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Chapter 1 Introduction 
 
An ancient question that human beings want to answer is “what is matter 

around us made of”. People try to describe the world in terms of some 

fundamental particles. However, the word “fundamental particles” refer 

to different ones in different ages. For example, as time goes by, those 

have ever been regarded as “the most fundamental particles” are elements, 

molecules, atoms and currently subatomic particles. Particle physics is 

the study of the fundamental particles and their interactions [1]. Most of 

these subatomic particles can only be produced with high energy 

accelerators and colliders; therefore particle physics is also called high 

energy physics. 

 

1.1 The Standard Model 

1.1.1 Fundamental Particles and Interactions in the Standard Model 

Until now, the best theory that describes subatomic particles and their 

interactions in theoretical particle physics is the Standard Model [2-3]. The 

Standard Model includes twelve fundamental fermions, four gauge 

bosons and the Higgs boson. 

 
Figure 1.1: Fundamental particles in the Standard Model [4]. 
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The twelve fermions divided into three generations contain six quarks (up, 

down, charm, strange, top, bottom) and six leptons (electron, electron 

neutrino, muon, muon neutrino, tau, tau neutrino); while each generation 

contains two quarks and two leptons. The total charge of each generation 

is equal.  

Quarks carry color charge and an isolated quark can not be directly 

observed due to a phenomenon called color confinement. It means that a 

quark is always strongly bound to an antiquark (mesons) or another two 

quarks (baryons) to form composite particles called hadrons which are 

color-neutral. For example, proton and neutron are the two most common 

baryons. Quarks are the only fundamental particles that can take part in 

all the four fundamental interactions in nature.  

Leptons do not carry color charge so that they can not experience the 

strong interaction. The three neutrinos do not carry electric charge 

therefore they can only interact with other fermions via the weak 

interaction, which makes them very difficult to detect. The electron, 

muon and tau carry electric charge therefore they can experience the 

weak interaction and the electromagnetic interaction. 

The four gauge bosons are force carriers. According to the Standard 

Model, matter particles interact with others by exchanging force 

mediating particles called gauge bosons. Massless photons are the 

mediating particles of the electromagnetic interaction; W+, W¯ and Z 

bosons are the mediating particles of the weak interaction; while the eight 

gluons are the mediating particles of the strong interaction between color 

charged particles. 

The massive Higgs boson is a unique member in the Standard Model and 

used to explain why other particles are massive or massless in terms of 

the Higgs mechanism. 

The information of the four fundamental interactions in nature is listed in 
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table 1.1. The Standard Model focuses on the weak, electromagnetic and 

strong interaction, while the gravitation is another topic which is beyond 

the Standard Model.  
Table 1.1: The four fundamental interactions in nature [5]. 

 

 

1.1.2 QCD and the Electroweak Theory 

The Standard Model based on the local SU(3)×SU(2)×U(1) symmetry is a 

gauge theory which consists of the quantum chromodynamics and the 

electroweak theory. 

The quantum chromodynamics (QCD) is a non-abelian gauge theory with 

SU(3) symmetry and a study of the strong interaction. The two unique 

properties in QCD are color confinement and asymptotic freedom. The 

former one is a mechanism that keeps quarks and antiquarks inside the 

hadrons, while the latter one means that the coupling strength increases as 

the particles with color charge get closer to each other.  

The electroweak theory is a non-abelian gauge theory with SU(2)×U(1) 

symmetry which uniformly describes the electromagnetic and weak 

interaction. These two interactions could be unified when the energy is 

larger than the unification energy, which happened during the early epoch 

of the universe in terms of the Big Bang theory [6].  
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One goal of physicists is to seek a theory that can unify all these 

interactions to some extent. 

 

1.2 Experimental Methods in Particle Physics 

Experiments in particle physics mainly contain three parts: sources of 

high energy particles, particle detectors and data analysis tools. 

 

1.2.1 Sources of High Energy Particles 

Sources of high energy particles contain natural sources and artificial 

sources.  

The main natural sources are cosmic rays [6]. They originate from the 

cosmos and could produce showers of high energy secondary particles 

that can penetrate the Earth’s atmosphere. The energy of these particles 

are much larger than those produced in artificial sources, however they 

are difficult to detect. 

Artificial sources are mainly accelerators [2-3]. An accelerator is a device 

that accelerates particles produced artificially to high speeds with 

electromagnetic fields.  

A collider is a kind of accelerator that accelerates a beam of particles to 

high speed and then let them collide with another beam of high energy 

particles. The advantage of colliders is that particles produced in the 

collision process will own larger center-of-mass energy. 

Different colliders operate at different energy regions and use different 

initial state particles. For example, the LHC located at CERN [7] is the 

largest and most powerful collider in the world. It use two beams of 

protons as incoming particles and its main aim is to seek the Higgs boson 

and test the supersymmetric theory. The Beijing Electron-Positron 

Collider II (BEPCII) [8], discussed in this thesis, uses beams of electrons 

and positrons as incoming particles and works at the tau-charm energy 
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region. 

 
Figure 1.2: The layout of the LHC [9]. 

 

1.2.2 Particle Detectors  

A particle detector [2-3] is a device designed to measure information of 

high energy particles and is a part of a collider. The physical quantities 

that can be measured are mainly the velocity, the lifetime, the electric 

charge, the momentum and the energy. For example, in figure1.2, the 

detectors installed at the Large Hadron Collider are the CMS [10], the 

ALICE [11], the ATLAS [12] and the LHCb [13]. The detector of the BEPCII 

is called the Beijing Spectrometer III (BESIII) [14]. 

 

1.2.3 Data Analysis Tools 

Data, produced by detectors, have to be analysed with powerful software 

systems to process the large amount of experimental data. In early stage, 

softwares were usually written with the FORTRAN language based on 

the idea of Procedure-Oriented Programming. Currently, most 

mainstream softwares used in the particle physics field are written with 

the C++ language based on the idea of Object-Oriented Programming, 

such as GEANT4 [15] and ROOT [16]. 

Data generation and analysis in this thesis is done using the ROOT 
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framework. The details of ROOT and other used softwares will be 

introduced in chapter 3. 

 

1.3 Background and Motivation 

The Beijing Electron-Positron Collider II (BEPCII) is a double-ring e+e- 

collider located at Beijing, China. The spectrometer of the BEPCII, 

namely the Beijing Spectrometer III (BESIII), is composed of a series of 

sub-detectors. The details of BEPCII and BESIII will be introduced in the 

next chapter. 

The BESIII experiment focuses on studying the physics in the tau-charm 

energy region.  

 
Figure 1.3: The spectrum of charmonium family [17]. 

The collision between electron and position beams can produce a large 

amount of charmonium events such as J/ψ and ψ´ events. The QCD 

theory allows the existence of exotic hadrons such as glueballs, hybrid 

hadrons, exotic bayrons and exotic mesons. One important example of 

exotic hadrons is the Zc(3900). It was first reported by two independent 

groups in 2013: the BESIII collaboration [18] and the Belle collaboration 
[19]. The components of Zc(3900) are not clear so far; one possible 

explanation is that it is composed of four valence quarks. If this is 
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confirmed, it will be a strong evidence of the QCD theory and the 

understanding of sub-atomic world will get into a new realm. Therefore 

the research of Zc(3900) is very meaningful.  

However, the number of Zc(3900) events is too small compared to the 

large amount of background events in experiments, which makes it very 

difficult to detect. In high energy physics experiments, when dealing with 

the small signal events such as the branching fraction of a forbidden 

process and this Zc(3900) example, the precision and upper limits of the 

measurement are very important.  

The outcomes of high energy physics experiments depend on many 

factors such as the physics model, the resolutions, etc. Therefore the 

outcome is not an exact value but one with some dispersion. The 

systematic uncertainty is used to show the dispersion in experimental 

analyses [20]. It is very important for upper-limit measurements because in 

these measurements, the numbers of signal events are always very small; 

therefore, even if the systematic uncertainty is not large, it may affect the 

final result obviously.  

In high energy physics experiments, how to deal with the systematic 

uncertainty is an important problem in the data analysis process. This 

thesis will make a preliminary exploration of this topic. This thesis is 

focused on calculations of systematic uncertainty for upper-limit 

measurements. 

In the BESIII analyses, the systematic uncertainty is divided into two 

parts: uncertainty of signal efficiency and common uncertainties. For a 

forbidden process, the branching fraction is equal to the number of signal 

events divided by the number of total events. Equation (1.1) is used to 

calculate the upper limit value of the corrected branching fraction [21] 
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                (1.1) 

Where totalN  means the total number of signal events and '
totalN  is the 

corrected value of totalN  after taking the systematic uncertainties of the 

signal efficiency into account, and sys
common  is the common uncertainty. 

Without taking the systematic uncertainty into account, the value of totalN  

was calculated at a certain confidence level (usually 90%), therefore the 

confidence level of B was also 90%. However, after considering the 

systematic uncertainties, the confidence level of the corrected value of B 

might change.  

This thesis aims to test before and after correction with the systematic 

uncertainty whether the confidence level will change or not. 

 

1.4 The Outline of the Thesis 

Chapter 1 is a brief introduction of particle physics; and then introduces 

the task of this thesis.  

Chapter 2 introduces the BEPCII accelerator and BESIII detector. Some 

main parts of the BESIII detector are discussed in details. 

Chapter 3 introduces of statistics and softwares used in this thesis. The 

Monte Carlo method and interval estimation are discussed in details. 

Meanwhile, the outline of ROOT, RooFit and RooStats packages is also 

given.  

Chapter 4 is the core part of the thesis. It explains the basic idea of the 

simulation. And then show the results of simulation and make specific 

analyses.  

Chapter 5 is an overall summary. It reviews the physical background and 

motivations of this thesis, and gives the conclusion of the research. 
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Chapter 2 BEPCII and BESIII 
 

The Beijing Electron-Positron Collider (BEPC) and its detector, the 

Beijing Spectrometer (BES), started to run in 1989. The first upgrade for 

the accelerator and the detector (called BEPC and BESII afterwards) was 

implemented from 1994 to 1996, and the second upgrade for them (called 

BEPCII and BESIII afterwards) was implemented from 2004 to 2008. 

This chapter is a brief introduction of the BEPCII accelerator and the 

BESIII detector. 

 

2.1 BEPCII 
The BEPCII is composed of the injector, the transportation line, the 

storage ring, the BESIII detector and the Beijing Synchrotron Radiation 

Facility (BSRF) [1].  

 
Figure 2.1: The layout of BEPCII [2]. 

The injector is a 202 m long linear accelerator which is able to accelerate 

the electrons and positrons to 1.3 GeV. The transportation line is used to 

connect the injector and the storage ring. It transports the electron and 

positron beams coming from the injector to the storage ring. The storage 

ring is a circle shaped accelerator with a circumference of 240 m. Its task 
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is to accelerate the electrons and positions again and then store them. 

The main parameters of BEPCII are listed in table 2.1. 
Table 2.1: The main parameters of BEPCII [1]. 

 
 

2.2 BESIII 
BESIII is the detector installed at the BEPCII accelerator. It works at the 

tau-charm energy region and is used to detect the final state particles 

produced in e+e- annihilation process. Its three main physics goals are: 

study of electroweak interactions, study of strong interactions and search 

for new physics [3]. 

The BESIII detector consists of beam pipe, main drift chamber, 

Time-of-Flight system, electromagnetic calorimeter, muon identifier, 

superconducting magnet, electronics system, trigger system and data 

acquisition system. 
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Figure 2.2: The structure picture of BESIII detector [4] 

 

2.2.1 Beam Pipe 

The beam pipe [5] is the innermost part of the BESIII detector. The total 

length of the beam pipe is 1000 mm. The central Be part is 300 mm long 

and it is welded to an extension section which is 350 mm long on both 

sides. 

 
Figure 2.3: The cross-sectional picture of the beam pipe [4] 
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2.2.2 Main Drift Chamber 

The main drift chamber (MDC) [5] is the innermost sub-detector of the 

BESIII detector. It contains two chambers, an inner one and an outer one. 

In MDC, by measuring the trajectory of a charged particle in a known 

magnetic field, the momentum of this particle can be determined. And the 

particle type can also be identified by measuring the specific energy 

deposits (dE/dx). 

 
Figure 2.4: The overview of MDC [3] 

 

2.2.3 The Time-of-Flight System 

The Time-of-Flight (TOF) [5] system is made up of plastic scintillator bars 

and read out by fine-mesh phototubes. The position of TOF is between 

the main drift chamber and the electromagnetic calorimeter. It is designed 

to identify the particle type by measuring the flight time of charged 

particles. 

 
Figure 2.5: The overview of TOF [3] 
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2.2.4 Electromagnetic Calorimeter 

The Electro-Magnetic Calorimeter (EMC) [5] is used to measure the 

energies and positions of electrons and photons precisely. It contains one 

barrel and two endcap sections and has 6272 CsI(Tl) crystals in total. 

 
Figure 2.6: The overview of EMC [3] 

 

2.2.5 Muon Identifier 

The muon identifier [5] is the outmost sub-section of the BESIII detector. 

It is composed of muon counters and hadron absorbers and mainly used 

to distinguish muons produced in e+e- annihilation process from hadrons. 

 
Figure 2.7: The overview of muon identifier [3] 

 

2.2.6 Superconducting Magnet 

The superconducting magnet [5] in the BESIII detector provides a 1T axial 

magnetic field with good field uniformity over the tracking volume. 

When a charged particle gets into the superconducting magnet, its 

trajectory will be deflected. By measuring the radius of the deflection 

trajectory, the particle detector can measure the charge-to-mass ratio of 

the charged particle. 
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2.2.7 Readout Electronics System 

The electronics system [5] in the BESIII detector consists of 4 parts: the 

MDC electronics system, the EMC read out electronics, the TOF 

electronics and the muon counter electronics. 

(1)The MDC electronics system is designed to process the output signals 

from 6796 sense wires of MDC. 

(2) The function of EMC read out electronics is to measure the charge to 

determine the energy deposited in the CsI crystals. 

(3) The TOF electronics has 3 main tasks: time measurement, charge 

measurement and fast timing signals for trigger. 

(4) The muon counter electronics consists of the readout system which 

can scan data and a test sub-system which is able to test the readout 

system. 

 

2.2.8 Trigger System 

The trigger system [5] of the BESIII detector is a fast real-time event 

selection and control system. It is designed to select signal events and 

suppress backgrounds to a level which can be sustained by the data 

acquisition system. It is composed of MDC, TOF, EMC, Track Matching 

and global trigger subsystems. 

The BESIII trigger system is in two levels: a level-1 (L1) hardware 

trigger and a level-2 software event filter. Some basic trigger information 

are number of tracks and angle/position of tracks in MDC, timing signal 

and hit counts in TOF, and the total energy, the energy balance and the 

cluster counting in EMC. They will be assembled by the global trigger 

subsystems. When a valid trigger condition is satisfied, which means that 

the combination of theses information can correspond to a signal event, 

all BESIII sub-detectors are read out.  
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Figure 2.8: The block picture of the trigger system [4] 

 

2.2.9 Data Acquisition System 

The data acquisition system (DAQ) [5] is composed of the readout system, 

the online control and monitoring system, the calibration system and 

other support/service systems. 

 
Figure 2.9: The Architecture of the DAQ System [4] 

The functions of the DAQ system are collecting, transferring, assembling, 

filtering event data and at last writing accepted events into a persistent 



18 

media. 

The DAQ system uses multi-level buffering, parallel processing, 

high-speed VME readout and network transmissions techniques to 

improve the efficiency of readout of data. 

 
2.3 BESIII Offline Software 

The BESIII Offline Software System (BOSS) [3,5] uses object-oriented 

technology by choosing the C++ language. Its two main tasks are 

processing experimental data and MC data and managing tools and 

documents. The whole data handling and physics analysis software 

system contains five parts: a framework, the MC simulation, the data 

reconstruction package, and the calibration package and analysis tools. 

 

2.3.1 Framework 

The BOSS framework is developed based on the Gaudi package [6]; it 

mainly consists of the following parts: algorithm, application manager, 

transient data store, service and converters. 

 

2.3.2 Simulation 

The BESIII Object Oriented Simulation Tool (BOOST) is composed of 

event generators, detector description, particle tracking and detector 

response. It is based on the GEANT4 package [7]. 

 

2.3.3 Reconstruction 

The reconstruction package mainly consists of algorithms for track 

finding and fitting, particle identification, shower- and cluster-finding, 

and muon track finding. 
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2.3.4 Calibration 

The calibration software contains a calibration framework and calibration 

algorithms. Data calibration needs to be done both online and offline. 

In the BESIII detector, double-muon events are used to do the calibration 

of the muon identifier, while Bhabha events are used to do the calibration 

of other sub-detectors.  
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Chapter 3 Statistics and Softwares 
 

This chapter introduces the statistical background and computer softwares 

used in this research.  

 

3.1 Monte Carlo method and Random Number 

3.1.1 Monte Carlo method 

The Monte Carlo method [1-3] (also called the statistical simulation 

method) is a method which uses the statistical sampling theory to solve 

mathematical or physical problems approximately. 

In 1940s, S. Ulam and J. von Neumann first used this method in the 

“Manhattan Project” and named it with the name of the famous gambling 

casino city of Monaco. The Monte Carlo method developed fast with the 

development of computer technology. It is currently widely used in 

macroeconomics, computational physics, etc. 

The basic principle of the Monte Carlo (MC) method is to construct a 

model distribution in terms of the problem to make sure the quantities of 

interest correspond to features of the model distribution, and then do the 

sampling process to the model to get a sample and calculate the values of 

the features of the model in terms of the sample. These values can be 

regarded as the approximate solutions of the quantities of interest. 

The MC method based on the probability and statistics theory needs to 

use random numbers to do the calculation and the key in MC simulation 

is the quality, i.e. randomness of these random numbers. 

The Monte Carlo method is wildly used in high energy physics. One 

example is the GEANT4 package [4]. The GEANT4 package is a toolkit 

for the simulation of propagation of particles though matter and uses the 

idea of the Monte Carlo method to do the simulation. In the upgrade 

process from BESII to BESIII, GEANT4 is used to do the simulation 
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work of sub-detectors.  

Another important application of the Monte Carlo method is to calculate 

the numerical integration. In high energy physics experiments, it can be 

used to calculate cross sections of reactions.  
 

3.1.2 Pseudorandom Numbers 

In the MC simulation process, a set of values of a random variable which 

has a certain probability distribution will be produced. These values are 

usually called random numbers [3,5]. Random number contains the real 

random number and the pseudorandom number. 

A random number generator is a physical or computational device which 

is able to generate a sequence of random numbers. 

The real random number, which can only be produced by real random 

number generators, i.e. real physics phenomena, such as dice, coin 

flipping, the noise of the stereo system and radioactive decays, is not easy 

to generate. Large amounts of random numbers are needed in MC 

simulation, which requires a lot of work and time, so that in most cases it 

is not convenient to use the real random number in MC simulation. 

The pseudorandom number can be generated by pseudorandom number 

generators, i.e. deterministic algorithms. It appears to be random but in 

fact is not. Because a series of values generated by such a algorithm is 

usually determined by a special term (called seed) in the algorithm, which 

means that if the value of seed is fixed and run this algorithm a few times 

to get a few series of random numbers, the results will be the same. For 

example, the expression of one common used algorithm (called linear 

congruential generator) is: 

Xn+1 = (aXn+b)(mod m)                     (3.1) 

In equation (3.1), a, b and m are large fixed integers, and X0 is the seed of 

this algorithm. Given two different initial values of X0, this algorithm will 
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generate two different series of random numbers. However, if theses two 

initial values are the same, the algorithm will generate two same series of 

random numbers. The initial value of X0 can be arbitrary numbers, which 

make sure the outcome is random.  

Generating random numbers from a known probability density function is 

a common procedure in MC simulation and two main methods to 

implement it are the inversion method and the acceptance-rejection 

method. 

The randomness of the pseudorandom number is determined by a series 

of statistical tests. The two basic statistical tests are the test of 

homogeneity (also called frequency test) and test for independence. The 

former one refers to test whether the random number sequence generated 

by a generator is uniformly distributed in the [0,1] region; while the latter 

one test whether the statistical correlation between the random numbers 

in a random number sequence is significant. The pseudorandom number 

can be used in MC simulation if it can pass these statistical tests with a 

given degree of significance. 

Most computer languages and softwares have implemented random 

number generators. For example, in the standard library of the C++ 

language, the rand( ) function is used to generate random numbers. In 

ROOT and RooFit, the TRandom class is designed to generate random 

numbers from defined probability distributions and the SetSeed( ) 

function is designed to determine the initial value of the seed in the 

algorithm. 

 

3.2 Interval Estimation 

In statistics, a common task is to estimate the value of a fixed unknown 

parameter of a known probability distribution. There are two main 

methods to do the estimation: the point estimation and the interval 
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estimation. The former one gives a signal value result of the parameter of 

interest while the latter one gives an interval result which consists of a 

lower bound value and an upper bound value of the parameter. 

The method of estimation is wildly used in high energy physics 

experiments. For example, when measureing the branching fraction of a 

forbidden process, the result is usually an upper limit confidence interval 

accompanied by a certain confidence level, which is calculated with one 

method of interval estimation. In this thesis, I will focus on researching 

upper limits confidence intervals.  

 

3.2.1 The definition of confidence interval 

A dataset x1, … , xn which is the realization of random variables X1, … , 

Xn is given. The parameter of interest is θ and γ is a number between 0 

and 1. If two sample statistics Ln = f (X1, …, Xn) and Un = g (X1, …, Xn) 

exist and satisfy 

P (Ln<θ<Un) = γ                     (3.2)             

for each value of θ, then (ln, un), where ln = f (x1, …, xn) and un = g (x1, …, 

xn), is called a 100γ% confidence interval for θ. γ is called the confidence 

level. 

Sometimes the two sample statistics Ln and Un as defined above do not 

exist, but one could find Ln and Un that satisfy  

P (Ln<θ<Un) ≥γ                      (3.3) 

then the result (ln, un) is called a conservative 100γ% confidence interval 

for θ, which means that the actual confidence level may be higher [6]. 

 

3.2.2 The meaning of confidence interval 

In the research of particle physics, two different kinds of confidence 

intervals are wildly used. 

The first type is the Bayesian confidence interval [7] (also called credible 
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interval). The meaning of this kind of confidence intervals is that if an 

interval calculated in terms of a sample is [μ1, μ2] and the confidence 

level is 90%, then the probability that [μ1, μ2] covers the true value μt is 

90%. 

The second type is the Newman’s confidence interval [8]. The meaning of 

this kind of confidence intervals is that if there are 100 confidence 

intervals calculated in terms of 100 different samples and the confidence 

level is 90%, then in principle, 90 of them cover the true value μt. It does 

not describe any signal interval because for each signal one, μt is either in 

it or not. 

 

3.2.3 One-sided confidence intervals 

The definition of one-sided confidence intervals could be formulated 

based on the definition of the central confidence intervals. If a sample 

statistic Ln exists and satisfies  

P (Ln<θ) = γ                         (3.4) 

for each value of θ, then (ln, ∞) is called a 100γ% lower limits confidence 

interval. Similarly, if a sample statistic Un exists and satisfies  

P (θ<Un) = γ                         (3.5) 

for each value of θ, then (-∞, un) is called a 100γ% upper limits 

confidence interval [6].  

 

3.2.4 Confidence Belt 

The confidence belt [7] which contains one unknown parameter and one 

observable can be used to construct the confidence intervals. 
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Figure 3.1: An example of the confidence belt [9]. 

Figure 3.1 shows an example of the confidence belt. In this example, x is 

the observable and μ is the parameter of interest. The method to construct 

it is the following steps. Firstly, for each value of μ, construct a 

confidence interval of x which satisfies (α is the confidence level) 

                       21 , xxxP                      (3.6) 

And then draw a horizontal acceptance interval [x1, x2]. For example, 

when μ=2, the horizon acceptance interval is the solid red line without 

arrow in this picture. For each value of μ we need to draw a line like this. 

Secondly, perform an experiment to measure x and obtain its value x0, 

and then draw a line through x0, which is the dashed black vertical line in 

this picture. The resulting confidence interval of μ is [μ1, μ2] in this 

picture, which is the union set of all allowed values of μ for those the 

corresponding acceptance intervals of x are intercepted by the dashed 

vertical line. 

This is the whole process to construct the confidence belt between a 

random variable and an unknown parameter. 

The content in this sub-section is a basic introduction of the traditional 

Newman’s interval estimation theory. 
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3.3 The Feldman-Cousins’s method 

The Feldman-Cousins’s (FC) method [9] is presented by J. Feldman and 

D.Cousins. It is a new method to construct confidence intervals based on 

the traditional Newman’s method. It uses the ordering principle based on 

likelihood ratio to construct confidence intervals. 

 

3.3.1 The drawbacks of Newman’s confidence intervals 

If a confidence interval is constructed with the traditional Newman’s 

method, sometimes it may suffer from two problems: empty set and 

undercover. 

 
Figure 3.2: The confidence belts for 90% C.L. for the mean of a normal distribution[9]. 

Figure 3.2 shows the confidence belts for 90% C.L. for the mean of a 

standard normal distribution; the left picture is the upper limits 

confidence interval while the right is the central confidence interval. As 

shown by the red line, in both of them, when x=-1.8, there is no 

corresponding values of μ. This phenomenon is called empty set. 
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Figure 3.3: The combination of the upper limits and central confidence intervals [9]. 

Figure 3.3 shows the combination of the two pictures in figure 3.2. In this 

figure, the transition between upper limits and central confidence 

intervals is not smooth, which leads to a problem called undercover. For 

example, when μ=2, the confidence level of the horizontal interval [x1, x2] 

is 85% which is smaller than 90%, this phenomenon is called undercover. 

Because of these two drawbacks, a better method than the Newman’s 

method is needed. A potential choice is the Feldman-Cousins’s method. 

Figure 3.4 shows the confidence interval constructed with the FC method 

for the same problem as discussed above. In this picture, for each value of 

x, the confidence interval of μ is not an empty set, and the confidence 

level is always 90% because the transition between upper limits and 

central confidence intervals is smooth. The two main disadvantages do 

not exist in this case. 
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Figure 3.4: The confidence interval constructed with the FC method [9]. 

Based on the comparison between the Newman’s method and the FC 

method, this thesis chooses the latter one to construct confidence intervals 

in the research. 

 

3.3.2 Construct FC confidence intervals 

Here a numerical example is used to illustrate how to use the FC method 

to construct confidence intervals. 

The model is a Poisson process with background. The probability density  

function is 

                !exp nbbnP n
                  (3.7) 

In equation (3.7), n is used to denote the discrete random variable x 

which stands for the total number of observed events, μ is the parameter 

of interest which stands for the number of signal events and b is a known 

parameter ( b=3 here) which stands for the number of background events. 

The task is to construct the confidence belt between μ and n. In order to 

do this we need to calculate the acceptance interval for each value of μ. 

Here μ=0.5 is used to do the calculation in this example. The values of n 

are listed in the first column of table 3.1.  
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Table 3.1: Illustrative calculations in the confidence belt construction [9]. 

 
Steps: 

(1) Calculate the probability nP  with formula (3.7) for each value of 

n; the results are given in the second column of table 3.1. 

(2) Calculate the value of μ which can maximize nP  by using 

formula (3.8), we call it μbest, the results are listed in the third column of 

table 3.1. 

                bestnnP   0                    (3.8) 

(3) The μbest should be non-negative and we set it as the bigger one 

between 0 and (n-b) and then plug μbest into equation (3.7) to calculate 

bestnP  , the results are listed in the forth column of table 3.1. 

(4) Calculate the likelihood ratio with equation (3.9) for each value of n, 

the results are listed in the fifth column of table 3.1. 

                  bestnPnPR                       (3.9) 

(5) Determine for μ=0.5 which values of n should be added to the 

acceptance region. Rank these terms in terms of the value of R from large 
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to small. In this example, when n=4, R has the biggest value; we set this 

term as the first term; n=3 is the second term, and so on. And then we add 

up the nP  of the first term with the second term, and then the third 

term until the sum is larger than the confidence level α. For example, if 

α=0.9, we need to add up the first 7 terms. It means that for u=0.5, the 

acceptance region of n is [0, 6]. The principle is shown in equation (3.10) 

                
 krankrankrank

nPnPnP 
21

        (3.10) 

 
Figure 3.5: The confidence belt of this Poisson problem [9]. 

Repeat this whole process to get the acceptance region of n for each value 

of μ and at last construct the confidence belt between n and μ. Figure 3.5 

shows the confidence belt of this problem (b=3, α=0.9). 

This is an example for discrete random variable. For continuous random 

variable cases, the basic principle and process are similar. 

The content in this sub-section is a basic introduction of Feldman and 

Cousins’s interval estimation theory. In the research of this thesis, the FC 

method is used to do the interval estimation. 

 

3.4 Softwares 

3.4.1 ROOT 

ROOT [10-11] is an Object-Oriented data analysis framework and designed 

to scale up to the challenges coming from the LHC. It was created by 
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R.Brun and F. Rademakers in CERN and its independent C++ interpreter, 

namely CINT, was created by M. Goto in Japan. 

An interesting feature of ROOT is that it was developed not only by 

developers but also by users, which means that physicists developed 

ROOT for themselves. This liberal development style makes it specific, 

appropriate and powerful. Developers and users can exchange ideas via 

the RootTalk Forum [12]. 

Being a good HEP analysis framework, ROOT can save physicists much 

work by providing a lot of HEP specific utilities. For example, some 

more commonly used components are Histograms, Fitting and 2D 

Graphics; while some less commonly used components are 3D Graphics 

and Network Communication. 

In the ROOT framework, an environment variable called ROOTSYS can 

hold the path of the top ROOT directory. Figure 3.6 shows the structure 

of directories of the ROOT framework. 

 
Figure 3.6: ROOT framework directories [11]. 

 

There are many defined libraries as shown in figure 3.7, that are used to 

minimize dependencies, such that users only need to load enough code 

for the task but not all libraries. When programming, related libraries 

should be linked with to make the classes contained in these libraries 
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available.  

 
Figure 3.7: ROOT libraries dependences [11]. 

As shown in the figure 3.8, there are three user interfaces: GUI (windows, 

buttons and menus), command line (CINT) and script processor (C++ 

compiler and interpreter).  

 
Figure 3.8: ROOT user interfaces [11]. 

More information about ROOT classes and tutorials are available on the 

ROOT home website [13-14]. 

 

3.4.2 RooFit 

RooFit [15-16] is a library of C++ classes. It is designed to provide a toolkit 

to model the expected probability distribution of events in a HEP analysis. 

It was originally developed for the BaBar collaboration at the SLAC [17].  
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The RooFit package is integrated and distributed with the ROOT 

environment and focuses on constructing a probability density function 

(PDF). The ROOT built-in models are sufficient for simple problems. 

However, when the model is a complicated PDF, RooFit is more powerful 

than ROOT. To some extent, RooFit is an extension of ROOT. Figure 3.9 

shows the relation between them. 

 
Figure 3.9: The relation between RooFit and ROOT [16]. 

In RooFit, each mathematical object is represented by a C++ object. 

Table 3.2 shows some examples. 
Table 3.2: Correspondence between some math concepts and RooFit classes [16]. 

 
Some basic functions of RooFit are constructing one-dimensional or 

multi-dimensional models in terms of continuous or discrete variables, 

using a defined PDF to generate data, fitting the experimental data, 

plotting a PDF or a series of data, convolving a PDF with another one, 

and so on. 



35 

More information about RooFit classes and tutorials are available on the 

RooFit home website [18-19]. 

 

3.4.3 RooStats 

RooStats [20-21] is a new software package, designed to provide advanced 

statistical tools for the data analysis in high energy physics experiments. 

It is a joint contribution of ATLAS [22] and CMS [23] and has been built on 

top of ROOT and RooFit. The four core developers are K. Cranmer 

(ATLAS), G. Schott (CMS), L. Moneta (ROOT) and W. Verkerke 

(RooFit).  

The three main goals of RooStats are: standardize interface for commonly 

used statistical procedures to make sure that they are able to work on an 

arbitrary RooFit dataset and model; implement most accepted statistical 

techniques from Frequentist, Bayesian and Likelihood-based approaches; 

provide utilities for combined analysis. 

Most statistical questions can be classified into four types: parameter 

estimation, interval estimation, hypothesis testing and goodness of fit. 

RooFit provides tools for the first one while RooStats provides 

functionality for the second and third one. Currently, the ROOT libraries 

provide classes for the last one. In RooStats, the interface for confidence 

interval calculations is IntervalCalculator and the interface for hypothesis 

tests is HypoTestCalculator. Each method for constructing confidence 

intervals is represented by a C++ class as shown in figure 3.10.  

Each statistical method needs a PDF as the input model and this task is 

usually implemented by the RooFit. And then confidence intervals can be 

constructed by the high-level statistical tools provided by the RooStats. 

Basically, RooFit is responsible for the infrastructure, namely the model 

which consists of a PDF, observables and parameters of interest, and so 

on; while RooStats is responsible for the superstructure, namely 
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calculations of confidence intervals. 

 
Figure 3.10: The overview of RooStats classes [20]. 

This thesis uses the FeldmanCousins class to do the interval estimation. It 

is an additional class which enforces a particular configuration of test 

statistic, distribution creator, limit type, etc.  

More information about RooStats classes and tutorials are available on 

the RooStats home website [24-25]. 
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Chapter 4 Results and Analysis 
 

As described in Chapter 1, the motivation of this thesis is to make a 

preliminary exploration of the method used to process the systematic 

uncertainty in the BESIII analyses. This chapter first describes the basic 

idea of the program aiming to do it, then shows the outcomes, discusses 

them and gives the conclusion. The details of the program will be 

introduced in the Appendix. 

 

4.1 Testing Method 

4.1.1 Basic Idea of the Simulation 

The BESIII experiments detect final state particles produced in e+e- 

annihilation processes. Signal events and background events are usually 

coexisting in a certain region of the spectrum. When picking signal events 

out of the total observed events, the systematic uncertainty needs to be 

taken into account to do the correction. Therefore a reasonable method to 

deal with the systematic uncertainty is very important. This thesis 

simulates the process that picks signal events out of the total observed 

events with and without considering the systematic uncertainty, and focus 

on the confidence levels before and after corrections.  

The basic idea of the simulating method is to use a Gaussian PDF to 

generate random numbers to stand for the numbers of signal events 

(nsig) and use an Uniform PDF to generate random numbers to stand 

for the numbers of background events (nbkg), and then add them up 

to get the total number of observed events (nobserved) at first; the 

spectrum is the combination of these two PDFs. Secondly, do the 

core procedure, i.e. construct a confidence interval of the parameter 

of interest which is the number of signal events in this thesis. Thirdly, 
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repeat the simulation 5000 times to make sure the sample is large 

enough. The whole process has been done for cases with and without 

systematic uncertainty, and then analysis obtained results to get the 

conclusion at last.  

In the program, a reasonable PDF and an appropriate method to construct 

the confidence interval should be chosen. The observable in this 

simulation is the total number of observed events (nobserved), it should 

have a Poisson distribution; therefore, the PDF used in the interval 

estimation is a Poisson PDF. In terms of the two advantages (avoid empty 

set and undercover) introduced in Chapter 3.3, the Feldman-Cousins’s 

method is used to do the interval estimation in this thesis. 

Equation (4.1) is the expression of the Poisson PDF. 

           !exp nNNnP bkg
n

bkg                    (4.1) 

As can be seen in table 4.1, n stands for the total number of observed 

events (nobserved), Nbkg stands for the number of background events, and μ 

stands for the number of signal events. They play different roles in the 

process of the interval estimation as shown in the table.  
Table 4.1: The information of variables used in the Poisson PDF. 

name meaning role initial value region 

n 
number of 

total events 
observable nsig+nbkg 

[0, upper 

value] 

Nbkg 

number of 

background 

events 

known 

parameter 

a chosen 

value  
fixed 

μ 
number of 

signal events 

parameter of 

interest 

a chosen 

value 

[0, upper 

value] 
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4.1.2 Introduce the Systematic Uncertainty 

As described in Chapter 1.3, the equation used to do the correction in 

BESIII experiments is [1] 

                    all
sys
common

total

N
NB




1

'

                 (4.2) 

the original value needs to be processed by two steps to get the final 

result. In this thesis, the first step which appears in the numerator is 

simulated in the algorithm; this step is used to introduce the systematic 

uncertainty. While the second step which appears in the denominator is 

simulated after sampling; this step is used to do the correction.  

(1) In order to simulate the first step, the initial value of Nbkg is not a 

fixed value but a series of random numbers generated from a chosen 

distribution around this value. For example, if this value is 50 and the 

systematic uncertainty is 10%, the initial value of Nbkg is a number 

between [45, 55]. The true distribution of the systematic uncertainty is 

unknown; therefore the distributions used to simulate the systematic 

uncertainty have to been chosen in terms of experience. In this thesis, 

two most basic and common kinds of distributions in statistics are 

used to generate random numbers to introduce the systematic 

uncertainty: the Gaussian distribution and the Uniform distribution. In 

the analysis part, the symbols Gaussian Error and Uniform Error 

are used to mark these two cases. 

(2) After getting a confidence interval [L, U]initial with the first step, the 

second step is simulated artificially with the equation 

                    
%101

,
,


 initial

final
ULUL                     (4.2) 

Then the confidence intervals which do not contain the true value of μ 

(use the term “outflow confidence intervals” later) among the 5000    

[L, U]final will be picked out and the actual confidence level will be 
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determined. 

This is the method to introduce the systematic uncertainty in this thesis. 

 

4.1.3 Parameters in the Simulation 
Table 4.2: The percentage of upper limit confidence intervals in each simulation. 

Systematic 

Uncertainty=10% 
No Systematic 

Error 

Gaussian Error 

and Correction 

Uniform Error 

and Correction 

Nbkg =30 90.5% 90.5% 90.6% 

Nbkg =50 94.1% 92.1% 94.4% 

Nbkg =100 93.3% 92.6% 93.1% 

Nbkg =500 94.3% 93.9% 94.3% 

Nbkg =1000 96.2% 95.7% 98.1% 

Systematic 

Uncertainty=20% 

No Systematic 

Error 

Gaussian Error 

and Correction 

Uniform Error 

and Correction 

Nbkg =50 94.1% 91.8% 92.0% 

 

This thesis only does research on the upper limit confidence intervals, so 

the numbers of background events are selected to be much larger than the 

number of signal events. Simulations are time-consuming. As long as the 

number of signal is much smaller than the number of background events, 

conclusions of the analysis are the same. Therefore, the true value of μ is 

fixed at 2 and the appropriate values of b are {30, 50, 100, 500, 1000}. 

When the number of background events is 1000, basically all events are 

background events, which means that the signal events can be ignored. 

Therefore, it is meaningless to increase the number of background events 
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sequentially. Table 4.2 lists the percentage of upper limit confidence 

intervals in each simulation. All values are larger than 90%, which means 

that the chosen values of Nbkg above are reasonable.  

In most BESIII analyses, the systematic uncertainties are from 5% to 20%, 

only a few ones are beyond this region [1-9]. Therefore the systematic 

uncertainty is selected to be 10% to perform the simulation in this thesis. 

In order to see what will happen when the systematic uncertainty is very 

large, one more simulation with the 20% systematic uncertainty has been 

done. As can be seen later, when Nbkg is very large, the confidence levels 

decrease dramatically after correction even the systematic uncertainty is 

not very large. Therefore the simulation of the 20% systematic 

uncertainty case is only done for one of the small Nbkg cases. Because of 

the time-consuming of simulations, in this thesis, only the Nbkg =50 case 

is chosen to do this simulation. 

 
4.2 Results and Analysis 

4.2.1 Result and Analysis for 10% Systematic Uncertainty Case 

(1) Background=30 

 
Figure 4.1: The mean of numbers of outflow confidence intervals. 

The result is shown in figure 4.1. The horizontal axis stands for the three 

Number of Outflow CI 

8.3±0.4 
8.9±0.4 

6.5±0.4 

0 
1 
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4 
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9 

10 

No Systematic 

Error 

Gaussian Error and  

Correction 

Uniform Error and 

Correction 
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types of simulations. For each type of simulation the sample contains 

5000 confidence intervals which are divided into 50 groups so that each 

group consists of 100 confidence intervals. The vertical axis stands for 

the mean of number of outflow confidence intervals in these 100 

confidence intervals. According to the statistics, the larger the vertical 

value is, the lower the confidence level is. The equation to calculate the 

confidence level in terms of the vertical value is 

            Confidence Level (C.L.) = (100 – y) %            (4.2) 

As shown in the figure 4.1, the mean values of number of outflow 

confidence intervals of three types of simulations are 6.5, 8.3 and 8.6 

respectively. As shown in figure 4.2, the corresponding mean values of 

confidence levels are 93.5%, 91.7% and 91.1% respectively. 

 
Figure 4.2: The mean of confidence levels. 

It means that when Nbkg =30, the confidence level decreases slightly after 

considering the systematic uncertainty. However, the differences are not 

obvious. And when the systematic uncertainty is introduced via the 

Uniform distribution, the confidence level is the smallest one.  

In principle, the confidence levels without considering the systematic 

uncertainty should be 90%. However, the simulation result is larger than 

90%. This phenomenon may be attributed to the fact that the 

implementation of the Feldman-Cousins’s method does not work very 

Confidence Level 
(93.5±0.4)% 

(91.7±0.4)% 

(91.1±0.4)% 

No Systematic 

Error 

Gaussian Error and 

Correction 

Uniform Error and 

   Correction 
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well. Nevertheless, this confidence level is taken as a reference and 

relative deviation to this value are studied. 

The results which only contain systematic uncertainty but not correction 

are shown in table 4.3. The confidence levels decrease after each step 

explained in the sub-chapter 4.1.2. However, the differences between all 

these five values are very small; therefore it is not clear which step is the 

dominating reason that leads to the decrease of confidence levels.  
Table 4.3: The specific results of Nbkg =30 case. 

 

No 

Systematic 

Error 

Gaussian 

Error 

Gaussian 

Error and 

Correction 

Uniform 

Error 

Uniform 

Error and 

Correction 

Total 

Number of 

Outflow CI 

In the 5000 

Samples  

326 388 413 434 443 

Confidence 

Level 
93.48% 92.24% 91.74% 91.32% 91.14% 

 

(2) Background=50 

The results of Nbkg =50 case are shown in figure 4.3 and 4.4. As well as 

the first case, the confidence level decreases slightly after considering the 

systematic uncertainty and its value is the smallest one for the Uniform 

one. The three mean values of confidence levels are 93.4%, 92.0% and 

91.4%, respectively. The differences between them are still small. 
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Figure 4.3: The mean of numbers of outflow confidence intervals. 

 
Figure 4.4: The mean of confidence levels. 

Table 4.4: The specific results of Nbkg =50 case. 

 

No 

Systematic 

Error 

Gaussian 

Error 

Gaussian 

Error and 

Correction 

Uniform 

Error 

Uniform 

Error and 

Correction 

Total 

Number of 

Outflow CI 

In the 5000 

Samples  

328 375 398 403 429 

Confidence 

Level 
93.44% 92.50% 92.04% 91.94% 91.42% 

Confidence Level 
(93.4±0.4)% 

(92.0±0.4)% 

(91.4±0.4)% 

No Systematic 
Error 

Gaussian Error and 
Correction  

Uniform Error and 
Correction  

Number of Outflow CI 

8.0±0.4 8.6±0.4 

6.6±0.4 
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The results which only contain systematic uncertainty but not correction 

are shown in table 4.4. As with the first case, the confidence levels 

decrease after each step and it is not clear which step is the dominating 

one so far. 
 

(3) Background=100 

 
Figure 4.5: The mean of numbers of outflow confidence intervals. 

 
Figure 4.6: The mean of confidence levels. 

The results of Nbkg =100 case are shown in figure 4.5 and 4.6. The 

regularity is the same as above. After taking the systematic uncertainty 

into account, the confidence level decreases, and the Uniform one is 

corresponding to the lowest confidence level. The three mean values of 
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their confidence levels are 93.3%, 91.6% and 90.6%, respectively. The 

differences between them are a little larger than before. However, all 

values are still above 90%. 

The results which only contain systematic uncertainty but not correction 

are shown in table 4.5. The confidence levels decrease after each step and 

the effect of each step is nearly the same. 
Table 4.5: The specific results of Nbkg =100 case. 

 

No 

Systematic 

Error 

Gaussian 

Error 

Gaussian 

Error and 

Correction 

Uniform 

Error 

Uniform 

Error and 

Correction 

Total 

Number of 

Outflow CI 

In the 5000 

Samples  

334 399 422 454 471 

Confidence 

Level 
93.32% 92.02% 91.56% 90.92% 90.58% 

 

(4) Background=500 

 
Figure 4.7: The mean of numbers of outflow confidence intervals. 
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Figure 4.8: The mean of confidence levels. 

The results of Nbkg =500 case are shown in figure 4.7 and 4.8. Now the 

number of background events is increased dramatically; meanwhile the 

confidence level decreases markedly after the correction. The three mean 

values of confidence levels are 92.7%, 87.0% and 79.8%, respectively. It 

is even below 80% in the Uniform case. The differences between them 

are obvious now. 
Table 4.6: The specific results of Nbkg =500 case. 

 

No 

Systematic 

Error 

Gaussian 

Error 

Gaussian 

Error and 

Correction 

Uniform 

Error 

Uniform 

Error and 

Correction 

Total 

Number of 

Outflow CI 

In the 5000 

Samples  

365 637 649 1000 1011 

Confidence 

Level 
92.70% 87.26% 87.02% 80.00% 79.78% 

 

The results which only contain systematic uncertainty but not correction 
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are shown in table 4.6. In this case, the correction step just affects the 

results a little. The dominating reason which leads to the decrease of 

confidence levels is the introduction of the systematic uncertainty. 

 

(5) Background=1000 

 
Figure 4.9: The mean of numbers of outflow confidence intervals. 

 
Figure 4.10: The mean of confidence levels. 
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one is still corresponding to the lowest value. The differences between 

them are more evident now. 
Table 4.7: The specific results of Nbkg =1000 case. 

 

No 

Systematic 

Error 

Gaussian 

Error 

Gaussian 

Error and 

Correction 

Uniform 

Error 

Uniform 

Error and 

Correction 

Total 

Number of 

Outflow CI 

In the 5000 

Samples  

333 754 765 1323 1339 

Confidence 

Level 
93.34% 84.92% 84.70% 73.54% 73.22% 

 

The results which only contain systematic uncertainty but not correction 

are shown in table 4.7. As with the Nbkg =500 case, the effect of the 

correction step is not obvious. The first step which is used to introduce 

the systematic uncertainty becomes the dominating one. 

When the number of background events is small, the effects of the first 

step and the correction step are basically the same. However, when the 

number of background events is much larger than the number of signal 

events, the first step which is used to introduce the systematic uncertainty 

is the dominating step. 

For each case, the regularity is similar: the confidence level decreases 

after two types of correction and the confidence level of the Uniform case 

is smaller than that of the Gaussian case. 

When consider the systematic uncertainty, the extra randomness is 

introduced by changing the initial value of Nbkg; therefore, the confidence 

level will decrease after correction. 
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The concentration of the Gaussian distribution is better than that of the 

Uniform distribution; therefore, when the systematic uncertainty is 

introduced with the Gaussian distribution, the randomness of it will be 

smaller than the Uniform case. That is why the Uniform case is always 

corresponding to the lowest confidence level. 

The overall results are shown in table 4.8 and figure 4.11. The table lists 

the specific mean values of confidence levels, while the figure is able to 

show the variation trend clearly.  
Table 4.8: The results of the simulation. 

 
No Systematic 

Error 

Gaussian Error 

and Correction 

Uniform Error 

and Correction 

Nbkg =30 93.5% 91.7% 91.1% 

Nbkg =50 93.4% 92.0% 91.4% 

Nbkg =100 93.3% 91.6% 90.6% 

Nbkg =500 92.7% 87.0% 79.8% 

Nbkg =1000 93.3% 84.7% 73.2% 
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Figure 4.11: The global figure of the simulation result. 
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In figure 4.11, the horizontal axis stands for the number of background 

events (value of Nbkg), and the vertical axis stands for the values of 

confidence levels. The data of simulations without systematic uncertainty, 

with Gaussian-like systematic uncertainty and Uniform-like systematic 

uncertainty are marked by the black line, the red line and the green line, 

respectively.  

For the first case, when Nbkg is increased from 30 to 1000, the black line 

is nearly a flat straight line with very small fluctuations, and the mean 

values of confidence levels are always between 90% and 95%.  

For the two cases with correction, the trends of the red line and the green 

line are similar. They keep flat when Nbkg is smaller than 100 and 

decrease dramatically when Nbkg is increased by a large margin. A 

reasonably foreseeable conclusion is that the confidence level will retain 

its declining trend when Nbkg is increased to larger values. It means that 

when the number of background events is much larger than the number of 

signal events, the confidence level will decrease if the systematic 

uncertainty is taken into account.  

 

4.2.2 Result and Analysis for 20% Systematic Uncertainty Case 

For the Nbkg =50 case, one more simulation is implemented with 20% 

systematic uncertainty. The results are shown in figure 4.12 and 4.13. 

The confidence level decreases after correction. The three mean values of 

confidence levels are 93.44%, 89.42% and 86.2%, respectively. 

Compared with the 10% systematic uncertainty case, this time the 

differences between them are more obvious. Both of the values with 

correction are smaller than 90%. 
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Figure 4.12: The mean of numbers of outflow confidence intervals. 

  
Figure 4.13: The mean of confidence levels. 

Table 4.9: The specific results of Nbkg =50 case. 
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In the 5000 

Samples  

328 488 529 628 679 

Confidence 

Level 
93.44% 90.24% 89.42% 87.44% 86.42% 

Confidence Level 

(93.4±0.4)% 
(89.4±0.5)% 

(86.4±0.5)% 

No Systematic 
Error 

Gaussian Error and 
Correction 

Uniform Error and 
Correction 

Number of Outflow CI 

6.6±0.4 

10.6±0.5 

13.6±0.5 

0 
2 
4 
6 
8 

10 
12 
14 
16 

No Systematic 

Error  
Gaussian Error and 

Correction 

Uniform Error and 

Correction 



55 

The results which only contain systematic uncertainty but not correction 

are shown in table 4.9. As can be seen, the effect of the first step is larger 

than that of the correction step. 

Confidence Level
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84.00%
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88.00%
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94.00%

0 10% 20%
Systematic Uncertainty

C
.L
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Figure 4.14: The global figure of the simulation result. 

The overall results are shown in figure 4.14. The horizontal axis stands 

for the value of systematic uncertainty, and the vertical axis stands for the 

values of confidence levels. The data of simulations with Gaussian-like 

systematic uncertainty and Uniform-like systematic uncertainty are 

marked by the black line and the red line respectively.  

For both cases, the trends are the same: the mean values of confidence 

levels decrease as the systematic uncertainties increase. A reasonably 

foreseeable conclusion is that the confidence level will retain its declining 

trend if the systematic uncertainty keeps increasing.  

 

4.3 Conclusion 
In terms of the simulation results and analyses above, the method that is 

used to process the systematic uncertainty in the BESIII experiment does 

not work well.  

(1) In principle, the confidence levels without considering the systematic 

uncertainty should be 90% for each case. However, all values are 

larger than 90%. This phenomenon may be attributed to the fact that 
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the implementation of the Feldman-Cousins’s method can not reach 

the standard more or less. Nevertheless, this confidence level is taken 

as a reference and relative deviation to this value are studied.   

(2) As the number of background events increases, the confidence level 

will decrease after correction; and when the number of background 

events is much larger than that of signal events, the confidence level 

decreases dramatically.  

(3) When the number of background events is small, both the first step 

and the correction step make sense. However, when the number of 

background events is much larger than the number of signal events, 

the first step which is used to introduce the systematic uncertainty is 

the dominating step. 

(4) As the systematic uncertainty increases, the confidence level will 

decrease after correction. 

For large background cases, the effect of the correction can be ignored. 

Therefore, a more reasonable technique is needed to process the 

systematic uncertainty. One possible method is to correct the number of 

signal events and the number of all observed events with the systematic 

uncertainty, respectively, and then use the two corrected values to 

calculate the branching fraction. 
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Chapter 5 Summary and Outlook 

 
Particle physics is the study of the fundamental particles and their 

interactions. The best theory in particle physics field is the Standard 

Model which consists of the electroweak theory and the QCD. 

Experiments in particle physics are implemented on colliders to look for 

new particles predicted by the Standard Model. 

The work of this thesis is based on research at the Beijing 

Electron-Positron Collider II (BEPCII). The detector of BEPCII is called 

the Beijing Spectrometer III (BESIII). The BESIII experiment focuses on 

physics in the tau-charm energy region. When looking for the upper-limit 

measurements for small signal events produced in the experiments, a 

reasonable method to deal with the systematic uncertainty is necessary. 

This thesis tests the method used in the BESIII analyses and focuses on 

calculations of systematic uncertainty for upper-limit measurements. 

This thesis does research for two cases: the systematic uncertainty=10% 

case and the systematic uncertainty=20% case. The final conclusions are:  

(1) The confidence level should be 90% without introducing the 

systematic uncertainty. However, the simulation results are always larger 

than 90%. It means that the implementation of the Feldman-Cousins’s 

method does work very well. Nevertheless, this confidence level is taken 

as a reference and relative deviation to this value are studied. 

(2) When the value of systematic uncertainty is fixed at 10%, the 

confidence level will decrease after taking the systematic uncertainty into 

account; and when the number of background events is much larger than 

the number of signal events, the confidence level decreases obviously. 

(3) When the number of background events is small, both the first step 

and the correction step make sense. However, when the number of 
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background events is much larger than the number of signal events, the 

first step which is used to introduce the systematic uncertainty is the 

dominating step, while the effect of the correction step can be ignored. 

(4) When the value of systematic uncertainty increases from 10% to 20%, 

the confidence level will decrease after taking the systematic uncertainty 

into account. 

For large background cases, the correction does not work well. Therefore, 

the method used to deal with the systematic uncertainty in the BESIII 

analyses does not work well; and a more reasonable method is needed in 

the future. 

One possible method is to correct the number of signal events and the 

number of all observed events with the systematic uncertainty, and then 

use the two corrected values to calculate the branching fraction. 
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Appendix A The Program of the Simulation 

 

 
Figure A.1: The flow chart of the algorithm. 

Figure A.1 shows the main procedures to construct a confidence interval 

of the parameter of interest. The specific steps are: 

(1) Create a Gaussian PDF to stand for the signal and a Uniform PDF to 

stand for the background. 

(2) Use these two PDFs to generate two datasets used to create two 

histograms, and then do the integral for them in the three sigma (the 

variance of the Gaussian PDF) region to get the initial values of signal 

and background (nsig and nbkg) used to calculate the initial value of 

total observed events later. 

(3) Start the FeldmanCousins part. Declare three variables n, μ and b. The 

total number of observed events has a Poisson distribution; therefore 

the PDF used in the interval estimation is a Poisson PDF. The 

information of variables is listed in table A.1. 
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Table A.1: The information of variables used in the Poisson PDF. 

name meaning role initial value region 

n 
number of 

total events 
observable nsig+nbkg 

[0, upper 

value] 

b 

number of 

background 

events 

known 

parameter 

a chosen 

value  
fixed 

μ 
number of 

signal events 

parameter of 

interest 

a chosen 

value 

[0, upper 

value] 

 

(4) Create an object belonging to the FeldmanCousins class.  

(5) Implement the necessary setup. The two main parameters are: the 

confidence level is 0.9 and the step between two testing points is 0.2. 

At last, invoke the member function GetInterval( ) to calculate the 

confidence interval of μ. 

This is the whole process to construct one confidence interval. Each time 

this process is implemented for 100 times with a for loop inserted in the 

algorithm. The programmed is implemented for 50 times so that the total 

number of the sample is 5000. The wrong confidence intervals which do 

not contain the true value of μ will be picked out and the actual 

confidence level will be determined. 
 

 

 

 

 

 

 

 

 

 



62 

Appendix B The Code of One Simulation 
#ifndef __CINT__ 

#include "RooGlobalFunc.h" 

#endif 

#include "RooRealVar.h" 

#include "RooDataSet.h" 

#include "RooGaussian.h" 

#include "RooPlot.h" 

#include "RooFormulaVar.h" 

#include "RooAddition.h" 

#include "RooProduct.h" 

#include "RooPolyVar.h" 

#include "RooUniform.h" 

#include "Math/DistFunc.h" 

#include "RooRandom.h" 

#include "RooStats/ConfInterval.h" 

#include "RooStats/PointSetInterval.h" 

#include "RooStats/ConfidenceBelt.h" 

#include "RooStats/FeldmanCousins.h" 

#include "RooStats/ModelConfig.h" 

#include "RooWorkspace.h" 

#include "RooConstVar.h" 

#include "RooDataHist.h" 

#include "RooPoisson.h" 

#include "TCanvas.h" 

#include "TAxis.h" 

#include "TH1.h" 

#include "TMath.h" 

#include "TF1.h" 
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#include "TTree.h" 

#include "TH1F.h" 

#include "TMarker.h" 

#include "TRandom.h" 

#include "TRandom3.h" 

#include "TStopwatch.h" 

 

using namespace RooFit ; 

using namespace RooStats; 

#include<iostream> 

 

TH1* h_signal=0; 

TH1* h_background=0; 

 

void original() 

{ 

//-------------------------------------------------------------  

Double_t signal; 

Double_t background; 

Double_t observed; 

Double_t ci_lower; 

Double_t ci_upper; 

 

TTree* tci=new TTree("tci","tci"); 

//tci->Branch("background",&background,"background/D"); 

//tci->Branch("signal",&signal,"signal/D"); 

tci->Branch("observed",&observed,"observed/D"); 

tci->Branch("ci_lower",&ci_lower,"ci_lower/D"); 

tci->Branch("ci_upper",&ci_upper,"ci_upper/D"); 
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//pdf------------------------------------ 

RooRealVar x("x","x",0,1000); 

RooGaussian sig("sig","sig",x,RooConst(500),RooConst(50)); 

RooUniform y("y","y",RooArgSet(x)); 

RooGenericPdf bkg("bkg","bkg","y",RooArgSet(y)); 

RooRealVar bkgfrac("bkgfrac","bkgfrac",0.9,0.,1.); 

RooAddPdf model("model","model",RooArgList(bkg,sig),bkgfrac); 

 

TRandom* rg=RooRandom::randomGenerator(); 

rg->SetSeed(); 

//for loop---------------------------------- 

for(Int_t i=0;i<100;i++){ 

TTree* tdata=new TTree("tdata","tdata"); 

tdata->Branch("observed",&observed,"observed/D"); 

 

gRandom->SetSeed(); 

Int_t nsig=gRandom->Poisson(2); 

RooDataSet* data1=sig.generate(x,nsig); 

h_signal=data1->createHistogram("x",1000); 

signal = h_signal->Integral(350,650); 

 

Int_t nbkg=gRandom->Poisson(100); 

RooDataSet* data2=bkg.generate(x,nbkg); 

h_background=data2->createHistogram("x",1000); 

background = h_background->Integral(350,650); 

 

observed=signal+background; 

 

delete h_signal; 
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delete h_background; 

tdata->Fill(); 

 

//Feldmancousins part------------------------- 

RooRealVar n("n","n",observed,0,100); 

RooConstVar b("b","b",30); 

RooRealVar mu("mu","mu",2,0,20); 

RooAddition mean("mean","mean",RooArgList(mu,b)); 

RooPoisson pois("pois","pois",n,mean); 

     

RooDataSet data3("data3","data3",RooArgSet(n),Import(*tdata));  

data3.Print("v"); 

 

RooWorkspace* w = new RooWorkspace(); 

ModelConfig modelConfig("poissonProblem",w); 

modelConfig.SetPdf(pois); 

modelConfig.SetParametersOfInterest(RooArgSet(mu)); 

modelConfig.SetObservables(RooArgSet(n)); 

w->Print(); 

 

//---------------------------------------------- 

RooStats::FeldmanCousins fc(data3,modelConfig); 

fc.SetConfidenceLevel(0.9); // set size of test 

fc.UseAdaptiveSampling(true); 

fc.FluctuateNumDataEntries(false); // number counting analysis: dataset 

always has 1 entry with N events observed 

fc.SetNBins(100); // number of points to test per parameter 

 

// use the Feldman-Cousins tool 
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PointSetInterval* interval = (PointSetInterval*)fc.GetInterval(); 

 

ci_lower=interval->LowerLimit(mu); 

ci_upper=interval->UpperLimit(mu) ; 

tci->Fill(); 

delete tdata; 

} 

tci->Scan(); 

} 
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