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ABSTRACT

Cloud computing takes in an ever more important role in the IT divi-
sion of companies. In the past everyone typically had their own ded-
icated computers. Nowadays computing power can be bought from
cloud providers though, saving companies from the hassle of having
to maintain their own machines. Computing power does not come
free of charge however. In cloud computing, as in many areas, effi-

ciency is thus key.

All the major cloud providers offer an automatic cloud scaler to use
the cloud efficiently. Whenever computational load is high, it adds
computing power and whenever load is low, it does exactly the oppo-
site. This has proven to be a proper scaling method. Cloud providers
only offer on-demand scaling however. Historical cloud usage pat-

terns are not used in scaling clouds.

In this thesis we therefore investigate the usage of a combination of
historical and recent cloud usage data for automatic cloud scaling.
The Lambda Architecture is proposed as a way to process both types
of data. To prove the feasibility of this architecture for cloud scaling, a
software solution is implemented in which more efficient scaling can
be reached. Furthermore, simulations are ran on the software solution
using only on-demand scaling as well as using Lambda Architecture

for scaling.
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INTRODUCTION

Over the last few years cloud computing has become ubiquitous. It is
used for checking mail online, logging into your company’s working
environment, doing large-scale computations, streaming a movie and

many more. The number of applications is endless.

Cloud computing can be defined as the providing of software and
hardware resources as services across distributed IT resources[1]. It
is a rapidly expanding field that offers immense computing power.
Cloud computing is offered to customers as one of the following
three distinct services: Software-as-a-Service, Platform-as-a-Service
or Infrastructure-as-a-Service, where the last named offers users the
most freedom. Although all three services offer cloud computing in a
different way, they typically share the feature that the user has to pay
the public cloud provider for its use.

Publicly available cloud computing arose at the beginning of the

twenty-first century. One of the first public cloud computing providers,
and also one of the largest, is Amazon Web Services (AWS)(5). AWS

started out in 2006 and have expanded their services ever since[2].

Other companies such as Microsoft[3] and Google[4] quickly followed

with their own platforms. All these companies charge their customers

for every hour and for every machine that is used. It is thus imper-

ative for customers to use the given computing power as efficient as

possible. This is where automatic cloud scaling comes in.

1.1 AUTOMATIC CLOUD SCALING

Computing power demand usually varies over time. There are times
when extra computing power is needed, but more importantly, often
there is a great amount of idle computing power. One of the great
advantages of the cloud is the fact that it is scalable. Whenever load
is low, computing power can be removed and the opposite also holds
true for high load. To this end most public cloud providers offer an
automatic cloud scaler. This is a piece of software that can monitor

cloud usage and scale computing power based on the load on such
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computing units. Some cloud providers even allow the user to set a
policy of their own for scaling[5].

Both cloud providers” own policy and a user set policy depend on
recent data. These policies do not look at historic patterns in data us-
age, but instead measure the load on the computing units at this very
moment. The cloud scaler receives a continuous flow of information
about the current load on the used computing units. This reactive
kind of data processing is called stream processing. Another type of
processing in the same field is batch processing. It is currently not
used for automatic scaling as it lacks the possibility to adopt to sud-
den changes in load. In this thesis we therefore look at a recently
coined paradigm called the Lambda Architecture which combines
both types of processing.

1.2 LAMBDA ARCHITECTURE

Lambda Architecture is a term coined by Nathan Marz in 2012[6]. It
is used in the field of data-processing. It describes a paradigm which
takes advantage of both batch processing and stream processing. Typ-
ically a continuous stream of data is expected as input in the Lambda
Architecture. This data is then dispatched to two layers; speed layer
(stream processing) and batch layer (batch processing). Batch process-
ing ensures that a massive amount of data can be processed while
stream processing provides the latest up-to-date data. Processed data
from both layers is then made available in a uniform way in the query
layer. Other programs can extract data from the Lambda Architecture

by performing queries on the query layer.

1.3 PROBLEM STATEMENT

Ever since the emergence of cloud computing computer scientists
have been looking for ways to use the cloud as efficient as possi-
ble. Clouds possess an enormous amount of computing power which
users can order when they need it. In general users have to pay for
every computing unit(s) of the cloud they use though. It is therefore
desirable to use as little resources as possible to do computations.

The size of computations that need to be done tends to vary over

time. As such, the amount of computing power one may need from
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the cloud also varies. Being able to adapt the amount of computing
power to fit your needs is key in achieving high efficiency. The easiest
way to achieve this would be to simply have a programmer manually
shut down computing instances when there are little computations
to be done, and start up extra computing instances when a bigger
batch of computations needs to be done. A human has its limits and
flaws of course when it comes to rapid decision making. Software
programs and techniques have been developed instead to take over
this task.

Software programs are indeed well-versed in rapid decision mak-
ing. They cannot create an ideal situation however. They always have
to balance the trade-off between latency and costs. More computing
units offer more computing power and thus lower latency. At the
same time this increases costs. One would want to have as little la-
tency for as little money as possible.

To balance this trade-off between latency and costs, software pro-
grams typically look at how busy your computing cluster(s) is cur-
rently. In case it is very busy, extra machines may be added. In case
there is excess computing power, available machines may be removed
from your cluster. To make these decisions a program could possibly
also look at data from longer ago and look at certain trends in this
data to make a prediction on how busy the cluster will be.

Briefly summarized, there can be made a distinction between two
kinds of historical data: data from over a longer period of time (for
example, previous year) and data from a very short recent period
(for example, the last ten minutes). The former can be processed well
by using the MapReduce paradigm. MapReduce is not suited for the
latter. The Lambda Architecture is capable of utilizing both. It has
separate layers for processing data batches and processing streaming
data. Furthermore, most of the work that has been done in this field
of research applies to scaling with a single cloud. It is possible that
one may want to use more than 1 cloud provider, for example for
financial reasons or not being dependent on one cloud provider.

One possible scenario where the aforementioned applies to, and which
is used in this thesis, is at a picture/video uploading website. This
use case is discussed in section 3.1. Summarized this comes down

to the following: Users from across the globe upload pictures and
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videos to this site. In general pictures and videos are quite large files
which means that it will take some time to upload them to the web-
site. Users want to have their pictures and video uploaded as fast as
possible (thus with as low latency as possible). On the other hand, the
owner of this website wants to use his computing power as efficient
as possible. More computing power requires more machines which
requires more money. Location of computing power also takes an im-
portant role here.

Having your computing cluster geographically close to your users re-
duces the amount of latency these users experience. The owner of the
picture/video uploading website would therefore like to have servers
running in many different parts of the world. Ideally there should be
more servers where there are currently more users active. E.g. when
you currently have a large number of users active in Europe it is de-
sirable to also have a major part of your servers active in Europe. The
number of users is always changing however. Also, In some cases it
may be beneficial to redirect your users to another computing cluster
that is further away and thus gives a higher response time when un-
der equal load. One of these cases is when you have another cluster
that is geographically further away from the majority your currently
active users but it has excess computing power.

These problems are not solved well by a standard autoscaler as by
default it will always choose to add extra computing units to the lo-
cation where demand is the highest and the autoscaler will not look
at the possibility of efficiently distributing users to other computing
clusters. A solution to this problem is to use the Lambda Architecture.

As mentioned previously, the Lambda Architecture provides a way
to use both historical and recent data to make a decision on how to
scale your different computing clusters. A smart scaler can then take
both kinds of data into account and determine whether a good result
is achieved both latency-wise and cost-wise when extra machines are
started in the same cluster or when requests are offloaded to other
computing clusters. This could provide cost saving as distribution
load is spread more evenly amongst the clusters. In this thesis we
therefore investigate the usage of the Lambda Architecture for auto-
matic scaling in the cloud to efficiently reduce latency.

The main research question answered in this thesis is: Can we im-



1.4 THESIS STRUCTURE

prove automatic scaling to efficiently reduce latency using the Lambda Ar-
chitecture? Sub research questions can then roughly be structured as
follows:

* Does using both batch processing and stream processing at the
same time generate significant overhead?

* How does combined processing compare to only batch process-
ing?

* How does combined processing compare to only stream pro-
cessing?

1.4 THESIS STRUCTURE

This chapter has provided a brief introduction into the subject of
cloud scaling and the Lambda Architecture as well as the research
questions. To answer the research question the rest of the thesis is
structured as follows: Chapter 2 discusses work previously done in
this field. Chapter 3 covers the theory and design. Then the imple-
mentational work of this thesis is discussed in chapter 4. After that
the outcome of the simulations ran is depicted and evaluated in chap-
ter 5. Recommendations for future work are done in chapter 6. Fi-
nally, the conclusion and answers to the research questions are given
in chapter 7.
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RELATED WORK

Many aspects of cloud computing are contained within this thesis:
cloud scaling, handling Big Data, batch processing. The list is quite
extensive. As such, there are many papers that can be considered re-
lated work. The only aspect which proved to be hard to find scientific
material for, is the Lambda Architecture.

2.1 LAMBDA ARCHITECTURE

Several scientific paper databases (IEEE Xplore, Elsevier ScienceDi-
rect, Google Scholar, dblp) have been thoroughly searched for re-
search about the Lambda Architecture. During this search the key-
words Lambda Architecture were used. No articles have been found
that specifically treat the Lambda Architecture. This is possibly due
to a few reasons. The first reason is that this architecture has been
developed quite recently and as such research may still be underway.
The second one is that this article is not that well known yet. The
creator of the Lambda Architecture, Nathan Marz, has just finished
his book (May 10, 2015) which describes the inner working of the
Lambda Architecture. Furthermore, the name was coined a few years
ago. However, this kind of architecture may already be used by oth-
ers but they may use a different name. Searching with different key-
words, for example batch and streaming processing does provide results.
This gives an indication that there has been research about this archi-
tecture before, but not under the name Lambda Architecture. The rest
of this paragraph thus describes techniques, architectures, software,
middleware that fulfill similar roles as the Lambda Architecture, pro-

viding both stream and batch processing.

The paper written by Dahiphale et al. describes a technique they
call Cloud MapReduce[7]. Contrary to regular MapReduce, Cloud
MapReduce does not only process in batches, but also allows for
stream processing. This shows great similarities with the set up of
the Lambda architecture. Cloud MapReduce uses queues to support
both batch and stream processing. New streaming data is treated by
a StreamHandler thread. Whenever new data is found, it is split up
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in chunks and then pushed to an input queue. Batch data is pushed
into similar input queues. All data is then processed through several
queues and mapping and reducing.

Another similar approach is taken by the Hadoop Online Prototype
(HOP). This technique is described in the paper by Condie et al.[8].
Instead of waiting for entire batches to finish a MapReduce process,
HOP returns intermediary results. Furthermore, it is capable of han-
dling continuous queries. This means that data that is available just
now, for example streaming data, can be added to the MapReduce
process. The most appealing difference with default MapReduce is
that reduce units can start to produce intermediary results as soon as
mappers have some data available, also called online aggregation[9].
Reduce units do not have to wait until the entire mapping procedure
has been finished.

The paper of Urbani et al. describes the middleware they have writ-
ten, called AJIRA[10]. AJIRA addresses some of the shortcomings of
the original MapReduce. The most important shortcoming of MapRe-
duce is that it does not allow the creation of new processes at runtime.
AJIRA does allow this. This means that AJIRA cannot only handle
batch processing but stream processing as well. AJIRA’s most impor-
tant unit is an action. Multiple actions perform a generic task in the
MapReduce process, for example grouping. A sequential set of orders
is called a chain. These chains can then be executed on computing
nodes. These make up the MapReduce like process AJIRA performs.

There are a few implementations of the Lambda Architecture how-
ever. (These are not documented in scientific papers as of yet.) The
one that is currently the most mature is Summingbird [11], although
this one is also far from finished. Summingbird uses the Lambda Ar-
chitecture to handle large amounts of data. A number of different
programs can be used both for the speed layer (E.g. Storm[12]) and
the batch layer (E.g. Scalding[13]).

2.2 SCALING OF CLOUDS

Dejun et al. have done research on how workload should be scaled
among heterogeneous clouds[14]. In the paper they describe a way to
determine how much workload should be assigned to a newly added
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computing unit. This proves to be useful information for our own
work. Since multiple clouds are used, there is a high probability that
not every computing unit is able to take on the same working load as
any other.

The work done by Gandhi et al. describes the effect of horizontal
and vertical scaling of workload on computing units[15]. Horizontal
scaling is done by adding more computing units to handle additional
traffic. Vertical scaling is done by adding more resources to the cur-
rent computing units (E.g. by adding memory). Models are provided
to determine when an increasing workload should be answered with
vertical scaling and when it should be answered with horizontal scal-

ing.

MODAClouds[16] takes a different approach. It provides system de-
velopers with a framework in which they can develop their applica-
tions. This framework ensures that your application is cloud-agnostic.
As such it requires little effort to deploy your application on one
cloud and to port it to another. MODAClouds considers risks, price
and QoS to determine where an application should be deployed.

Many papers have been written about cloud computing. Cloud com-
puting is a very profitable and ever-growing business which means
that beside papers, there are also many commercial solutions for
cloud computing problems. Some cloud providers also provide their
own scalers, such as Google’s[17] and Amazon’s autoscaler|[5].

InterCloud[18] focuses on offering a user a private network of clouds.
InterCloud offers an extra software layer that can communicate with
different clouds and cloud providers. InterCloud also includes auto-
matic scaling and load distribution to reach reasonable QoS levels.
What InterCloud exactly offers has been described in the paper[19].

RightScale[20] offers similar functionality as InterCloud. This soft-
ware supports many of the large cloud computing providers. This

includes some of the cloud providers that are used in the concept sec-
tion of this thesis; Amazon Web Services(AWS)[21] and OpenStack[22].
RightScale can offer a combination of public, private and hybrid clouds
to their customers.

Visualization of performance metrics of computing units can be done
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by a combination of tools; collectd[23] and ElkStack[24]. collectd is
used to collect performance metrics and store them in files. Elkstack
provides visualization of your log files. It consists of three parts: Elas-
ticsearch, Logstash and Kibana. Elasticsearch provides the user data
analytics. Logstash is used for managing events and logs and pars-
ing them. Kibana provides visualization of the previously mentioned
data. This combination proves to be a useful aid for developers to see

how computing units are performing.
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The following section describes the concept of using the Lambda Ar-
chitecture for automatic cloud scaling. Furthermore, a use case is pre-
sented to clarify this usage.

3.1 FOLLOW THE SUN

To demonstrate the use of the Lambda Architecture for automatic
scaling, we pick the Follow-the-sun principle as use case. The Follow-
the-sun principle entails that your business is active wherever the sun
is shining. This ensures that you always have at least one business
active around the world. For example, there could be three places
around the world where you have offices, London, Mexico City, Sin-
gapore. At g am (GMT) employees start their working day in London.
Eight hours later when the sun sets in London employees finish their
working day. Sun rises in Mexico City at that time (9 am, GMT-8) and
employees start their day there. Eight hours later the same applies to
employees in Singapore. After another eight hours it’s g am (GMT)
again and the cycle starts over.

This can also be applied to VM'’s (Virtual Machines,computing unit is
used often throughout this thesis as a more general term ). Users are
typically active during the day. In general, placing VM’s geographi-
cally far away from the user results in a higher number of network
and thus in higher latency because of transmission delay and retrans-
mission. Placing VM’s closer to the users will likely result in lower
latency. Hence it is beneficial to also apply the Follow-the-sun princi-
ple to VM’s. To be able to deploy such tactics cloud providers have
to have computing units available to cover every part of the world.
Fortunately, most bigger cloud providers have data centers all over
the world.

Amazon Web Services offers VM’s in North America, Europe, Africa
and Asia[25]. These regions can fulfill the Follow-the-sun principle to-
gether. The same applies to Rackspace. This cloud provider has data
centers in North America, Europe, Asia and Australia[26]. The third

11
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cloud provider that is used in this thesis is GoGrid which offers VM’s
in only Europe and North America[27]. Using multiple clouds in this
use case, allows us to take advantage of the different locations of
these cloud providers.

In this thesis we deploy applications on three different regions through-
out the day. It is possible that deploying to even more regions in-
creases the quality you can offer to your users. However, constantly
turning on and shutting down machines is rather expensive since
cloud providers in general charge you for a certain amount of hours
as a minimum. It is thus not desirable to use VM’s in as many re-
gions as possible during a day. Most cloud providers provide VM’s
in at least three regions which can cover the entire 24 hours: North
America, Europe and Asia. It is therefore desirable to follow this pat-
tern. In this thesis we activate VM’s in these three regions depending
on the time of day. The Lambda Architecture is used to determine

when and how many machines we activate in each of these regions.

To implement realistic computer usage during the day, data from In-
ternet exchanges is used. We use this data to create user profiles. A
user profile defines the activity of a user of an application on our
clouds during the day. Typically we see high Internet usage between
9 am and 5 pm and little usage at night.

Since we use VM’s in regions North America, Europe and Asia, we
choose to gather information from Internet exchanges in these re-
gions. To gather data about European users, the Amsterdam Internet
Exchange[28] is used. For the America’s we use the New York In-
ternet Exchange[29]. Finally, for the region Asia we use the Internet
Exchange of Tokyo[30]. These Internet Exchanges provide statistics
about all the Internet traffic that is routed through them. The abso-
lute amount of data that flows through an Internet Exchange is not
interesting for this thesis. Rather, we want to look at the relative size
of traffic at a certain moment of the day. For example, if an Internet
Exchange shows that data traffic throughput is four Tb/s at 5 pm and
one Tb/s at 5 am, then we can model a user profile that puts a four
times as heavy load on the cloud at 5 pm than at 5 am.

It can be observed from the three Internet Exchanges[28][29][30] that
every day of Internet traffic is roughly the same. Figures 1, 2 and 3
show the amount of internet traffic over the course of May 11th 2015
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(Monday). Furthermore, we are mainly interested in having a period
during the day of higher load and a period of lower load. The user
profiles can thus be based on any day given in the statistics of the
Internet Exchanges.
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3.2 MULTIPLE CLOUDS

Cloud providers typically offer many useful tools to make it easier to
maintain and adjust your cloud. Amazon Web Services for instance
offers 64 different services[31]. All cloud providers have their own set
of products. These cannot be used across clouds however. An AWS
Elastic Load Balancer for example cannot balance the load on com-
puting units owned by GoGrid.

One of the selling points of using the Lambda Architecture in this
subject is that we can use it across multiple different clouds. It is
therefore recommended to not use any cloud-specific tools. The im-
plementation in this thesis is therefore completely cloud agnostic. Fur-
thermore, a cloud scaler typically takes advantage of many features
that a cloud provider offers. This makes it hard for the approach in
this thesis using the Lambda Architecture to beat such a cloud scaler
one on one. Yet this approach can be used on multiple clouds whereas
the cloud scaler will only work for that one specific cloud provider.

3.3 FEEDBACK LOOP

A feedback loop is used in the IT world mainly for evolution and
maintenance of software[32]. Here we use it to adjust the size and
placement of the cloud appropriately to achieve automatic cloud scal-
ing. Data is gathered from the cloud computing units and then pro-
cessed and in turn used to scale those same cloud computing units.
This means that the feedback loop consists of multiple components.
These are displayed in figure 4. The main components are the cloud
computing instances, the Lambda Architecture block, the rules and
constraints set and the cloud scaler. Information is gathered from the
cloud computing units. The data is then sent to the Lambda Architec-
ture block which is explained in detail in the next section. The data
is processed and the relevant data is then made available for queries
for the rules and constraints set, which is elaborated on later in this
chapter. Finally, instructions are given to the scaler to adjust the cloud
units appropriately.
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Rules and Constraints

Lambda Architecture

| Query Layer
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L Cloud computing instances
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Figure 4: Feedback loop using the Lambda Architecture.

3.4 LAMBDA ARCHITECTURE

The Lambda Architecture dictates that data should be processed in
two layers: the batch layer and serving layer for all older data and the
speed layer for only the most recent data. The part of the feedback
loop that is structured by the Lambda Architecture receives metrics
taken from the cloud computing instances. This new data is pushed
into both layers. Figure 5 shows a zoomed in picture of all compo-
nents of the Lambda Architecture used in this thesis.

New data is gathered from the different cloud providers every few
seconds. There is no need to wait with pushing data until metrics
are gathered from all cloud providers. The metrics that are gathered
should be obtainable in all cloud providers to maintain consistency.
Naturally, these metrics should give a good insight into how busy the
currently used computing units are and thus if we need to scale up or
down. The chosen metrics are dependent on the needs of the scaler
of the feedback loop.

3.4.1 Batch layer

New data that is pushed to the batch layer is stored in the master
database at first. The master database contains an ever-expanding set
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Query Layer

' Requested Queries

Serving Layer speed Layer

Batch view: Batch view:
HOFS file HDFS file
Speed view:
HDFS file

Batch view: Batch view:
HDFS file HDFS file

Batch Layer

Batch processor: Stream processor:
Apache Spark Apache Spark
Streaming

HDFS master DB

Queue

Figure 5: Feedback loop using the Lambda Architecture.

of historical data that is gathered during the time the program is used.
In this layer functions are precomputed to be used in the serving layer
later on. One of these functions may be to calculate the average CPU
usage of all computing instances of all cloud providers for a week.
This can provide a useful insight into the possible CPU usage for
next week and can tell us if we need to scale up or scale down.

3.4.2 Serving layer

The serving layer uses the precomputed functions from the batch
layer. The precomputed functions take a considerable amount of time
to compute. The serving layer therefore faces high latency. The speed
layer makes up for that to ensure that queries always use the newest
data. The serving layer consists of a number of batch views that can
answer a query together with the real-time view of the speed layer.
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3.4.3 Speed layer

The speed layer receives data directly from the cloud computing units.
There is no database or any other intermediary tool in between. The
speed layer provides low latency updates and thus allows you to do
computation on data in near real-time. The speed layer handles data
from the last hour. Batches in the batch layer are expected to finish
well within one hour. Data that is older than one hour is thus already
used in functions of the batch and serving layer.

3.4.4 Queries

A query is done on the real-time view from the speed layer as well
as the batch views from the serving layer. In this way a query can
always be done on the most recent data. The result of a query is sent
to the next part of the feedback loop which consists of applying rules
and constraints on the result.

3.4.5 Data throughput

The Lambda Architecture consists of several components that all have
their own rate of throughput given the number of computing units
over which such component is deployed. A vital factor is the amount
of data that is passed through the Lambda Architecture. This factor
not only determines the size of computing units needed to deploy the
Lambda Architecture, it proves or disproves the feasibility of some
components as a whole as well. Data throughput may be relatively
low such that queries done directly on the files in the serving layer are
of sufficient speed. In this case we could skip having an in-memory
key-value data store between the serving layer and the queries that
come from the rules and constraints section. There would be no gain
of having such a data store in between. On the other hand if we see
that data throughput is still fairly high, we need an in-memory key-
value data store because queries and thus scaling of the cloud would
take too much time. Data throughput can thus answer the question
if an extra component such as an in-memory key-value data store is
needed.

To get an idea of the data throughput some calculations need to be
done. Please note that these numbers are only to show the order of
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magnitude of the data input. They are not used to produce exact num-
bers. The first one is to calculate how often data should be collected
from the computing units in the cloud: The major cloud providers
mostly use billing by hour[33][34][35]. Even if you only need a ma-
chine for 5 minutes and terminate it afterwards, you will be billed
for an entire hour. Scaling down is thus a slow process. Scaling up
however can be done more rapidly. It takes most cloud providers just
a few minutes to boot an instance with the proper software installed
[36][37]. Therefore data should be collected in the order of magnitude
of 1-10 seconds. This ensures having enough information to know

whether to scale up or scale down.

Secondly, the amount of data that one computing unit sends every
few seconds is important. On a local machine a few megabytes of
data were collected for the last four hours. Data was gathered for a
total of 6 metrics. This amount roughly comes down to a few kilo-
bytes of data for one time interval. This number has to be multiplied
by the number of computing units. There are some large compa-
nies that rely heavily on the cloud. Imgur uses around 500 servers
to host their content[38]. Dropbox uses approximately 10,000 servers
to store all user content and serve their website and the same holds
for Netflix[39][40]. Taking these numbers into account, data through-
put in the Lambda Architecture for a large resource intensive website

generates tens of megabytes per second of data.

This stream of data is passed both to the master database in the batch
layer and to the streaming processor in the speed layer as well. For
the master database this means the following: This data should typi-
cally be stored in the master database for years until it is decided that
this data is not relevant any more. The size of the master database
would thus be in the order of magnitude of hundreds of terabytes.

Both in the streaming processor (streaming layer) as in the batch pro-
cessor (batch layer) the output is severely smaller than the input. This
is caused by the fact that averages are produced as output where
each average takes many raw measurements as input. As an example,
one averaged cpu cluster load over one hour is calculated using the
following data:

N * 60 x 60

clusterAverageHour = T

In which:
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e N = the number of units within one cluster
e T = the interval in seconds at which data is collected

For our example of a large website, 10,000 servers and a ten seconds
time interval, this means you would need w = 3,600,000
raw measurements to produce just one averaged cpu cluster load over
one hour. This illustrates the major difference in size between in- and
output of the batch and streaming processors.

The data made available for queries is thus in the order of magni-
tude of gigabytes. Queries typically only comprehend a small portion
of the total query layer. This information can be used to answer the
question posed at the beginning of this section: The data available
at the query layer is not large enough to justify using an in-memory
key-value data store for quicker query responses.

The previous paragraphs explain the data throughput given an in-
terval, number of servers and number of metrics that is realistic. To
get a better understanding of the amount of data that is generated
table 1 is provided. The first row in this table describes the outcomes
of previous paragraphs. Similar logic is used to obtain the results of
other rows. The interval, number of servers and number of metrics
are given as input parameters. It can be seen that reducing certain
input values drastically reduces overall data throughput. Such cases
require a different set up of the feedback loop. E.g. the previously
discarded in-memory data store may be viable when the number of
servers is doubled.

The columns of the table contain the following information:

¢ computing units: The number of computing units that generate
data

* metrics: The number of metrics for which each computing unit
generates data

e Time interval: Time between two consecutive moments of data

gathering
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* Data size one unit: Amount of data one computing unit gener-
ates for one time interval

¢ Data size master DB: Amount of data present in master database

e Data throughput batch processor: Amount of data that is gen-
erated by the batch processor each second

* Size query layer: Amount of data that resides in the query layer

and is thus available to perform queries on
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3.5 RULES AND CONSTRAINTS

The main focus of this thesis implementation-wise is on the Lambda
Architecture. The Lambda Architecture has been implemented many
times before. Even before the term Lambda Architecture was coined,
the combination of stream and batch processing has been used com-
monly to process data. The main focus of this thesis novelty-wise lies
mostly in the rules and constraints section instead.

Rules and constraints tell us when extra cloud computing units are
needed and when we can do with less. The more well-known cloud
providers often provide the user an interface in which he can de-
fine some simple rules[17][5]. These rules are usually related to costs
and several CPU usage statistics. Furthermore, most cloud providers
also include an automatic cloud scaler[17][5]. An automatic scaler can
then scale the cloud up or scale the cloud down based on these rules.
These automatic scalers respond to recent events. E.g. if a very high
CPU load is detected on all cloud computing units (say, greater than
95%) then extra computing units will be added. The Lambda Archi-
tecture offers us a method to not only take recent events into account
but also historic events.

To demonstrate the usefulness of the historic events we take the afore-
mentioned situation in which all cloud units have high CPU load. As
an example we say that this situation occurs just before 5 pm at a
given working day. If we only apply the knowledge we have from
recent events, we would start up many extra machines to deal with
the high CPU load. Using historical information we can see that every
day after 5 pm cloud usage decreases dramatically due to people leav-
ing their offices and thus that we do not need to start extra machines.
This cuts back the costs while not showing a significant increase in
latency for the users of the cloud units.

3.6 AUTOMATIC SCALING

The data that a certain query should retrieve is determined by a smart
scaler. This scaler takes into account technical statistics such as how
heavy the load is that the computing units have, but also economical
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considerations such as the current price for hiring an extra comput-
ing unit in a certain cluster. It will likely also involve multiple queries
that are joined, averaged and even more. Furthermore, it may be ben-
eficial to start computing units in a cluster that is far away from the
users since that cluster offers cheaper machines at that moment. Find-
ing the sweet spot for when to request an extra computing and when
not to, forms an econometrical case on its own and will thus not be
covered in this thesis. In the implementation a severely simplified set

of rules and constraints is used instead to complete the feedback loop.

Based on the queries done above, the smart scaler makes a decision
to start or shut down computing units in certain clusters. This com-
pletes the feedback loop. The whole process is continuously repeated.
At 1 past 9 this process is nearly the same. Except for the fact that the
batch layer now also has incorporated data from 8 am to 9 am and the
speed layer only contains data from 9 O’clock until 1 past 9. The rest
of the day follows a similar process. On Tuesdays, different historical
data is queried. That is, historical data from all Tuesdays instead of
all Mondays.

3.7 APPLICATION TO THE “FOLLOW-THE-SUN” USE CASE

Earlier in this chapter we discussed the follow-the-sun use case. Specif-
ically, how we could make use of the Lambda Architecture in this use
case. The following paragraphs explains how data in this use case is
passed through the feedback loop. Each component of the feedback
loop is addressed and we show what each component does with the

received data.

The scenario for this use case is the following: It's Monday 9:30 am
GMT and we have several cloud computing units running in our clus-
ters in America, Europe and Asia. At this particular time there is a
division of cloud computing units in the following ratio: 3 active units
in our cloud cluster in Europe, 2 in Asia and 1 in America. (It is cur-
rently night in America and thus little computing power is needed in
that particular cluster. Also see the aforementioned Figures 1, 2 and 3
about Internet activity. The speed layer contains information of data
units about the last half hour: 9 - 9:30 am. This layer holds informa-
tion up to 1 hour. The batch layer contains information of the last year

up to 9 am today.
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All computing units in all clusters (America, Europe and Asia) gen-
erate data about the usage of their own units. In this scenario this
is information about the load on such a computing unit, CPU us-
age, RAM usage, megabytes of up- and download per second. Data
from units in Europe, Asia and America is given an identifier that
belongs to that particular unit such that we know which data came
from which cluster later on when we want to perform analysis on this
data. All data is then sent into the feedback loop as depicted in fig-
ure 4. Cloud computing units send data into the feedback loop every
few seconds. The units do not have to sync up before sending data.
This is because all usage data from the clusters is put in queues. In
turn, this data is consumed by storing it in the master database (batch
layer) and redirecting it to the stream processor (speed layer). To keep
this example simple, only averages of CPU are taken. In reality, many
more parameters are taken into account depending on the kind of

data that the smart scaler requests.

On the streaming side of the Lambda Architecture the raw data is
processed through the stream processor. A smaller amount of ana-
lyzed data is the result of this process. Data that stems from the same
computing cluster is joined and averages (CPU average usage, RAM
average usage...) are taken. For our example this means we receive 3
data units from Europe, 2 from Asia and 1 from America about CPU
usage. From Europe we receive 85%, 90% and 95% CPU usage. The
stream processor calculates an average of this and puts out 9o%. In
Asia we receive 50% and 70% as input which the stream processor
averages to 60%. From the American computing unit we receive a
CPU usage of 70%. Logically, the stream processor outputs 70% as
average. These averages are then stored in the query layer to be used
in queries later on. Averages from the last half an hour that stem from
the speed layer are stored in the same place. The duration of storing
this information in the speed layer is equal to the time it takes the
batch layer to do one round of computations which is one hour in
this case. As soon as data is available for queries on the batch layer
side, there is no need to keep it on the speed layer side. So at 10 am
the information of 9 am till 1 to 10 am is not available anymore from
the speed layer, but it is processed by the batch layer by then and thus

still available for querying.

All data that is sent to the batch layer is stored in a database at first.
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The exact same information as in the speed layer about the CPU us-
age statistics from all 3 clusters is appended to the master database.
This is still in the same format as the way the computing units have
provided this data. Similar to the speed layer, data that stems from
the same cluster is joined in the batch processor through MapReduce
jobs that have a notably smaller amount of data as output than their
respective input. MapReduce jobs are executed as soon as the previ-
ous one has finished. This ensures that queries are executed on the
newest data available. Again, averages are calculated in this use case
and made available for querying. A batch job in this scenario takes
CPU usage information from all Mondays from the last year till g am
today and creates average for every cluster of every hour of every
Monday.

In the query layer we now have both historical and real-time data
available. We use a small part of this data that belongs to a cluster in
America, Europe or Asia to satisfy a certain query. For our use case
this means we take the previously computed averages from (9 am to
9:30 am) and from the historical data we take the gathered data on
all Mondays right from the start until 9 am on this Monday. This data
then gives an insight into the amount of computing units we need
now (mainly based on real-time data) and the amount we likely need
in the future (mainly based on the historical data) for this cluster. In
this scenario we can see from recent data that the cluster in Europe is
under pressure (90% CPU load). Furthermore, historic data provides
us with the information that this cluster is under pressure (average of
92% CPU load) every Monday around 9:30 am.

The smart scaler then uses the information from the queries to de-
termine two issues. The first one stems from the recent data, which
is that the cluster in Europe is currently under a load that is deemed
to be too high since it results in a too high latency for the end users.
The second issue is obtained from the historic data, which shows that
it is very likely that the cluster in Europe will still maintain a high
load for the coming hours. In case we only had only detected the
first issue, the smart scaler would have tried to temporary off load
customers to the other clusters located in America and Asia. Taking
the second issue in account, the smart scaler knows that it is feasible
to add more computing units to the cluster in Europe since this high
CPU load will likely last for hours.
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Instructions are then passed to the executing scaler to add computing
units to the cluster in Europe. As soon as the new computing units
are added to the cluster these new computing units also start emit-
ting raw data that can be used for future adjustments. This completes

one cycle of the feedback loop.



IMPLEMENTATION

The following chapter describes the implementation of the software
of this thesis. Where the previous chapter focused on the theory of
this thesis, the current chapter shows how the Lambda Architecture
can be used in practice for latency reduction in cloud scaling. Each
subsection provides an insight into what techniques and software is
used at the different components of the project. In various areas the
implementation has been simplified. This is legitimized because the
main goal of the implementation is to show the feasibility of the de-
sign discussed in the previous chapter.

4.1 GATHERING METRICS

Metrics are gathered from computing units, which are analyzed later
on within the Lambda Architecture. The computing units from which
metrics are gathered, are the ones that handle the client requests (e.g.
uploading a photo in our aforementioned use case). To implement
this, computing units should be deployed on several cloud providers
such as Amazon Web Services (AWS). For feasibility purposes smaller
set ups have been used: a ten computing units cluster and a single ma-
chine set up for obtaining the results in the next chapter.

In the implementation of this project only CPU data is gathered. De-
pending on the needs of the scaler other metrics could be gathered as
well. Furthermore, the internet traffic patterns shown in the previous
chapter in figures 1, 2 and 3 are used. A single process is used for
sending data about how busy the different virtual clusters (Ameri-
ca/Asia/Europe) are, to ensure that the way metrics are gathered is
as realistic as possible. The essential part of the program is shown in
listing 1. It can be noted that the Java program only sends one mes-
sage every ten seconds and should thus create negligible load on the
computing units handling the client requests. Furthermore, messages
are kept small in size. A message consists of only one line containing
the id, CPU load (as calculated in 1), location, provider and a time

stamp for a computing unit at a certain moment in time.
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Listing 1: Snippet of Java file to gather metric data based on web traffic

private float calcActivityDay(String location) {
TreeMap<Float, Float> activityDuringDay = new TreeMap<Float,
Float>();
activityDuringDay = readActivityFile(location);
long MILLIS_PER_DAY = 24 x 60 * 60 x 1000;
Date now = Calendar.getInstance().getTime();
float timeNow = now.getTime() % MILLIS_PER_DAY;
timeNow = timeNow / 60 / 60 / 1000; // to hours
Set s = activityDuringDay.entrySet();
Iterator it = s.iterator();
Map.Entry<Float, Float> currentEntry = null, previousEntry =
null;
while ( it.hasNext() ) {
currentEntry = (Map.Entry<Float, Float>) it.next();
float timeEntry = currentEntry.getKey();
if (timeEntry > timeNow) break;
previousEntry = currentEntry;
}
float multiplier = (timeNow - previousEntry.getKey())/(
currentEntry.getKey() - previousEntry.getKey());
float activity = currentEntry.getValue()*multiplier +
previousEntry.getValue()*(1-multiplier);
return activity;
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Listing 2: Snippet of Java file to store metric data in master database

TextMessage textMessage = (TextMessage) message;

String text = textMessage.getText();

text = text.replace("\n", "");

Path filenamePath = new Path(Main.hdfsLocation + "hdfsdata/" +
System.currentTimeMillis());

Configuration conf = new Configuration();

conf.addResource(new Path("/HADOCPHME/ conf/core—site .xml"));

conf.addResource(new Path("/HADOPHME/ conf/hdfs—site .xml"));

FileSystem fs = FileSystem.get(conf);

FSDataOutputStream fin = fs.create(filenamePath);

fin.writeUTF(text);

fin.close();

4.2 PROCESSING

Data processing starts with consuming messages from a queue. This
queue is populated by the metrics gathered as mentioned in previ-
ous section. The messages are parsed and then the data within these
messages are sent to the Lambda Architecture.

4.2.1  Consuming data

First, the data is sent to the master database. This is done by a sin-
gle thread, which is sufficiently fast for our implementation. Multiple
threads could be used when scale size increases, but most other com-
ponents of the Lambda Architecture require significantly more extra
computing power when scaling. Scalability is thus not an issue specif-
ically for this component. The functioning of this thread remains the
same: it consumes messages and opens an output stream to write the
data to the Hadoop Distributed File System (HDFS)[41], which is the
master database. HDFS takes care of replication and having the data
available on multiple nodes to be used with the batch processor later
on. A code snippet of the essential part is shown in listing 2. Secondly,
data is sent to the stream processor. Similar to the first stream, a sin-
gle thread is started to consume messages. This consumer thread is
used as input for the streaming processor.
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Listing 3: Java snippet of batch processing using Spark

private static JavaPairRDD<String, Float> getCpulLoadData(JavaRDD<CPU> parsedData) {
return parsedData.mapToPair(new PairFunction<CPU, String, Float>() {
@Override
public Tuple2<String, Float> call(CPU cpu) throws Exception {
Date date = new Date(cpu.getTimeStamp());
return new Tuple2<String, Float>(cpu.getLocation() + "/" + date.getMinutes(), cpu.
getCpulLoad());

1)

Listing 4: Java snippet of stream processing using Spark

private static JavaPairDStream<String, Float> getStreamCpulLoadData(JavaDStream<CPU>
parsedData) {
return parsedData.mapToPair(new PairFunction<CPU, String, Float>() {
@Override
public Tuple2<String, Float> call(CPU cpu) throws Exception {
Date date = new Date(cpu.getTimeStamp());
return new Tuple2<String, Float>(cpu.getLocation() + "/" + date.getMinutes(), cpu.
getCpulLoad());

1)

4.2.2  Batch and stream processing

One of the big drawbacks of the Lambda Architecture is its inherent
complexity. Typically two separate code bases have to be maintained,
one for the streaming layer and one for the batch layer. To alleviate
this burden, Apache Spark[42] is used. Spark is typically used for
batch processing. It also has a streaming module however. The code of
the batch and streaming module are thus essentially the same except
for some minor differences allowing you to essentially have only one
code base. It is thus desirable to use Spark or another program that
can handle both stream- and batch processing to decrease complexity.
Listings 3 and 4 shows how code used for batch processing can be
re-used for stream processing with little effort.
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Listing 5: Pseudo-code of rules used by the Lambda Architecture scaler

if recentLoad > MAXIMUM_RECENT_LOAD and historiclLoad >
MAXIMUM_HISTORIC_LOAD then
addComputingUnits(cluster)

else if recentlLoad > MAXIMUM_RECENT_LOAD then
relocateLoadToOtherClusters(cluster)

else if recentLoad < MINIMUM_RECENT_LOAD && historiclLoad <
MINIMUM_HISTORIC_LOAD then
removeNewComputingUnits(cluster)

7 |else if (recentLoad < MINIMUM_RECENT_LOAD then

relocatelLoadFromOtherClusters(cluster)

4.2.3 Querying

Data needs to be available for querying. As discussed in the design
section[3] there is no need for a key-value store, yet we need to make
this data easily accessible. This is done by writing the output of the
Spark processor back into HDEFS files. Due to the distributed nature
of both Apache Spark and HDFS it is possible to write data from the
processors to HDES in parallel, ensuring that there is no bottleneck
problem when attempting to do multiple writes at once during this

process.

4.3 RULES AND CONSTRAINTS

The scaler uses a minimal set of rules and constraints that still show
the functionality and benefits of using the Lambda Architecture in
cloud scaling over any conventional cloud scaler. The essence of this
set is shown in listing 5. A typical conventional cloud scaler would
only use the rules specified in listing 6. In chapter 5 both sets are also
used to draw comparisons between conventional scaling and scaling
with Lambda Architecture. This section however only gives a quick
overview of the functionality of these sets.

The LA scaler checks these four rules every ten seconds. When the
current load of a certain cluster exceeds either the upper or lower
threshold, actions are taken. The thresholds are set to 70 and 9o per-

cent CPU load respectively in this case. The same rules also applies to
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Listing 6: Pseudo-code of rules used by a conventional scaler

if recentlLoad > maximum recent load then
addNewComputingUnits(cluster)

else if recentLoad < minimum recent load then
removeComputingUnits(cluster)

a traditional scaler. The novelty of the LA scaler lies in the other two
rules. When both the current and historic load exceed certain thresh-
olds, some smart actions are taken which cut down the necessary

amount of computing units.

4.4 SCALING

The previous section discussed the rules and constraints for when to
take action. This section offers an insight into the implemented ac-
tions. The number of possible different actions have been reduced to
four: removing computing units, adding computing units, relocating
load from and relocating load to a cluster.

The first two are straightforward and implemented by any regular
cloud scaler, as seen in listing 6. Whenever there is high CPU load
on the computing units within a certain cluster, add extra computing
units to that cluster. Whenever there is low CPU load, do the exact
opposite and remove computing units.

Similar to the previous two actions, relocating load from other clus-
ters and relocating load to other clusters also function in exactly the
opposite way. Applying both actions to the same cluster would make
them cancel each other out. Listing 7 shows the bare essentials of the
"locating load” action. These actions shows a minimum working exam-
ple of the follow-the-sun use case discussed in 3.1. When the function
relocateUnits is called 1000 units of CPU load are relocated from one
cluster to another.
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Listing 7: Pseudo-code of moving CPU load between clusters

relocateUnits(scalingInstructions)
fromCluster, toCluster = parse(scalingInstructions)
relocate(fromCluster, -1000);
relocate(Tocluster, 1000);
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Various simulations have been ran on the implementation discussed
in previous chapter. Besides using the Lambda Architecture for au-
tomatic scaling, simulations have also been ran using solely stream
processing and solely batch processing. This is done because the most
important goal is to find and confirm areas where Lambda Architec-
ture scaling can outperform traditional scaling (stream processing).
Different Internet traffic profiles have been used to test the perfor-
mance in different situations. In this case performance is measured
by keeping the cpu load under certain levels. Each traffic profile has
been tested for a few days. During this time information has been
gathered about the number of machines and other resources to keep
performance at a certain level. In this chapter we compare the results

obtained by the different kinds of automatic cloud scaling.

The amount of different scenarios for cloud scaling is colossal. It
is therefore not feasible to treat them all in this thesis. Instead, two
datasets are picked which aid in answering the research questions
posed. In this thesis batch processing, stream processing and a com-
bination of both are discussed for automated cloud scaling. The two
datasets have thus been selected in such a way that they clearly show
the differences between these types of techniques. Although these
datasets have an artificial nature they do help to prove the point of
using Lambda Architecture in this thesis. Converting this to use natu-
ral datasets (in other words for example having real clients visit your
website or having tasks taking up computing power) has been dis-
cussed extensively in chapter 3, with the follow-the-sun use-case in
3.1 as example, and should thus be possible.

5.1 BENCHMARKS

Two different datasets of Internet traffic simulation have been used.
These two sets clearly show where the advantages lie of the Lambda
Architecture. Both sets contain data about traffic at a certain moment
in time. Data is normalized to produce benchmarks that can be com-
pared with other methods or datasets. Both sets show an increase
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in traffic during day and a decrease during night allowing us to uti-
lize the Lambda Architecture for the follow-the-sun principle. Fur-
thermore, it can be seen that the peaks and troughs of the output
results align with the input traffic datasets.

5.1.1 Datasets

The first set is the one mentioned in the follow-the-sun use case sec-
tion 3.1 using information from three Internet Exchanges (see Fig-
ures [28][29][30]). This data set has been selected because it comes
very close to how the Lambda Architecture could be used in business

cases.

To turn each image into usable data, a tool has been used to convert
timestamps and corresponding traffic load into a csv file. The csv file
contains about 50 entries for a period of 24 hours. An interpolation is
taken from the two closest entries at each moment in time during the
simulation. Traffic load thus scales up and down gradually.

The first data set is not producing a clear difference in the results. The
second data set is therefore chosen to show clear differences between
traditional on-demand cloud scaling and both historical and recent
Lambda Architecture scaling. The second set makes use of http logs
of a busy ISP www server in the Washington DC area[43]. These logs
span a period of two weeks. To be useful for the written implemen-
tation in this thesis data has been averaged to one day of data and
normalized. For this set each entry in the produced csv file contains
information for a period of ten seconds. Contrary to the first set no
interpolation is applied when this set is used. Traffic load can thus

contain many spikes.

5.1.2  Dataset results

The most important criterion for our implementation is the number of
machines used. Information has thus been collected about this when
the previously mentioned datasets are used as input. Figures 6, 7 and
8 shows benchmarks obtained by using the first dataset.

It can be observed that all clusters nicely adhere to the follow-the-sun-
principle, showing highs during day and lows during night. Further-
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more, it can be seen in the figures that all techniques obtain similar
results for the first dataset. This is caused by two characteristics of
this dataset; The first characteristic is that the dataset only provides
data of one day. This means that all historic data perfectly predicts
data traffic for the coming day since it will follow the same pattern as
previous days. The disadvantages of pure batch processing are thus
negated. If there were indeed any fluctuations in data usage between
days, batch processing would not be able to take this into account.
Furthermore, this dataset contains averaged and interpolated data.
Which means that data traffic increases and decreases gradually. Typ-
ically stream processing is hindered by the fact that starting up and
shutting down computing units takes time. However, since data in-
creases and decreases so gradually, booting time of computing units
poses no significant disadvantage to stream processing. Furthermore,
Lambda Architecture cloud scaling cannot make use of shortly of-
floading users to other clusters in this scenario. A very gradual stream
of Internet traffic thus poses no opportunities for improvement for the
Lambda Architecture.

The second dataset contains a spiky stream of Internet traffic, mean-
ing Internet traffic fluctuates strongly (every minute in this case).
The results are shown in figures 9, 10 and 11. Contrary to the first
dataset, this one shows some differences between the different tech-
niques used. Due to the reactive nature of stream processing, it tends
to add more computing power than strictly necessary. Stream pro-
cessing tries to compensate for the high peaks in Internet traffic by
adding more computing units. Batch processing and the Lambda Ar-
chitecture on the other hand utilize the historic data at their disposal.
These two techniques can see if the sudden increase in traffic is long-
lasting.

All clusters in figures 9, 10 and 11 clearly illustrate that computing
power usage has lower peaks when the Lambda Architecture is used
than when stream processing is utilized. This is due to users being
offloaded to other clusters, which also explains that the Lambda Ar-
chitecture graphs show higher minimums than stream processing. It
can thus be concluded that the Lambda Architecture possesses oppor-
tunities when traffic/computing power is fluctuating strongly.
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5.2 PROCESSING EVALUATION

This section discusses the advantages and disadvantages of using
stream processing, batch processing and the Lambda Architecture for
automatic cloud scaling. The used data sets demonstrate some of the
more interesting similarities and differences between the aforemen-
tioned techniques. Not all cases are covered by the datasets however.
Further in this section other evaluated opportunities are discussed.

5.2.1 Batch processing

Traditional cloud scaler typically do not use any kind of historical
data/batch processing. Amazon’s AWS and Google’s cloud platform
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for example allow you to set policies which only involve recent data[17][5].

Batch processing has produced good results however in the datasets
discussed in previous section. One would thus expect that batch pro-
cessing is a good option for the major cloud providers offering au-
tomatic scaling of their clouds. Using only historic data renders a
considerable flaw however; Recent data about computing traffic may
deviate strongly from historic data. Considering the use case in 3.1,
there may be a big event in Europe, for example the European football
Championship. This can cause sudden increases of traffic for football
sites during a match. Since only historic data is available, there will
be no action to adjust the computing units in Europe. Furthermore,
the clusters in America and Asia will not be notified of this increase
in load.

The final result is that the computing units in Europe will be severely
overloaded, resulting in high latency and possible failures. The Lambda
Architecture with its combination of stream and batch processing
would have offloaded the many users in Europe to other clusters and
possibly added extra computing units to deal with such an event.

5.2.2  Stream processing

The performance of stream processing in the tested datasets deviated
from the other two techniques only marginally. Furthermore, stream
processing does not require any processing of historic data and can
scale your cloud on the fly. This makes it thus the technique of choice
for most cloud scalers[17][5]. It does however have some financial
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downsides. The provided automatic scalers are prone to immediately
add machines whenever a certain threshold is reached (e.g. a 90%
CPU load on the computing units). Computing units can be removed
as soon as values have dropped below this certain threshold once
again. But cloud providers typically charge for a full hour of usage,
even though the cloud scaler may have only needed that extra com-
puting power for just two minutes. Concluding, in the tests stream
processing does not look like a bad choice, but starting and removing

a few extra computing units strongly increases costs.

5.3 SCOPE OF IMPLEMENTATION AND DATASETS

This section disccuses the scope of the implementation and datasets
with respect to the discussed design. The tested datasets only cover
a small portion of the scenarios one may come across in automatic
cloud scaling. The main goal was to demonstrate the feasibility of
using the Lambda Architecture for automatic cloud scaling with the
given implementation. To stay close to the core of the search, there
are several areas which the datasets did not touch. Yet these areas are
treated in the design section 3.

One of the simplifications of the implementation is the fact that all
computing is done at the same location. Artificial delays have been
added to simulate latency between users and clusters that are geo-
graphically far away from each other. An example of this is a user
in the US that may be connected to a cluster in Europe because the
American cluster is currently too busy. A hardcoded artificial delay is
then added. In reality, this delay will fluctuate. The hardcoded delay
does still demonstrate however that a penalty is incurred whenever a

user is connected to a cluster that is far away.

Another factor is that both datasets use repetitive data. That is, Inter-
net traffic load does not change from week to week but remains actu-
ally the same. Repetitive data is in this case useful as it demonstrates
the possibilities of using batch and combined processing instead of
traditional stream processing. The repetitive data yields (nearly) the
exact same results for every day/week that a simulation is ran while
fluctuations may occur in real-life situations. This is also demonstrated
in the figures in this chapter. E.g. figures 6, 7 and 8 show a few days
of data with a repetition of the same load and computing power ev-
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ery twenty-four hours.

Furthermore, client requests are simulated. If client requests had to
come from actual machines, then 10,000+ machines are necessary to
come close to producing the desired behaviour and amount of re-
quests. This issue can be further generalized to the fact that the im-
plementation has been done in a research environment and not in a
production environment. Although this can be seen as a limitation
that comes natural to research in cloud computing.
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FUTURE WORK

Utilizing the Lambda Architecture for automatic cloud scaling is a
novel approach. As such, there is an abundance of research that can
be done on the subject. This section discusses significant ones that
build upon this thesis.

The usage of the Lambda Architecture in this thesis is mainly re-
stricted to scaling with different clusters in different locations (see
section 3.1). It may also prove to be useful when computations are
done within a single cluster. For example, when traffic/computations
are fluctuating extremely fast it may be beneficial to have historic data
available to know that adding or removing machines in such scenar-

i0s is senseless.

In this work only one simplified metric is used to set the policy
for automated scaling. That is, CPU load on computing units. Cloud
providers typically allow for more advanced configurations. AWS for
example even allows the user to set a policy[5]. An extension would
thus be to investigate which other metrics are suitable. Furthermore,
traditional cloud scaling may require certain metrics to efficiently
scale up or scale down. There could be other ones that prove specifi-
cally effective for scaling with the Lambda Architecture.

Another addition, which to some extent builds on the previous sug-
gestion, is to take external factors into account. In this thesis a feed-
back loop is used. The feedbackloop used in this thesis only takes
information from the users and computing units into account. It may
prove useful to add in external factors such as energy pricing. This
could influence the price of renting computing power and in turn in-
fluence where and when requesting extra machines is sensible.

Some parts of the implementation have been simplified for practical
reasons. While this thesis demonstrates that the Lambda Architecture
can be used for cloud scaling, it cannot make a complete comparison
to traditional cloud scaling. The traditional cloud scaling, which is
using only stream processing, has also been dumbed down in this
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thesis. It would thus be advantageous to see how the Lambda Archi-
tecture performs when it is given the same scaling policy that cloud

providers give their own automatic scalers.



CONCLUSION

In this thesis an evaluation of the usage of the Lambda Architecture
for automatic cloud scaling is provided. First an overview of the re-
lated work has been given. Then the concept and theory behind this
thesis is discussed. An implementation and simulations are employed
to substantiate this evaluation. This eventually answers the original
research question: Can we improve automatic scaling to efficiently reduce
latency using the Lambda Architecture? To answer this question, the
three sub research questions have to be answered first.

* Does simultaneously using processing and stream processing

generate significant overhead?

¢ How does combined processing compare to only batch process-

ing?

* How does combined processing compare to only stream pro-

cessing?

7.1 DOES USING BOTH BATCH PROCESSING AND STREAM PRO-
CESSING AT THE SAME TIME GENERATE SIGNIFICANT OVER-

HEAD?

Chapter 3 describes that it is possible to use both batch processing
and stream processing for automatic cloud scaling. The implementa-
tion as discussed in chapter 4 and the results in chapter 5 show that
it is indeed feasible. Furthermore, table 1 shows the amount of data
that flows through each part of the Lambda Architecture. Having to
process all this data does not lead to a significant increase in number
of computing units. Also, collecting the data does not put substantial
pressure on the computing units from which this data is collected. It
can thus be concluded that combining batch processing and stream

processing generates only minimal overhead.
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7.2 HOW DOES COMBINED PROCESSING COMPARE TO ONLY BATCH
PROCESSING?

For the given data sets in chapter 5 batch processing and combined
processing yield the same results. In other scenarios combined pro-
cessing is likely to severely outperform batch processing due to batch
processing’s lack of on-demand scaling. However, given only repeti-
tive data such as in previously mentioned data sets, batch processing
would be the preferred option. Combined processing in that scenario
only adds overhead and a quite complicated code base to maintain.

In general, combined processing is thus preferred.

7.3 HOW DOES COMBINED PROCESSING COMPARE TO ONLY STREAM

PROCESSING?

Stream processing has been the default way of automatically scaling
the cloud. It is easier to use than combined processing due to the fact
that only one codebase needs to be maintained, and not two sepa-
rate ones as in the case of the Lambda Architecture. It can be seen
in the data sets in chapter 5 however that combined processing out-
performs stream processing in these particular cases. Combined pro-
cessing thus is preferable whenever historic patterns can be found in
the given data. In cases where data is entirely unpredictable, stream
processing is the better option since it is easier to control and requires
less data processing.

7-4 MAIN RESEARCH QUESTION

We have investigated the use of the Lambda Architecture for auto-
matic cloud scaling in this thesis. Given the conclusions on the three
sub research questions, we can now answer the main research ques-

tion.

In this thesis we have shown that the Lambda Architecture can indeed
improve automatic scaling and efficiently reduce latency. The scenario
for which we have proven this is the use-case specified in section 3.1.
Although it increases complexity of the code base, the Lambda Ar-
chitecture does not decrease performance significantly. Furthermore,
it is shown that the amount of computing power is reduced while
showing no increase in latency for its users. Hopefully this work aids
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others to find other areas and scenarios in which the Lambda Archi-
tecture also proves its significance.
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