E.W rij kS unive rs iteit faculteit Wiskunde en
iﬁﬁz gronin ge n Natuurwetenschappen

Optimize picture scanning

Masterthesis Applied Mathematics
December 2014

Student: H.W.P. de Wilde

First supervisor: A.J. van der Schaft

Second supervisor: N. Brouwer, BMW Forschung und Technik

Abstract

Self driving cars need to be able to check whether there is danger on
the road or not. Cars are equipped with cameras and the pictures are
scanned for objects. Correctly detecting all the pedestrians in the image
takes a lot of time. Research is done to make the detector better, but the
detector often still searches through the whole picture. A lot of places
in the picture are scanned that, with the use of only global information
about the scene, can be discarded. Cars are equipped with a lot of other
sensor systems, which can provide the detector with information about
the scene. This information should be processed in such a way, that the
detector only scans the image in the right places. This will help to reduce
the search time and to improve the quality of the detections. This thesis
describes a way to model the search space of the detector, which will lead
to a framework to optimize picture scanning.

Contents

7

8

Introduction

Detector and search space model

2.1 Diamond model
2.1.1 Twodimensions
2.1.2 Three dimensions

2.2 Search spacemodel L.

2.3 Cubemodel

Fill the initial search space
Environment model

Find the patches

5.1 Slicing method o

5.2 Covering method Lo o
5.2.1 Complete covering
5.2.2 Horizontal and vertical covering

Calculations

6.1 Apply slicing method oL

6.2 Apply covering method
6.2.1 Complete covering method
6.2.2 Horizontal covering method
6.2.3 Vertical covering method

Discussion

Future work, improvements and possible extensions

References

N~ Otwww

N=]

11

13
13
14
15
18

20
22
22
22
23
23

24

26

27

1 Introduction

In the field of advanced driver assistance systems and in particular in the field of
autonomous driving, a lot of research is done to improve the intelligence of the
car. It is really important for the car to know what is happening around him.
The car is going to be equipped with accurate sensors. For a human inside a
car the most important source to gain information is vision. Therefore some of
the sensors are cameras. The information that a camera generates comes most
basically in the form of pictures. Pictures form an important basis to make the
car intelligent and to predict danger. This thesis focuses on optimizing the way
pictures are scanned.

Searching for objects in pictures is a time consuming and difficult task. The
computer has to be able to correctly detect objects and therefore needs to know
what a particular object looks like. The computer needs clear defining features
of the objects. In the field of driver assistance systems one of the interesting
objects to detect is the pedestrian. Especially for pedestrians, general features
are difficult to define. Pedestrians can have many different shapes and colors.
In the development of detectors the so called Histogram of Oriented Gradients
(HOG) is a widely used method to define the features of shape. Features like
warmth and the motion of the body are normally not considered, but could help
to decrease false positives of the detector. A false positive is an object that is
detected by the detector to be a pedestrian, but what is actually something else.
When only features about the shape of the pedestrian are considered, it is hard
to avoid a lot of false positives. A tree could for example be seen as a pedestrian
because of its strong vertical appearance.

A lot of false positives occur in places in the image where a human brain im-
mediately knows that it cannot be a pedestrian. This occurs for example when
the detector detects pedestrians in the air or as a smaller part of another big-
ger object. Features about location or surroundings could help to improve the
detection of the right pedestrians. Another issue of the current detectors, and
the first reason to start with this thesis, is the time it takes to scan a complete
image. The target is to use the detectors in a real-time setting. A lot of research
is done to improve the detector it self, but in this thesis the goal is to reduce the
number of places to be searched. The approach taken hopefully has the extra
benefit that it avoids a lot of false positives and therefore it actually makes the
results of the detector better too.

The idea is to scan the picture only in the interesting areas and to use the
information about the environment to do this. It is important to think about
the way the information about the environment can be used to improve the
quality of the detections. Detectors should only search in the regions of the pic-
ture where a pedestrian could possibly appear. This means it doesn’t have to
look in trees, buildings or air to find a pedestrian. Imagine the detector is given
a general picture and it needs to find pedestrians. In theory a pedestrian could

appear everywhere in the picture. Only with the use of information about the
scene in the picture, it is possible to define places that do not (necessarily) need
to be searched. Then optimization can be applied to find the list of patches that
the detector should scan. The expected benefits are twofold: first the quality
of the detections is expected to improve and secondly only parts of the image
need to be searched, which means the detector needs less time to find all the
pedestrians.

2 Detector and search space model

This chapter describes the steps that are taken to define a good model for the
detector and for the search space. It also explains why certain steps are taken.
The diamond and cube model are both models of the detector. The diamond
model will not be used in later chapters, while it is replaced by the cube model.
It is added to describe aspects of the detector model and to give more insight.

2.1 Diamond model

Normally a detector uses the so called sliding window to search objects in a
picture. A detector takes a patch in the picture (a smaller part of the whole
picture) and returns whether it believes there is a pedestrian or not. In the
sliding window method, every patch from left to right and top to bottom is cho-
sen and checked by the detector. The detector literally slides his window over
the whole image. It is interesting to know how big the step size in the sliding
window method can be taken, while still all pedestrians are correctly detected.

Therefore, the quality of the detector needs to be tested. As mentioned be-
fore, the detector works on patches. The pedestrian does not need to be exactly
in the center of the patch and also doesn’t need to have exactly the same size as
the patch. In this way every patch will lead to an area around its center where
pedestrians will be detected. This is the origin why in the rest of the paper the
center of the patch and the center of the pedestrians are taken as the reference
points of the object.

A model is needed that holds assumptions about the detection quality of the
detector. In the literature [Dollar et al., 2012], the performance of a detector
is often evaluated using the overlap between the bounding box of the ground
truth (the labeled pedestrian) and the bounding box where the detector sees
the pedestrian. The bigger the overlap, the better the detector performs. This
idea was the inspiration to use overlap between a possible target and the patch
as a measure to define the area of the picture that is covered by one patch. In
other words: The overlap between the bounding box of a pedestrian and the
patch will determine whether we assume the pedestrian will be detected or not.
This idea forms the basis of the diamond model.

2.1.1 Two dimensions

The overlap of two rectangles, sl and s2, is given by the following equation.
Both s1 and s2 have their own height and width in pixels. The values x and
y are the relative distances in pixels between the reference points (the centers)
of the rectangles. The formula only hold for |z| < max(sl.w,s2.w) and |y| <

max(sl.h, s2.h).

Example pedestrian Example patch
sl.w = 300 s2.w = 350
s1.h = 300 s2.h = 350

overlap(sl, s2,x,y) =

1. 2. 1.h 4+ s52.h
w —) X min(s2.h, s2.h, % -y)

min(sl.w, s2.w,
The overlap needs to be normalized to make it usable for comparison. Nor-
malization can be done in many different ways and in this thesis the following
normalization is used. The result is the function ¢, used to measure quality of
the detector.

2 - overlap(sl, s2, z,y)
slaw - sl.h + s2.w - s2.h

q(sl,82,2,y) =

Note that q will always be between 0 and 1. The normalization could have been
chosen in another way too, but for the current purpose this normalization suf-
fices. The function defines the region in the image that is covered by one single
patch. Assume as an example that the detector will correctly find pedestrians
if ¢ > 0.8 (the value 0.8 is called the threshold). To see what area is covered
by a particular patch, fix the size of the patch and the size of a pedestrian with
reasonable size and consider the relative distance between both. The value of
q is plotted in figure 1 for the relative x- and relative y-position between patch
and pedestrian. Furthermore, the plane ¢ = 0.8 is plotted.

The area that is covered by one single

patch is particularly interesting. This

is the area where pedestrians will be

found by that patch and it is given by 0.8 |

the area where ¢ > 0.8. The function y
. .. . /] ;

q is clearly symmetric in relative po- 07 | /;"',7,‘,7,';';2?:.' o

ys N iy,

sitions x and y and therefore the area /ZZ',Z‘,Z:O
)
Q

where ¢ > 0.8 will also be symmetric.
The exact size and shape of the area 0.6
depends on the size of the patch and g
the pedestrian. However, the shape -50 0 50
is important: an octagon. While de- x (rel) 0 50 50 v (rel)
tectors are designed for particular ob-

jects, the proportion of the target ob- Figure 1: Function q plotted
ject (ratio between height and width)

is fixed. In this thesis the focus is put on detecting heads of pedestrians and
therefore the proportion is normally around one, which means the bounding box
of the target is normally a square.

Now assume all the pedestrians in the image of a certain size (say 300 x 300
pixels) have to be found. This means a tiling of the octagons has to be de-
fined such that the whole picture is covered. Covering by octagons is not really
straightforward, while there exists no regular tiling and a complete cover will
always give overlap between different octagons. Therefore the tiling is chosen
relatively simple and patches are placed in a grid. So there is only a distance in
x-direction or a distance in y-direction defined for subsequent patches.

mirror
lines
D -

\1 N The shaded area is
& the detected area
Figure 2: Tiling of octagons

Pedestrians are detected in the area that is covered by the tiling of octagons. A
part of the tiling is given in figure 2 and it shows that there is a small area in
between the octagons that is not covered. It is interesting to know how much
of the total area is covered by the octagons. The mirror lines form a rectangle
that is partly covered by a piece of one octagon. It is easy to see in figure 2 that
the percentage of the total covered area is equal to the percentage of covered
area of the rectangle that is formed by the mirror lines. The corner points of
the octagon can be calculated analytically and the percentages of the area that
is covered can then be calculated at once for many different step sizes. The size
of the target is fixed at 300 x 300 pixels. For different step sizes and several
different patch sizes, the resulting hit percentage against the number of patches
needed to cover a 2592 x 1920 pixel image, are shown in figure 3.

With use of the above picture, the preferred optimal choice of detector size for
a particular target can be found. The step sizes are not shown in figure 3, but
every point belongs to a specific combination of step size in x- and y-direction.

2.1.2 Three dimensions

Covering the whole image with patches is the first step, but what about different
sizes of patches? A detector cannot detect a very small target in a very large
patch. Therefore the image needs to be covered by patches of different sizes.
The detector typically has a smallest and a biggest target that it can detect
in a patch. Now fix again the size of the patch and additionally change the
size of the target. Remember here once more, that the proportion of the target
is always fixed. Different sizes of targets lead to different sizes and shapes of

0.95 350 x 350

® 345 x 345

0.9 340 x 340
335 x 335

0.851 330 x 330
® 325 x 325

0.81 ® 320 x 320

])(?l'('(?llfﬂ}.’,(? of covered area

0.75 — : : : : ; !
500 600 700 300 900 1000 1100 1200
sliding window

Figure 3: Covering percentages for different step sizes

octagons. This is shown in figure 4.

225x225 245x245 270x270 290x290 315x315 335x335

0 0 QOOC=

Figure 4: Octagons for several pedestrian sizes for the same patch (250 x 300)

When the shapes are plotted on top of each other and more steps in between
are added, a 3d-shape arises, shown in figure 5.

Figure 5: Formation of a diamond

If all pedestrians in the whole picture need to be found, the whole picture should
be searched. When besides also different sizes of pedestrians need to be found,
the whole picture should be searched on different scales too. But how big is the
step between subsequent patch sizes? The model as described above can give
an answer to this. Every patch leads to a diamond-like-shape. A point inside
the diamond corresponds to properties of a pedestrian: size and position. Note
that proportion was initially already fixed. When the properties of a pedestrian

lay inside the diamond it is assumed to be detected by the corresponding patch.
That means that the pedestrian will also be detected if it is a little bit smaller
or a little bit bigger than the patch. The size of the diamond helps to find the
next patch size that needs to be selected.

2.2 Search space model

The end of the previous sections leads to a description of the initial search
space. Pedestrians in the picture can appear on different locations and on dif-
ferent scales; the detector has three dimensions to search: x- and y-position and
scale. Therefore the search space of a picture can be seen as a subset of the
three dimensional space defined by a range in x- and y-position and a range in
scale. The whole picture (this gives the range in x- and y-position) could for
example be searched for pedestrians with sizes ranging from 200 to 800 pixels.
As explained before, under the chosen assumption every patch gives rise to a
diamond. This diamond is a small subset of the search space. The problem of
finding the right patches to scan the picture is now transformed into a problem
of finding a way to place the diamonds such that the diamonds together com-
pletely fill the search space.

A regular tiling of diamonds that fill the search space doesn’t exist. In par-
ticular since the diamonds in the problem have the strange property to have
a fixed size depending on the size of the patch and the diamonds obviously
cannot be rotated. Like in the case of the octagon tiling, a simple tiling can
be chosen where the diamonds partly overlap eachother. Why are we actu-
ally working with a diamond shape? The diamond-shape is a consequence of
the chosen overlap and quality function and the assumption that this function
defines the pedestrians that a patch can detect. Any other assumption about
which pedestrians the detector detects in a single patch could also be good.
Deciding whether the model based on overlap matches the real detector, is not
part of this thesis because it strongly depends on the used detector and it is
important to keep it general. What at least stands out is that the model that
has been used until now is not flexible; there is only one parameter to cover
the properties of the detector: the threshold (see figure 1). Therefore another
model is described in the next section.

2.3 Cube model

The need for a more flexible model for the detector arises. Central question:
Within what range of a patch it can be assumed that the pedestrians will be
detected? In this section a new and more flexible model for the detector is
introduced.

As described above, the image needs to be searched in three directions: x-
position, y-position and scale. Every patch leads to a covered range in x-
direction, a covered range in y-direction and a range in scale. The diamond

was an example of such a covered combination of ranges. The new model will
not be an octagon that changes on every combination of sizes, but will be a
rectangle that is equal for every combination of sizes. The rectangle and the
different possible sizes are given by ranges. Every range can be separately cho-
sen, which makes the model more flexible. The range in x-direction is defined
as a percentage of the size of the patch itself. So, the smaller the patch, the
smaller the region it covers. This is a natural assumption and the same holds of
course for the y-direction. The range in scale direction is defined by a lower and
upper bound. That could for example mean that a detector is able to correctly
detect pedestrians of sizes between 300 x 300 and 380 x 380 in a patch of size
400 x 400. These lower and upper bounds are again given as a percentage of
the size of the patch. In figure 6 the definition of the parameters is illustrated
with example values.

0.6 x size
0.48 x size 0.21 lsize
1.18 x size

Figure 6: Parameters of the second model

All the four percentages above can be chosen independently. This makes the
model more flexible and it is likely to capture the performance of a real detector
better. For every particular detector the right parameters have to be chosen.
This can be done by testing within which range the detector correctly deter-
mines the occurrence of a pedestrian.

The big difference between the diamond-shape, is that the range in x and y
direction where pedestrians are assumed to be detected, do not depend on the
scale of the target. The three dimensional shape can again be visualized in the
same way it was done with the diamond in figure 5, by just drawing the shapes
for different sizes on top of each other, see figure 7.

The interpretation of the model of the cube as shown in figure 7 is the same
as the model of the diamond in figure 5. The important explanation can be
reviewed at the end of section 2.1.2.

scale

320

270

SV

20

Figure 7: Formation of a cube in the same way as in figure 5

3 Fill the initial search space

The rest of the thesis uses the cube model and the search space model as de-
scribed in the previous chapter. This chapter explains how to create an initial
list of patches that according to the cube model completely fills the initial search
space in an efficient manner.

The initial search space is given as a range in x-, y- and scale-direction and
therefore looks like a big cube. The model of the cube gives a straightforward
way to fill this initial search space: simply side by side. It works perfectly in
the x- and y-direction. But, since the size of the cubes get smaller when the
size of the patches get smaller, the straightforward way to make a filling for he
complete search space, is to place them layer by layer. Because the cubes get
smaller, this means that you need more patches to find the smallest pedestrians
in the picture. The first and last step of the process of filling the initial search
space layer by layer is shown in figure 8.

1910

1910
y ,

y

1800 0 1800

X 2592 100 scale X 9502 100 scale
Figure 8: An example of filling the search space starting with the biggest cubes

With the settings used in this example, 46691 cubes (eq. patches) are needed to
fill the initial search space. Something appears to go wrong at the smallest size.
The smallest cubes are needed to fill the last part of the search space. These
cubes are chosen smaller than necessary, since they are chosen to connect to the
cubes that are one size bigger. It would be better to choose them to have the size
that covers until exactly the smallest possible pedestrian (the lower bound of

scale of the search space). Choosing its size like that, makes the smallest cubes
larger (larger is not possible). The result is that there are less cubes needed to
cover the search space on the smallest target size and while the cubes are really
small, the total number of cubes in this layer is really reduced by this change.

As a consequence, the second smallest size of cubes in turn are also chosen
too small. It can be chosen bigger, while the range of the smallest patches is
now a little bit increased. Choosing the second last size a little bit bigger has
the same advantage that we just saw by increasing the smallest size: there are
fewer cubes needed to cover the whole image. Applying this principle to all
the other layers too, it turns out that the same search space, with exactly the
same settings, needs only 27048 patches to be completely covered (see figure
9). There is only one conclusion possible: the search space should be filled up
starting with the smallest cubes first. It’s not a formal proof, but coming up
with a more efficient way to fill the search space is likely to be impossible.

2000 4
1500 ~
Y1000

500 S

0

1000

72000 500 ol
X 2500 0 scal

Figure 9: An example of the most efficient initial filling; starting with the
smallest cubes

The way of filling the search space as just described, results in a distribution
of the small cubes. This in turn corresponds to a list of positions and sizes of
patches. This list can be used as input for the detector to search the whole
picture. But, as mentioned in the introduction, there is a desire to search only
parts of the image and that will be the topic of the rest of the thesis.

10

4 Environment model

A good starting point for improving results on the search strategy of a picture
are the just created model for the detector and the initial search space. Without
any information about the scene in the picture, the target (head of a pedestrian)
can be anywhere. In this case, scanning the whole image would be the only so-
lution to find all pedestrians and a way to find the corresponding list of patches
is given in the previous chapter. To be able to take the next step, we definitely
need information about the scene in the picture. This information could provide
areas where a pedestrian could be expected or not. In the configuration of a
camera in front of a car you could for example expect that pedestrians will not
appear in the air. But where is the air? Normally it is in the upper area of the
picture, but be aware: a pedestrian in front can be big, so that his head will
be visible in the upper area of the picture. Therefore it is important to make a
difference between the area that should be searched for small pedestrians and
for big pedestrians. Something similar holds for the ground plane. In the image
the ground plane normally goes up in the picture. The whole perspective in
the image is really important for drawing the right conclusions about where to
search. The camera is mounted into the car and the car is standing on the
ground, this already means that certain assumptions about the scene can be
drawn.

Other really important information to reduce the search space is the existence
of buildings, other cars, sidewalks etc. Buildings and cars near to the car could
reduce the search space. Sidewalks can give a lot of information about the
possibility of pedestrians to appear there or not. All this information is really
important for drawing conclusions about where to search and where not. Notice
that a lot of this information strongly depends on the particular scene. This
means there is a strong need to have live information about the scene.

Information about the scene can also be static. Information about for example
ground plane and air does not differ too much from scene to scene. Besides,
statistics of labeled data can be used to draw reasonable conclusions about the
regions where pedestrians appear.

But how can this information be used to reduce the search space? The first
step is to take care of the areas where you don’t have to look at all. This is
for example given by the existence of buildings, cars, the ground plane or air.
Looking 'behind’ buildings or other big objects is useless. The word ’behind’
is marked, while the picture you look at is a two dimensional projection of the
world. An object that would normally be behind a building is seen in the picture
at the same position as the building, but with a smaller size. Therefore having
information about buildings and big objects in the picture is only useful when
you know how far the object is away. Only then the size of the object can be
estimated and you can assume that you don’t need to search for any smaller
objects in this region of the picture. Exactly this issue makes the distance in-

11

formation about the objects in the picture really important.

The cars that will have a camera in front will therefore (and because of a lot of
other purposes) be equipped with laser scanners. These laser scanners are the
sensors that can provide distance information about objects in front of the car.
Transformed back to the two dimensional image plane, this will help to estimate
the distance to objects in the picture.

The data from the laser scanners can also help to reduce the search space in
front of objects. If the laser scanner detects an object, it means that there is
no object between the laser scanner and the detected object and therefore these
sizes can probably also be removed from the search space. Note that the whole
beam of the laser scanner needs to be transformed to the image plane, so that
the right sizes on the right locations are removed form the search space.

Creating this environment model is a big and interesting task, where a lot
of developers are working on. A big part of the environment model is already
available or will at least be available soon. This thesis therefore assumes that
an environment model is available. The more important question is how this
information can be used to find the right patches to search.

What the next chapters assume to be available, is an environment represen-
tation in terms of regions in the picture where a certain range of pedestrian
sizes is not expected to appear. In other words: a subset of the search space
that does not need to be searched. Subsets of the search space are three di-
mensional shapes. It is common to describe these by meshes. With use of the
environment model it is possible to describe meshes where the detector doesn’t
need to search. What these meshes exactly look like, is a matter of environment
interpretation. The meshes form the basis to find the patches that efficiently
cover the remaining parts of the search space. These remaining parts are to-
gether called the reduced search space. Globally, there are two different ways
to cover the reduced search space: The first method is to slice away the patches
from the previous initial list of patches that cover the initial search space and
the second method is to find the area where we want to search and to cover this
area from scratch. In the next chapter we will focus on this step.

12

5 Find the patches

Following the discussion in the previous chapter, this chapter will discuss the two
main ways to reduce the search space and more important to find the patches
that fill this reduced search space. The first method is based on the list of
patches that cover the whole picture and slices away the positions that do not
need to be checked. This method is therefore called the slicing method. The
other method turns the procedure around and starts with the meshes defining
the environment and finds a distribution of patches that cover these meshes.
This method is therefore called the covering method.

Both methods will be compared afterwards. Two short conclusions can al-
ready be revealed: The slicing method is computationally much faster, while
the covering method can be used to find a much better (perfect) solution when
computation time is not important.

5.1 Slicing method

The slicing method starts with an initial list of patches that should intentionally
cover the initial search space. A procedure to construct such a list is described
in chapter 3. Besides the starting list, the method uses the environment model.
The environment model is given as a list of meshes that together define the
search space as explained in chapter 4. The slicing method essentially throws
away the patches that cover areas that do not need to be searched. This is
mainly a geometrical task, that can be computationally very expensive. Matlab
is chosen to write the framework and functions to do these tasks. With the
use of built-in Matlab functions and the packages geom2d [Legland, 2005] and
geom3d [Legland, 2009] a lot of tasks can efficiently be computed. A function
from the package geom3d is able to decide very fast whether points lay inside or
outside a given mesh. This function is used to check if the corner points of each
small cube from the initial list lay in or outside the reduced search space. Note
that this procedure contains a small simplification: instead of checking whether
the whole small cube is in or outside the reduced search space, only the corner
points are checked. The result is a list of the cubes that (almost) completely
cover the reduced search space.

The performance and results of performed tests of the code [de Wilde, 2014]
show that the generated list covers the reduced search space completely. Some
small cubes are only contributing with a very small part of its volume, for exam-
ple only the very corner touches the search space. This small cube is therefore
not really important. A way to delete them afterwards is to calculate how much
it contributes and find a threshold or rule to delete it when the contribution
is too less. This idea has been implemented, but it appeared to be computa-
tionally a very expensive task while the number of extra deleted patches is in
comparison too low. Because of this low gain for long computation time, this
idea is removed from the code and is not used for further elaboration.

13

5.2 Covering method

The reason to start with the development of the covering method is the wish to
have a better distribution of patches. This means, covering the to-be-searched
areas in the picture such that fewer patches are needed. However, the whole
geometry of the search space needs to be considered when choosing the very best
distribution. This can be a very computationally expensive task. This section
explains several different strategies to cover the search space. Those strategies
all have a certain own balance between computation time and precision. In
general more precision means that more computation time is needed.

The approach chosen to find a cover for the reduced search space is to cre-
ate and solve a binary integer program (BIP) [Bertsimas and Tsitsiklis, 1997].
This is a natural approach, while a function has to be minimized under certain
constraints: Minimize the number of patches, while the whole search space re-
mains covered. A big difficulty is to find a way to transform the geometry into
constraints. A description of the boundaries in terms of inequalities is not what
is needed; a description of the areas that are covered and uncovered by a certain
choice of patches is needed and needs to satisfy the constraint that everything
needs to be covered. Recall the general mathematical form of a BIP; it is given
by the following equations:

Minimize z=f"x feRr x € R"
such that: Az <b Ae R™" be R™ (1)
2 €{0,1} Vie{1,.,n}

The first approach is to slice the geometry into several parallel layers. Those
layers correspond to the layers that were used to fill the initial search space as
in chapter 3. The layers therefore look like slices from the reduced search space
and every layer has a very specific own two dimensional geometry. Slicing one of
the cubes that correspond to a patch, results in a small rectangle. The problem
of covering the search space around the sliced layer, now corresponds to the
problem of covering a two dimensional geometry by rectangles. Note that the
two dimensional geometry is a result of a sliced combination of meshes, which
means it has the form of a two dimensional polygon.

The procedure of slicing the reduced search space into layers is a simplifica-
tion. It reduces the three dimensional problem into a series of two dimensional
problems. It would have been possible to create a similar three dimensional
problem, but the computation time for the two dimensional problem will turn
out to be long enough, which implies that a three dimensional extension would
not be interesting to consider any way.

Therefore this subsection focuses on the two dimensional simplified problem.

In two dimensions, the problem is known as the polygon covering problem.
While this problem is a basic problem, it appears in different research areas.

14

Already around 1980 - 1990 researchers worked on it and showed that it is an
NP-hard problem [Franzblau and Kleitman, 1984]. In the last years again some
papers appeared about the subject of polygon covering [Stoyan et al., 2011]. It
is for example used to create an optimal atlas [Hoffmann, 2001]. The papers all
propose methods to approach the problem. Often they impose special assump-
tion about the geometry that do not apply to our problem and therefore no
good methods have been found in literature. The author of this thesis wanted
to exploit the possibilities and difficulties himself and this is described in the
upcoming sections.

5.2.1 Complete covering

How to transform the problem of covering a two dimensional polygon into a
BIP? The idea is to transform the polygon into a pixelated image. That means,
creating a raster of cells over the polygon and fill every cell that is part of the
polygon. This pixelated polygon defines the area that needs to be covered and
can be used to set constraints on every pixel. Every single pixel needs to be
covered by at least one rectangle. But every pixel will also serve as the position
vector of a potential patch. The polygon will be covered by identical patches,
while the slices of the reduced search space are exactly chosen in the layers of
the original filling.

Every pixel in the pixelated image serves as the position vector of a potential
patch and every pixel also defines a constraint, saying by how many rectangles it
needs to be covered (zero or one). Therefore every pixel gives rise to a decision
variable. More precise: for every pixel there is an associated decision variable
that has value 0 if it will not serve as the position vector of a patch and it will
have value 1 if it does serve as a position vector of a patch. In other words:
whether there will be a patch placed on that location or not. Secondly, every
pixel gives rise to a constraint. Therefore we need to count for every pixel,
which potential patches would cover it. These patches are located just above
and just left to the pixel that needs to be covered. That means that whenever a
patch is located just above and just left to the pixel, the pixel is covered and the
constraint is satisfied. If more than one patch is placed there, the pixel is cov-
ered twice or more often and the constraint is satisfied as well. The constraint
has therefore the form of a summation over unweighted decision variables that
should be bigger than or equal to one. The result of the complete problem,
when written in BIP form is given below.

15

The pixelated image has m rows and n columns.
a,z €{1,..,n}
by e{l,..,m}

| 1 if pixel in column a and row b needs to be covered
Pab =10 otherwise

P 1 if a patch is placed in column x and row y
1 0 otherwise

w : fixed width of the patch in pixels
h : fixed height of the patch in pixels

. . . n m
minimize z = E E s
x=1 L—y=1""Y
b

a
s 3 oy >
z=max(0,a—w+1) y=max(0,b—h+1) wy = Pab

The equations have to be written in standard 0
matrix form as given by equation (1). The
constraints in the above formulation have to 5 \

be multiplied by -1 to match the standard

form. Matlab uses linear indexing for matri-

ces and this is also applied to the decision \
variables s, and the constraints with RHS 150 LT
Pap. This can be seen as listing the decision 0 100 200
variables and constraints in the order from nz = 1942

top to bottom, frorp l(?ft to right (column by Figure 10: The entries of A
column). The entries in A are 0 or 1 and an

example of the matrix is given in the figure 10. The matrix shown here belongs
to the example on the left in figure 12. The entries of the given vector f are
all 1 and the entries of the given vector py, are the linear indexing of the to be
covered pixelated image.

Note that all the entries in the matrix A and the vectors f and b are 0 or 1
and that all the decision variables can only adopt binary values. Actually this
problem can be seen as a set covering problem, known from literature [Caprara
et al., 1999]. Set covering problems are NP-hard and therefore solving it is a
very time consuming task. Especially when you notice that the number of de-
cision variable and constraints is really big; every pixel gives rise to a variable
and to a constraint. Without down scaling the image of 4096 x 3072 pixels (the
image size of the camera from the car), this would result in 12582912 decision
variables and a similar amount of constraints. Downscaling the image and the
corresponding patches would really help to create the solution faster. The steps
downscaling, solving, and then upscaling again generate little round-off errors.
Those round-off errors can be negotiated when the computation time is really
important.

16

A way to solve the created BIP is to use the function bintprog from the Opti-
mization Package in Matlab, designed to solve a BIP. The latest version of the
Optimization Package that could be used for calculations during the writing of
this thesis was version 6.4 (R2013b) 08-Aug-2013. Whenever a BIP is solved
with a BIP solver, this solver bintprog is used.

The method and solutions of the covering method are demonstrated with the
use of a simple binary image: the shape of a star that needs to be covered.

The pixels will be numbered from top to bottom and from left to right. That
means for example that if the second decision variable turns out to have value
one, there will be a patch placed in the second row in the first column. Note that
the position vector is given at the upper left corner of the patch. Furthermore
this means that the constraint matrix A also respects this way of numbering
the pixels. This way is chosen while the index numbering in Matlab is defined
in the same way. The constraint matrix A has a simple structure, see figure 10.
Note that in this figure, some unnecessary constraints are removed. Only the
constraints where the right hand side is 1 are needed, while the others, where
the right hand side is 0, are always satisfied.

Besides unnecessary constraints, there are also a lot of unnecessary decision
variables. When the picture contains a lot of zeros (corresponding to the pixels
that do not need to be covered), there will be a lot of positions that when a
patch is placed there, it doesn’t contribute to the area that should be searched.
Only the positions in the image where a patch causes overlap with the to-be-
covered polygon, are interesting to use as decision variable. A method similar
to the Minkowski sum [Lee et al., 1998] can be applied to the rectangle and
the polygon to get the interesting decision variables. A function to create this
Minkowski sum is included in the implementation.

The number of decision variables can further be reduced. Every single rect-
angle that would be placed at a point that results from the Minkowski sum will
overlap the polygon with at least one pixel. However, this overlap could easily
be covered by another rectangle too. The latter maybe covers other pixels of
the polygon too and can therefore be favoured. The former rectangle is there-
fore not interesting to consider and the decision variable corresponding to its
position can be removed from the optimization problem.

After selecting the right decision variables and constraints, a solution can be
found by the BIP-solver bintprog. As mentioned before, this can take really
long when a big image is selected. The solution that is returned should consist
only of zeros and ones. This solution needs to be transformed back in to coordi-
nates for the patches. The definition of the decision variables is very important
there. After the right transformation, the solution can be shown and in the case
of the star, the cover looks like figure 11.

17

Complete cover with 14 patches

Figure 11: An example of a complete cover

The steps are worked in out a Matlab function, called createcover. The code
can be requested [de Wilde, 2014].

5.2.2 Horizontal and vertical covering

As seen before, the computation time for the complete covering method is really
long. Although the complete covering method gives the real optimal covering,
it can also be really interesting to consider a rougher covering method, where
solutions can be computed in less time. Rougher here means that less locations
are considered to use for patches. Two ways are chosen: only cover the polygon
in a vertical or horizontal manner. The idea to solve the problem is exactly the
same, but some simplification can be made. Solutions of both the vertical and
horizontal covering according to the BIP-solver are given below. These methods
are also included in the function createcover, which can be requested [de Wilde,
2014].

Horizontal cover with 18 patches Vertical cover with 18 patches

Figure 12: Two simplified ways to cover a polygon

The structure of the constraint matrix A for the horizontal and the vertical cover

18

look quite simple. Investigating the structure and purpose of these matrices
could maybe lead to faster solution methods that could approximate the optimal
solution really quick. As a test, the solutions of the simple matrix equation
Ax = b were examined and apparently it gives very good results. Of course
the solutions of these matrix equations, as computed by Matlab (z = A\b)
do not necessarily have to be integer. It unfortunately doesn’t work for the
complete covering, since the solution then contains a lot of non-integer values.
The structure of the matrix A in case of the horizontal or vertical covering
method however, seems to be a motivation for Matlab to return an (almost)
complete binary solution. The horizontal and vertical covering problems of
figure 12 are as an example solved by the equation Ax = b and this results in a
cover of respectively 18 and 19 patches. Compared to the results found by using
the BIP as in figure 12, this is really not a bad result. This example shows that
the results are very good, although not necessarily optimal. The computation
time however is shorter and that shows that this is an interesting field to do
more research.

19

6 Calculations

The developed methods and corresponding code is now capable to be applied
to a picture. A picture from the camera of a test car is taken. This picture
gives the information about the environment and for this example the meshes
of the environment model are defined by hand. The first step is to outline the
big objects that are located within the range of the environment where pedes-
trians should be detected. The second step is to estimate how far the corner
points of these outlines are away from the camera. Then this distance has to
be transformed into the expected size of the target pedestrians. In the example
a detector for detecting heads of pedestrians is applied and therefore the target
size in centimeters is approximately 25 cm. For the transformation, the pinhole
model for the camera can be used, where features about the camera needs to be
applied. In the example a simple estimation is applied by hand, while at this
moment it is just used to demonstrate the principles discussed in this thesis.

Figure 13: The picture from a test car used as an example

Three cars are visible in the picture within the range of the environment where
pedestrians should be detected. Also an estimation of the ground plane is made.
This ground plane can also be used to find a plane for the air. Pedestrians that
are standing on the ground plane are particularly interesting and standing on
the ground plane means that they will not appear really high in the picture. The
further away from the camera, the smaller the pedestrians appear in the picture
and therefore the air and ground plane approach each other in the direction of
smaller scales. Figure 14 shows the result of the environment model.

The yellow mesh is the result of the complete search space where the ground
plane and air plane are sliced away. The inside of this mesh should be searched,

20

3000 ~
2000 A

y
1000 A
0+

400

2000
x 3000

4000 0 scale

Figure 14: The environment model of the example

except the parts that are occupied by the three cars; the green and the light
and dark blue meshes. The two blue cars are just close enough to be within the
interesting distance to the camera. The green car is closer and therefore the
green car removes a bigger part of the search space.

The settings for the initial search space are chosen to match the picture. That
means that the x-range is [0,4096] and the y-range is [0,3078]. This is equal to
the width and height of the image in pixels. The range of scale, that means the
range of sizes of the heads of pedestrians that should be detected, is chosen to
be [60,400]. This range is approximated by hand. It means that the smallest
pedestrians to be detected are as far away as the cars that are crossing the
street and the biggest pedestrians to be detected are standing just in front of
the camera.

The settings for the detector are an approximation of the quality that a real
detector could have. The proportion is chosen to be 1. The patches will be
squares, matching approximately the proportion of a head. The maximum de-
tection range in X and Y direction are chosen equal, namely 0,5. In short this
means that the distance to the next patch will be 0,5 times its size (so patches
overlap). The scale lower and upper bound and chosen respectively 0,65 and
1,00. This means that a pedestrian with exactly the same size as the patch is
the biggest pedestrian that will be detected in the patch and a pedestrian with
0, 65 times the size of the patch is the smallest pedestrian that will be detected
in the patch.

The above mentioned settings always need to be available and should there-
fore be set in the beginning of the code.

21

6.1 Apply slicing method

The first step of the slicing method is the creation of the initial list of patches.
This list is created in the way that is explained in chapter 3. The list for the
example here consists of 10.284 patches.

Then this list of patches is going to be sliced by the meshes. A list of the corner
points of all the small cubes is created and with the use of the function inpoly-
hedron [Sven, 2012] it is checked whether one of the corner points lays inside
the reduced search space defined by the meshes. As long as one corner point
lays in the reduced search space, the cube will be kept and otherwise it will be
thrown away. The result is a list of only 2.074 patches.

Note that the biggest part of the patches is sliced away by the ground and
air plane. Without slicing away the cars and therefore only slicing away the air
and ground, the initial amount of 10.284 patches is already reduced to 2.658
patches. Additionally the big car in the front slices away another 584 patches,
resulting in the 2.074 patches that was mentioned before. The two cars in the
distance do not slice away anything. That’s because the cars are to far away
and all the patches around the cars are still filling a part of the reduced search
space. The result of the slicing method therefore is 2.074 patches.

6.2 Apply covering method

The covering method starts with the meshes and fills it up from scratch. The
method itself has different parameters to choose. There are three different cov-
ering methods: the complete cover, the horizontal cover and the vertical cover.
These methods are tested separately. Besides this choice, there are two solvers
to choose. For the complete covering method only the BIP solver works (Binary
Integer Programming). For the horizontal and vertical covering method both
the BIP solver and the EQ solver (Equation) work. Furthermore the image
needs to be downscaled in order to keep the number of decision variables low
enough. Downscaling the image appeared to be tricky. A too small scale results
in too small patches (which ofcourse also need to be scaled) and a too large
scale results in a too big problem. The calculations are split into the different
covering methods.

6.2.1 Complete covering method

For the complete covering method there is only one solver available, the BIP
solver. This is the more time consuming solver. Unfortunately the complete
covering method appeared to be too complicated to give results. Even when
choosing the smallest scaling, it appeared to be impossible to retrieve a solution
for the example. The problem is the complexity of the problem. Every pixel
of the downscaled image is added as a decision variable and for the size of the
example this simply results in too many decision variables.

22

6.2.2 Horizontal covering method

The horizontal covering method can be solved with either the BIP solver or the
EQ solver. Both methods work fine for this covering method. First the BIP
solver is applied. A scaling of 0, 10 is used. The result is a list with 1900 patches.
Other scaling factors could also be examined, but here we stick to 0,10. Using
a bigger scaling can cause memory overload and using a smaller scaling makes
the results unusable.

The same scaling is applied for the EQ solver, which calculates the patches
by solving the equation z = A\b. The calculation is faster and it results in a
covering of 1912 patches. This is slightly more than the solution of the same
problem with the BIP solver. This is because the BIP solver really finds the
best solution to the problem and the EQ solver just approximates it.

6.2.3 Vertical covering method

The same methods as the horizontal covering method can be applied to the
vertical covering method. It results in 1889 patches when using the BIP solver
and it results in 1905 patches when using the EQ solver. The number of patches
are similar to the number of patches of the horizontal covering method.

23

7 Discussion

The previous chapter shows the results of the introduced models. This chapter
will give an overview of the structure of the code used to calculate the results.
This structure will show the different steps and the calculation time of different
steps of the previous example can then be compared. This will show which steps
take more time then others (all tests are performed on the same example as in
the previous chapter). This chapter is added to make a good comparison of the
different methods possible and also to show which steps can be improved as an
extension of this thesis.

In general the slicing method is more practical. It doesn’t have problems with
running out of memory and the complexity grows linear with the size of the
problem. The slicing method basically consists of two parts: first the creation
of the initial patch list for the whole search space and then the selection of the
patches that are part of the reduced search space. It takes only 0.08 seconds to
create the initial patch list with 10.284 patches. The most expensive step is the
second, the selection of the patches belonging to the reduced search space, per-
formed by the function slicePatchListByMultipleMeshes. For the example this
takes around 30 seconds. The problem is that the eight corner points of all the
10.284 patches are checked to lay in or outside each mesh separately. The code
could further be optimized to reduce this number of checks by selecting other
corner points or to combine corner points. However, it would be much more ef-
ficient to define the initial search space more precise. The air and ground plane
already remove 80% of the patches. The air and the ground plane are part of
the more or less static objects in the picture, since the air and ground plane are
always approximately in the same position in the picture. Slicing away static
objects from the patch list does not have to be executed in real time. This can be
done before. The benefit is that the function slicthePatchListByMultipleMeshes
only needs to be applied to 20% of the patches. To show this benefit in terms
of calculation time observe the following. In the example shown, the dynamic
objects only slice away a small part of initial search space. A shorter initial
patch list can be created by first processing the algorithm with only the air and
the ground plane. The resulting patch list can be used as input for the algo-
rithm and now only dynamic objects need to be sliced away. Remember that
the whole algorithm took approximately 30 seconds for the previous example.
When using the shorter initial patch list, only 3.5 seconds are needed to slice
away the cars. The result is a final list with 2093 patches. That is slightly more
than the result of slicing away the cars and ground and air plane simultaneously.

The covering method can easily become too big to be solvable. Downscaling
the problem can help to reduce complexity, but this causes loss of precision.
However, whenever a solution of the covering method is given, the result is
guaranteed to be optimal. Any solution of the slicing method will always be
worse or equally good as the solution of the covering method. The covering
method can therefore be used to find a (theoretic) lower bounds for the amount

24

of patches to compare other methods. Even if the geometry is really irregular.
The covering method will never be suitable to give real time solutions.

The sequence of pictures are taken from a moving car and therefore the ob-
jects in a picture are often also visible in the next picture. The strategy of the
current algorithm is to find the list of patches based one a single picture. Ex-
tending the current algorithms to create patch lists based on multiple pictures
can maybe speed up the calculation time, since information about the past can
be used for the new picture.

The slicing method works faster and more practical then the covering method.
It is more suitable to be extended for using the solutions of the past. When
using the slicing method, it is really beneficial to make the initial search space
as small and precise as possible. That means that static information, like the
air and ground plane is used to create an initial search space. Additional to the
static information that defines the initial search space, there is the desire to use
information about dynamic objects. This information is delivered in real time
and therefore needs to be calculated in real time. The algorithm is not working
in real time at this moment. Program and code optimization has not yet been
applied.

The approach taken in this thesis, where we started with nothing and came
up with different optimization problems is probably the core content of the the-
sis. The problem has gone through its first transformation into an equivalent
geometric problem. For this new equivalent problem, the thesis also describes
different solution methods. These methods have just been compared, but un-
fortunately they do not yet meet the requirement of performing in real time.
Different improvements can still be made there.

25

8 Future work, improvements and possible ex-
tensions

Searching only parts of the search space and furthermore to do this really ef-
fectively is a straightforward way to make make results of detectors faster and
better. Research has to be done to define what regions in the image are in-
teresting and why. This seems trivial, but it isn’t. A great part of research
can be done in the dynamic definition of regions of interest. What makes a
region interesting? What technical tools and measurement data is available to
robustly define those regions? Those definitions will most likely result in per-
centages defining the importance of regions. How to handle these percentages?
Can these percentages be added to the idea and approach that was taken in this
thesis?

The dynamic aspect of the problem has to be exploited. Using the list of patches
from the past to find the new patch list gives a complete new dimension to the
problem. The slicing method seems to be more suitable to be extended in this
direction.

When using the current approach and techniques, interesting mathematical re-
search can be done by developing a very specific solution method for the vertical
and/or horizontal covering problems as mentioned in the end of section 5.2.2.
The sparsity of the resulting matrices in the inequality Az < b could lead to
solution methods similar to solving Az = b. This solution method should guar-
antee a binary (optimal) solution. The vertical and horizontal covering problems
can be seen as a series of one dimensional covering problems and can therefore
be solved as such. This could lead to faster solving algorithms.

26

References

Dimitris Bertsimas and John N. Tsitsiklis. Introduction to Linear Optimization.
Athena Scientific Belmont, MA, 1997.

Alberto Caprara, Matteo Fischetti, and Paolo Toth. A heuristic method for the
set covering problem. Operations research, 47(5):730-743, 1999.

HW.P. de Wilde. Matlab files belonging to master thesis, 2014. URL
jelmerdewilde at gmail dot com. Code requests can be send to the mail
adresss.

Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro Perona. Pedestrian
detection: An evaluation of the state of the art. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 34(4):743-761, 2012.

Deborah S Franzblau and Daniel J Kleitman. An algorithm for covering poly-
gons with rectangles. Information and Control, 63(3):164-189, 1984.

Michael Hoffmann. Covering polygons with few rectangles. In Abstracts 17th
FEuropean Workshop Comput. Geom, pages 39-42, 2001.

In-Kwon Lee, Myung-Soo Kim, and Gershon Elber. Polynomial/rational ap-
proximation of minkowski sum boundary curves. Graphical Models and Image

Processing, 60(2):136-165, 1998.

David Legland. geom2d - two dimensional geometry package, 2005. URL
www.mathworks.com/matlabcentral/fileexchange/7844-geom2d. [Pub-
lished 13 Jun 2005 (Updated 27 Oct 2014); accessed 18 December 2014].

David Legland. geom3d - three dimensional geometry package, 2009. URL
www.mathworks.com/matlabcentral/fileexchange/24484-geom3d. [Pub-
lished 19 Jun 2009 (Updated 13 Oct 2014); accessed 18 December 2014].

Yu G Stoyan, Tatiana Romanova, Guntram Scheithauer, and A Krivulya. Cov-
ering a polygonal region by rectangles. Computational Optimization and Ap-
plications, 48(3):675-695, 2011.

Sven. inpolyhedron - are points inside a triangulated volume?, 2012. URL
www.mathworks.com/matlabcentral/fileexchange/37856-inpolyhedron.
[Published 20 Aug 2012 (Updated 27 Feb 2014); accessed 18 December 2014].

27

