in a wide variety of molecular lines,
including the 21-cm line which is due to the
spin-flip in hydrogen atoms. Another example
of thermal radiation is the background radiation
from the CMB, which acts like a black body with
a temperature of 2.7 K. Most of the photons
emitted by the CMB have a wavelength of ap-
proximately 1 mm, making them detectable by
radio telescopes. These photons are the oldest
light in our Universe, and can tell us more about
its beginning and the structure we see today.

Using radio astronomy, both thermal and non-
thermal radiation can be detected [Burke and
Graham-Smith, 2002]. Thermal radiation is the
radiation emitted by a source solely due to its
temperature, the frequency spectrum resembles
more or less that of a black-body spectrum. Non-
thermal radiation is all the radiation due to a
different source, such as synchrotron radiation
and the inverse Compton process. Synchrotron
radiation is emitted by high-energy particles with
relativistic velocities going through a magnetic
field. This type of radiation can be seen in the
most energetic objects in the Universe, such as
quasars, neutron-stars and black holes. Further-
more, radio telescopes can capture light that has
been redshifted during its long journey through
space, originating from old times such as the
epoch of re-ionization. All these different ap-
plications of radio astronomy can tell us more
about many astrophysical aspects, for this pur-
pose many radio telescopes are being built all
over the world. One of the challenges of radio
astronomy is to achieve a sufficiently large tele-
scope diameter. This chapter will explain the
concept of interferometry, which provides a way
of increasing the diameter by combining multiple
small telescopes.
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1.3 Interferometry and visibilities

In this section the concept of interferometry and
visibilities will be explained. Interferometers are
needed to increase the angular resolution of a
telescope, which is the ability to distinguish small
objects. The angular resolution is given by

θ =
λ

D
(1.1)

in which θ is given in radians, λ corresponds to
the wavelength of the light and D equals the di-
ameter of the telescope. Radio waves have a very
large wavelength, which means that the diameter
of the telescope needs to be incredibly large to
get sub-arcsecond resolution. The largest aper-
ture radio telescope in the world is located in
Puerto Rico, and has a diameter of 305 meters.
However, for radio waves with a wavelength of
1 meter, this still only gives an angular resolu-
tion of θ = 676 arcseconds. Interferometry gives
the solution to this problem, and combines many
smaller radio telescopes to attain a higher angu-
lar resolution, as was discovered by Joseph Lade
Pawsey and Ruby Payne-Scott in 1946.

An interferometer consists of N antennas, which
all measure incoming radio waves of a certain fre-
quency and transform them to a voltage. Inter-
ferometry makes use of the wave-like properties of
light. Let us first look at the case when there are
only two stations. Two radio waves come in at
a certain angle, which determines the difference
between them. Depending on this difference,
they can either add to each other when they are
in phase, or cancel each other when they are out
of phase. [’Fringe Dwellers’, 2015]. The output
of the combined waves gives a fringe pattern,
which is a pattern of evenly spaced alternating
bright and dark bands, as can be seen in Figure 2.

In Figure 1 two antennas and the incoming radio
waves are shown. The source of the radio waves
can be assumed to be far away, hence the radio
waves appear to come in parallel to each other.
The stations are sensitive to radio waves of a very
small frequency range, centered around ν = ω

2π .
We want to compute the response between the
two stations, for which we first need to multiply
the voltages coming out from the stations. These
voltages depend on the delay time τg, the fre-
quency and the time, and can be represented by

Figure 1: Two antennas with radio waves coming in
parallel at an angle θ. The distance between the stations
is the baseline vector, b. ŝ is the unit vector in the di-
rection of the source. The extra distance the light has to
travel to reach station 1 can be written as b · ŝ. To get
the delay time, which we call τg , this distance has to be
divided by c. [Condon and Ransom, 2010]

V1 = V cos(ω(t− τg)) and V2 = V cos(ωt).

First, these two voltages are multiplied to get the
combined signal, the response function.

V1V2 = V 2 cos(ωt) cos(ω(t− τg)).

To write the response as two separate terms
instead of one, Simpson’s formula 1 is used, re-
sulting in the following equation,

V1V2 = V 2

2 cos(2ωt− ωτg) + cos(ωτg).

The voltages are averaged over a time interval
larger than the time of a single full oscillation,
so T >> 2π

ω [Wilson et al., 2009], which corre-
sponds to a timescale of about 1 – 30 seconds. In
that time interval the object does not shift signif-
icantly across the sky, so the delay time τg hardly
changes. The other cosine term, 2ωt − ωτg does
change significantly, due to its dependence on t.
The wave will move up and down in amplitude
around zero, so the average goes to zero. Hence
by averaging over time the high frequency and
time variable component of the response will be
removed. [Dr. John McKean, 2015].

1cos(x) + cos(y) = 2 cos(x+y
2

) cos(x−y
2

)

with x = 2ωt− ωτg and y = ωτg .
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Figure 2: A fringe pattern, a pattern
of evenly spaced alternating bright and dark
bands, caused by the phase shift of the radio
waves. [’Fringe Dwellers’, 2015]

Figure 3: Output of an adding interferometer
[’Fringe Dwellers’, 2015]

This results in,

〈V1V2 〉 =
V 2

2
cos(ωτg). (1.2)

This quantity is defined as R, the response be-
tween two stations. Extending this approach to
multiple stations, the signals from several differ-
ent antennas are coupled together to produce an
image. Instead of having one outcome for the
response function, the function now has to be in-
tegrated over the whole solid angle. V

2 can be
thought of as the intensity Iν(ŝ). At this point
it becomes important that the intensity function
can be described by two parts, an even and an
odd part. When combining an odd response with
a cosine, which is an even function, the final
function will be odd as well, and will go to zero
when integrating over the whole sky. For this rea-
son the response function has to be split in two
parts, one with a cosine which is sensitive to the
even (symmetric) brightness, and one with a sine
which is sensitive to the odd (asymmetric) part,

Rc =

∫
Iν(ŝ) cos(ωτg) dΩ

Rs =

∫
Iν(ŝ) sin(ωτg) dω.

The stations are still only sensitive to frequencies
of ν = ω

2π . Using the identities τg = b · ŝ/c and
c = λν:

Rc =

∫
Iν(ŝ) cos(2πνb · ŝ/c) dΩ

=

∫
Iν(ŝ) cos(2πb · ŝ/λ) dΩ, and

Rs =

∫
Iν(ŝ) sin(2πνb · ŝ/c) dΩ

=

∫
Iν(ŝ) sin(2πb · ŝ/λ) dΩ.

These two parts added together form the com-
plex visibility, which is defined as Z := Rc− iRs,
so

Z =

∫
Iν(ŝ) exp(−2πb · ŝ/λ) dΩ. (1.3)

By computing this formula for Z we assumed that
the interferometer has the same sensitivity across
the whole sky. In reality, the sensitivity of the
beam response varies as a function of position, so
the field of view is not constant over the whole
sky. The sensitivity is maximum at the center,
and tapers off towards the edges. To correct this
another term has to be added to the visibility
function Z, which corrects for the field of view
[Burke and Graham-Smith, 2002]. We define A
as the relative antenna response as a function of
position, which will have a value of unity in the
center of the point in the sky you are focusing on,
and decrease in value as function of σ, the vector
pointing from the center to the position of the
source element. Including the relative antenna
response, Z becomes

Z =

∫
A(σ) Iν(ŝ) exp(−2πb · ŝ/λ) dΩ. (1.4)

To calculate the visibilities we multiplied the
voltages of the two antennas. This used to be
done differently. Old interferometers used a tech-
nique different than multiplying the voltages,
called ’adding interferometry’. This method only
uses one receiver for both of the antennas, so
the voltages V1 and V2 are added up. To get
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the power measurement, the output needs to
be squared, so (V1 + V2)2 = V 2

1 + V 2
2 + 2V1V2.

The only interesting term in interferometry is
the cross term between the antennas V1V2, but
with this method this term is overshadowed by
the signals of the separate antennas. Looking
at the output of an adding interferometer, you
see strongly the signal of one antenna, combined
with a set of weak fringes, as shown in Figure 3.
For this reason, multiplying interferometers are
much more suitable than adding interferometers
[’Fringe Dwellers’, 2015, Wilson et al., 2009].

The measured visibilities are the inverse Fourier
transform of the sky brightness distribution. The
output of an interferometer gives a point in
the uv-plane, and needs to be inverse-Fourier-
transformed to get a good image of the sky. One
combination of antennas gives only one point in
the uv-plane, a set of many baselines, over a pe-
riod of time, will give a better Fourier trans-
form of the brightness distribution [Burke and
Graham-Smith, 2002]. A method in which the
rotation of the earth is used to make more mea-
surement points as the source moves across the
sky, sampling more of the uv-plane, is called aper-
ture synthesis [Ker, 2010]. We want to measure
the visibilities as accurately as possible, which
means we need a large number of stations, as Sec-
tion 1.4 will explain.

1.4 Independent closure phases

With more stations, the accuracy with which
the interferometer measures the Fourier plane in-
creases. This can be understood by noting that
the number of measurements is equal to the num-
ber of baselines, which is given by Nst(Nst−1)/2,
with Nst the number of stations [Felli, M. and
Spencer, R. E., 1989]. However, not all this data
can be unique, there can also be redundant in-

formation in the data set. A good quantity to
evaluate is the closure phase, which equals the
sum of three phases around a closed triangle of
baselines [Monnier, 2003]. This quantity is in-
dependent of phase shifts, because it is a closed
path. No matter how much you change the posi-
tion, in the end you always return at the starting
point. The closure phase can be represented as
follows:

φijk = φij + φjk + φki. (1.5)

Of interest is the number of independent closure
phases, which is equivalent to holding one tele-
scope fixed, and calculating all the possible clo-
sure phases between the others. The number
of linearly independent combinations is given by
[Thorsteinsson et al., 2004]

(Nst − 1)(Nst − 2) / 2. (1.6)

To evaluate the quality of the information we can
obtain from the telescopes, we can look at the
ratio between the good observables and the total
amount of baselines.

independent closure phases

baselines
=
N − 2

N
. (1.7)

For an interferometer with 3 stations, this ratio
comes down to (3 − 2) / 3 = 33 % of the infor-
mation. In Table 1 the amount of information is
shown for different numbers of telescopes.

From the increase in information for every sta-
tion, we can conclude that it is essential to have
enough stations in the interferometer, since each
closed triangle between the baselines introduces
a new independent closure phase, and increases
the percentage of information.

Number of
telescopes

Number of Fourier
phases

Number of closing
triangles

Number of
independent

closure phases

Percentage of
phase information

3 3 1 1 33 %
7 21 35 15 71%
21 210 1330 190 90%
27 351 2925 325 93%
50 1225 19600 1176 96%

Table 1: Contained phase information for different numbers of telescopes. [Monnier, 2003]
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Ionosphere

Figure 4: Atmospheric opacity as function of wavelength. At the right side of the image the cut-off from the ionosphere
can be clearly seen.[Vector, 2015]

1.5 Ionosphere

When radio waves enter the atmosphere, they
have to cross a region of partially ionized parti-
cles. This is called the ionosphere, and is created
by the ultraviolet radiation of the Sun, which ion-
izes the particles entering the atmosphere. The
ionosphere starts at a height above 100 km of the
surface of the Earth, and stretches until about
600 km. Radio waves are influenced by the iono-
sphere, especially at low frequencies (< 1 GHz).

The free electrons in the ionosphere can col-
lide with the photons of the radio waves, leading
to reflection of the photons at low frequencies.
At higher frequencies, the photons do not get
reflected anymore, but the electromagnetic field
of the free electrons and ions in the ionosphere
still interacts with the radio waves, causing them
to change phase. The influence of the ionosphere
can be evaluated by looking at the refractive
index of the ionosphere n,

n = (1− ν2p/ν2)1/2. (1.8)

As can be seen in equation 1.8, the refractivity
of the ionosphere increases as 1/ν, which means
that radio waves with lower frequencies get more
disturbed by the ionosphere, potentially making
them difficult to detect2 [Burke and Graham-
Smith, 2002]. Figure 4 shows the atmospheric
opacity as function of wavelength. At frequencies
below about 10 MHz there can be total reflection,
which is used as a communication method. This
method is called ’DX communication’, and uses
the reflectivity at long wavelengths of the iono-
sphere to ’bounce’ back signals, which enables
you to send radio waves with information over a
large distance. However, for radio astronomy it
is not desirable when the data is being reflected
back into space. Fortunately this reflection is a
lot less severe at shorter wavelengths.

The resonance frequency νp is the value below
which the atmosphere becomes opaque [Burke
and Graham-Smith, 2002]. Its value is given by,

ν2p =
Ne2m−1

(2πε0)2
, (1.9)

where N is the electron density, e is the elec-
tron charge, m is the electron mass and ε0 is the
vacuum permittivity. The electron density N de-
pends on whether it is day or night, and on the so-
lar activity [Spoelstra and Kelder, 1984]. Hence
there is no sharp cut-off value for the resonance
frequencies, they range from 4.5 MHz during the
night to 11 MHz at daytime. Radio waves can
only be detected accurately when their frequen-
cies are well above this limit. LOFAR makes ob-
servations in two frequency ranges with two an-
tennas, the Low Band Antenna (LBA) and High
Band Antenna (HBA), optimized for 10 – 80 MHz
and 120 – 240 MHz, respectively [LOFAR, 2015].
In the low frequency range, the effects of the iono-
sphere on the observations will be most notice-
able, which means the data has to be corrected
for them. Calibration of the data uses the mea-
surement equation, which will be explained in
Section 1.6.

1.6 Measurement equation

The propagation of radio waves through the dif-
ferent media, antennas and cables, up until the
receiver can be described by an elegant equa-
tion, the measurement equation. Invented in
1996 by Johan Hamaker [Hamaker, J. P., 1996]
and refined by Oleg Smirnov [Smirnov, 2011],
the measurement equation is frequently used in
calibration of data.

It is outside the scope of this thesis to take

2In equation 1.8 the refractive index n is less than one, which implies a velocity c
n

of the wave greater than c. It is
important to note that this corresponds to the phase velocity of the wave.
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into account that the antennas have in fact
two polarization directions: x and y, which
are perpendicular to each other. This means
that when looking at the correlations between
two antennas, there are 4 possible combinations:
px qx, px qy, py qx, and py qy. Implementing this
in the measurement equation would give 2 × 2
matrices in the matrices corresponding to the
model and the data.

When not taking polarization into account, we
can represent our data by a matrix with elements
consisting of only complex visibility, instead of a
2 × 2 matrix. This matrix, V contains the sig-
nals from sources in the sky as measured by the
receiver. C is our model matrix, which contains
the ideal values of the data, before being cor-
rupted by several effects. We can think of a gain
matrix G, which corresponds to the corruption
factors that change C into V, such that,

V = GC. (1.10)

The gain matrix can be divided into other smaller
gain matrices, each corresponding to a specific
corruption effect,

V = GnGn−1 ... G1 C. (1.11)

Looking at a single element of the V matrix, Vpq,
the signal travels along two different paths to the
antennas p and q, which both have their own gain
matrix 3, Gp and Gq,

Vpq = GH
pn (...GH

p2 (GH
p1 CGq1) Gq2 ...) Gqn.

(1.12)

In this thesis we have taken the separate gain ef-
fects into one gain matrix,

V = GHCG. (1.13)

We are going to extend this approach to multiple
directions, over which we will take a sum. The
adapted version of the measurement equation is
given by,

V =
∑
d

GH
d Cd Gd, (1.14)

where d represents the different directions. In the
next chapter we will explore this equation, and
implement it in a calibration method. In Chapter
3 the simulations of direction dependent calibra-
tion will be presented. Possible future work will
be discussed in Chapter 4 and the conclusions
will be presented in Chapter 5.

3In equation 1.12, GH denotes the Hermitian transpose, which transposes the matrix and takes the complex conjugate.
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2 Calibration

2.1 Introduction

Calibration is an essential part of radio inter-
ferometry. Uncalibrated data will show distor-
tions and circles in the image, and will make
it more difficult to see faint sources. Figure 5
shows the difference between a calibrated and
an uncalibrated image. The current used cali-
bration method ’StEFCal’ (Statistically Efficient
and Fast Calibration) is not direction dependent.
However, the ionosphere is not homogeneous, so
calibration should also vary as a function of po-
sition. In this paper we will explain the StEFCal
algorithm and expend it to multiple directions.

Several effects corrupt the signal that comes from
astronomical sources. Examples are the electrical
gains, inexact compensation for cable lengths and
the phase delay coming from the ionosphere. All
these effects are specific to a station, and in the
measurement equation they are represented by
different matrices. For this thesis, all the effects
are taken together in one gain matrix instead of
several different ones, to make the calculations
easier.

Each station has one gain factor, which has to
be calculated from the correlations of that sta-
tion with the other stations. The number of
responses between one station and the others is
much larger than the number of gains for a single
station (which is one), meaning we are dealing
with an over-determined system, which has more
constraints than unknowns. This should always
be the case, otherwise you could let your data
correspond to any given model, and this will not
allow you to make predictions about future data.

This phenomenon is known as overfitting. Be-
fore continuing with the calibration, the method
of solving an over-determined system should be
known, as is explained in an appendix, 7.1.

The gain factors for the stations can be cal-
culated using a known model of the visibilities
of the sky, determined from other surveys. The
observed data set, the model and the gain factors
can all be represented by matrices. The visibility
matrix V contains the correlation between all
possible stations, where the element Vpq gives
the correlation between stations p and q. The
model matrix C contains the ideal value of those
combinations of stations, and the gain matrix G
is a matrix with the correction factors between
V and C. Both the rows and the columns of the
model matrix have to be multiplied by the gain
factors to get the measured data, this is achieved
by putting a diagonal gain matrix in front of the
model matrix, to multiply the rows, and one af-
ter the model matrix, to multiply the columns.
In fact, this means we have a quadratic equa-
tion, which is difficult to solve for matrices. To
find a solution the Alternating Direction Implicit
method is used. We make an estimate for the
first gain matrix, and use that to calculate the
second, which we then take as the best estimate
for the first matrix to calculate the next second
gain matrix. Eventually this iterative process
should make the first and second gain matrices
approximately equivalent.

In Section 2.2 the process of non-directional cal-
ibration will be explained. In Section 2.3 we
also take into account snapshots from multiple
frequencies and in Section 2.4 we expand the
calibration method to multiple directions.

(a) Uncalibrated image. (b) Calibrated image.

Figure 5: Two images of SPT0113-46 [Nobels, F. S. J., 2015].
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2.2 Non-directional calibration

First, we will look at the calibration of the sta-
tions in one direction, by assuming that the iono-
sphere causes an equal phase shift in all direc-
tions. We have a certain data set, V, where Vpq

contains the correlated data between stations p
and q. We also have a specific model of the sky,
C, with Cpq the ideal value that the correlated
data should have, which is obtained from other
surveys. Due to some properties of the station,
the ionosphere through which light has to travel
and some other factors, the data may deviate
from the model, by a certain factor per station.
G is the gain matrix: a diagonal matrix with
elements that change the model to make it look
like the data we get out of the different stations
of LOFAR. The first gain matrix multiplies each
row with a certain number, and the second gain
matrix multiplies each column with that number.
The measurement equation can be visualized as
shown in Figure 6.

=

GH CV G

Figure 6: Representation of the measurement equation,
V = GH CG.

We want our equations to satisfy V = GHCG.
The error in this equation is given by V −
GHCG, which means we want to minimize∥∥V −GHCG

∥∥2
F

. At the start of the algorithm,
the first gain matrix is assumed to be known. We
define the known gain matrix H = G. Our first
estimate for H is the identity matrix, with the
same dimension as our data and model. Mini-
mizing the error can be done by minimizing the
Frobenius norm4, which is given by,

F

2

=R
F

2

-

HH CV G

=*

Figure 7:
∥∥V −HHCG

∥∥2
F

,

where F denotes the Frobenius norm and ∗ equals
the Frobenius norm of the error. We want to find
the G for which this Frobenius norm has a min-
imal value. As the Frobenius norm is the sum of
all elements, we can take the sum for every col-
umn separately5, and then sum over them, such
that,

F

2

= -

C GV:k

k = 1

num. st.

:k
HH

*

Figure 8:
N∑

k=0

∥∥V: k − [HHCG]: k
∥∥2
F

,

Since HH and C are both known, they can be
taken together in one matrix A := HHC.

F

2

=R
F

2

-

A GV:k

k = 1

num. st.

:k
*

k = 1

num. st.

Figure 9:
N∑

k=0

∥∥V: k − [AG]: k
∥∥2
F

.

Here, G is a diagonal matrix, so the kth column
only has zero elements except for the element on
the diagonal. This means that instead of making
a diagonal matrix for G, we can store the same
information in a vector g with length k. In other
words, gk = Gkk.

Now, if we look at [AG]:,k, we see that this
is a matrix whose columns are the columns of A
multiplied by Gkk = gk. So the kth column of
this matrix is given by [AG]: k = A: k gk. So the
equation becomes:

F

2

= -

A:k gkV:k

k = 1

num. st.

*

Figure 10:
N∑

k=0

∥∥V: k −A: k gk

∥∥2
F

,

Each element of this sum is positive, since they
are the square of the Frobenius norm. Hence

4The Frobenius norm takes the squared norm of the absolute value of all the elements in the matrix, and sums over them.
This way the negative and positive values will not cancel each other. Additional explanation can be found in Appendix 7.1

5The Matlab notation : is used for ’all values for this index’.
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minimizing this sum is the same as minimizing
each column separately. This is equal to find-
ing the least squares solution to the problem
A: k gk = V: k, which we already know how to
solve from appendix 7.1, such that,

AH
: k A: k gk = AH

: k V: k

gk = (AH
: k A: k)−1 AH

: k V: k

In this case, since AH
: k A: and AH

: k V: k are both
scalars, we can simply calculate gk by dividing
them,

gk =
AH

: k V: k

AH
: k A: k

The obtained value for gk is placed in the vector
g, this is repeated for every k.

When every element of the vector g is filled, it
is used as the diagonal of the ’known’ gain ma-
trix to form the new H. Each time this is done,
the newly calculated gain vector gets closer to its
true value, and the difference between the new
and the old vectors gets smaller and smaller. For
one directional calibration, convergence is proven
by Stefano Salvini and Stefan Wijnholds [Salvini
and Wijnholds, 2014]. The question is: at which
point do we have to stop? To answer that we are
going to use the relative improvement δ:

δ =

∥∥g[i]− g[i− 1]
∥∥2
F∥∥g[i]

∥∥2
F

. (2.1)

For every even iteration we are going to check the
relative improvement and when it is small enough
this means that the old and new gain vector are
almost identical, as they should be. At this point
convergence is reached, the program stops and
the latest version of g will be kept.

2.3 Multiple data sets per station

In the previous section we only used one snap-
shot to calculate the gains, which is not really
reliable. The more snapshots are used, the more
accurate the gain matrices become. The signal
to noise ratio scales with the square root of the
number of data sets, S/N ∝

√
N .

So what happens when we take into account that
each station has multiple data sets? We could, of

course, see the different data sets as a new dimen-
sion of the matrices, but this will make things
unnecessarily complicated, especially when we go
on to directional-calibration, since there will also
be a new dimension of the direction.

Instead of creating an extra dimension for the
frequencies, we will order the different data sets
below each other, so the matrix corresponding
to the data V will become tall. Each data set
could correspond to a different frequency band,
for which the model C is different as well. We
do the same thing for C, and put every differ-
ent model below each other in a tall matrix.
The dimension of these matrices depends on the
number of measurements made, M , and the num-
ber of stations, Nst, and is given by (Nst·M)×M .

The left gain matrix will then become an identity
matrix with dimension the same as the length of
V and C, so this matrix will be a lot larger than
before. The right gain matrix will still be the
original size. Just like before, the only informa-
tion needed about the gain matrices is in the
form of a vector with dimension Nst. To make
the big gain matrix, these elements are put on
the diagonal and repeated M times. We can do
this because the gain matrix is the same for every
data set, since it only depends on variables like
the ionosphere, the error in the distance between
the stations and their sensitivity, which are con-
stant in a short time range (of about 1 second).

The equation V = GHCG now looks like,

=
V1

V3

Vm

V2

C1

Cm

C3

C2

......

......

GH CV G

and after introducing A,

=
V1

V3

Vm

V2

GHC1

GHCm

GHC3

GHC2

......

......

AV G
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Due to the rather large size of GH , converting the
vector g into a diagonal matrix to carry out the
multiplication with C would cost a lot of comput-
ing power. In this case all the zeros in the matrix
would have to be multiplied with the elements of
C as well, which is time consuming and unnec-
essary. By using a smart method of calculating
A we can make the calculation run a lot faster.
The operation carried out by multiplying C with
the left diagonal gain matrix is that each row gets
multiplied with a certain number. This calcula-
tion can also be done using a different method,
by multiplying element wise the gain vector g
with the matrix C. The gain vector first needs
to have the same length as C, this is achieved by
repeating the elements M times, such that,

A = g �C

where � denotes the Hadamard (element-wise)
product.

However, we can even go a step further by taking
into account that for every step we only need to
know one column of A. We never need to use the
whole matrix, so it is not necessary to compute
it and we can suffice with,

A:k = g �C:k.

If we only compute one column of A at a time,
this will save memory, and also order the elements
we need in a vector, making them quick to access.

After computing A in an efficient manner, the
least squares solution can be found for g, using
the same method as in paragraph 2.2. This is
demonstrated in the first script in Appendix 7.2.
In the following Section we will extend this ap-
proach to 3 dimensions.

2.4 Directional calibration

The method presented in Section 2.2 is valid
when you assume that the gains are the same
in every direction of the sky. However, in reality
this is not true, the ionosphere is different in ev-
ery direction. This means we have to extend our
approach to 3 dimensions, similar to the method
derived in [Tasse, 2014]. The first two dimen-
sions are the different stations, just as before, and
the third dimension is the direction. We divide
the sky into different sections, and per section we
have a different model. Our data is still a 2D ma-
trix, but our model and gains become 3D tensors,

since we added the extra dimension of the direc-
tion. For the clarity of this explanation the ma-
trices are all represented as square matrices, but
in reality the different frequency measurements
are put beneath each other to produce tall ma-
trices just like in Section 2.3. This means we can
visualize the measurement equation as follows:

F

2

- = *

V GCGH

Data GainModelGainH

d = 1

D

in which we want to minimize ∗. In this 3 dimen-
sional variant of StEFCal the gain matrices have
turned into diagonal tensors, where we still use
the identity tensor as our initial estimate of GH.

Again, we define A as GH C,

A = =1
2

3

a
α 

...

1
2
3...

a
bx

x

x

x

x

cx
...

GH C A

.

which means every row of C gets multiplied by
the corresponding value on the diagonal of GH .
This gives us

F

2

- = *

V GA

d = 1

D

.

Now, we will evaluate each column separately. In
the previous example this resulted in a vector for
A, here it will reduce to a 2D matrix, which can
be represented by

F

2

- = *

V:k Gkk:A:k:

d = 1

D

k = 1

num. st.

.

Since we only need the columns of A separately,
we will again not compute the whole 3D matrix

12



but only use one plane of A at a time. For easier
notation, we define:

A:k: = Ak =  

How do we compute the matrix Ak, in the most
efficient way? Let us first look at a slice in one
direction of the tensors GH and C,

=
A GH C

.

Expanding this to D directions, we get

A CGH

=

We will sum this over every k. Putting it back
in our original equation, we have

F

2

- = *

V:k Gkk:Ak

k = 1

num. st.

d = 1

D

When we write this down in two dimensions, we
get the following equation.

F

2

- = *

V:k Gkk:Ak

d = 1

D

k = 1

num. st.

Where Gk k : is a vector with the directional ele-
ments of the gain matrix, as seen below.
Although G is a 3D tensor, all its information is
stored in the diagonal, since the other elements
are all equal to zero. This means that we can

make a 2D matrix which represents the 3D tensor
G, and contains all the diagonal elements. This
is a D × Nst matrix. Its columns will be filled
with the vector Gk k :. To make the notation
easier, we define Gk k : := gk

gk

Figure 11: Representation of Gk k : = gk.

gkD

N

Figure 12: The matrix G.

For every k, we have to find the gk that minimizes

∗. Finding the minimum of
∥∥V: k −Ak gk

∥∥2
F

is
the same as finding the least squares solution of
Ak gk = V:,k. This means we have to solve this
equation

=

Ak gk V:k

with the least squares method, as explained in
Appendix 7.1. In this way we calculate gk for
every k, and we fill the columns of the matrix
G with the solutions. We repeat the process i
times, using the conjugate of the last calculated
G matrix as the left matrix GH , to calculate Ak.

When the gain matrices converge, we use the fi-
nal result to correct the data set V. This gives us
the output we want, the set of LOFAR data cor-
rected for most of the influence of the ionosphere.
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In this chapter we have seen the theory be-
hind the StEFCal algorithm, first for the non-
directional variant and afterwards expanded to
multiple directions. The implementation of this
method can be seen in the second script in Ap-

pendix 7.2. Using this script we evaluated real
data from LOFAR, to investigate the efficiency
of the algorithm. The findings will be discussed
in the next chapter.
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3 Experimental results

3.1 Variable number of directions

As a test observation, we have used one time slot
of a sub band of a MSSS verification field [MSSS,
2011]. The source model we calibrate for comes
from the calibration catalog for MSSS, the data
was kindly provided by George Heald [Heald and
LOFAR Collaboration, 2014].The prediction of
these sources was performed using the LOFAR
software package Black Board Self-calibration
(BBS).

How exactly did we divide the sky into differ-
ent directions? For the grouping of the sources
the SAGECAL clustering algorithm [SAGECAL,
2015] as implemented in ’LSMTool’ was used,
which is an algorithm that groups sources into a
specified number of clusters. It divides sources
according to their position in the sky, but also
takes into account that the flux density should be
distributed evenly amongst the different sections.
To investigate which number of directions is op-
timal, plots have been made with the number of
directions varying from 1 to 5.
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(a) 1 direction.
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(b) 2 directions.
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(c) 3 directions.
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(d) 4 directions.

Figure 13: Grouping of the sources, for 1 to 5 directions.
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(e) 5 directions

Figure 13 shows the division of sources in the sky
made by the clustering algorithm for several dif-
ferent numbers of directions. The different colors
correspond to different directions.

3.2 Convergence plots

After several iterations of the calibration proce-
dure for the MSSS data set, the two gain matrices
should be almost identical. The relative improve-
ment of the two, as defined in equation 2.1, is
used to measure their convergence. Convergence
plots show how δ improves as a function of the
number of iterations. The lower the value of δ,
the more the calculated gain matrices resemble
each other.

3.2.1 Dependence on number of direc-
tions

The different number of directions as seen in Sec-
tion 3.1 can be compared to each other by looking
at their convergence plots. In Figure 14 it can
be seen that for one direction, the gains con-
verge quickly to δ ≈ 10−17 after approximately
50 iterations. For multiple directions, the gains
converge a lot slower, after approximately 1000
iterations. Remarkable about the plots is that for
direction dependent calibration, the convergence
does not seem to depend strongly on the number
of directions. The plots are all fairly similar. This
may imply that for a higher amount of directions
than 5, calibration will not be extremely more
difficult, suggesting that directional calibration

with StEFCal is a promising method.

At the interval of i ≈ 100 − 300, the plots of 4
and 5 directions behave strangely. They deviate
strongly from a straight line for some period, and
afterwards they behave regularly again. We are
not sure what can explain this behavior, it could
be because of ambiguity. The algorithm may
have trouble finding the right gains solution, if
there are several solutions that are correct. At
some point it seems the algorithm has found the
right values, and from then on the convergence
speeds up. Further study is required to investi-
gate this hypothesis.

The slopes of the convergence plots were cal-
culated with Python in log-log scale. The num-
ber of iterations ranges from 0 to 60, because
in that interval the plots behave approximately
as a straight line. The results are shown in Ta-
ble 2. Since the slopes are calculated in log-log
scale, we can conclude from the values of the
slopes that for non-directional StEFCal, the rel-
ative improvement scales with the number of
iterations as δ ∝ i−12. For direction dependent
StEFCal, they scale approximately as δ ∝ i−2.

In the following plots, other parameters will be
varied and the number of directions will stay
the same. We chose to make the plots with 5
directions, this is an arbitrary choice, since the
convergence does not depend strongly on the
number of directions.

16



100 101 102 103 104

Number of iterations (log)

10-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

Re
la

tiv
e 

im
pr

ov
em

en
t (

lo
g)

D = 1
D = 2
D = 3
D = 4
D = 5

Figure 14: Convergence plot for different number of directions.

Number of Directions Slope

1 -12.9
2 -2.1
3 -1.7
4 -1.8
5 -1.7

Table 2: Slope of the log-log convergence plots
for multiple different numbers of directions, cal-
culated with Python using a fitting function. As
can be seen, the slope for 1 directions is a lot
steeper than the ones for multiple directions.
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(a) Using 10 of the 86 stations.
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(b) Using 330 of the 86 stations.
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(c) Using 50 of the 86 stations.

0 1000 2000 3000 4000 5000
Number of iterations

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Re
la

tiv
e 

im
pr

ov
em

en
tv

 (l
og

)

(d) Using all the 86 stations.

Figure 15: Convergence plots for varying number of stations.

3.2.2 Dependence on number of stations

In figure 15 we show a subset of the data, that
does not contain every station. We can see that
the process improves when the number of stations
increases, as the point of convergence, δ ≈ 10−15,
is reached sooner. There is a direct relation be-
tween the relative improvement and the number
of iterations needed to reach convergence on a
log-linear scale, which implies a relation between
δ and the number iterations of the form δ ∝ 10−i.
The first 1500 iterations do deviate from this,
however.

3.2.3 Averaging the frequencies

Another interesting property to investigate is
what happens when we average the frequencies.
Instead of putting all the frequencies beneath
each other in a tall matrix, now we are going

to make one matrix of Nst × Nst which contains
all the visibilities averaged over the different fre-
quencies. In Figure 16 both the method used
before of making a tall matrix and the averaged
frequencies method are shown. The results of the
averaged frequencies are not as good as the previ-
ous used ones. They do converge, but they need
a higher amount of iterations, about 9000.

3.2.4 Without the relaxation process

The crucial idea of StEFCal is to implement a
relaxation process, which replaces the gain so-
lution of each even iteration by the average of
the current gain solution and the gain solution
of the previous odd iteration. This process helps
enormously to reach convergence. The result of
omitting this relaxation process is demonstrated
in Figure 17, and it can be seen that the gains do
not converge at all anymore.
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Figure 16: Convergence plot with the visibili-
ties averaged over the frequencies.
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Figure 17: Convergence plot without the re-
laxation process.

3.2.5 Individual gain elements

Instead of taking the relative improvement of the
total matrix, we can also evaluate one element
at a time. This could be interesting because it
enables us to obtain a better idea of how the
individual components of the matrix behave. If
some elements posses a larger error, this could
propagate into the final gain matrix as well. The
first stations of the matrix correspond to the core
stations, they are located close to each other, so
their baselines are short. The last stations corre-
spond to the distant ones, with longer baselines.
It would be interesting to investigate whether
they demonstrate different behavior.

Figure 18 shows the convergence plots of the
distant stations. All the different directions seem
to behave similarly, the plots show no remarkable
distinctions.

In Figure 19 both the 1st and the 86th ele-
ments are plotted for every direction. These plots
demonstrate a significant difference between the
core stations and the remote stations. The dis-
tant stations, which are located far away from
each other, converge a lot better than the core
stations. The core stations do converge, eventu-
ally, but because they need such a high amount
of iterations they slow down the convergence of
the total gain matrix.
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Figure 18: Convergence plots of only the 86th element of the gain matrix, plotted for every
direction.
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Figure 19: Convergence plots for both the 1st and the 86th elements, plotted for every direction.
A significant difference between the 1st and the 86th can be seen.
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4 Discussion and future re-
search

When calibrating the data, the measurement
equation is solved for the total gain matrices.
This way we find the total distortion factor of
the data, which consists of several effects taken
together. It would be useful to make a distinc-
tion between those, since some effects follow an
identifiable relation, for instance the effects of
the ionosphere scale with 1/ν2, and the delay as
an effect of the position of the station scales with
1/ν. Also, some of the effects are not direction
dependent. If we would break the gain matri-
ces up into several different matrices that each
contain the gains of a certain effect, we could
evaluate them separately and make it easier to
see small deviations.

The relaxation method applied in StEFCal
proved to be efficient. It would be interesting
to see if other relaxation methods could obtain
the same effect, or maybe even a better one. In
the directional variant, convergence was not very
good, there might be another relaxation scheme
that could speed this process up. Also, it could
be evaluated whether it is necessary to keep ap-
plying the relaxation method, or whether at some
point it is not needed anymore. This would save
some computing time.

On the topic of time efficiency a lot of further
progress can be made as well, to make the al-
gorithm as quick as possible. In the first scripts
the Moore-Penrose pseudo inverse function of
python was used to calculate the gain vector. On
suggestion of Stefano Salvini this was replaced
by a function which immediately returns the
least-squares solution to a linear matrix equa-
tion, without computing the matrix explicitly.
This alteration of the program made it run sig-
nificantly faster and made the difference between
waiting the whole day on a result, to receiving
it in a few minutes. Hence it would be a good
investment to look critically at some of the other
functions and methods used, and make the pro-
gram run as fast as computationally possible.

Only data from one time slot was calibrated,
with multiple directions and multiple frequen-
cies. Additional information could be obtained
when we look at multiple time slots, to improve
the signal-to-noise ratio.

More information about the gain matrix can be
obtained by looking at the separate elements. In
this thesis the 1st and the 86th element have been
compared and the results show that the gain el-
ements of the 86th station converge significantly
faster than those of the 1st station. Future re-
search could find out more about the behavior of
the other stations, and by doing so get a better
understanding of the total gain matrix.

5 Conclusion

In this thesis, a direction dependent extension
was derived for StEFCal, that calculates the
gain matrices for a specific number of stations,
frequencies and directions. The corrected visi-
bilities can be found by multiplying these gain
matrices with the model. In this research project
both the speed and the accuracy of the algorithm
have been evaluated by producing convergence
plots, in which the relative improvement δ is
plotted as a function of the number of iterations.

From the plots we find that the relative improve-
ment reaches a point of convergence of about
10−15 for 5 directions, and 10−17 for one direc-
tion. However, for directional calibration it does
take a high number of iterations to achieve this
value. It has been found that for directional
calibration, the number of directions you choose
does not have a big influence on the results. The
graphs give a line that is straight by approxima-
tion, after the first 1000 iterations, when log(δ)
is plotted against i (the number of iterations).
This indicates a relation between δ and i of the
form δ ∝ 10−i.

An experiment was done with averaging the vis-
ibilities over the frequencies, instead of calculat-
ing the gains with every single frequency matrix.
This turned out to take a lot more iterations to
reach convergence than the previous approach.

When the StEFCal relaxation method is left
out of the algorithm, the gains do not converge
anymore. From this we can conclude that the
StEFCal approach is indeed very effective.

Comparisons between the core stations and the
distant stations give as result that the gains of
the distant stations converge much faster than
those of the core stations.
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7 Appendix

7.1 Solving over-determined sys-
tems

Imagine a set of equations with equal dimensions
of the form Ax = b, as in the following example.

(
5 2
4 2

)(
x1
x2

)
=

(
4
10

)

This can be solved by multiplying each side of
the equation with the inverse of A.
The solution is given by:

x = A−1 b (7.1)

A−1 =

(
1 −1
−2 2 1

2

)
(
x1
x2

)
=

(
1 −1
−2 2 1

2

)(
4
10

)
=

(
−6
17

)

But what happens when you have more equations
than unknowns? For example, consider the prob-
lem

(
3
4

)
x =

(
4
10

)

In this case we won’t be able to come up with
one x that satisfies all the equations. There will
always be an error, defined as:

r := b−Ax (7.2)

which needs to be minimized to give us the best
result. Minimizing a vector has to be done in
a norm, which translates a vector to a real num-
ber. For this we use the Frobenius norm, meaning
we take the squared norm of the absolute value
of all the elements of the vector, sum them and
then take the square-root. This way the negative
and positive values won’t cancel each other. The
Frobenius norm is a scalar, and is defined as:

∥∥A∥∥2
F

=
∑
i

∑
j

|aij |2 (7.3)

The error r is, as given by equation 7.2,

r =

(
4
10

)
−
(

3
4

)
x =

(
4− 3x
10− 4x

)

To get the optimal value for x, we want to mini-
mize the Frobenius norm of the error.

∥∥r∥∥2
F

= (4− 3x)2 + (10− 4x)2

This can be done by differentiating the Frobenius
norm and setting its derivative equal to zero. The
outcome for x is the value which gives a minimum
error.

0 =
∂

∂x

∥∥r∥∥2
F

0 = −6(4− 3x) · −8(10− 4x)

0 = −104 + 50x

x =
52

25
(7.4)

When you have more parameters, however, com-
puting the high-dimensional derivative becomes
unpractical. Fortunately there is a better and
more generic method, which will be explained
here.

We have the set of equations Ax = b, with
dim(b) > dim(x).

=

A x b 

We want A,x and b to have the same length,
so we multiply both sides with the Hermitian
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transpose of A.

=

AH bxA AH

Which gives us,

=
AHbxAHA

Since AHA is a square matrix, x can be found
by equation 7.1.

x = (AHA)−1AHb

The matrix (AHA)−1AH is called the Moore-
Penrose pseudo inverse.

Applying this method to the previous example,
we get

(
3 4

)(3
4

)
x =

(
3 4

)( 4
10

)
25x = 52

x =
52

25
�

Which is indeed the same answer as we found in
equation 7.4.
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7.2 Python scripts

Listing 1: Code for computing the convergence plot for non-directional calibration

1 ’ ’ ’
2 Created on May 12 , 2015
3

4 @author : n i kk i
5 ’ ’ ’
6

7 #Now we are going to make i t work f o r N data s e t s per s t a t i o n . And add a p lo t o f the
r e s i d u e aga in s t the number o f i t e r a t i o n s .

8 #With f a s t e r method o f c a l c u l a t i n g Z .
9 from f u t u r e import d i v i s i o n

10 import numpy as np
11 import s c ipy . i o as sc
12 import s c ipy . l i n a l g as l i n
13 import sys
14 from matp lo t l i b import pyplot
15

16 de f s t e f c a l n o n d i r (M, R, tau =0.000001 , i max =100) :
17 nst = len (R)
18 numsamples=M. shape [ 0 ] /M. shape [ 1 ]
19 pr in t ”numsamples : ” , numsamples
20

21 #I n i t i a t e g [ 0 ]
22 gs = [ ]
23 gs = gs + [ np . ones ( nst , dtype=complex ) ]
24

25 #Modify R to be in the same form as M:
26 R = np . t i l e (R, ( numsamples , 1) )
27 pr in t R. shape
28

29 norms =[ ]
30

31 f o r i in range (1 , i max ) :
32

33 g = np . z e r o s ( nst , dtype=complex )
34

35

36 f o r p in range (0 , nst ) :
37

38 Zp= np . t i l e ( gs [ i −1] , numsamples ) ∗ M[ : , p ]
39 g [ p ] = (R[ : , p ] . conjugate ( ) . dot (Zp) ) . item ( ) / l i n . norm(Zp) ∗∗2
40

41 gs = gs + [ g ]
42 i f np . mod( i , 2) == 0 and i > 0 :
43

44 norm = l i n . norm( gs [ i ] − gs [ i −1]) / l i n . norm( gs [ i ] )
45

46 norms=norms+[norm ]
47

48 i f norm >= tau or norm <= −tau :
49

50 gs [ i ] = ( gs [ i ] + gs [ i −1]) /2
51

52 e l s e :
53 break
54

55 pr in t ”Norms : ” , norms
56 pr in t ”Number o f i t e r a t i o n s : ” , i
57

58 I = np . arange (2 , i +1, 2)
59 pyplot . p l o t ( I , norms , c o l o r=’ green ’ )
60 pyplot . y s c a l e ( ’ l og ’ )
61 pyplot . y l a b e l ( ’ Residue ’ )
62 pyplot . x l a b e l ( ’Number o f i t e r a t i o n s ’ )
63 pyplot . show ( )
64

65 r e turn gs
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66

67 #Loading the data from a matlab f i l e
68 data = sc . loadmat ( ’ n i kk i .m’ )
69

70 #Model :
71 R = data [ ’Vm’ ] [ 0 : 1 0 , 0 : 1 0 ]
72

73 #Data ( t h i s i s j u s t to s i m i l a t e the r e a l data , which w i l l be in a s i m i l a r format )
74 N = 6
75 M = np . t i l e ( data [ ’V ’ ] [ 0 : 1 0 , 0 : 1 0 ] , (N, 1) )
76

77

78 gs=s t e f c a l n o n d i r (M,R)
79

80 pr in t gs

Listing 2: Code for computing the convergence plots for different number of directions (Figure 14).

1 ’ ’ ’
2 Created on May 12 , 2015
3

4 @author : n i kk i
5 ’ ’ ’
6 #Making a d i r e c t i o n a l stEFCal . With the func t i on adapted , and reduced data . With

v a r i a b l e amount o f d i r e c t i o n s and mul t ip l e p l o t s in one graph .
7 from f u t u r e import d i v i s i o n
8 import numpy as np
9 import s c ipy . i o as sc

10 import s c ipy . l i n a l g as l i n
11 from matp lo t l i b import pyplot
12 import sys
13

14 Nrs ta t i ons = 86
15 Nrfreq = 40
16 Nrdir = 5
17

18 de f s t e f c a l d i r ( tau =0.000001 , i max =1000) :
19 #Make a l i s t f o r the d i f f e r e n t norms per d i r e c t i o n
20 norml i s t = [ ]
21

22 f o r d in range (1 , Nrdir +1) :
23 pr in t ”D IS ” , d
24 #−−−−−−−−−−− Model −−−−−−−−−−−
25 f o r b in range (0 , d ) :
26 data = sc . loadmat ( ’ Patch %s %s . mat ’ % (b , d) )
27 Cd = data [ ’Vmcube ’ ]
28 Cd = Cd [ 0 : Nrstat ions , 0 : Nrstat ions , : , 0 : Nrfreq ]
29 Cd = np . squeeze (Cd)
30 Cd = np . d s p l i t (Cd, Cd . shape [ −1])
31 Cd = np . squeeze (Cd)
32 Cd = np . vstack (Cd)
33 Cd = np . matrix . conjugate (Cd)
34 #We want to make a 3d tensor , so we add to every matrix one empty dimension
35 Cd = np . expand dims (Cd, a x i s =0)
36

37 i f b == 0 :
38 C = Cd
39

40 e l s e :
41 C = np . concatenate ( (C, Cd) , a x i s =0)
42

43 #−−−−−−−−−−− Data −−−−−−−−−−−
44 #Read the data from the f i l e
45 data = sc . loadmat ( ’ Patch 0 %s . mat ’ % d)
46 V = data [ ’ Vcube ’ ]
47 #Reduce the amount o f data
48 V = V[ 0 : Nrstat ions , 0 : Nrstat ions , : , 0 : Nrfreq ]
49 # Get r i d o f the dimension o f 1
50 V = np . squeeze (V)
51 #S p l i t the f requency dimensions and save them in a l i s t
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52 V = np . d s p l i t (V, V. shape [ −1])
53 #Get r i d o f the dimension o f 1 : now i t i s a l i s t with ar rays o f dimension 2
54 V = np . squeeze (V)
55 #Stack a l l the ar rays in the l i s t beneath eachother
56 V = np . vstack (V)
57 #Because the dimensions got switched , we have to conjugate the matrix
58 V = np . matrix . conjugate (V)
59

60 nst = V. shape [ 1 ]
61 numsamples=V. shape [ 0 ] /V. shape [ 1 ]
62 d i r = C. shape [ 0 ]
63

64 #I n i t i a t e G oud
65 G oud = np . ones ( ( d ir , nst ) , dtype=complex )
66

67 #Make an empty l i s t f o r the norms
68 norms =[ ]
69

70 f o r i in range (1 , i max ) :
71 #Make a new , empty matrix f o r G nieuw
72 G nieuw = np . z e r o s ( ( d ir , nst ) , dtype=complex )
73 pr in t i
74

75 f o r p in range (0 , nst ) :
76 #Calcu la te the matrix A (= G ∗ C)
77 A = np . t i l e (np . matrix . conjugate ( G oud ) .T, ( numsamples , 1) ) ∗ C[ : , : , p

] . T
78 #F i l l the columns o f G nieuw with the s o l u t i o n o f the l e a s t squares

method
79 G nieuw [ : , p ] = np . l i n a l g . l s t s q (A, V[ : , p ] , rcond=−1) [ 0 ]
80

81 i f np . mod( i , 2) == 0 and i > 0 :
82 #Calcu la te the norm
83 norm = l i n . norm( G nieuw − G oud ) / l i n . norm( G nieuw )
84 #Add the norm to the l i s t o f norms
85 norms=norms+[norm ]
86

87 G nieuw = ( G nieuw + G oud ) / 2
88

89 G oud = G nieuw
90 pr in t ”NORMS” , norms
91 norml i s t . append ( norms )
92

93 pr in t ” norml i s t ” , no rml i s t
94 pr in t ” i i s ” , i
95 pr in t ”norms i s ” , l en ( norml i s t [ 0 ] )
96

97 I = np . arange (2 , i +1, 2)
98 pyplot . p l o t ( I , no rml i s t [ 0 ] )
99 pyplot . p l o t ( I , no rml i s t [ 1 ] )

100 pyplot . p l o t ( I , no rml i s t [ 2 ] )
101 pyplot . p l o t ( I , no rml i s t [ 3 ] )
102 pyplot . p l o t ( I , no rml i s t [ 4 ] )
103 pyplot . yl im (ymax = 1 , ymin = 10∗∗(−5) )
104 pyplot . y s c a l e ( ’ l og ’ )
105 pyplot . x s c a l e ( ’ l og ’ )
106 pyplot . y l a b e l ( ’ Re l a t i v e improvement ( l og ) ’ )
107 pyplot . x l a b e l ( ’Number o f i t e r a t i o n s ( l og ) ’ )
108 pyplot . l egend ( [ ’D = 1 ’ , ’D = 2 ’ , ’D = 3 ’ , ’D = 4 ’ , ’D = 5 ’ ] , l o c=’ lower l e f t ’ )
109 pyplot . s a v e f i g ( ’ MultD 86x40 1000i . pdf ’ , bbox inches=’ t i g h t ’ )
110 pyplot . show ( )
111

112 r e turn G nieuw
113

114

115 G=s t e f c a l d i r ( )
116 pr in t G
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