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Abstract

In this thesis we describe how to simulate the 1-d isothermal Euler equa-
tions that can be used to model gas dynamics in pipeline networks, see
[Grundel et al., 2014]. These equations form a set of partial differential
equations (PDEs). When modelling physical quantities using partial dif-
ferential equations, the equations can often be rewritten in a special form
called a port-Hamiltonian system. The port-Hamiltonian formulation in-
corporates the energy of the system.

For simulation purposes the infinite dimensional port-Hamiltonian system
has to be discretized to a finite dimensional system. We used a discretiza-
tion method described in [Golo et al., 2004] which guarantees that the
resulting finite dimensional system is actually a finite dimensional port-
Hamiltonian system. This means that the structure of the equations is
preserved during the discretization method and energy conservation still
holds.

We succeeded in forming the equations for pipelines as a port-Hamiltonian
system. The port-Hamiltonian formulation makes it possible to system-
atically connect the gas pipes together to form a pipeline network. This
thesis describes the whole procedure from the initial PDEs to the resulting
simulation.

The succesfull application of the port-Hamiltonian formulation and
discretization to the equations of gas dynamics in pipelines can be seen
as the result of this thesis.



Contents

1 Introduction 1

2 Model definition 2
2.1 Isothermal Euler equations . . . . . . . . . . . . . . . . . . . . . 2
2.2 Energy equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Port-Hamiltonian formulation 7
3.1 Definition of a port-Hamiltonian system . . . . . . . . . . . . . . 7
3.2 Gas equations as a port-Hamiltonian system . . . . . . . . . . . . 10
3.3 Connecting two gas pipes . . . . . . . . . . . . . . . . . . . . . . 11

4 Port-Hamiltonian discretization 14
4.1 Discretizing one lump . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Coupling lumps to form a pipeline . . . . . . . . . . . . . . . . . 18

5 Simulating pipeline junctions and networks 22
5.1 Pipeline junctions . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Pipeline networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Conclusion and further research 27



1 Introduction

In the past decades, the topic about the responsible use of natural resources got
worldwide interest. The European Union set some targets to become partly in-
dependent of natural resources in the nearby future. Therefore many countries
like the Netherlands, Germany, Spain and Denmark invested a lot of money
to build photovoltaic (PV) cells and/or wind turbines. Power generation from
wind or sun is however hard to predict and coupling these new energy sources
to the already existing power sources generated by gas, coal or uranium soon
became a new challenge [Klimstra and Hotakainen, 2011]. The main challenge
is to distribute the energy in the energy grid in such a way, that production
matches demand. The energy grid is changing from a centralized generating
system to a system with distributed generation of energy [Larsen et al., 2013].
This substantially increases the complexity of controlling the energy grid, while
the control of the grid, just as production, becomes more and more decentral-
ized.

The port-Hamiltonian framework was especially developed for modelling the
dynamics and interaction of physical quantities which are connected to each
other (see [van der Schaft and Jeltsema, 2014]). The focus of this framework is
to model components of a network of connected objects separately, but in such
a way that they can be connected to each other afterwards while preserving
conservation properties like energy conservation.

As explained in [Klimstra and Hotakainen, 2011], power generation in gas tur-
bines will remain important in the future. The gas network should therefore be
incorporated in the energy grid and precise control of the gas network becomes
more important.

The port-Hamiltonian framework was used before to model power networks
[Fiaz et al., 2013]. In this thesis we are going to describe how we can model
gas dynamics in pipeline networks. We will use a port-Hamiltonian description
of gas dynamics in a single pipe emerging from the isothermal Euler equations.
The port-Hamiltonian framework then allows us to connect many pipes to each
other as a full pipeline network and simulate global dynamics.

In chapter 2 we are going to describe the model of a pipeline emerging from the
isothermal Euler equations. We will also find an energy density function that
describes the dynamics of the model. This is the first step towards the port-
Hamiltonian formulation. In chapter 3 we explain what a port-Hamiltonian
system is an it turns out that our system is a port-Hamiltonian system. We
also explain how to connect two pipes together. In chapter 4 we work towards
a simulation by applying a port-Hamiltonian discretization to our system. In
chapter 5 we can use everything we derived to build up the equations of a full
pipeline network. In chapter 6 we look back at the results of this thesis and
explain how this thesis can be extended with further research.
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2 Model definition

Gas pipeline networks are interesting to simulate in order to find efficient ways
of controlling the distribution of gas in the network. The pipeline networks
under consideration are used for the distribution of gas over long distances from
the drilling site to the end user. In this chapter we describe the model for gas
dynamics in pipes of such a pipeline network.

2.1 Isothermal Euler equations

We will fully focus on a description of the dynamics of gas in a single straight
pipe. We assume that the pipe has constant diameter and is placed horizontally
without any height differences. Of particular interest are the density distribution
and the flow speed along the pipe. We therefore choose to use a 1-dimensional
model of a pipe, where we consider all the physical quantities like flow speed
and density distribution to be depending on time and only one spatial coordi-
nate.

Just as in the paper [Grundel et al., 2014] and based on our assumptions, we
model the dynamics of gas in a pipe by a 1-dimensional version of the isothermal
Euler equations, given by the following set of equations.{

ρt + qz = 0
qt + pz + (ρv2)z + gρhz = − λ

2Dρv|v|
(1)

A subscript in these equations denotes a partial derivative with respect to the
character in the subscript. All physical quantities depend on only one spatial
coordinate which we will denote by z ∈ R and on time, denoted by t ∈ R≥0.
To make the equations more readable, we normally omit the notation with
dependencies. The meaning of all the characters in this set of equations can be
found in the list below.

ρ(z, t) Density

v(z, t) Stream velocity

q(z, t) := ρ(z, t)v(z, t) Mass flow

p(z, t) := a2ρ(z, t) Pressure

h(z, t) := constant Geodesic height
λ

2D Friction constant

g Gravitational constant

The list also includes three equalities, which make it possible to simplify the
equations in (1). The first equality from the list relates the mass flow to the
density and stream velocity and is used to eliminate mass flow from the equa-
tions. The second equality from the list relates pressure to density using the
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constant speed of sound, denoted by a = 300 m/s. This allows us to eliminate
pressure from the equations. The third equality from the list is an assump-
tion about the differences in the height of the pipe made in the beginning of
this chapter. We neglect height differences and therefore the term including hz
vanishes.

With the simplifications just mentioned, the equations given in (1) can be rewrit-
ten to: 

ρt + ρvz + vρz = 0
ρvt + vρt︸ ︷︷ ︸

qt

+a2ρz + v2ρz + 2ρvvz = − λ
2Dρv|v|.

Observe that from the first equation we find vρt = −vρvz − v2ρz, which can be
substituted in the second equation as follows:

ρt + ρvz + vρz = 0
ρvt +−vρvz − v2ρz︸ ︷︷ ︸

vρt

+a2ρz + v2ρz + 2ρvvz = − λ
2Dρv|v|.

This greatly simplifies the second equation. We also immediately divide by ρ in
the second equation and get:

ρt + ρvz + vρz = 0

vt + vvz + a2

ρ ρz = − λ

2D
v|v|︸ ︷︷ ︸

friction

. (2)

Here we recognize a friction term on the right hand side that is derived in section
11.5 of [Alexandrou, 2001]. We will not recall this derivation, while the friction
is not of particular interest in the rest of this thesis. With this friction term
in there, we call the last equations the lossy Euler equations, while without
friction, we will call it the lossless Euler equations.

The equations in (2) can be written in system form, which in the lossless case
is given by: [

ρ̇
v̇

]
= −

[
v ρ

a2/ρ v

] [
ρz
vz

]
.

(3)

The dot on top of a function denotes its time derivative.

The equations of motion in (3) have only two unknowns, ρ and v. As men-
tioned before, these are physical quantities of the gas depending only on an
1-dimensional space coordinate z and time t. Therefore the unknowns in the
equations of motion are functions of z and t. This means, that the solution at
each fixed time t is still a function of z and in this sense still an infinite dimen-
sional object. This fact together with the presence of the partial derivative of
the unknowns with respect to z in the equations, make the system in (3) an
infinite dimensional system.
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2.2 Energy equations

The first step towards the formulation of (3) as a port-Hamiltonian system, is
the derivation of an energy density function H(ρ, v) such that the system (3) is
equivalent to {

ρ̇ = − ∂
∂z (Hv)

v̇ = − ∂
∂z (Hρ) ,

(4)

where as before the subscripts on H denote partial derivatives. It is natural to
include kinetic energy in the energy density function H. The potential energy
that we should consider in our system is the energy causing a compressed gas to
expand and vice versa. This energy is therefore a function of the density of the
gas only. To find the exact expression for the potential energy, we start with an
inital guess of the form of the potential energy given as ρU(ρ). This, together
with the kinetic energy, then gives the energy density function H(ρ, v):

H(ρ, v) = 1
2ρv

2︸ ︷︷ ︸
kinetic energy

+ ρU(ρ).︸ ︷︷ ︸
potential energy

(5)

The next step is to substitute this energy density function in (4) and sim-
plify: {

ρ̇ = − ∂
∂z (ρv)

v̇ = − ∂
∂z

(
1
2v

2 + ρU ′(ρ) + U(ρ)
)~w�{

ρ̇ = −vρz − ρvz
v̇ = −ρzU ′(ρ)− ρU ′′(ρ)ρz − U ′(ρ)ρz − vvz~w�{

ρ̇ = −vρz − ρvz
v̇ = − (2U ′(ρ) + ρU ′′(ρ)) ρz − vvz~w�[
ρ̇
v̇

]
= −

[
v ρ

2U ′(ρ) + ρU ′′(ρ) v

] [
ρz
vz

]
. (6)

Now a compelling similarity is seen by comparing (6) to the lossless isothermal
Euler equations as given in (3). It should be clear that (6) is equivalent to (3)
if U(ρ) satisfies

2U ′(ρ) + ρU ′′(ρ) = a2

ρ .

This equation has the general solution

U(ρ) = a2 log ρ+
c1
ρ

+ c2,
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where c1 and c2 are integration constants. Substituting the solution of U(ρ)
into (5) leads to the following energy density function:

H(ρ, v) = 1
2ρv

2 + ρU(ρ)

= 1
2ρv

2 + a2ρ log ρ+ c1 + c2ρ.

The integration constant c1 can be set to zero, since a constant can always
be added to the energy density without changing any dynamics. The second
integration constant c2 is related to the equilibrium density of the gas and is
renamed to c from here on.

We conclude by summarizing what we found in this subsection so far.

Result of subsection 2.2

By defining the energy density function H(ρ, v) to be

H(ρ, v) = 1
2ρv

2 + a2ρ log ρ+ cρ, (7)

we saw that the system {
ρ̇ = − d

dx (Hv)
v̇ = − d

dx (Hρ) ,

is equivalent to [
ρ̇
v̇

]
= −

[
v ρ

a2/ρ v

] [
ρz
vz

]
.

2.2.1 More about the energy density function

We called the function H(ρ, v) the energy density function. That’s because is
has the physical dimension of energy per distance. The total energy in the pipe
segment ab from the point z = a to z = b is therefore defined as the following
integral of H:

H(ρ, v) =

∫ b

a

H(ρ, v) dz.

It has the dimension of energy. From this integral, the change of energy with
respect to time (power) inside a pipe segment without friction is easily calculated
as follows:

Ḣ(ρ, v) =

∫ b

a

d

dt
H(ρ, v)dz
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=

∫ b

a

{Hρρ̇+Hv v̇} dz

=

∫ b

a

{
Hρ
(
− ∂

∂z
(Hv)

)
+Hv

(
− ∂

∂z
(Hρ)

)}
dz

= −
∫ b

a

{
Hρ

∂

∂z
(Hv) +Hv

∂

∂z
(Hρ)

}
dz

= −
∫ b

a

{
∂

∂z
(HρHv)

}
dz

= HρHv
∣∣∣
z=a
−HρHv

∣∣∣
z=b

.

The term Hρ = 1
2v

2 + a2 log ρ + a2 + c is called the hydrostatic pressure (or
sometimes Bernoulli function) and has the physical dimension of energy per
unit mass m2/s2. The term Hv = ρv is the mass flow and has the physical
dimension of kg/s. Therefore the product HρHv has dimension kgm2/s3 and
hence has the meaning of (mechanical) power. One could say in words that the
change of total energy inside the pipe segment is equal to the power supplied
at the point z = a minus the power subtracted at the point z = b. This is an
important physical property of the lossless system.

Let us note here that the dimensional analysis above also reveals that the con-
stant c in the energy function (7) should have the physical dimensionm2/s2.
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3 Port-Hamiltonian formulation

For the port-Hamiltonian formulation of the equations of gas dynamics, the en-
ergy equations formulated in the previous section are really important. In this
section we briefly discuss how we use the terminology of a port-Hamiltonian sys-
tem and how our system of equations fits in this framework. In this explanation
we mainly follow the way a port-Hamiltonian system was defined in Chapter 2
and 14 of [van der Schaft and Jeltsema, 2014] .

As mentioned before, the system of equations we are working with form an
infinite dimensional system. This means that the unknowns of the system are
functions of time and of some spatial coordinate. The equations are partial
differential equations. For a finite dimensional system on the other hand, the
unknowns only depend on time and the equations are ordinary differential equa-
tions. When (spatially) discretizing an infinite dimensional system, one tries
to find a finite dimensional system that approximates the infinite dimensional
system. Since we want to discretize our system in the next chapter, it is im-
portant to make the difference between finite and infinte dimensional systems
clear. Furthermore, a port-Hamiltonian system can also be finite or infinite
dimensional.

In section 2.3 and section 7.1 of the book [Jacob and Zwart, 2012] finite and
infinite dimensional port-Hamiltonian systems are defined separately. We prefer
however to simultaneously define both cases and explain the similarities and dif-
ferences. In chapter 2 of [van der Schaft and Jeltsema, 2014] a port-Hamiltonian
is defined in a geometric way, which gives in our opinion better possibilities to
define a port-Hamiltonian system in a more general way.

3.1 Definition of a port-Hamiltonian system

The definition as how we present it here may or may not be fully exhaus-
tive, but we tried to capture the defining features that are necesary to un-
derstand the rest of this thesis. For the readers who already worked with port-
Hamiltonian systems before: we omit the existence of resistive ports and control
ports here.

A port-Hamiltonian system is a collection of ports which are internally con-
nected to each other. This is called the (internal) interconnection structure, and
it forms a Dirac structure on the ports, denoted by D, see figure 1.

A port is a pair of two port variables, one is called the flow f and the other is
called the effort e. The product f · e has the meaning of power.

The essential feature of a Dirac structure is that the total power is zero, which
means that energy is preserved.
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How total power is defined depends slightly on whether the system is finite or
infinite dimensional. This will be explained in the next subsection.

A port-Hamiltonian system can have different types of ports. Here we will
only consider external ports and storage ports. A port-Hamiltonian system has
at least one storage port. A storage port is drawn with a small box in the figure
below. An external port is recognizable by the capital B in the superscript of
the corresponding variable.

Figure 1: Abstract port-Hamiltonian system

There is always an energy function H(x) : x 7→ R associated to the storage
ports. This function is also called the Hamiltonian (-function). The Hamiltonian
is a function of the state variables of the system, denoted by x here. The state
variables may also be called energy variables. In general x can be a collection
of several different variables, let’s say {xi}. For every state variable xi, there is
a storage port i. Each storage port i has two port variables (just as every other
port). The flow of the i-th storage port will be denoted fxi and is equal to the
derivative of the state variable xi with respect to time. The corresponding effort
will be denoted exi and is equal to the partial derivative of the Hamiltonian with
respect to the state variable xi. That is:{

fxi = ẋi
exi = ∂H

∂xi
(x).

(8)

The equations in (8) are sometimes also called the constitutive relations of the
port-Hamiltonian system.

The external ports are necassary ports if the port-Hamiltonian system should
be able to be connected to other port-Hamiltonian systems. Every external
port k has a flow denoted by fB,k and an effort denoted by eB,k. The B
in the superscript stands for ’Boundary’. The external port of the first port-
Hamilitonian system is then connected to one of the external ports of the second
port-Hamiltonian system. A connection of two external ports should be made
in such a way, that the energy of the two port-Hamiltonian systems together is
still preserved.

A system with the properties described above is called a port-Hamiltonian sys-
tem. Now we should elaborate a bit more on the differences between finite and
infinte dimensional port-Hamiltonian systems.
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3.1.1 Finite vs infinite dimensional port-Hamiltonian systems

In this section we will describe the differences between a finite and an infinite
dimensional port-Hamiltonian system.

In a finite dimensional port-Hamiltonian system the state variables are only
depending on time, i.e. xi ∈ L2(R≥0,R) and the Hamiltonian is a rather simple
algebraic equation of the state variables. As such, the flows and efforts of the
storage ports as defined in (8), are also in L2(R≥0,R). The total power is then
simply defined as:∑

i

fxi · exi +
∑
k

fB,k · eB,k ∈ L2(R≥0,R),

which is a function of time.

In an infinite dimensional port-Hamiltonian system on the other hand, the state
variables are not only depending on time, but also on some spatial coordinate.
For the spatial domain we will restrict ourself to a subset U ⊆ Rn. This means
that the state variables xi are functions in L2(U×R≥0,R). The energy function
is a mapping from the state variables x to R and therefore is an integral over
the spatial domain of some energy density function H(x) of the state variables.
That is, a function H : x 7→ H(x) ∈ L2(U × R≥0,R), such that:

H(x) =

∫
U

H(x) dz.

H is implicitely depending on time, but for every time t, we have H(x) ∈ R.
In the infinite dimensional case, the H in the constitutive relations of the port-
Hamiltonian system, as defined in (8), should be replaced by the H of the energy
density function. That is: {

fi = ẋi
ei = ∂H

∂xi
(x).

(9)

As a consequence, the flows and efforts of the storage ports are in L2(U×R≥0,R).
The total power is therefore defined as:

∑
i

∫
U

fxi · exi dz

+
∑
k

fB,k · eB,k ∈ L2(R≥0,R), (10)

which is, because of the added integrals, a function of time.

The differences between a finite and infinite dimensional port-Hamiltonian sys-
tem are subtle, but important if you want to talk about a port-Hamiltonian
discretization. Before turning to the port-Hamiltonian discretization, we first
formulate the gas equations as a port-Hamiltonian system.
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3.2 Gas equations as a port-Hamiltonian system

In this section we show that the gas equations are a infinite dimensional port-
Hamiltonian system. Recall the equations of motion of a gas written in the form
we derived in section 2.2, using an energy density function H:{

ρ̇ = − d
dx (Hv)

v̇ = − d
dx (Hρ) ,

where H(ρ, v) = 1
2ρv

2 + a2ρ log ρ+ cρ. (11)

There are two state variables ρ and v and both elements in L2(Z × R≥0,R),
where Z = [a, b] ⊆ R. And so they depend on a spatial variable z, meaning the
system is an infinite dimensional system. There are two storage ports. The first
is a storage port for ρ, where the flow and effort are defined as (see (9)):{

fρ = ρ̇

eρ = ∂H
∂ρ (ρ, v) = 1

2v
2 + a2 log ρ+ a2 + c

(12)

and the second is a storage port for v where the flows and efforts are:{
fv = v̇

ev = ∂H
∂v (ρ, v) = ρv.

(13)

The equations above are the constitutive relations of our system. Now formulate
the internal interconnection structure. A part of the internal interconnection
structure consists of the equations of motion in (11). In these equations we
can substitute the constitutive relations and find a part of the interconnection
structure: {

fρ = − ∂
∂z e

v

fv = − ∂
∂z e

ρ.
(14)

For a correct port-Hamiltonian system, the total power should be zero. Right
now we did not yet define any external ports and the total power as defined in
(10) of the system would be:

b∫
a

fρ · eρ dz +

b∫
a

fv · ev dz
(14)
=

b∫
a

− ∂

∂z
ev︸ ︷︷ ︸

fρ

·eρ dz +

b∫
a

− ∂

∂z
eρ︸ ︷︷ ︸

fv

·ev dz

= −
b∫
a

∂

∂z
(eρ · ev) dz

= (eρ · ev)
∣∣
z=a
− (eρ · ev)

∣∣
z=b

(15)

6= 0.

Since it is not yet zero, we need to add external ports to the system. The power
balance above and the physical shape of the gas pipe, suggest that we should
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add two external ports: one at the point z = a and the other at the point z = b.
Let us connect these two external ports to the storage ports as follows:{

fB,a = −eρ
∣∣
z=a

eB,a = ev
∣∣
z=a

and

{
fB,b = eρ

∣∣
z=b

eB,b = ev
∣∣
z=b

(16)

The total power as defined in (10) now reads:

b∫
a

fρ · eρ dz +

b∫
a

fv · ev dz + fB,a · eB,a + fB,b · eB,b

(15)
= (eρ · ev)

∣∣
z=a
− (eρ · ev)

∣∣
z=b

+ fB,a · eB,a + fB,b · eB,b

(16)
= 0

and is indeed zero.

We can now conclude that the equations describing gas dynamics form a port-
Hamiltonian system. Following the definition as formulated in section 3.1 this
port-Hamiltonian system has four ports. Two storage ports and two external
ports. The storage ports are defined in (12) and (13). All the ports are internally
connected by the equations given in (14) and (16). The total power of the system
is zero.

3.3 Connecting two gas pipes

Included in the description of a port-Hamiltonian system, an external port
makes it possible to connect the port-Hamiltonian system to another port-
Hamiltonian system. In this section we are going to demonstrate how to connect
two port-Hamiltonian systems using the external ports. We will use the example
of connecting two pipes.

Imagine that we have two gas pipes and we want to connect them. Each indi-
vidual pipe can be described by the port-Hamiltonian system above on its own
spatial domain. We connect both port-Hamiltonian systems by connecting the
external port on the right hand side of the first pipe to the external port on the
left hand side of the second pipe, see figure 2.

Figure 2: Connection of two pipes

Connecting two external ports means that the port variables of one of the ports
are expressed in terms of the port variables of the other external port. Since
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physical properties like mass conservation and energy conservation should hold,
there is normally only one canonical choice to connect ports. In the case of
our port-Hamiltonian system the boundary flows and efforts are defined in (16).
The boundary flows represent the hydrostatic pressures at the boundary, since
eρ is the hydrostatic pressure of the gas. The boundary efforts respresent the
mass flows at the boundary, while ev is equal to mass flow. From a physical
point of view we should therefore connect the boundary flows to boundary flows
and the boundary efforts to boundary efforts.

For the gas equations we should have that the hydrostatic pressure on the right
hand side of the first pipe is equal to the hydrostatic pressure at the left hand
side of the second pipe. Because the boundary flow at the left hand side of each
pipe was chosen to be minus the hydrostatic pressure, while it was defined with a
plus on the right hand side (see (16)), we need to set fB,12 = −fB,11 . We use the
notational convention that the subscript indicates the number of the pipe and
the superscript denotes the number of the interconnection node. The spatial
point zi is referred to as the i-th node. Furthermore we want conservation of
mass and therefore the mass flow at the right hand side of the first pipe should
be equal to the mass flow at the left hand side of the second pipe. Since the
boundary efforts represent mass flow, we will set eB,12 = eB,11 .

Observe that the two pipes together form again a port-Hamiltonian system.
Now it has 4 storage ports, two for each pipe. Since we connected two external
ports to each other, these ports are no longer externally connectable and should
therefore no longer be seen as external ports. The two connected pipes have
therefore only two external ports, one at the left hand side of the first pipe
and one at the right hand side of the second pipe. Each pipe has its own
Hamiltonian density depending on its own state variables, denoted byH1(ρ1, v1)
and H2(ρ2, v2). The overall new energy density function is the sum of the
old ones: H = H1 + H2. The interconnection structure of the new system
is the composition of the interconnection structures of both seperated systems,
together with the interconnection of the two previously connected external ports.
Now the total power of the connected pipes as defined in (10) reads:

z1∫
z0

fρ1 · e
ρ
1+fv1 · ev1 dz +

z2∫
z1

fρ2 · e
ρ
2 + fv2 · ev2 dz + fB,01 · eB,01 + fB,22 · eB,22

The first integral is equal to (see (15)):

(eρ1 · ev1)
∣∣
z=z0

− (eρ1 · ev1)
∣∣
z=z1

= −fB,01 · eB,01 − fB,11 · eB,11

and similarly the second integral is equal to:

(eρ2 · ev2)
∣∣
z=z1

− (eρ2 · ev2)
∣∣
z=z2

= −fB,12 · eB,12 − fB,22 · eB,22 .
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Substituting this into the total power yields:

z1∫
z0

fρ1 · e
ρ
1+fv1 · ev1 dz +

z2∫
z1

fρ2 · e
ρ
2 + fv2 · ev2 dz + fB,01 · eB,01 + fB,22 · eB,22

= −fB,11 · eB,11 − fB,12 · eB,12

= 0,

since we have chosen to connect the pipes using fB,12 = −fB,11 and eB,12 = eB,11 .
The power in the new system is zero and the properties of a port-Hamiltonian
system are satisfied.

In this chapter we defined a port-Hamiltonian system and saw that the equa-
tions of motion of gas in a pipe form a port-Hamiltonian system. We also saw
that the framework of a port-Hamiltonian systems makes it possible to con-
nect pipes to each other. For simulation purposes we need to discretize the
port-Hamiltonian system. By doing this we want to preserve the structure of
flows and efforts and this means we want to turn the infinite dimensional port-
Hamiltonian system into a finite dimensional port-Hamiltonian system. The
next chapter is dedicated to explain this procedure.
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4 Port-Hamiltonian discretization

In this chapter we describe how the port-Hamiltonian discretization of the port-
Hamiltonian system of the gas equations described in section 3.2 works.

For the discretization we need to cut the gas pipe into small gas pipe segments.
We use the convention that the geometry of the pipe reaches from the spatial
point z0 to zn and the pipe is cut at the nodes z1, z2, .., zn−1. The result is a
pipe divided into n equally long pipe segments. The first pipe segment reaches
from z0 to z1, the second pipe segment reaches from z1 to z2 and so on. A pipe
segment may also be called a lump. In every pipe segment the gas equations

Figure 3: Division of the pipeline into lumps

hold and can be described by the port-Hamiltonian system from section 3.2.
All these identical port-Hamiltonian systems will be discretized and connected
afterwards as in section 3.3 to get the full discretization of the pipe.

For the discretization we should focus on one lump. We will use the paper
of Golo [Golo et al., 2004], where they discretized the same port-Hamiltonian
system as we have, but for another physical example with another Hamiltonian
function. The discretization method was especially developed for this type of
port-Hamiltonian system and assures that the resulting finite dimensional sys-
tem is also a port-Hamiltonian system. We will therefore use this descrization
method. How the discretized system results in a port-Hamiltonian system for
the whole pipeline with n segments is not described in the paper of Golo and
we will do it in the last section of this chapter.

4.1 Discretizing one lump

We will first explain how to discretize the k-th lump, located between z = zk−1

and z = zk. We first discretize the constitutive relations and then the internal
interconnection structure.

We start with the constitutive relations. Instead of having infinite dimensional
states ρ and v in L2([zk−1, zk] × R≥0,R), we want to have finite dimensional
states ρk and vk in L2(R≥0,R). Golo applies an approximation of the infinite
dimensional objects ρ and v as is usually done in finite volume approxima-
tions:

ρ(z, t) ≈ ρk(t) · wρk(z) and v(z, t) ≈ vk(t) · wvk(z), (17)
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where wρk(z), wvk(z) ∈ L2([zk−1, zk],R) are the basis functions and ρk(t), vk(t) ∈
L2(R≥0,R) will be the new state variables. The basis functions can be chosen
freely, but should atisfy the following properties:

zk∫
zk−1

wρk(z) dz = 1 and

zk∫
zk−1

wvk(z) dz = 1.

Because of this requirement, the integrals of the infinite dimensional states
ρ(z, t) and v(z, t) over the spatial domain [zk−1, zk] are approximated by ρk(t)
and vk(t), respectively.

Just as in the infinite dimensional system, the finite dimensional system will
have two energy ports. Since the flows will be equal to the time derivatives of
the states, we approximate the flows as:

fρ(z, t) ≈ fρk (t) · wρk(z) and fv(z, t) ≈ fvk (t) · wvk(z),

i.e. with the same basis functions as in the approximation of ρ(z, t) and v(z, t).
Therefore the finite dimensional equivalent of the constitutive relations fρ = ρ̇
and fv = v̇ for the flows of the energy ports are:

fρk (t) := ρ̇k(t) and fvk (t) := v̇k(t).

For the efforts of the energy ports, we need to discretize the Hamiltonian func-
tion. We substitute the approximations for ρ(z, t) and v(z, t) from (17) into the
infinite dimensional Hamiltonian H(ρ, v) =

∫ zk
zk−1
H(ρ, v) dz (with H as in (11))

and find the following discrete energy function:

Hk(ρk(t), vk(t)) :=H(ρk(t)wρk(z), vk(t)wvk(z))

=
1

2
ρk(t)vk(t)2 · c1,k + a2ρk(t) · (log ρk(t) + c2,k) + c · ρk(t),

where

c1,k :=

∫ zk

zk−1

wρk(z) · wvk(z)2 dz

c2,k :=

∫ zk

zk−1

wρk(z) · logwρk(z) dz.

Therefore the equation for the efforts of the energy ports become:

eρk =
∂Hk

∂ρk
=

1

2
vk(t)2 · c1,k + a2 · (log ρk(t) + c2,k + 1) + c

evk =
∂Hk

∂vk
= ρk(t)vk(t) · c1,k

This leads to the discrete equivalent of (12) and (13):{
fρk = ρ̇k

eρk = ∂Hk
∂ρk

= 1
2vk(t)2 · c1,k + a2 · (log ρk(t) + c2,k + 1) + c

(18)
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{
fvk = v̇k

evk = ∂Hk
∂vk

= ρk(t)vk(t) · c1,k.
(19)

These equations form the constitutive relations of the finite dimensional port-
Hamiltonian system and we now should try to find the internal interconnection
structure. Just as in the infinite dimensional case, the finite dimensional system
will have two external ports, one at the point z = zk−1, called node k − 1 and
one at z = zk, called node k. The superscript on the external variables will
denote the number of the node and the subscript will denote the number of the
lump. Therefore we have on lump k the boundary port variables fB,k−1

k and

eB,k−1
k at the left hand side and the boundary port variables fB,kk and eB,kk at

the right hand side.

Since the interconnection structure of the infinite dimensional system we have
is exactly equal to the infinite dimensional system that Golo discretized, we
use his resulting discretized interconnection, without detailed derivation. The
interested reader can look-up the paper [Golo et al., 2004]. The interconnection
structure obtained of our discretized port-Hamiltonian system obtained from
the paper of Golo is:


−1 0 0 0

0 −1 αab αba
0 0 −1 1
0 0 0 0



eρk

evk

eBk

eBk+1

+


0 0 −αba αab
0 0 0 0
1 0 0 0
0 1 1 1



fρk

fvk

fBk

fBk+1

 =


0
0
0
0

 , (20)

where αab =
∫ zk
zk−1

{
wρk(z) ·

(
1−

∫ z
0
wvk(z̄) dz̄

)}
dz and αba = 1 − αab. When

choosing the most simple choice of basis functions, given by wρk(z) = wvk(z) =
1/(zk − zk−1), the constants will be αab = αba = 1/2.

The interconnection structure is slightly different from the paper of Golo since
we use another sign convention, the idea and derivation are however exactly the
same. The interconnection structure is a simple linear equation and it defines
how the boundary port variables are related to the storage port variables. We
ultimately want to simulate the state variables ρk and vk. Therefore we are
going to express the storage flows in terms of the storage efforts, while that will
give a system in the form ρ̇k = f1(ρk, vk) and v̇k = f2(ρk, vk). First rewrite the
equations in (20) to:

[
eρk

evk

]
︸ ︷︷ ︸
ek

=

[
−αba 0 αab 0

0 αab 0 αba

]
︸ ︷︷ ︸

A=
[
A` Ar

]


fB,k−1
k

eB,k−1
k

fB,kk

eB,kk


︸ ︷︷ ︸

xBk

, (21)
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[
fρk

fvk

]
︸ ︷︷ ︸
fk

=

[
0 1 0 −1
−1 0 −1 0

]
︸ ︷︷ ︸

B=
[
B` Br

]


fB,k−1
k

eB,k−1
k

fB,kk

eB,kk


︸ ︷︷ ︸

xBk

. (22)

The flows and efforts of the storage port are related to each other by the flows
and efforts of the external ports. We therefore rewrite the equation in (21) and
express the boundary variables in terms of the efforts. We can only do this
by prescribing two boundary variables. We choose to prescribe the boundary
flow at the left hand side and the boundary effort at the right hand side as
fB,k−1
k = u1

k and eB,kk = u2
k for two inputs u1

k and u2
k. Then partition the

equations of ek in (21) and find:[
eρk

evk

]
=

[
−αba

0

]
u1
k +

[
0 αab
αab 0

]
︸ ︷︷ ︸

Ā

[
eB,kk−1

fB,kk

]
+

[
0
αba

]
u2
k

⇐⇒

[
eB,k−1
k

fB,kk

]
=

[
0 α−1

ab

α−1
ab 0

]
︸ ︷︷ ︸

Ā−1

([
eρk

evk

]
+

[
αba 0
0 −αba

][
u1
k

u2
k

])
. (23)

In a similar fashion we can also partition and rewrite the equation for fk in
(22): [

fρk

fvk

]
=

[
0
−1

]
u1
k +

[
1 0
0 −1

]
︸ ︷︷ ︸

B̄

[
eB,k−1
k

fB,kk

]
+

[
−1
0

]
u2
k.

Fill in the expression for eB,k−1
k and fB,kk from (23):[

fρk

fvk

]
= B̄ · Ā−1 ·

([
eρk

evk

]
+

[
αba 0
0 −αba

][
u1
k

u2
k

])
+

[
0 −1
−1 0

][
u1
k

u2
k

]

⇐⇒

[
fρk

fvk

]
=

[
0 α−1

ab

−α−1
ab 0

]
·

[
eρk

evk

]
+

[
0 −αbaα−1

ab − 1
−αbaα−1

ab − 1 0

]
·

[
u1
k

u2
k

]

=

[
0 α−1

ab

−α−1
ab 0

]
·

[
eρk

evk

]
+

[
0 −α−1

ab

−α−1
ab 0

]
·

[
u1
k

u2
k

]
,

where in the last equality we used the relation αba = 1 − αab. We succesfully
expressed the flows in terms of efforts, however there is also a term including
u1
k and u2

k. If we now see u1
k and u2

k as the input of the lump, we found
the expression for the flow fk in terms of the effort ek and the input. If we
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furthermore see the other two external port variables eB,k−1 and fB,k in (23)
as output variables, then we also found an expression for the output in terms of
the effort ek and the input. If we denote the output by y1

k and y2
k, respectively,

then the equations can be seen to be in input-output form:
fρk

fvk

y1
k

y2
k

 =


0 α−1

ab 0 −α−1
ab

−α−1
ab 0 −α−1

ab 0

0 α−1
ab 0 αbaα

−1
ab

α−1
ab 0 −αbaα−1

ab 0



eρk

evk

u1
k

u2
k

 . (24)

By the anti-symmetry of the matrix, we easily find that the net power of lump
k is zero:

fρk · e
ρ
k + fvk · evk+fB,k−1

k · eB,k−1
k + fB,kk · eB,kk

= fρk · e
ρ
k + fvk · evk + u1

k · y1
k + y2

k · u2
k

=
[
eρk evk u1

k u2
k

]
·
[
fρk fvk y1

k y2
k

]T
= 0,

implying that the discretization is indeed a finite dimensional port-Hamiltonian
system.

In the next section we will show how to connect multiple lumps to form the
equations of gas in a pipeline.

4.2 Coupling lumps to form a pipeline

We discretized one lump, for which we have as state variables ρk(t) and vk(t),
that represents the original distributed density ρ(z, t) and v(z, t). In order to
simulate a pipeline, we split the pipeline into n lumps. We assume here that all
the lumps are equally long and that the basis functions on each lump are the
same. This implies that the equations on the each lump are exactly the same.
Every lump has a left and a right boundary port. We are going to connect them
in a long line as in figure 3, where each connection is similar to the connection
as illustrated in figure 2.

We will connect the boundary ports at all the nodes 1, 2, .., n − 1. This works
exactly the same as in the infinite dimensional case described in section 3.3.
There we found that the physically correct connection is given by the following
equations: [

fB,k−1
k

eB,k−1
k

]
=

[
−1 0
0 1

]
︸ ︷︷ ︸

P

[
fB,k−1
k−1

eB,k−1
k−1

]
, (25)
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where k = 2, 3, .., n. In the input-output terminology this means that the input
of a lump is equal to the output of the neighboring lumps. However the output of
the neighboring lumps depends on their own input because of the feed-through
term (the non-zero lower-right block in (24)). This input in turn depends on the
output of the next neighbour and so on. After all, the value of each lump in the
pipe influences the dynamics of each other lump. When modelling compressible
fluids, this property of the discretization often arises. Because of this, it is not
that easy to couple all the lumps using the input-output representation. The
procedure of finding the input-output representation is however instructive for
finding the equations of the whole pipeline, using another method. We will now
explain how to do this.

We will expand the matrices A and B in equations (21) and (22). By introducing
the notation:

xB,mk =

[
fB,mk

eB,mk

]
for m = k − 1
or m = k

for the external port variable pairs at node m belonging to lump k, we may
rewrite (21) and (22) to:

ek =
[
A` Ar

] [xB,k−1
k

xB,kk

]
fk =

[
B` Br

] [xB,k−1
k

xB,kk

]
.

The equations for the first lump are therefore:

e1 =
[
A` Ar

] [xB,01

xB,11

]
f1 =

[
B` Br

] [xB,01

xB,11

]
.

For the second lump, we eliminate xB,12 by using the equation xB,12 = P · xB,11 ,
that is the connection from (25), and we write:

e2 =
[
A` Ar

] [P · xB,11

xB,22

]
f2 =

[
B` Br

] [P · xB,11

xB,22

]
.

We can proceed in this manner by also eliminating xB,k−1
k by using the equation

xB,k−1
k = P · xB,k−1

k−1 for all k upto n. This will ultimately makes it possible to
write:


e1

e2

...
en


︸ ︷︷ ︸
e

=



A` Ar 0 . . . 0

0 A`P Ar
. . .

...

...
. . .

. . .
. . . 0

0 . . . 0 A`P Ar


︸ ︷︷ ︸

A



xB,01

xB,11

xB,22

...

xB,nn


︸ ︷︷ ︸

xB

, (26)
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f1

f2

...
fn


︸ ︷︷ ︸
f

=



B` Br 0 . . . 0

0 B`P Br
. . .

...

...
. . .

. . .
. . . 0

0 . . . 0 B`P Br


︸ ︷︷ ︸

B



xB,01

xB,11

xB,22

...

xB,nn


︸ ︷︷ ︸

xB

. (27)

These two matrix equalities define the interconnection structure of n lumps
connected in a row, just as the matrix equalities (21) and (22) did this for one
lump. We now apply the same strategy as before two express f in terms of e.
As before we prescribe two boundary values, one at the left hand side and one at
the right hand side. That is, we choose fB,01 = u1 and eB,nn = u2. Then split the
matrices A and B by taking the first and last column apart, these correspond to
the two prescribed boundary values. For A denote the first column by Afirst, the
last column by Alast and the remaining columns by A. We use similar notation
for the matrix B. That is, we write:

A =
[
Afirst A Alast

]
B =

[
Bfirst B Blast

]
.

In a similar fashion we write xB for the vector xB without its first and last entry
(the prescribed entries).

The equation for e now yields:

e = Afirst · u1 +A · xB +Alast · u2

=⇒ xB = A
−1 · (e−Afirst · u1 −Alast · u2)

The inversion of A is possible because it has a full upper and full lower diagonal
and all other entries are zero. Rewrite the equation for f in the same way and
substitute the expression for xB :

f = Bfirst · u1 +B · xB +Blast · u2

=⇒ f = Bfirst · u1 +B ·A−1 · (e−Afirst · u1 −Alast · u2) +Blast · u2

This last equation expresses the flow of the pipeline in terms of the prescribed
values and the efforts of the pipeline. Together with the definition of the efforts
and the flows of each lump as given in equation (18) and (13) this ultimately
gives the equations describing the dynamics of a gas pipe. This is the result of
this chapter and we will state it explicitely here.

Result of section 4.2

The result of the port-Hamiltonian discretization of the equations of motion

20



of gas in a pipeline is given by the equation:

f = Bfirst · u1 +B ·A−1 · (e−Afirst · u1 −Alast · u2) +Blast · u2,

where

f =


f1

f2

...
fn

 =



fρ1

fv1

fρ2

fv2
...

fρn

fvn


=



ρ̇1

v̇1

ρ̇2

v̇2

...

ρ̇n

v̇n


, e =


e1

e2

...
en

 =



eρ1

ev1

eρ2

ev2
...

eρn

evn


=



∂H1

∂ρ1
∂H1

∂v1
∂H2

∂ρ2
∂H2

∂v2
...

∂Hn
∂ρn
∂Hn
∂vn


=



∂H
∂ρ1
∂H
∂v1
∂H
∂ρ2
∂H
∂v2
...
∂H
∂ρn
∂H
∂vn


,

where H =
∑
kHk and

Hk =
1

2
ρkv

2
k · c1,k + a2ρk · (log ρk + c2,k) + c · ρk.

Furthermore, u1 is the prescribed boundary flow at the left hand side of
the pipe and u2 is the prescribed boundary effort at the right hand side of
the pipe. The matrices A and B are defined as before.

In this chapter we succesfully discretized the port-Hamiltonian system describ-
ing the gas dynamics in a pipeline. The used methods and resulting equations
form a basis for the next chapter, where we will form the port-Hamiltonian
system describing the gas dynamics of a full pipeline network.
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5 Simulating pipeline junctions and networks

To this end we succeeded in discretizing the port-Hamiltonian formulation of the
gas dynamics in a pipe. This includes the connection of several pipe segments
to form a pipeline. There is however more to explore, while pipes are normally
part of a network of pipes. Connecting several pipes using pipeline junctions
starts to make the simulations far more exciting. In this chapter we will explain
how to model a junction of pipelines using the port-Hamiltonian systems that
we previously derived for pipe segments. Finally this can be generalized to
simulate pipeline networks.

5.1 Pipeline junctions

Already in the introduction we mentioned that the port-Hamiltonian formula-
tion of physical objects is very useful for connecting them together as a network.
Now since we formulated the pipeline as a port-Hamiltonian system, we are able
to connect pipes to form a network. To understand how to do this, we need to
find equations for modelling junctions. In this section we are going to formulate
the equations of motion of a Y-junction, see figure 4.

Figure 4: A sketch of a Y-junction

In section 4.2 we discussed how to eliminate port variables when connecting two
or more lumps connected in a row. This was necassary to make the inversion
of the matrix A in (26) possible. For junctions this is not that easy and we
will explain why. Therefore we will instead add the equations describing the
connection to the matrix A. This turns out to give the exact same result, but
can easily be generalized to model pipeline junctions ans networks.

For instructional purposes we assume that we have the Y-junction shown above,
with each pipe consisting of only one lump. One can replace each lump by a
long pipe easily. The interconnection structure of each lump is given by the two
equations (21) and (22) and read in abbreviated form, using a subscript on A
to indicate it corresponds to lump k:

ek = Ak · xBk fk = Bk · xBk
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We take these interconnection together in the matrix A and B as in:e1

e2

e3


︸ ︷︷ ︸
e

=

A1

A2

A3


︸ ︷︷ ︸

A

xB1xB2
xB3


︸ ︷︷ ︸
xB

f1

f2

f3


︸ ︷︷ ︸
f

=

B1

B2

B3


︸ ︷︷ ︸

B

xB1xB2
xB3


︸ ︷︷ ︸
xB

, (28)

where A and B are both 6× 12 matrices.

In the case of two lumps, the interconnection is given by equations (25), which
reads: [

fB,k−1
k

eB,k−1
k

]
=

[
−1 0
0 1

]
︸ ︷︷ ︸

P

[
fB,k−1
k−1

eB,k−1
k−1

]
,

which made it easy to eliminate some of the boundary port variables. Remember
that the boundary flows represent hydrostatic pressure and the boundary efforts
represent mass flow. The interconnection was chosen such that the hydrostatic
pressure is equal at the intersection and mass is conserved. For the junction of
our example this should also hold. Remember that the lumps have an orientation
in the sense that the boundary flow at the left hand side is minus the hydrostatic
pressure and the boundary flow at the right hand side is plus the hydrostatic
pressure. The hydrostatic pressures of the three pipes should be exactly the
same at the junction. Keeping in mind the orientation of the pipes, this means
we will need to set:

+fB,j1 = −fB,j2 = −fB,j3 . (29)

The constraint on the effort comes from the conservation of mass. The amount
of mass entering the junction should be equal to the total amount of mass
leaving the junction. In terms of boundary efforts and again keeping in mind
the orientation of the pipes, this means we will need to set:

+eB,j1 − eB,j2 − eB,j3 = 0. (30)

These equations cannot easily be substituted in the equations of motion to
eliminate some of the boundary port variables. Therefore we will instead simply
add the equations to the system of equations in (31) as follows. The constraints
on the flows and efforts form together 3 equations and can be written in the
form: 0

0
0

 = D ·

xB1xB2
xB3

 ,
where D is a 3× 12 matrix.

As before, we also need to prescribe some of the boundary flows and efforts to
make the inversion of A possible. In the previous chapter we explicitely took
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out the columns corresponding to the prescribed values of xB . For a junction,
we will instead add these input assignments as equations. For this particular
junction we need to prescribe the flow at the left hand side of pipe 1, that
is fB,11 := u1 and the efforts at the right hand side of pipe 2 and 3, that is

eB,22 := u2 and eB,33 := u3. These input assignment form three equations and
can be written in the form: u1

u2

u3


︸ ︷︷ ︸
u

= C ·

xB1xB2
xB3

 ,

where C is a 3× 12 matrix.

Now it’s time to form the equations of motion of this junction. We augment the
equation of the effort in (31) as:

e0̄
u

 =


A

D

C


︸ ︷︷ ︸
G

xB1xB2
xB3

 ,

where 0̄ at the left hand side represents an all zero vector with three entries. The
matrix G is a 12× 12 matrix which should be invertible. If for some junction it
turns out that G is not invertible, one probably prescribes the wrong boundary
variables. For the example given above, we chose everything correctly and it
turns out that G is indeed invertible. Now invert the equation and substitute it
in the equation of the flow to find:

f = B ·G−1 ·

e0̄
u


This equations expresses the internal flows f in terms of the internal efforts e
and the inputs u and therefore describes the equations of motion of the junction.
Note that this expression look more elegant than the expression of the flow at
the and of the previous chapter, even though the underlying network structure
is more complex.

In the next section we briefly describe how to generalize the pipeline junctions
to pipeline networks.

5.2 Pipeline networks

For pipeline networks we can generalize the method from the previous section. A
pipeline network can be described by a graph with edges representing pipelines
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and vertices representing junctions. The pipes have a dishtinguisable left and
right side, because the boundary flow at the left hand side is minus the hydro-
static pressure and at the right hand side it is plus the hydrostatic pressure.
Therefore the pipeline network can be represented by an oriented graph, de-
scribed by an incidence matrix. Assume that we have m junctions and n pipes
in our network. The incidence matrix is then a m × n matrix. We assume
that the definition of an incidence matrix of an oriented graph is known to the
reader.

Each edge represents a pipeline and each pipeline can be modelled by the equa-
tions (26) and (27) derived in section 4.2. From a global perspective, these
equations have the same structure as the equations of a lump and therefore we
stack the equations of all the edges together in big matrices A and B just as we
did in equations (31):


e1

e2

...
en


︸ ︷︷ ︸
e

=


A1

A2

. . .

An


︸ ︷︷ ︸

A


xB1
xB2
...
xBn


︸ ︷︷ ︸
xB


f1

f2

...
f3


︸ ︷︷ ︸
f

=


B1

B2

. . .

Bn


︸ ︷︷ ︸

B


xB1
xB2
...
xBn


︸ ︷︷ ︸
xB

.

(31)

Then add for each junction in the incidence matrix a set of equations represent-
ing the interconnection as we explained for the junction in the previous section
to the matrix D. In a pipeline network one can also have junctions with more
than three pipes. The equations in (29) and (30) then generalize easily to these
cases and results in the case of a junction with k pipes to exactly k constraints
(k-1 constraint on the flows and 1 constraint on the efforts). Furthermore pre-
scribe as before the necassary boundary port variables and write it with the
matrix C. We get:

0̄ = D · xB u = C · xB .

If the controls u precribe the correct boundary variables we can invert the matrix
G in e0̄

u

 =


A

D

C


︸ ︷︷ ︸
G

xB1xB2
xB3

 ,

and write as before

f = B ·G−1 ·

e0̄
u
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From the previous description it should be clear how one can find the equations
of motion of a whole pipeline network. The details about how to explicitly
compose the matrices C and D would make this explaination technical instead
of instructional and therefore we omitted it. We wrote however a script that
creates C and D and ultimately the full matrices B and G from the incidence
matrix of any graph. It turns out the resulting equations are power conserving,
since the resulting matrix is skew-symmetric. This indicates that we connected
everything in such a way, that the resulting system is again a port-Hamiltonian
system.
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6 Conclusion and further research

In this thesis we found out that the 1-dimensional isothermal Euler equations can
be rewritten as a port-Hamiltonian system. The energy function consists of the
kinetic energy and potential energy that arises from compression or expansion
of the gas. For the purpose of simulation, we discretized the port-Hamiltonian
system using a port-Hamiltonian discretization method. We first explained how
these finite dimensional port-Hamiltonian systems on lumps can be coupled to
form a pipeline. Next, the port-Hamiltonian formulation made it possible to
couple pipelines together to form a pipeline network, while preserving energy
conservation and mass conservation.

The used methods for discretizating and coupling lumps together to form a
network are illustrative for port-Hamiltonian systems in general. By replacing
only the energy density function, one could for example simulate electrical en-
ergy networks. Therefore this thesis could serve as a lookup for anybody who
wants to do simulations of port-Hamiltonian systems.

The work done in this thesis could also be extended. We neglected the friction
term from section 2.1 that was originally in the isothermal Euler equations from
[Grundel et al., 2014]. It would be interesting to add friction to the system,
while friction causes a pressure drop inside real gas pipes. We worked on ways
to incorporate the friction as a resistive port to the port-Hamiltonian system,
but did not succeed. The resistive port is a concept often used in the port-
Hamiltonian formulation. The port-Hamiltonian discretization methods that we
found in the literature did however not incorporate a friction port. Therefore, a
suggestion for more general research on port-Hamiltonian systems is to find port-
Hamtiltonian discretization methods for port-Hamiltonian systems including
resistive ports.

Another point of interest would be the comparison of the port-Hamiltonian dis-
cretization method used in this thesis to other commonly applied discretization
methods. For example finite volume, finite difference, finite element methods or
spectral discretization methods.
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