
A software system to

manage the domestic

energy demand at the

neighbourhood level

Master's thesis

August 2015

Student: Jan-Paul Eikelenboom

Primary supervisor: Prof.dr.ir Marco Aiello

Secondary supervisor: Prof.dr.ir Paris Avgeriou

Jan-Paul Eikelenboom: A software system to manage the domestic energy
demand at the neighbourhood level, Master’s Thesis, © August 2015

A B S T R A C T

Energy plays an important role in the contemporary households, be-
cause without energy most appliances within the household will not
work. The production of energy mostly comes from finite fossil fuels
which contributes to global warming. In order to keep a functioning
society, well managed energy consumption is important.

In contrary to other works as they focus more on the individual
households, this work attempts to provide a system that minimizes
the peaks in energy consumption by analysing the energy consump-
tion of multiple households in a neighbourhood. An energy consump-
tion vector defines the energy consumption of the appliances in the
neighbourhood. The set of tasks for the appliances is created by the
energy consumption vector in combination with the Max Steady-State
technique. After task creation, the set with policies for each appliance
is made. Based on the tasks and policies sets, the optimal schedule
is created which minimizes the Peak to Average Ratio. The schedul-
ing algorithm uses the Breadth-First Search algorithm in combination
with a Priority Queue.

The results of the scheduling algorithm on the three data sets shows
an average improvement of 64, 9% in costs over the original input. In
one case, the improvement over a data set was 3, 3%. Upon inspection
of this data set, we concluded that one appliance caused the peak. In
the other data sets, where a higher percentage of change was found,
multiple appliances caused the peak. We conclude that the system is
useful for minimizing peaks within households in a neighbourhood,
as long as the peak is introduced by multiple appliances. While at the
same time contributing to the slow down of global warming.

iii

A C K N O W L E D G M E N T S

I would like to express my gratitude to my supervisor Prof.dr.ir. Marco
Aiello for the guidance, remarks, and ideas during the writing of my
thesis. Furthermore, I would like to thank MSc. Marko Milovanovic
for giving me the opportunity to work on this subject and for provid-
ing ideas and comments throughout the process. I also would like to
thank Elmer Jansema and Marleen Eikelenboom for sharing their pre-
cious time to proofread my thesis and for giving comments. Finally,
I would like to thank my family and friends who have supported me
throughout my study and during the process of writing my thesis.

v

C O N T E N T S

i a software system to manage the domestic en-
ergy demand at the neighbourhood level 1

1 introduction 3

1.1 Research problem . 4

1.2 Thesis contribution . 5

1.3 Thesis outline . 5

2 smart environments and load shaving 7

2.1 Smart Environments in households 7

2.1.1 GreenerBuildings 7

2.1.2 enerGQ I-CARE 8

2.1.3 Net2Grid Smartbridge 8

2.2 Load management and load shifting 9

ii concept and implementation 11

3 concept 13

3.1 Gathering historical measurements 13

3.2 Tasks and policies . 14

3.2.1 Tasks . 14

3.2.2 Policies . 15

3.3 Creating a schedule . 17

3.3.1 Terminates . 18

3.3.2 Completeness . 18

3.3.3 Complexity . 19

4 implementation 23

4.1 System Overview . 23

4.2 Development tools . 24

4.3 Scraper . 24

4.3.1 The spider . 25

4.3.2 The pipeline . 25

4.4 Web application . 27

4.4.1 Peakfinder application 27

4.4.2 Scheduler application 28

4.4.3 REST application programming interface (API) . 30

4.5 Database . 31

iii simulation and validation 33

5 results 35

5.1 Setup . 35

5.1.1 The data . 35

5.1.2 The metrics . 35

5.2 Running . 36

5.2.1 Generating tasks and policies 36

vii

viii contents

5.2.2 Generating schedules 40

5.3 Analysis . 46

5.3.1 Task and Policies 46

5.3.2 Before and after scheduling 46

5.4 Discussion . 47

6 conclusion 51

6.1 Future work . 52

iv appendix 53

a graphical user interface of the system 55

a.1 Peakfinder application 55

a.2 Scheduler application . 56

bibliography 59

L I S T O F F I G U R E S

Figure 1 The web portal of enerGQ which displays the
energy consumption. 8

Figure 2 The Net2Grid Smartbridge overview 9

Figure 3 Components overview of the Cooperative Load
Scheduling System (CLSS). 23

Figure 4 Components overview of Scrapy [23]. 24

Figure 5 Dataflow diagram of the scraper component. . 26

Figure 6 Screenshot from the browsable API [4]. 31

Figure 7 Different data model types [14]. 32

Figure 8 Energy consumption of the appliances in data
set A. 37

Figure 9 Energy consumption of the appliances in data
set B. 38

Figure 10 Energy consumption of the appliances in data
set C. 39

Figure 11 Energy consumption and cost charts for data
set A. 40

Figure 12 Energy consumption and cost charts for data
set B. 41

Figure 13 Energy consumption and cost charts for data
set C. 42

Figure 14 Energy consumption for data set A with and
without schedule. 43

Figure 15 Energy consumption for data set B with and
without schedule. 44

Figure 16 Energy consumption for data set C with and
without schedule. 45

Figure 17 Cumulative percentage of change according to
Equation 9 after scheduling for data set A. . . 48

Figure 18 Cumulative percentage of change according to
Equation 9 after scheduling for data set B. . . . 48

Figure 19 Cumulative percentage of change according to
Equation 9 after scheduling for data set C. . . 48

Figure 20 Screenshot showing a list of households. . . . 55

Figure 21 Screenshot showing a list of households for a
specific neighbourhood. 55

Figure 22 Screenshot showing an overview of the house-
hold. 56

Figure 23 Screenshot showing the index page of the Co-
operative Load Scheduling System (CLSS). . . . 56

Figure 24 Screenshot showing the login page. 56

ix

x List of Figures

Figure 25 Screenshot showing a list with neighbourhoods. 57

Figure 26 Screenshot showing the details of a neighbour-
hood. 57

L I S T O F TA B L E S

Table 1 Summary of the different policies their associ-
ated appliances. 16

Table 2 Appliances available in each of the three data
sets. 36

Table 3 Policies assigned in each of the three data sets 46

Table 4 Energy used by appliances that can be sched-
uled active between timeslot 11 and 15, accord-
ing to Figure 8. 49

Table 5 Energy used by appliances that can be sched-
uled with active between timeslot 11 and 16,
according to Figure 9. 50

Table 6 Energy used by appliances that can be sched-
uled with active between timeslot 17 and 22,
according to Figure 10. 50

xi

A C R O N Y M S

API application programming interface

BFS Breadth-First Search

CLSS Cooperative Load Scheduling System

CSV Comma Separated Values

DE Delay

FIFO First In First Out

GUI graphical user interface

HTML Hypertext Markup Language

HTTPS Hypertext Transfer Protocol Secure

IDE integrated development environment

IDD Instantaneous Demand Delivered

IDR Instantaneous Demand Received

JSON JavaScript Object Notation

LED light emitting diode

MAC media access control

RFC Request for Comments

RP Repeating

SG Smart Grid

SI Single

ST Strict

SQL Structured Query Language

PAR Peak to Average Ratio

PR Profile

PQ Priority Queue

URL Uniform Resource Locator

xiii

Part I

A S O F T WA R E S Y S T E M T O M A N A G E T H E
D O M E S T I C E N E R G Y D E M A N D AT T H E

N E I G H B O U R H O O D L E V E L

1
I N T R O D U C T I O N

These days energy plays an important role in most households. Each
household has a multitude of electric and electronic devices help-
ing them in their daily tasks, such as refrigerators for storing food,
computers and mobile telephones for communication and washing
machines for cleaning the laundry. Although energy is a normal com-
modity in most households, it needs to be produced. Like most pro-
duction processes, making energy comes with a cost.

The majority of energy is still generated by burning fossil fuels,
that in return produces CO2 as a by-product. CO2 gasses are believed
to be the main cause for the global warming [15]. In addition the
reserves of fossil fuels are not infinite and eventually these will be
depleted. Another but smaller part of the energy production comes
from renewable sources, such as solar, hydro and wind energy. Even
though these methods are environmental friendlier than fossil fuels,
the investments required are high and the amount of energy pro-
duced is low in comparison to fossil fuels. An even smaller part of
the energy production is provided by nuclear plants. This method in-
volves a complex process and therefore comes with great safety risks,
as proven by major accidents in Fukushima and Chernobyl. Because
of all these risks, fossil fuels will remain to be the primary resource
for energy in the coming years.

Since it is difficult to change the energy source we have to look
into another solution, in other words consuming less energy instead.
According to the International Energy Agency it is possible to keep
the CO2 levels under control until 2017, limiting the global warming
with 2◦C. However, without taking action the allowable CO2 levels
will be locked-in by the existing energy infrastructure at that time.
Cutting the energy consumption growth in half by investing in energy
saving solutions, postpones the lock-in to 2022 [2].

One method of saving energy is replacing the devices by one that
requires less energy when it is used. For example, replacing halogen
with more energy efficient light emitting diode (LED) lamps. Another
method is to improve the energy consumption of consumers, by for in-
stance giving them tools to analyse their energy consumption which
allow them to find areas in which they can improve their energy con-
sumption.

In our research we focus on the last method, so improving the en-
ergy consumption of consumers, by using technology to provide feed-

3

4 introduction

back to the user about his or her energy usage. The feedback consists
of automatically generated optimal schedules for home appliances
within a neighbourhood.

1.1 research problem

Smart environments form an important part of the future energy in-
frastructure. Because they give households insight into their energy
usage. Mark Weiser describes a smart environment as

"a physical world that is richly and invisibly interwo-
ven with sensors, actuators, displays and computational
elements, embedded seamlessly in everyday objects of our
lives, and connected through a continuous network
" [25].

This concept is already being applied in some research projects, such
as the GreenerBuildings project [1], to reduce energy consumption.

We focus on collaboration between multiple households in a neigh-
bourhood to schedule their energy consumption. Appliances in house-
holds can be divided into three categories namely: major appliances,
small appliances and consumer electronics. Major appliances are dif-
ficult to move, such as refrigerators and washing machines. Small
appliances are easy to move and have a low energy consumption, for
example, toasters and coffee machines. Finally, consumer electronics
are appliances such as televisions and personal computers, in general
related to entertainment, communication and office activities. From
a scheduling point of view is the first category the most interesting,
given that these appliances have a high energy consumption and they
can be scheduled freely. However, this category is responsible for only
a small part of the energy consumption for most households. There-
fore we do not look at a single households but a complete neighbour-
hood for reducing peaks, because a peak will have a great impact on
the energy consumption. We reduce peaks by creating an algorithm
and a web application that provides feedback for each household
thus the consumer himself can prevent peaks to occur in the total
energy consumption of the neighbourhood. Therefore our main re-
search question is:

How do we automatically provide households in a neighbourhood
with a schedule to avoid power peaks?

We will answer the research questions by asking the following sub
questions:

1. What is the current state of the art regarding energy feedback
and energy management in respect to households?

1.2 thesis contribution 5

2. How to determine when an appliance is active based on the
energy usage gathered by smart meters?

3. How to find the near-optimal combination of tasks in order to
minimize peaks in the combined energy profile?

4. What kind of system is needed to automatically minimize peaks
in a neighbourhood based on historical data?

1.2 thesis contribution

In this thesis we propose a system for minimizing peaks in the energy
consumption of a residential neighbourhood. The system analyses
energy load profiles of the different categories of appliances during
the day by searching for active periods. Once completed the active
periods are assigned to a policy. Appliances may have more than
one policy assigned to them, depending on the type of appliance.
Finally the policies are used by the scheduling algorithm as a basis for
creating new energy load profiles in which the peaks are minimized.

We describe the algorithms used for scheduling and provide a
working system that can be accessed via a graphical user interface
(GUI) and application programming interface (API). The proposed so-
lution is tested for three data sets, where each data set contains energy
load profiles of randomly chosen households on a random day. After
analysing the results, we see a decrease in peaks for all three data
sets. The system could therefore be an useful tool for managing the
energy demand in a residential neighbourhood.

1.3 thesis outline

The thesis consists of the following chapters;

chapter 2 : we explain the current state of the art in the field of
household energy management tools. Furthermore, we look into
scheduling appliances inside a household.

chapter 3 : we present the concept of our algorithm for minimizing
peaks in neighbourhoods. Secondly the structure of the data set
is presented in combination with algorithms that transform the
initial measurement in tasks. Thirdly we look how the policies
are assigned to the created tasks. Finally, we present the schedul-
ing algorithm and give a short discussion about its complexity.

chapter 4 : we present the design and implementation of the con-
cept created in Chapter 3. Followed by an architecture overview
is given and a description of the technologies used.

6 introduction

chapter 5 : we present the results of running the algorithm on three
data sets. First we explain the data sets followed by the results
and a small discussion.

chapter 6 : we give the conclusion where we reflect on the work
presented in the thesis. Followed by a further work section where
we give ideas in the area of appliance scheduling and energy
awareness for households.

2
S M A RT E N V I R O N M E N T S A N D L O A D S H AV I N G

In the late 1980s Mark Weiser [25] described the smart environment
as

"a physical world that is richly and invisibly interwoven
with sensors, actuators, displays, and computational ele-
ments, embedded seamlessly in the everyday objects of
our lives, and connected through a continuous network."

Nowadays technology has turned the vision of Mark Weiser into a
reality. Therefore making it is now possible for consumers to turn
their house into a smart environment.

2.1 smart environments in households

One of the areas where smart environments play an important role is
the energy awareness field. This because smart environments enable
either the users or the buildings to change their energy usage based
on the data provided by the environment. The following projects have
in conmen that they enhance the data of the smart environment to
influence behaviour.

2.1.1 GreenerBuildings

The goal of GreenerBuildings [1] is to make buildings aware of their
energy usage and adapt their energy consumption accordingly. This
project of the GreenerBuildings project has developed a framework
which uses sensors to define human activity. Based on these activi-
ties, an ubiquitous layer of the system will adapt smart objects. These
smart objects are light switches, plug-in power meters, blinds motor,
and controllers.

A second layer on top of the ubiquitous layer allows the user to
interact with the system and to receive feedback from the framework.
The focus of the project is mainly on controlling the energy on a
local level, such as rooms or offices, because global control of a large
building tends to be rather complex. However, reducing energy usage
on a local level will have an impact on a global level, so a local focus
is an a worthwhile endeavour.

7

8 smart environments and load shaving

2.1.2 enerGQ I-CARE

The goal of enerGQ is to make organizations and households aware
of their energy usage. One of the solutions they offer households is I-
CARE [5]. I-CARE gives households a web portal which shows their
energy usages. The energy usage data is retrieved from the smart
meter installed in their household. Like with most other systems such
as, Net2Grid and others, households are able to review their energy
usages in different formats.

Nonetheless this solution is different from others, because it also
tells households if they are saving energy by comparing the current
energy usage with historical data. With this comparison time, day of
the week, and weather conditions have are taken into account. In the
interface color codes are used as indication if the energy usage differs
or is equal to similar circumstances at a certain time (see Figure 1).

Figure 1: The web portal of enerGQ which displays the energy consump-
tion.

2.1.3 Net2Grid Smartbridge

Net2Grid Smartbridge [21] is a system which give households insight
into their energy usage. The main component of this system is the
Smartbridge which is used as a hub for retrieving and displaying
energy used by a household. In addition, the Net2Grid relies on a
smart meter in combination with multiple Smart Plugs to retrieve
the energy consumption (see Figure 2). When the Smartbridge has
gathered data it becomes available for users by either an application
on their smartphone or using the myNET2GRID portal.

2.2 load management and load shifting 9

(a) System overview (b) myNET2GRID portal

Figure 2: The Net2Grid Smartbridge overview

Apart from giving insight into the energy usage, the system allows
users to set goals. An example of these goals is setting a maximum
for the energy consumption during a day or month. When the goals
are reached, the system will inform the user about their achievement
which is giving the user extra motivation to reduce their energy con-
sumption.

2.2 load management and load shifting

Managing energy consumption is important for both consumers and
producer, since the energy can not be stored, unlike other commodi-
ties, such as water, petrol, or gas, which can be stored. By using de-
mand side management methods, energy producers are able to influ-
ence the consumers of energy, like for example households. One tech-
nique used by the energy producers is modifying the power curve [3],
in which they influencing the energy demand of the consumers caus-
ing the load shape to change. For example, companies charge higher
rates during peak hours than in off-peak hours, hoping the consumers
will shift their energy consumption into the off-peak hours.

Instead of letting consumers plan their own appliances, research
has looked into using computers for finding the optimal schedule. Re-
search by Mangiatordi et al. [18] describes a method for reducing the
Peak to Average Ratio (PAR) with a swarm intelligence system. This
system calculates an average energy usage with the cost function of
the algorithm by using the energy profiles of the devices inside the
households. Another system proposed by Georgievski et al [8] sched-
ules devices according to policies. This system is build for offices
connected to the smart grid. Based on the type of devices and typical
usage the researcher have created a set of policies. For example, a mi-
crowave or a laptop has a policy that forces the scheduling algorithm
to plan the activities for these devices when the user requires the de-
vice, reducing the impact on the user. The scheduling algorithm uses

10 smart environments and load shaving

a Priority Queue (PQ) with Breadth-First Search (BFS) optimization for
finding the optimal schedule.

Although there are many solutions in the field of energy awareness
or load management, many focus on a single household. The novelty
of our proposed work is that we look at a neighbourhood instead.
Our algorithm can also be applied with minimal user input except
with an energy profile for each appliance in the neighbourhood.

Part II

C O N C E P T A N D I M P L E M E N TAT I O N

3
C O N C E P T

The Cooperative Load Scheduling System (CLSS) is a tool for house-
holds in a neighbourhood to reduce peaks in energy demand. The
system delivers an energy usage schedule for all the appliance inside
a neighbourhood based on historical measurements. These measure-
ments are gathered on a daily basis for each of the appliances by
the CLSS. Based on this information an average energy consumption
and set of tasks performed by the appliances are obtained. Once com-
pleted, the scheduling algorithm finds the optimal or near-optimal
schedule. The CLSS gives the neighbourhood insight into their energy
consumption and provides an incentive to adapt their usage of the
appliances according to the optimal schedule. The scheduling proce-
dure consists of the following steps;

• Gather measurements of appliances

• Create tasks and policies

• Find the optimal schedule for the given tasks and policies.

3.1 gathering historical measurements

Creating a schedule is difficult without knowing when the appliances
are active. So first of all, the CLSS have to create a load profile for the
neighbourhood where the schedule is intended for. Each household h,
which is part of the neighbourhood, is fitted with four smart meters
that register the energy consumption of the appliance a, leading to
the following definitions;

H : Set of households which belong to the neighbourhood

Ah : Set of appliances available for scheduling inside household h ∈
H.

Based on the two sets defined above we define an energy consump-
tion vector [20]

xh ,a = [x1h ,a , . . . , xNh ,a] (1)

where N is the total amount of hours a day, so 24. Equation 1 gives
the hourly energy consumption of an appliance a of household h.
So, the energy consumption of one appliance during the day is equal
to xnh ,a where n ∈ {1 , . . . ,N}. Since Equation 1 gives the energy
consumption of each appliance, the following equations give the total

13

14 concept

energy consumption of all appliances Ah inside household h or a
neighbourhood H during hour n

lnh =
∑

a∈Ah

xh ,a n ∈ N (2)

l‘n =
∑
h∈H

lnh n ∈ N (3)

where N = 24.

As explained in the introduction of Chapter 3, the system works
at neighbourhood level. The households in a neighbourhood contain
multiple appliances. All of these appliances have corresponding en-
ergy consumption vectors as defined by Equation 1. Combining these
vectors results in the matrix below

Ma,n =


m1,1 m1,2 · · · m1,n

m2,1 m2,2 · · · m2,n
...

...
. . .

...

ma,1 ma,2 · · · ma,n

 (4)

where the rows correspond to the xh,a vectors of appliance a inside
household h of neighbourhood H and n is the time slot in the range
{1, . . . ,N}. Now that we have matrix M our goal is to create the opti-
mal schedule by M ′ in which the PAR is minimized for each column,
similar to research by Mangiatordi et al. [18].

3.2 tasks and policies

The matrix M created in Section 3.1 provides load profiles for neigh-
bourhoods. The rows in this matrix contain the load profile of the
appliances equipped with smart meters. Active periods are reflected
by an increase in energy consumptions, defined as tasks. These tasks
are used by the CLSS as building blocks for the creation of M ′. In this
research we make the assumption that tasks have to be completed
once they have started, other restrictions are enforced by policies.

3.2.1 Tasks

A task is defined as vector Tj = (aj, sj, ej, rj), where aj is the appli-
ance, sj is the start slot, ej is the end slot and rj is the energy used.
Tasks are based on matrix M and are discovered by using the Min-
Max Steady-State technique described by Lee et al. [16]. Given the

3.2 tasks and policies 15

values from cell ma,n and ma,n−1 in M, the similarity between both
cells is estimated as

f(ma,n,ma,n−1) =

{
stable, if | avg(ma,n) − avg(ma,n−1) |< ε

change, else
(5)

where avg(ma,n) and avg(ma,n−1) are the average usage for cell
ma,n and ma,n−1 in M, and ε is the threshold for the similarity, in
our case three times the standard deviation of ma,n.

When looking at the load profile of an appliance in M we define
three states, namely; active, standby, and off. As result, each row inM
can be divided in periods where the appliance is in one of the three
states. A period always starts and ends with two consecutive cells
marked as change by Equation 5. The cells between the start and end
cell decide the state where the appliance is in. When the appliance
is in the off state it is not consuming energy at all. In both the active
and standby state the appliance is consuming energy. However, the
assumption is made that the energy consumption is low and uniform
in the standby state, while this is not the case in an active state. To find
the energy consumption corresponding to the standby state we first
find the minimal energy consumption, for which the cell is marked
as change by Equation 5. If this value is found in more than one con-
secutive cell we define it as threshold Sa for the standby state, where
a is the appliance. When the value is only found in an single cell the
threshold Sa is set to 0. When the energy consumption is getting in a
cell above Sa, the appliance is turning into the active state.

Periods where the appliance is in an active state are characterized
as Tasks, where rj is calculated with Equation 6.

rj =

∑ej

i=sj
maj,i

ej − sj
(6)

3.2.2 Policies

Policies gives the schedule algorithm rules to follow when a task is
planned for an appliance (Georgievski et al. [8]). Such a planning
can be made for example a freezer that runs for a fixed duration
every hour or a computer which needs to be active between two and
three o’clock. Policies have at least the Pbegin, Pend and a Pduration

variable, where Pbegin is the start timeslot, Pend is the end timeslot,
and Pduration is equal to Pend − Pbegin

Our system defines six types of policies, as specified in Table 1 and
described in the following list.

16 concept

policy type linked appliance description

DELAY Freezer Appliance should be active for Pduration , but may be delayed by
Pdelay .

REPEAT Any appliance Appliance should be active for Pnumber_of_cyles of a given
Pcycle_duration .

SINGLE Wash machine, Dishwasher Appliance should be active for Pduration .

STRICT Television, Computer Appliance should be active between Pbegin and Pend .

PROFILE Any appliance Appliance is active during all hours of the day.

SLEEP Any appliance Appliance is inactive during the day.

Table 1: Summary of the different policies their associated appliances.

delay : Appliances that fall under the DELAY policy are scheduled
with a delayed start with respect to the original starting time:
Pbegin. The delay is defined by Pdelay and is either positive
or negative. While a task may be delayed for the appliance, the
execution time defined by Pduration is maintained.

repeat : Appliances like a refrigerator or freezer are likely to switch
on and off periodically. These fluctuations lead to a number
of tasks with the same duration during the day. The REPEAT
policy groups these tasks together under one policy. Instead
of the Pduration variable, two new variables are used namely;
Pcycle_duration and Pnr_of_cycles. Pcycle_duration tells the sched-
ule algorithm the duration of one cycle, in which the appliance
is active. The number of repetitions is stored in Pnr_of_cycles,
the schedule complies with the policy when the number of cy-
cles equals the Pnr_of_cycles.

single : Many appliances inside households run just one task dur-
ing the day. The starting time Pbegin is not important for this
policy, because only Pduration matters. Typical examples of
such appliances are washing machines and dishwashers. Tasks
with this policy can be scheduled freely during the day, as long
as the Pduration is respected.

strict : This policy is used for appliances which are needed at a
specific time. The tasks for such an appliance start at Pbegin and
end at Pend. Typical appliances for this policy are televisions
and computers. These appliances directly respond to the user
interaction and delaying them would cause inconvenience for
the users.

profile : There are appliances that consume energy throughout the
entire day. Changing the begin Pbegin or Pend will lead to an in-
complete task, as the duration is less than Pduration. However,
these appliances still influence the schedule, especially when
their energy consumption is high. So, they are taken into ac-
count by the scheduling algorithm when a schedule is created.

3.3 creating a schedule 17

sleep : Appliances that are inactive throughout the day are assigned
to the SLEEP policy. This inactivity of the appliances indicating
to the scheduling algorithm that these appliances have no need
at all to be scheduled. Because of this reason, appliances with
this policy are excluded from scheduling by the scheduling al-
gorithm.

3.3 creating a schedule

Given the set of tasks vectors T and policies P we want to minimize
the PAR. The problem is formalized by reducing the distance between
the energy consumption on hour n where n ∈ {1, . . . , 24} and the
average energy consumption of all tasks Tj ∈ T , similar to research
by Mangiatordi et al. [18]. For comparing schedules, the cost of a
schedule is determined by the following equation:

Cost(n) = (AvgP−
∑
Tj∈T

rj · δjn)2 (7)

where AvgP is the average energy consumption of all tasks and

δjn =

{
1, if sj 6 n 6 ej

0, else
(8)

Besides scheduling the tasks T into the available slots, we also need
to comply with the policies P. Hence the optimal schedule minimizes
the cost for each time slot n ∈ N, while at the same time it should
satisfy the policies in P. To find the optimal schedule we use a BFS in
combination with a PQ optimization algorithm [22].

BFS is an algorithm for exploring a graph. The algorithm starts with
discovering the adjacent nodes of the initial node by adding them to
a queue. Using a queue guarantees that the nodes are sorted in a
First In First Out (FIFO) order, which ensures that nodes are removed
from the queue in the order in which they are discovered. In the
following iterations the algorithm removes a node from the queue
and discovers its adjacent nodes. The algorithm terminates when the
queue is empty.

Another use of the BFS algorithm is searching for a specific node
in a graph. In this case, the algorithm terminates when the queue
returns a node matching to the search criteria. However, this is the
first node that matched the search criteria, not necessarily the optimal
node. To find the optimal node, a small alteration to the BFS algorithm
is needed.

Instead of using a queue for storing the discovered nodes, a PQ is
used. By using a PQ, the node with the lowest cost is removed in every
iteration. Discovered nodes will either increase the cost or cause it to
remain the same. This means that with the PQ, the first node matching
the search criteria is the optimal node.

18 concept

In our case each of the nodes represent an incomplete schedule. We
fill the PQ with solutions for the first time slot. In order to reduce the
search space we make two adaptations to the BFS algorithm. First, we
only add the solution with the lowest cost to the PQ during each itera-
tion. The other solutions are only increasing the cost of the complete
schedule. Hence, they would only increase the size of the PQ because
they would never be removed. Second, we omit solutions that con-
tradict with the policies in P. For example, when an appliance has a
SINGLE policy it only needs to be scheduled for the duration of the
task, so solutions that extend the task beyond the duration are not ex-
panded. Appliances with a STRICT policy only need to be scheduled
between Pbegin and Pend. Consequently, there is no need for expan-
sion of schedules that plan a task for an appliance outside the interval
Pbegin and Pend. The algorithm stops when a complete schedule is
returned by the PQ.

3.3.1 Terminates

The algorithm explained in Section 3.3 is given in pseudo-code by al-
gorithm 1. algorithm 1 will terminate when either the PQ is empty or a
complete schedule is removed from the PQ. When an empty set of ap-
pliances A is given as an input, the algorithm will exit the while-loop,
causing terminating the algorithm directly. If appliances in set A have
policies assigned to them, solutions for the first time slot are gener-
ated. Only solutions that comply with the policies of the appliances
in set A are added to the PQ. Then, a solution is removed from the
PQ and extended with the next slot. During this step algorithm 2 and
algorithm 3 creates solutions that result in a valid schedule. Instead
of including all the solutions only the solution with the lowest cost
is added to the PQ. This process continues until the solution removed
from the queue contains N slots, where N = 24 and the algorithm
terminates. Hence, the algorithm always terminates as solutions are
extended with a new time slot in each iteration.

3.3.2 Completeness

In this subsection we discuss the completeness of algorithm 1. During
an iteration a solution for a schedule is extended with the another slot.
In the expansion step the generated solutions are validated against
three rules;

• a solution has to contain all the policies that have a duration
equal to the number of slots left

• a solution has to finish a policy once it is started

• all the policies from set P should be obeyed.

3.3 creating a schedule 19

Only the slot with the lowest cost and obeying all three rules men-
tioned above is added to the solution. So the solution for the schedule
found will meet all policies p ∈ P for each appliance in set A.

The cost function assures that the costs are increasing when the
solution is expanded with another slot. Consequently, the optimal
solution for the schedule is always at the start of the PQ. Therefore the
algorithm will always return an optimal or near-optimal schedule.

3.3.3 Complexity

The complexity of algorithm 1 for an input of na appliances with mp

policies is calculated as follows. Before starting the main loop, a set of
solutions is created by calling algorithm 2. This algorithm creates the
power set of the appliances and their policies, which contains 2namp

elements. The set is added to the PQ in a loop taking O(2namp) time.
At this point the PQ holds 2namp incomplete schedules. In order to
complete the schedules, each iteration removes one schedule from
the PQ. Next, a set of solutions for the new slot is generated by algo-
rithm 2, resulting in 2namp solutions. Finding the slot with the lowest
cost takes O(2namp) time. When a slot is found, we have to validate
all of the policies, taking O(namp) time. The total time of expanding
a schedule with a slot is O(2nampnamp). When simplified we get a
complexity of O(n22n), where n = namp.

The worst case time complexity is influenced by the number of so-
lutions generated by algorithm 2. In the worst case this algorithm
generates 2namp solutions for extending a slot, where na is the num-
ber of appliances and mp the number of policies. But in most cases
the number of solutions will be lower than 2namp .

Most appliances will either not be used or only once throughout
the day. There are exceptions such as a refrigerator or a freezer which
turn on and off at specific intervals. Instead of creating multiple poli-
cies, the same policy is used multiple times, which means that in most
cases mp = na.

Policies belonging to the same appliances will not be combined
together, after all an appliance can only execute one task at a time
slot. For example, given an input of A = (A1,A2) where A1 has poli-
cies P1,P2 and A2 has policy P3, algorithm 2 returns the incomplete
power set (), (P1), (P2), (P3), (P1,P3), (P2,P3).

Finally, algorithm 2 will only create solutions containing incom-
plete policies. Once a policy is completed it will no longer be part
of the solutions generated by the algorithm. As the number of slots
in a solution increases, more policies are completed which in turn re-
duces the number of slots created by algorithm 2. Thus in most cases
the algorithm will perform better than the worst time complexity.

20 concept

Algorithm 1: FindSchedule(A)
Data: A set A with appliances containing policies to schedule.
Result: Schedule S containing k0 . . . k23 slots.

1 Let PQ be an empty Priority Queue
2 Let S be an empty schedule
3 X ← CreateSolutions(A, S)
4 for x ∈ X do
5 PQ.push(x, x.cost)
6 end
7 while not PQ.isEmpty() do
8 S← PQ.removeItem()
9 if S.nrSlots() == 24 then

/* Return schedule S, if S contains 24 slots */

10 return S
11 end

/* Generate set of possible slots based on the

policies of each appliance in A. */

12 K ← CreateSolutions(A, S)
13 Let koptimal be an empty solution
14 Let costprev be an empty variable
15 for k ∈ K do
16 if k.getCosts() < costprev then
17 valid← True

/* Validate if the schedule still complies with

all the policies from the appliances in A */

18 for a ∈ A do
19 if not validateSchedule(S,a.policies()) then
20 valid← False
21 break
22 end
23 end
24 if valid then
25 costprev ← k.getCosts()
26 koptimal ← k
27 end
28 end
29 end

/* Finally the optimal slot is added to the schedule

and is added back into the Priority Queue */

30 extend S with new solution koptimal

31 PQ.add(S)
32 end

3.3 creating a schedule 21

Algorithm 2: CreateSolutions(A, S)
Data: A set A containing appliances to schedule
and an either empty or an incomplete schedule S.
Result: List with solutions for expanding schedule S.

1 Let fixed be an empty set
2 Let schedulable be an empty set
3 Let policySets be an empty list
4 for a ∈ A do
5 for policy ∈ a.policies() do
6 if policy is already completed in S then
7 continue to next policy
8 end
9 if policy is schedulable then

10 schedulable.add(policy)
11 else if policy is active the next timeslot of S then
12 fixed.add(policy)
13 end
14 end
15 if number of policies in a.policies() > 1 then
16 policySets.add(a.policies)
17 end
18 end
19 return CombinePolicies(fixed, schedulable, policySets)

22 concept

Algorithm 3: CombinePolicies(Fixed, Schedulable, Psets)
Data: A set Fixed containing required policies for this slot,
a set Schedulable containing optional policies for this slot, and
a set Psets containing sets of policies that cannot be combined.
Result: List solutions with slot solutions for the given policies.

1 Let solutions be an empty list
2 Add a new slot with policies from Fixed to solutions
/* generateCombinations creates the power set of

Schedulable policies without the empty set */

3 for x ∈ generateCombinations(Schedulable) do
4 valid← True
5 for set ∈ Psets do
6 if number of elements in set ∩ x > 1 then
7 valid← False
8 break
9 end

10 end
11 if valid then
12 solution← x ∪ Fixed
13 add new slot with policies from solution to solutions
14 end
15 end
16 return solutions

4
I M P L E M E N TAT I O N

In Chapter 3 we discussed the concept behind the CLSS, now we con-
tinue with the implementation of the system. The Section 4.1 gives
an overview of the system, followed by a short description of the
tools that were used during the development. In Section 4.2 the im-
portant frameworks on which the CLSS is built are discussed. Finally
we examine the system more thoroughly and look at the individual
components that make up the CLSS.

4.1 system overview

User

System Context

Scraper

Database

Web Application

Peakfinder SchedulerModel definitions

Measurement data

Model entities

Request measurements

Smart Grid

File with measurements

Measurements

View schedules

Figure 3: Components overview of the CLSS.

The CLSS is divided into the following components as illustrated by
Figure 3, that are discussed next.

scraper : retrieves a file from the Smart Grid (SG) holding measure-
ments from appliances. After removing the incorrect measure-
ments the data is stored into the database.

database : holds the data needed by the different components. The
data stored is from measurements, information about smart me-
ters, and schedules generated by the system.

web application : is the component that holds the logic for gener-
ating schedules. Besides the logic, this component also provides

23

24 implementation

a web interface making it possible to view schedules and man-
age the database. External access to the component is facilitated
by an API.

4.2 development tools

The CLSS is developed on a Toshiba Satellite L500. For the integrated
development environment (IDE) is Eclipse Juno [7] used in combi-
nation with the PyDev plug-in [17]. The Scraper component is build
with the Scrapy framework [24]. Data required by the system is stored
in the Database component using MongoDB [14]. The Web application
is build in the Django framework [6]. Styling is provided by Boot-
strap framework [19], except the graphs which are implemented im-
plemented with the free version of Highcharts JavaScript library [11].
Now we will examine the main components discussed before more
thoroughly.

4.3 scraper

The scraper component makes use of the Scrapy framework [24] writen
in Python. This framework offers a complete solution for turning the
content of web pages into structured data that can be analysed and
stored. Scrapy consists of the following components (see Figure 4)
which are working together in order to scrape a web page;

Figure 4: Components overview of Scrapy [23].

scrapy engine : controls the data flow between all the different
components within Scrapy.

downloader : fetches web pages from the internet and passes them
to the Scrapy Engine.

4.3 scraper 25

spiders : are responsible for parsing the responses and extract items.
They are custom written classes that inherent functions from
a default spider. Allowing customised spiders so that specific
content can be retrieved from a web page. Besides extracting
items, spiders can also create new requests based on content
from the web page.

item pipeline : processes items that are extracted by a Spider. They
are typical used for filtering, removing corrupted data or stor-
ing an item in a database.

downloader and spider middelware : are specific hooks between
the Scrapy Engine component and Downloader or Spider(s).
The hooks can be used for custom code, such as catching or
sending or recieving Hypertext Transfer Protocol Secure (HTTPS)
requests.

4.3.1 The spider

The spider is responsible for creating the HTTPS request and pars-
ing the file containing measurements from appliances in households,
available from a portal provided by the SG. Users can specify the
date and type of the measurements with a form on the download
page. Once the user submits the form, a file with measurements for
the specific date and type are available for downloading. When the
spider sends a normal HTTPS request the response contains only the
download page. Therefore, we use a FormRequest that contains a dic-
tionary with parameters for the form. Instead of the download page
the response now contains the requested file. The measurements of
the requested file are distinguished in two records for a single smart
meter: Instantaneous Demand Delivered (IDD) and Instantaneous De-
mand Received (IDR) measurements within an interval of ten second.
Besides the measurements, each record also holds the postal code
from the household, media access control (MAC) address of the smart-
bridge, MAC address of the smart meter, category of an appliance, and
the type of measurement. Records are parsed into RowItems where af-
ter they are send to the pipeline for further processing.

4.3.2 The pipeline

The pipeline consists of three different components, as shown in Fig-
ure 5. Firstly RowItems received from the spider component start at the
ParseDataRow component. RowItems consist of multiple types of data
that are divided in the following items;

householditem : an item that stores the postal code and the MAC

address of the smartbridge that is present in the household.

26 implementation

Pipeline

Spider

ParseDataRow

valid?

ValidateDataRow

WriteToDatabase

RowItem

ProcessedRowItem

ProcessedRowItem

Yes

No Item is dropped

ProccesedRowItem

Database

Figure 5: Dataflow diagram of the scraper component.

smartmeteritem : an item that stores the MAC address of the smart-
bridge, the smart meter MAC address, and the category.

proccesedrowitem : an item that stores the type of measurement,
the HouseholdItem, the SmartmeterItem, and the measurements.
Only the ProccesedRowItem will continue to the next stage of the
pipeline.

The ValidateDataRow component drops the items from the pipeline
according to the following rules;

• the items needs to contain a HouseholdItem with postal code and
smartbridge MAC address

• the category of the smart meter needs to be supported by the
CLSS

• the description in the ProccesedRowItem has to match IDD, indi-
cating the measurements are the energy consumption measured
by the smart meter.

4.4 web application 27

Items that break one of the three rules are dropped from the pipeline.
Finally the WriteToDatabase component makes a connection with the
database and inserts the items into the database. Both the House-
holdItems and SmartmeterItems are written in a single database action.
However, in order to reduce the database load the measurements are
processed in batches.

4.4 web application

The web application is the central component of the CLSS contain-
ing the implementation of the algorithms discussed in Chapter 3.
While also containing a GUI, allowing users to interact with the CLSS.
There are multiple frameworks available for building web applica-
tions, one of them is Django [6]. This framework is written in the
Python programming language. The Web application contains three
layers, namely a model, view, and template layer.

model layer : an abstract layer between the web application and
the database. In most cases a model maps to a single entity
within the database. Attributes of an entity are represented in
the model by fields. Entities are manipulated with the help of
custom functions within the model.

view layer : is responsible for handling requests from the user and
returning responses. When a request is made by the user, the
Uniform Resource Locator (URL) pattern is mapped to a view.
Views are Python functions or classes that accept a web request
and return a web request. The logic needed for returning web
request lives in the view.

template layer : provides a syntax for rendering the views into
web pages. Templates are simple text files that can generate any
text-based format, such as Hypertext Markup Language (HTML),
Comma Separated Values (CSV), etc.

The web application of the CLSS is divided into a peakfinder and, the
scheduler application.

4.4.1 Peakfinder application

The peakfinder application is built to provide a set of tasks that can
be schedule based on data retrieved by the scraper. Metadata of the
measurements is stored into household, smartmeterCat, and smartmeter
models. Initially measurements for a single appliance are stored as
an array into the measurements model by the scraper. At this point
the measurements have an interval of ten second, instead of a hour
interval as described in Section 3.1. So, Map-Reduce [13] is used to

28 implementation

reduce the measurements to the correct interval. Once in the correct
interval, they are stored into HourlyMeasurement models. For quick
access the HourlyMeasurement model of a single day are embedded
into a DayMeasurement models. Policies are stored into Policy models.
The model contains the type of policy, date on which the policy is
active, smart meter MAC address the policy is assigned to, and other
fields depending on the type of policy (see Section 3.2.2).

Models only handle mutations on data that belong to the models
itself. Managers are used for mutations on a collection of models. The
peakfinder application holds the following managers;

smartmetermanager : allows the system to quickly retrieve a list
of smart meters for a household, based on the smartbridge MAC
address.

measurementmanager : provides a method for starting the Map-
Reduce process of reducing the interval of the measurements
from ten seconds into one hour.

reducedmeasurementsmanager : provides a method for calcu-
lating the energy consumption when an appliance is standby.

daymeasurementmanager : has a method for retrieving DayMea-
surement models for a specific smart meter and date.

policymanager : has two methods for creating policies as described
in Section 3.2.2.

The GUI of the peakfinder application offers an overview of the
households and detailed view of the households in the CLSS.

householdlist : shows a table with households in the CLSS based
on the Household model (see Figure 20).

neighbourhoodhouseholdlist : is similar to the HouseholdList
view, except showing only the household part of a given Neigh-
bourhood model (see Figure 21).

householddetail : shows general information of the Household
model and the smart meters inside the household. Besides this
information, a schedule from the scheduler application can be
viewed (see Figure 22).

4.4.2 Scheduler application

The scheduler application is responsible for generating the schedules
based on the task and policies defined by the peakfinder application
(see Section 4.4.1). This application contains the following models;

neighbourhood : holds the name of the neighbourhood and a list
of keys of related Household models.

4.4 web application 29

task : Defines a single task for a smart meter in a household. Other
fields in this model are the date on which the task is performed,
the start time slot, and end time slot.

scheduledtask : defines a scheduled task for a smart meter in a
household. Also contains a date, reference to the policy leading
to this task, the begin time slot, the end time slot, and energy
consumption field.

Similar to the peakfinder application, each model has a manager for
the interaction between models. Now we describe each of the man-
agers;

neigbhourhoodmanager : contains a method for retrieving a neigh-
bourhood of a specific household.

taskmanager : this manager has a method called getTask which re-
turns a list of tasks that belong to a set of smart meters on
a specific date. Energy consumption of multiple tasks can be
requested with the method getTaskTotalForNeighbourhood, with
a list of smart meters and a date as argument. Similar to the
previous method, is the getTaskSlotTotals method. This method
returns the sum of the energy consumption by the tasks for
each slot. This method is also used by the getTaskSlotsCost that
performs the cost calculation for each slot.

scheduledtaskmanager : contains method createScheduleTasks, that
creates tasks based on slots objects from a schedule. Multiple
ScheduledTask, that belong to a set of smart meters on a specific
date can be retrieved with the SmartmeterSet. The getScheduled-
TaskEnergyBySlot returns the energy consumption per smart me-
ter for each slot during a day, for a given set of smart meters.
Similar to the TaskManager, it is also possible to get the total en-
ergy consumption or cost per slot for a set of smart meters at a
specified date.

This application contains a number of overview views as well as
the views for the index and login screen. The list below gives a short
description of each of these views.

index : view for rendering the home page of the web application
(see Figure 23).

user_login : view for rendering the login form and handling the
login process Figure 24).

listneighbourhoodview : view for rendering a list of neighbour-
hoods available in the system. This view is only available when
the user is authorized to view the page (see Figure 25).

30 implementation

detailneighbourhoodview : view for rendering the neighbour-
hood page for a given neighbourhood. The page contains a
overview of the historical measurements used for creating a
schedule, the tasks, the policies, and the schedule for a given
date. Besides the tables, there are also a number of charts avail-
able. Tables are filled by retrieving the corresponding models
with the help of the managers. Data for the charts is retrieved
by using the REST API (see Section 4.4.3). As the charts are gen-
erated with Javascript, the view only includes a date for the
template to parse (see Figure 26).

This application also contains the implementation of algorithm 1,
that is implemented in a separate class called ScheduleFinder. Solu-
tions created by algorithm algorithm 2 are implemented in the Sched-
uleNode class, which contains a list with timeslots and a method for
calculating the cost of the solution. Each timeslot is an instance of the
SlotSolution class, which contains a number indicating the timeslot
and a list with smart meter MAC addresses of the appliances that are
scheduled in the respective timeslot.

4.4.3 REST API

The Django REST Framework [4] is a framework for building a web
API. The framework is build on top of the Django framework [6]. APIs
creates an abstract layer to other devices, such as smartphones, which
enables them to communicate with the actual application. This layer
hides the logic for storing and retrieving the information. Devices
only need to give the correct parameters and the API returns the re-
quested information in either the JavaScript Object Notation (JSON) or
the HTML format.

When data from a model is requested, the framework provides se-
rializers for serializing and deserializing a Django model entity into
JSON or HTML. Besides using direct requests, the framework offers in
addition a browsable API (see Figure 6).

The framework also offers a multiple authentication methods such
as;

basic authentication : which uses a combination of username
and password for authentication.

token authentication : where a token is used as a key for au-
thentication.

session authentication : where the Django session back-end is
used.

oauth 1 .0a authentication : where the OAuth 1.0a protocol [9]
is used for authentication.

4.5 database 31

Figure 6: Screenshot from the browsable API [4].

oauth 2 .0 authentication : where the OAuth 2.0 protocol [10]
is used for authentication.

4.5 database

The database is MongoDB [14], a NoSQL, document based database.
Compared to the Structured Query Language (SQL) solutions, Mon-
goDB provides a more flexible method of storing information. The
data is stored into a document, which has one or more fields. Fields
have a key and a value, of which the key is similar to a column name
of a table in SQL. Unlike SQL solutions, values can hold both a single
value or another document (see Figure 7). In the CLSS the embedded
data model is only used in the peakfinder application for the Mea-
surements, the ReducedMeasurements, and DayMeasurement. In which
the embedded document holds the energy consumption at a given
time. Documents are stored into collections, equivalent to tables in a
SQL solution. The collections may contain documents with different
fields, however in most cases the documents in a collection have the
same structure.

Two other important functions of MongoDB are sharding and repli-
cation of data. Sharding allows distribution of the database across
multiple machines. With sharding the data is divided between servers,

32 implementation

(a) Relation by including document
_id field.

(b) Relation by embedding docu-
ments into one another.

Figure 7: Different data model types [14].

also called shards. A shard is an independent server running a Mon-
goDB instance with storing a slice of the database. All shards together
form a single database. The function of sharding is used to solve two
problems associated with large data sets. First, the number of opera-
tions, such as inserting data, is shared between shards. For increasing
the capacity and throughput of the database, more shards can be
added. Second, the size of the data set complete stored on the shard
can be smaller than the complete data set. This is because all the
shards have an equal slice of the data set.

Replication increases the data availability by storing copies of the
the data on different database servers. In this way, the loss of data
when a single server goes down will be avoided. At the same time
replication can be used to increase the read capacity of the system.
As clients have the choice to which server they write their operations
to.

The CLSS is at the moment a single machine system, where the data
is stored on a single MongoDB instance. However when needed, the
CLSS has the possibility to use more MongoDB instances.

Part III

S I M U L AT I O N A N D VA L I D AT I O N

5
R E S U LT S

We discuss the results of our research on the scheduling of house-
hold appliances. The first section explains which data is used for the
test and which matrices we are interested in. Once the test setup is
completed, the running of the algorithm and results are explained
in Section 5.2. After Section 5.1 we analyse the results obtained in
Section 5.2. Finally, we have a short discussion over the results found.

5.1 setup

Before we start testing our algorithm, we first need to define a data
set that can be used as input. Once the data set is defined, we need
to find a metric that enables us to define the quality of the results.

5.1.1 The data

The data sets are based on the measurements gathered by the project
"Smart grid: Rendement voor iedereen" [12]. During the project, pi-
lots are held in Amersfoort and Utrecht. In these pilots, household
members are encouraged to make smart choices when it comes to
their energy consumption. This encouragement is based on raising
awareness of these people about the energy consumption and energy
production of their household. Therefore, households are fitted with
smart meters for measuring the energy consumption in watts. Each
household is fitted with up to five smart meters that connect to dif-
ferent appliance inside the household. The energy consumption is
measured in watts with an interval of ten seconds, gathering 6 mea-
surements in a second, 6 · 60 = 360 measurements in a hour, and
6 · 60 · 24 = 8460 measurements in a 24 hour period per appliance.

In order to test our algorithm, we created three data sets namely;
data set A, B, and C. We assigned randomly picked households from
the pilots to the neighbourhoods. An overview of the appliances is
given in Table 2.

Data set A and B contain measurements collected on 1 February
2014, while measurements in data set C are from 17 October 2014.

5.1.2 The metrics

Now that the data sets are defined, we need a metric to validate the
results. The goal of our system is to minimize peaks in the energy
demand of a group of households. In order to quantify the peaks,

35

36 results

appliance a b c

Dishwasher 1 1 1

Freezer 1 0 2

Remaining / Unknown 7 17 4

TV / Video 1 0 2

Was machine 3 0 2

Was dryer 1 1 1

Table 2: Appliances available in each of the three data sets.

we calculate the difference between the local energy demand and the
average energy demand required per timeslot. The energy demand is
the total of energy required by all appliances occurring in the data set.
This demand is calculated by using a cost function, which is defined
in Equation 7 (see Section 3.3).

As a final metric, to compare the input energy consumption against
the scheduled energy consumption, we use the following function:

CostDiff(n) = 100 ·
Costscheduled(n) −Costinput(n)

Costinput(n)
(9)

where Costinput(n) is the cost for the original input and Costscheduled(n)

is the cost after scheduling the original input for timeslot n.

5.2 running

We ran our algorithm on the data sets defined earlier. Here we de-
scribe the how the algorithm runs with the data sets and the results
after using the algorithm.

5.2.1 Generating tasks and policies

During the initial phase of running the algorithm, tasks and policies
are created for each data set. Not every appliance in the data set
is associated with a task. But on the other hand, a task is always
associated with one or more policies.

The results of running the algorithm against the data sets are shown
in Figure 8, Figure 9, and Figure 10. These figures give an overview
of the energy consumption during the day. A single row displays the
MAC address and the appliance type, followed by the policies, energy
consumption per timeslot, and the standby energy consumption. The
policy abbreviations stand for Profile (PR), Single (SI), Strict (ST), Re-
peating (RP) and Delay (DE). Colour codes indicate the state of the
appliance in the corresponding timeslot, namely:

5.2 running 37

active/standby : the appliance consumes energy either in the standby
or active state.

changing state : the appliance is switching between active and
standby state.

off : Appliance is not consuming any energy.

The last column shows the standby energy consumption in watts.
This value is based on the MinMax Steady-State technique, formu-
lated by Equation 5 in Section 3.2.1. In case that n/a is shown, the
system is unable to determine the standby value for an appliance.
Appliances which are not consuming energy on the day that mea-
surements are gathered lack tasks and are therefore excluded from
the figures.

Figure 8: Energy consumption of the appliances in data set A.

38 results

Figure 9: Energy consumption of the appliances in data set B.

5.2 running 39

Figure 10: Energy consumption of the appliances in data set C.

40 results

5.2.2 Generating schedules

The policies created in Section 5.2.1 are the input for the scheduling al-
gorithm. At the start of the calculation, the average energy consump-
tion of a slot is calculated for each data set. After that the scheduler
algorithm will look for a schedule that complies with the policies and
approaches the energy consumption average for each slot.

Timeslot

W
at

t

Without schedule With a schedule Historical average for a slot

0 5 10 15 20

0

1000

250

500

750

(a) Energy consumption comparison.

Timeslot

C
os

ts

Without schedule With a schedule

0 5 10 15 20

0M

1M

2M

3M

4M

(b) Costs comparison of energy consumption.

Figure 11: Energy consumption and cost charts for data set A.

Results of the scheduling algorithm are shown in Figure 11, Fig-
ure 12, and Figure 13. The first chart shows the energy consumption
per timeslot for the respective data set, which is the sum of all the
appliances. The horizontal axis indicates the timeslot, while the ver-
tical axis displays the energy consumption in watts. Included in the
chart is the average energy consumption of a slot, represented as a
green dotted line. The second chart shows the cost for each timeslot
during the day. Similar to the first chart, the horizontal axis indicates
the timeslot. On the vertical axis are the cost for the timeslot visible,
calculated with the Equation 7 (see Section 3.3).

5.2 running 41

Timeslot

W
at

t

Without schedule With a schedule Historical average for a slot

0 5 10 15 20

0

500

1000

1500

(a) Energy consumption comparison.

Timeslot

C
os

ts

Without schedule With a schedule

0 5 10 15 20

0M

1M

2M

3M

4M

5M

(b) Costs comparison of energy consumption.

Figure 12: Energy consumption and cost charts for data set B.

42 results

Timeslot

W
at

t

Without schedule With a schedule Historical average for a slot

0 5 10 15 20

0

1000

250

500

750

1250

(a) Energy consumption comparison.

Timeslot

C
os

ts

Without schedule With a schedule

0 5 10 15 20

0k

500k

1,000k

1,500k

2,000k

2,500k

(b) Costs comparison of energy consumption.

Figure 13: Energy consumption and cost charts for data set C.

5.2 running 43

An overview of the schedule energy consumption is shown in Fig-
ure 14, Figure 15, and Figure 16. Each row of these tables shows the
energy consumption of an appliance performing a task. The first col-
umn gives the unique MAC address of the smart meter coupled to
the appliance, followed by the category. After the MAC address and
category, the hourly energy consumption is shown in watts, where
orange indicates the original consumption and green consumption
after scheduling. In the last column we show how many timeslots the
task has shifted.

Figure 14: Energy consumption for data set A with and without schedule.

44 results

Figure 15: Energy consumption for data set B with and without schedule.

5.2 running 45

Figure 16: Energy consumption for data set C with and without schedule.

46 results

5.3 analysis

In Section 5.2 we ran the algorithm against the three data sets A, B,
and C. Now we analyse the different results presented in the previous
section.

5.3.1 Task and Policies

The first part of our algorithm is required to determine the tasks and
policies for the appliances in a data set. This result of the first part
of this calculation forms than the input for the scheduling algorithm.
Tasks are defined as periods with higher energy demand compared
to the standby energy demand. Once the tasks are identified one or
more policies are assigned.

data set profile single static delayed repeating

A 4 4 2 1 0

B 3 10 0 0 4

C 1 11 2 2 2

Table 3: Policies assigned in each of the three data sets

An overview of the number of policies per data set can be found in
table Table 3.

5.3.2 Before and after scheduling

Data set A has an average energy consumption of 571.9 watt. In most
of the timeslots, as well as before as after scheduling, the energy
consumption stays below the average energy consumption (see Fig-
ure 11a). Gathered measurements show a peak between timeslot 11

and 13 and during this peak a maximum of 798 watt consumed. Af-
ter running the scheduling algorithm, we still have a peak between
timeslot 8 and 10. However, the energy consumption of the peak is
reduced by 219 watt at most.

Data set B has an average energy consumption of 430.69 watt. Dur-
ing most of the timeslots the energy consumption stays around the
average. The original measurements show three peaks. The first one
at timeslot 0, the second at timeslot 11, and the third at timeslot 14.
These peaks have, in order it has been sequenced, an energy con-
sumption of 1203, 1376, and 1202 watt. After scheduling the energy
consumption stays closer to the average, as can be seen in Figure 12a.
The initial peak at timeslot 0 still exists, but the energy consumption
is now 738 watt. As for the other two peaks, they are gone now and

5.4 discussion 47

instead the energy consumption increases near the end from 570 watt
at timeslot 13 to 920 watt at timeslot 21.

Data set C shows an average energy consumption of 404 watt, as
can be seen in Figure 13a. We also see that the energy consumption
is below the average energy consumption until timeslot 14. After this
timeslot, the energy consumption increases rapidly, with a peak at
timeslot 17 of 1081 watt. This rapid increase continues until timeslot
21 with an energy consumption of 930 watt. If we look at the energy
consumption after scheduling, we see the reverse image. In the first
few timeslots the energy consumption is above average namely at 622

watt. However at timeslot 5, the energy consumption drops down to
the average. The consumption continues to decline and is even below
average at timeslot 14, which was initially 319 watt, but dropped after
scheduling to 91 watt.

The percentage of change as described in Equation 9 can be found
in Figure 17, Figure 18, and Figure 19. In these, the horizontal axis
shows the timeslot and the vertical axis shows the cumulative per-
centage of change. A higher percentage indicates a lower cost (see
Section 5.1.2) after scheduling, except when the percentage is above
the hundred percent. The value on top of the bars give the exact per-
centage of change in the cost for the given timeslot.

Figure 17 shows a growing reduction in cost for data set A. The
cost reduction continues until timeslot 10. After timeslot 10, the costs
of the schedule are rising which is displayed in the chart by a steady
decline of the difference between the input an the schedule. In the
end, only a 3,31% improvement over the original input is left.

Opposite to data set A, data set B shows a steady percentage of
change during the complete period, shown in Figure 18. The cost
without scheduling are quit high from the start. In addition, the costs
are also increasing at a higher rate than the cost with the input in
comparison to the schedule. Because of these differences between the
input and schedule, the final result shows a 64% improvement over
the original input, so this schedule is less costly than the original.

Data set C is the only data set in which the first couple of timeslots
have a higher costs with a schedule than without. This higher cost is
visible in Figure 19 by the percentage of change being over the 100 for
timeslot 0 to timeslot 4. After this, the percentage of change decreases
to 87,73 and it remain below 100 percent with a final cumulative result
of 56,43 percent. Hence after the four timeslots, the schedule produces
less cost in comparison to the end.

5.4 discussion

The goal of our application is to improve the ratio between peaks
and the average energy consumption for a given data set for one day.
Because the data sets only contain measurements, we first need to

48 results

Timeslot

P
er

ce
nt

ag
e

of
 c

ha
ng

e

22.2 22.2

32.8
34.3 35.1 35.7 36.2 35.4

40.4

42.8
44.8

39.2

34.4

27.3

22.1
20.4

16.6

13.1

9.9

6.9

4.2 4.0 3.6 3.3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

10

20

30

40

50

Figure 17: Cumulative percentage of change according to Equation 9 after
scheduling for data set A.

Timeslot

P
er

ce
nt

ag
e

of
 c

ha
ng

e

84.2

72.7

63.5 64.2 65.4 66.6 67.3 68.4 67.4 67.4

77.7

85.5
88.3 87.7 89.2 90.1 89.7 89.3 89.0

84.8

80.2

74.8

69.4
64.9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

100

25

50

75

Figure 18: Cumulative percentage of change according to Equation 9 after
scheduling for data set B.

Timeslot

P
er

ce
nt

ag
e3

of
3c

ha
ng

e

Percentage3of3change3between3unscheduled3and3scheduled3consumption

218.0 218.0

188.1

154.6

124.7

87.7

61.2

3.1

28.6

44.6
53.3 59.0

64.5 63.5 62.7 62.0 61.3
68.8 67.7 63.5 62.7 62.9 58.8 56.4

Percentage3of3change

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

50

100

150

200

250

Figure 19: Cumulative percentage of change according to Equation 9 after
scheduling for data set C.

5.4 discussion 49

find the active periods, which are mentioned as tasks and we have
to assign policies. In Section 5.3 we showed that we are successful
in finding tasks and assigning policies. However the standby energy
value is not determined for all appliances. If the standby energy con-
sumption is detected, it allows the application to reduce the duration
of the task. For example, in Figure 11a we see a standby consump-
tion of 2 watt by the appliance with MAC address 84df:0c00:1000:00e9.
During the task creation of this appliance, the standby energy con-
sumption will lead to two tasks with the SI policy, instead of a single
task with a PR policy, this makes this appliance schedable.

Regarding to the actual scheduling of the data sets, we see an over-
all improvement in each of the three data sets. Data set A has the
smallest percentage of change out of the three with a 3,3 percentage
of change according to Figure 17. So the schedule created for data set
A is only slightly better than the original input. Looking at Figure 11a,
one would conclude that the algorithm fails to remove the peak, be-
cause the peak in the energy consumption still exist in the schedule
although in a reduced an delayed form. So an important question is,
why is this peak not removed but only reduced? The explanation can
be traced back to the appliances causing the peak. In this case there
are three appliances active during the peak (see Figure 8). In Table 4

we calculated the energy used by the appliances. This table indicates
that the peak is caused by the appliance with smart meter MAC ad-
dress 84df:0c00:1000:00bd. Hence, by placing the other appliances in
different timeslots there will still be a peak caused by MAC address
84df:0c00:1000:00bd.

smart meter mac category energy used (in watt)

84df:0c00:1000:00aa Wasmachine 137

84df:0c00:1000:00e9 Unknown 399

84df:0c00:1000:00bd Freezer 1604

Table 4: Energy used by appliances that can be scheduled active between
timeslot 11 and 15, according to Figure 8.

Data set B has an improvement of 64,9% as shown in Figure 18.
This is also reflected in Figure 12a, where we see that the schedule
stays closer to the green dotted line, which is indicating the optimal
energy consumption. At peak periods the percentage of change lies
between the 84 and 90,10 percent. This peak is caused in the original
data set by two appliances, using between the 261 watt and 1570 watt
in a single slot (see Table 5). In order to remove the peak one of the
appliances is advanced to timeslot 19 until 23.

Therefore the schedule is consuming more energy in this part of the
day than in comparison to the input, as shown in Figure 12a. Despite,
the increase in energy consumption during time slot 19 until 23 com-

50 results

smart meter mac category energy used (in watt)

84df:0c00:1000:00cf Unknown 384

84df:0c00:1000:00f1 Remaining 1350

84df:0c00:1000:00db Unknown 3099

Table 5: Energy used by appliances that can be scheduled with active be-
tween timeslot 11 and 16, according to Figure 9.

pared to the original input, remains the schedule an improvement as
the peaks are gone.

Data set C ends up with an improvement of 56,4% over the original
input as shown in Figure 19. The energy consumption in the original
input stays well below the average energy consumption until timeslot
14 (see the green dotted line in Figure 13a). In the following timeslots
we see a clear increase in energy consumption, with a maximum of
more than 1000 watt in timeslot 17. The algorithm moves the appli-
ances responsible (see Table 6) for this increase to earlier timeslots.

smart meter mac category energy used (in watt)

84df:0c00:1000:09be Wasmachine 741

84df:0c00:1000:01ff Unknown 3236

Table 6: Energy used by appliances that can be scheduled with active be-
tween timeslot 17 and 22, according to Figure 10.

This causes the algorithm to show a higher energy consumption in
the first five timeslots, as shown in Figure 13a. This also explains the
high percentage of change, over 100, in Figure 19. For the remaining
timeslots the cost of the algorithm stays around the average (see Fig-
ure 13a). Only in the last timeslots the algorithm has little tasks left
to schedule for appliances, causing the energy consumption to move
away from the average. Hence, the increase in costs starting around
timeslot 15 shown in Figure 13b.

On average the algorithm shows a percentage of change of 44.4%
over the original input. We also see that the percentage of change
mainly depends on the amount of appliances and assigned policies
causing the peak. For example, in data set A the peak is caused by an
single appliance with a high energy consumption. By moving around
tasks from other appliances the algorithm still achieves an improve-
ment of 3.3%. However, when there are more appliances responsible
for a peak, we see the algorithm successfully removing or at least
reducing the peak, as it is the case for data set B and C.

6
C O N C L U S I O N

The presented work gives an algorithm and implementation for re-
moving peaks from the energy profile for multiple households.

First we looked at similar work within the field of creating energy
awareness. With the introduction of smart meters, mobile devices,
and smart appliances, solutions are created to give users insight into
their energy consumption. However, most of these solutions focus on
a single household, rather than a group of households. Our solution
focusses on multiple households and tries to minimize peaks in en-
ergy consumption of neighbourhoods.

After looking into the related work, we defined the concept for our
peak minimizing algorithm. The basis of this algorithm is a data set
of measurements gathered from appliances of households. For our
research, the measurements in the data set span 24 hours with an
interval of a hour. From the data set we create tasks, these are found
using the MinMax Steady-state technique, described by Lee et al [16].

The proposed scheduling algorithm uses a PQ in combination with
a BFS optimization algorithm, as proposed by Georgievski et al. [8].
We are also assigning policies to tasks in order to reduce the number
of combinations possible. These combinations are generated by the
scheduling algorithm when searching for the optimal schedule.

But when talking about an optimal schedule a metrics is needed
for comparing schedules. In this research the metric is a cost func-
tion that describes the ratio between the peaks and average energy
consumption, proposed by Mangiatordi et al. [18]. We chose for this
function, because the calculation has a low impact on the complexity
of the scheduling algorithm and leads to a flat energy consumption,
which is after all our aim of research.

The CLSS provides households in a neighbourhood with schedules
for a single day. The web application is built with the Django frame-
work [6] and uses MongoDB [14] for storing data. The GUI provides
tables and graphs showing the energy consumption before and after
scheduling. A REST API allows sharing data with other devices.

Applying our solution to three different data sets showed a per-
centage of change up to 64,9 in the costs. Hence, the PAR was re-
duced in each case. We therefore conclude that it is possible to pro-
vide households in a neighbourhood with a schedule that minimizes
peaks in the energy consumption and contribute to slowing down
global warming.

51

52 conclusion

6.1 future work

In the present work, we optimize the energy consumption profile over
a day by providing households with a schedule. Currently, the impact
of the schedule on the user has not been taken into account. The in-
fluence of the users on the schedule is limited, considering no param-
eters are available that can be set by the user, therefore limiting the
influence users have on the scheduling algorithm. By adding the op-
tion for custom policies, the household could specify when an appli-
ances may be scheduled. In this way, the impact on his or her comfort
is reduced. We also think that tasks with high energy consumption
have to be scheduled first. As tasks with small energy consumption
have less impact on the cost. In consequence scheduling tasks with
high energy consumption first will make it easier for the algorithm to
make a plan without peaks in the energy consumption.

Another future work could be extending the range of historical
data. For the scope of this thesis we focused on a day. By looking at
multiple days a pattern may emerge, which allows the program to
improve the detection of peaks while at the same time making the
task detection more accurate.

The algorithms presented do not require input from the consumer.
However, an interesting addition would be to give the consumer more
control over the scheduling process. For example creating custom
policies, restricting the hours an task can be planned. As policies are
already integrated, it does not require any changes to the scheduling
algorithm itself.

Part IV

A P P E N D I X

A
G R A P H I C A L U S E R I N T E R FA C E O F T H E S Y S T E M

Here we show screenshots taken from the GUI of the CLSS. The first
section shows the views of the Peakfinder application, while the second
section shows those of the Scheduler application.

a.1 peakfinder application

Figure 20: Screenshot showing a list of households.

Figure 21: Screenshot showing a list of households for a specific neighbour-
hood.

55

56 graphical user interface of the system

Figure 22: Screenshot showing an overview of the household.

a.2 scheduler application

Figure 23: Screenshot showing the index page of the CLSS.

Figure 24: Screenshot showing the login page.

A.2 scheduler application 57

Figure 25: Screenshot showing a list with neighbourhoods.

Figure 26: Screenshot showing the details of a neighbourhood.

B I B L I O G R A P H Y

[1] GreenerBuildings consortium 2013. GreenerBuildings project web-
site. 2013. url: http://www.greenerbuildings.eu/ (visited on
06/2015).

[2] International Energy Agency. World Energy Outlook 2012. Novem-
ber 2012. url: http://www.iea.org/publications/freepublications/
publication/English.pdf (visited on 02/2013).

[3] G.T. Bellarmine. “Load management techniques.” In: Southeast-
con 2000. Proceedings of the IEEE. 2000, pages 139–145. doi: 10.
1109/SECON.2000.845449.

[4] Tom Christie. Django REST framework. February 2015. url: http:
//www.django-rest-framework.org (visited on 02/2015).

[5] EnerGQ. EnerGQ i-CARE. 2013. url: http://www.energq.com/
consument (visited on 12/2013).

[6] Django Software Foundation. Django documentation. September
2014. url: https://docs.djangoproject.com/en/1.8/ (visited
on 04/2015).

[7] The Eclipse Foundation. Eclipse.org - Juno Simultaneous Release.
August 2015. url: https://eclipse.org/juno/project.php
(visited on 08/2015).

[8] I. Georgievski et al. “Optimizing Energy Costs for Offices Con-
nected to the Smart Grid.” In: Smart Grid, IEEE Transactions on
3.4 (December 2012), pages 2273–2285. issn: 1949-3053. doi: 10.
1109/TSG.2012.2218666.

[9] E. Hammer-Lahav. Request for Comments (RFC) 5849 - The OAuth
1.0 Protocol. April 2010. url: http://tools.ietf.org/html/
rfc5849 (visited on 02/2015).

[10] D. Hardt. RFC 6749 - The OAuth 2.0 Authorization Framework. Oc-
tober 2012. url: http://tools.ietf.org/html/rfc6749 (vis-
ited on 02/2015).

[11] Highcharts. Interactive JavaScript charts for your webpage. January
2015. url: http://www.highcharts.com" (visited on 04/2015).

[12] E. Ter Horst. Smart Grid | Rendement voor iedereen. May 2013.
url: http://www.smartgridrendement.nl (visited on 05/2015).

[13] Mongodb inc. Map-Reduce - MongoDB Manual 2.6. September
2014. url: http://docs.mongodb.org/v2.6/core/map-reduce
(visited on 07/2015).

[14] Mongodb inc. The MongoDB 2.6 manual. October 2014. url: http:
//docs.mongodb.org/manual/ (visited on 02/2015).

59

http://www.greenerbuildings.eu/
http://www.iea.org/publications/freepublications/publication/English.pdf
http://www.iea.org/publications/freepublications/publication/English.pdf
http://dx.doi.org/10.1109/SECON.2000.845449
http://dx.doi.org/10.1109/SECON.2000.845449
http://www.django-rest-framework.org
http://www.django-rest-framework.org
http://www.energq.com/consument
http://www.energq.com/consument
https://docs.djangoproject.com/en/1.8/
https://eclipse.org/juno/project.php
http://dx.doi.org/10.1109/TSG.2012.2218666
http://dx.doi.org/10.1109/TSG.2012.2218666
http://tools.ietf.org/html/rfc5849
http://tools.ietf.org/html/rfc5849
http://tools.ietf.org/html/rfc6749
http://www.highcharts.com"
http://www.smartgridrendement.nl
http://docs.mongodb.org/v2.6/core/map-reduce
http://docs.mongodb.org/manual/
http://docs.mongodb.org/manual/

60 Bibliography

[15] IPCC. “Energy Systems.” In: Climate Change 2014: Mitigation
of Climate Change. Edited by O. Edenhofer et al. Cambridge,
United Kingdom and New York, NY, USA: Cambridge Univer-
sity Press, 2043, 518–568. url: www.climatechange2013.org.

[16] Seungwoo Lee et al. “Automatic Standby Power Management
Using Usage Profiling and Prediction.” In: IEEE Transactions on
Human-Machine Systems 43.6 (November 2013), pages 535–546.
issn: 2168-2291. doi: 10.1109/THMS.2013.2285921.

[17] Brainwy Software Ltda. PyDev. July 2015. url: http://www.
pydev.org (visited on 07/2015).

[18] F. Mangiatordi et al. “Power consumption scheduling for resi-
dential buildings.” In: 2012 11th International Conference on Envi-
ronment and Electrical Engineering (EEEIC). May 2012, pages 926–
930. doi: 10.1109/EEEIC.2012.6221508.

[19] Jacob Thornton Mark Otto. Bootstrap The world’s most popular
mobile-first and responsive front-end framework. January 2014. url:
http://getbootstrap.com/ (visited on 04/2015).

[20] A.-H. Mohsenian-Rad et al. “Optimal and autonomous incentive-
based energy consumption scheduling algorithm for smart grid.”
In: Innovative Smart Grid Technologies (ISGT), 2010. January 2010,
pages 1–6. doi: 10.1109/ISGT.2010.5434752.

[21] Net2Grid. Net2Grid. 2013. url: https://www.net2grid.com/
(visited on 12/2013).

[22] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. 3rd. Upper Saddle River, NJ, USA: Prentice Hall Press,
2009. isbn: 0136042597, 9780136042594.

[23] Scrapy. Architecture overview. February 2015. url: http://doc.
scrapy.org/en/latest/topics/architecture.html (visited on
02/2015).

[24] Scrapy. Scrapy | A Fast and Powerful Scraping and Web Crawling
Framework. February 2015. url: http://scrapy.org/ (visited
on 02/2015).

[25] M. Weiser, R. Gold, and J. S. Brown. “The Origins of Ubiqui-
tous Computing Research at PARC in the Late 1980s.” In: IBM
Systems Journal 38.4 (December 1999), pages 693–696. issn: 0018-
8670. doi: 10.1147/sj.384.0693.

www.climatechange2013.org
http://dx.doi.org/10.1109/THMS.2013.2285921
http://www.pydev.org
http://www.pydev.org
http://dx.doi.org/10.1109/EEEIC.2012.6221508
http://getbootstrap.com/
http://dx.doi.org/10.1109/ISGT.2010.5434752
https://www.net2grid.com/
http://doc.scrapy.org/en/latest/topics/architecture.html
http://doc.scrapy.org/en/latest/topics/architecture.html
http://scrapy.org/
http://dx.doi.org/10.1147/sj.384.0693

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	A software system to manage the domestic energy demand at the neighbourhood level
	1 Introduction
	1.1 Research problem
	1.2 Thesis contribution
	1.3 Thesis outline

	2 Smart Environments and load shaving
	2.1 Smart Environments in households
	2.1.1 GreenerBuildings
	2.1.2 enerGQ I-CARE
	2.1.3 Net2Grid Smartbridge

	2.2 Load management and load shifting

	Concept and Implementation
	3 Concept
	3.1 Gathering historical measurements
	3.2 Tasks and policies
	3.2.1 Tasks
	3.2.2 Policies

	3.3 Creating a schedule
	3.3.1 Terminates
	3.3.2 Completeness
	3.3.3 Complexity

	4 Implementation
	4.1 System Overview
	4.2 Development tools
	4.3 Scraper
	4.3.1 The spider
	4.3.2 The pipeline

	4.4 Web application
	4.4.1 Peakfinder application
	4.4.2 Scheduler application
	4.4.3 REST API

	4.5 Database

	Simulation and Validation
	5 Results
	5.1 Setup
	5.1.1 The data
	5.1.2 The metrics

	5.2 Running
	5.2.1 Generating tasks and policies
	5.2.2 Generating schedules

	5.3 Analysis
	5.3.1 Task and Policies
	5.3.2 Before and after scheduling

	5.4 Discussion

	6 Conclusion
	6.1 Future work

	Appendix
	A Graphical user interface of the system
	A.1 Peakfinder application
	A.2 Scheduler application

	Bibliography

