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Abstract

Automatic theorem provers are systems designed to
solve formal logical inferences. The prover (MUL-
TITAB) discussed in this paper is designed to solve
inferences in five different multiple-valued logics, of
which four are 3-valued logics, and one is a 4-valued
logic. MULTITAB is based on the tableau method,
and uses a strategy to solve inferences by creat-
ing the smallest possible tableau for any inference.
Different settings for the creation of the tableau
and visualization of it were tested on correctness
and speed. Each setting was tested for each logic
on 16 formal logical inferences. These results were
then combined to form groups for each settings and
groups for each logic. These combined groups were
used in an ad-hoc analysis using Wilcoxon signed
rank tests, leading to significant differences in speed
found between logic groups and between setting
groups. MULTITAB finds solutions in less than a
tenth of a second.

1 Introduction

Logical studies usually have propositional logic and
classical first-order logic [1] as their subject, the
first being the basis to most of the other logics we
know of, and the second being the logic thought
of as closely related to human reasoning. Multiple-
valued logics, like First Degree Entailment (FDE),
Priest’s logic of paradox (LP ) and the Mix Logic
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(RM3)[2, chap. 8] are not studied extensively out-
side of universities. Artificial intelligence students,
for example, learn of multiple-valued logic, but usu-
ally focus more on propositional and first-order
logic further in their (student) career. Evidence
for this is that there currently are very few auto-
mated proof systems for 3-valued logics available
for free, but a whole lot of proof systems for propo-
sitional and classical logic are available for free [3].
In multiple-valued logics there are (as the name
indicates) multiple truth values. For the logic of
paradox (LP ) and the mix logic (RM3) there are
three truth values, indicating true (1), false (0) and
both (b). For Kleene’s logic (K3) and  Lukasiewicz’
logic ( L3) there are three truth values, indicating
true (1), false (0) and neither (n). Both indicates
that a formula is true and false at the same time,
whereas neither indicates that a formula is neither
true nor false. FDE has four truth values: true
(1), false (0), both (b) and neither (n). LP , RM3,
K3 and  L3 are three-valued logics, and FDE is a
four-valued logic. Having the possibility to assign
more than two truth values to a formula gives rise
to more possibilities in for example programming,
but multiple-valued logics are also studied in auto-
mated reasoning [4] and decision making, symbolic
model-checking [5], neural networks [6] and the de-
lay testing of modern chips [7, 8]. All of these uses
require knowledge and comprehension about the
truth values of formulas, within reasonable time.
The research described in this paper features a
tableau prover for RM3,  L3, K3, LP and FDE
that is capable of visualizing its tableau proof [9],
as well as giving counterexamples when an infer-
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ence is not valid. The main question this paper an-
swers is: How will an automated theorem prover for
RM3,  L3, K3, LP and FDE based on the tableau
method perform when tested on speed and correct-
ness?
The design of the prover was inspired by other
provers, like OOPS [10], MOLTAP [11] and The
Tableau Workbench [12]. The prover will be built,
trained and optimized on a set of logical inferences
that can be valid or not in each of the aforemen-
tioned logics, obtained from several sources. For
this training set, see Appendix A. Testing on speed
and correctness will be done on a different set of
logical inferences.
This paper further gives a technical description of
the prover, as well as test results and a discussion
about known problems and further work.

2 Model implementation

In this and the next sections, a brief description
of the tableau method used in MULTITAB will be
given. Then, the input language and handling are
described. Finally, a technical model description of
the implementation in Java is given, as well as test-
ing methods used on MULTITAB.

2.1 tableaux for logical inferences

MULTITAB, implemented in Java, uses a specific
form of the tableau method to solve formal logical
inferences. This method consists of constructing a
proof tree using certain tableau rules. A completely
extended proof tree is created when all possible
rules are applied to all nodes in all branches.
In the described logics (FDE, LP , K3, RM3 and
 L3), each formula has a sign attached to the for-
mula. All assumptions are labelled with a plus, ‘+’
(1 in MULTITAB), and the conclusion is labelled
with a minus, ‘-’ (-1 in MULTITAB). A branch in
the proof tree is closed when a certain closing condi-
tion has been met. These closing conditions, where
A is a formal logical formula, are:

1. A,+ and A,− exist on the same branch;

2. ¬A,+ and A,+ exist on the same branch;

3. ¬A,− and A,− exist on the same branch.

Branches in FDE close only when the first clos-
ing condition is met, branches in K3 and  L3 close
when the first or second closing condition is met,
and branches in LP and RM3 close when the first
or third closing condition is met. When all branches
in a proof tree are closed according to the condi-
tion of a logic, the inference is valid for that logic.
A branch is considered open when no more rules
can be applied to the formulas on the branch that
have not been applied yet and no closing condition
is met on any of the formulas on the branch. When
a branch is open, the inference is invalid. A coun-
terexample can then be read of the open branch.
This counterexample will be based on the collec-
tion of all the literals on the open branch with a
+ sign. Note that no loops can occur in any of the
tableaux generated by this method, since in any of
the tableau rules a formula will be rewritten either
into a formula with the same length, or split into
two or three formulas that are all smaller than the
original.

2.2 Soundness and completeness

FDE, LP , K3,  L3 and RM3 tableaux generated
by the described methods are sound and complete
with respect to the relational semantics of each dis-
tinct logic, because the tableau rules are sound and
complete for each logic [2, chap. 8.7.1-8.7.9; 8.10.4,
solutions L. Barson]. MULTITAB exactly follows
the rules of each of the different tableau methods,
and thus the system generates sound and complete
tableaux for each different logic.

2.3 Tableau rules

The general tableau rules for FDE, LP , K3, RM3

and  L3 are [13]:

A ∧B,+

A,+

B,+

A ∧B,−

A,− B,−

A ∨B,+

A,+ B,+
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A ∨B,−

A,−

B,−

¬(A ∧B),+

¬A ∨ ¬B,+

¬(A ∧B),−

¬A ∨ ¬B,−

¬(A ∨B),+

¬A ∧ ¬B,+

¬(A ∨B),−

¬A ∧ ¬B,−

¬¬A,+

A,+

¬¬A,−

A,−

Extra tableau rules for both RM3 and  L3 are [13]:

A ⊃ B,−

A,+

B,−

¬B,+

¬A,−

¬(A ⊃ B),−

A,− ¬B,−

¬(A ⊃ B),+

A,+

¬B,+

The different extra implication rule for RM3 is [13]:

A ⊃ B,+

A,− ¬B,− A ∧ ¬A,+

B ∧ ¬B,+

The different extra implication rule for  L3 is [13]:

A ⊃ B,+

¬A,+ B,+ A ∨ ¬A,−

B ∨ ¬B,−

3 Technical model description

MULTITAB is split in two different Java programs,
because this clearly illustrates the differences be-
tween two of the methods used: the first method
stops when a first counterexample is found, and
the second method always searches the complete
proof tree for (all) counterexamples. These pro-
grams however are similar to each other, and there-
fore will be treated as one program. Where there
are differences, this will be remarked.

3.1 Input

The input of MULTITAB is given in four argu-
ments. The first argument should be a String with
the assumptions of the inference, separated inter-
nally by commas. When there are no assumptions,
an empty String suffices. The second input argu-
ment should also be a String, this time holding the
conclusion of the inference. When there is no con-
clusion, an empty String suffices. In both strings,
logical symbols should be replaced by the symbols
as shown in Table 1. MULTITAB cannot handle
↔, and therefore A ↔ B should be written as
(A ⊃ B) ∧ (B ⊃ A), and input in MULTITAB as
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Logic symbol ¬ ∧ ∨ ⊃
Input symbol ∼ & / >

Table 1: Input mode for logical symbols

Input 1 2 3 4 5
Logic FDE LP K3 RM3  L3

Table 2: Integer input for choice of logic

“(A > B)&(B > A)”. The use of classical logical
notation is mandatory, as MULTITAB only recog-
nises this. The third argument should be an inte-
ger ranging between 1 and 5, telling MULTITAB
in which logic the inference should be solved. Table
2 shows which number corresponds to which logic.
The fourth argument should be an integer, 0 or 1,
where 1 lets MULTITAB print its proof tree, and 0
does not. This final argument is used for visualizing
the tableau proof or not.

3.2 Data Class: Expression

The data class Expression class holds a formula
(as a String) and the sign (as an integer of 1 or
-1) attached to this formula. Getters and setters
allow other classes and methods to use the data
in this class. Further in this section, when a for-
mula is mentioned, the String of a specific Expres-
sion class representing the logical formula is meant.
When further in this section a sign is mentioned,
this refers to the integer value of 1 or -1 represent-
ing the sign (+ or -) of the formula in the same
Expression class.

3.3 Class: Main

The Main class first initializes a timer, and then
splits the first argument (the assumptions) by the
commas. Each of these parts is made into an Ex-
pression class with 1 as a sign and added to an
ArrayList, called the to-do list. The second argu-
ment (the conclusion) is entered into this same to-
do list as an Expression class with -1 as a sign.
Then this to-do list, together with two empty Ar-
rayLists (the literals list and the tree list), the
starting time, the logic indicator (third input-
argument) and a boolean indicating visualization
(fourth input-argument made into a boolean) is

made into the Branch class. The first difference be-
tween the two programs is seen here. The program
that searches the complete proof tree for counterex-
amples also includes a zero-value to the Branch
class. If all Branch classes are done computing, and
this value is still zero when returned, the inference
is valid, if not the inference is invalid. The program
that stops when a counterexample is found stops
the system on the spot (in the Branch class), so
this value is not needed.

3.4 Class: Branch

The Branch class is the actual computing class of
MULTITAB. First, the general framework of this
class will be described, and afterwards the func-
tions. Starting with a filled to-do list, an empty lit-
erals list and an empty tree list, this class will look
for a counterexample as fast as possible by applying
depth-first search in the proof tree while simulta-
neously building this proof tree. The proof tree is
built by applying rules to the Expressions in the
to-do list, adding new Expressions to the to-do list
and deleting the Expressions that were processed
from this to-do list and placing them on the tree
lists and in the case of an Expression being a lit-
eral also placing the Expression on the literals list.
It does this by looping several times over the to-do
list, and also by creating new instances of Branch
classes when a tableau rule indicates a split in the
proof tree. Whenever new Branch classes are in-
stantiated, the current class stops applying rules to
its to-do list.
During every loop, while the to-do list has Expres-
sions in it and no splitting rule has been applied
to an Expression, the Expressions in the literals
list and the to-do list are first evaluated with the
done-function. This function tests all Expressions
in these lists for the closing conditions matching the
logic in which the class is operating. When no clos-
ing condition is met, the to-do list is evaluated by
the rules-function. This function chooses the best
rule and applies this to the to-do list, this strategy
and the rules are explained later. Afterwards, when
the to-do list is empty (the branch is open) or a clos-
ing condition has been met (the branch is closed),
this class prints itself, only when the visualisation
boolean is true, and only itself. The tableau proof
is thus not printed completely as a whole, but each
branch is printed independently. If a branch is open
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and has not split, the counterexample is printed se-
lectively of the literals list.
Here another difference between the methods arise.
When using the first method (stop on first coun-
terexample), the to-do list is empty and no closing
condition has been met (the branch is open), MUL-
TITAB prints its counterexample and then stops
completely. When using the second method (search
for all counterexamples) and the to-do list is empty
and no closing condition has been met, the counter
indicating validness is increased. This means that
when the complete proof-tree has been searched,
the counter is not zero anymore, and the inference
is considered to be invalid. Counterexamples are
given at each open branch.

3.4.1 Function: done

The function done evaluates the list it has been
given for any closing condition met (according to
the current logic). All Expressions in the list are
compared with each other, and when a closing con-
dition is met, this function returns true. If the input
list was the to-do list, only the first closing condi-
tion is evaluated. The Expressions that meet this
closing condition are removed from the to-do list
and added to the tree list and literals list.

3.4.2 Function: rules

The function rules operates in two parts. If in any
part of this or in following sections “operator” oc-
curs, this refers to the operator that determines the
rule to apply on a certain Expression. This operator
is in many cases the head connective of a formula,
mostly when the head connective is a binary con-
nective. But in the cases of unary connectives, this
operator differs from the actual head connective.
First, the operator of each Expression in the to-do
list is searched for by implementation of headCon-
nective(). If there is no such operator, this means
the Expression is a literal, and literalRule() is ap-
plied to the Expression and this function stops.
Otherwise each Expression is given a strategy num-
ber, based on its operator, the current logic and its
sign through multiple switches. The lowest strategy
number indicates the rule to actually apply, and
only this rule is applied to one of the Expressions
with this strategy number. Table 3 illustrates how
different operators, signs and logics lead to differ-

ent strategy numbers and rules.
When an operator is encountered that is not in Ta-
ble 3, the first and last character of the formula are
deleted, because the formula was in between paren-
theses and this function stops. This will be the case
when rules() encounters the bottom row of Table
4. There is also one special case, indicated with the
asterisk (row 3 of Table 3). This is an exception
case where the operator is (, the logic is RM3 or
 L3, the sign is ‘-’ and the inner operator (the op-
erator of the part in the parentheses) is >. In this
case the Expression is given a strategy number of 4,
since giving it a strategy number of 2, as for all the
other cases in which the operator is (, would mean
that a splitting rule would be favored over a rule
where the Branch is not split. Since not splitting is
always favored over splitting, to decrease the size
and complexity of a proof-tree, this case is given 4
as strategy number. The strategies are given these
numbers to keep the complexity of the proof-tree
as low as possible. The strategy numbers 1, 2 and 3
lead to rules that do not split the Branch, whereas
the strategy numbers 4, 5, 6 and 7 lead to rules
that split the Branch into two new Branches, and
the strategy number 8 leads to a rule that splits the
Branch into three new Branches, greatly increasing
the complexity of the proof-tree.

3.4.3 Function: headConnective

This Function returns the position of the operator
of a formula by counting the parentheses in that
formula. If there are no parentheses, the first oc-
currence of a binary connective (>, & or /) is the
operator. If there is no binary connective in this
case, 1 is returned (indicating the second position
of the String). If there are one or two blocks of
parentheses (with possible blocks of more paren-
theses inside it) and a binary connective (>, & or
/) outside of that, the first occurrence of such con-
nective is the head connective. If there is one block
of parentheses and no binary connective (>, & or /)
outside of that, the second position of the string is
returned. If all of the above are not applicable, also
the second position of the String is returned. This
default option is shown in the three bottom rows
in Table 4. Table 4 gives some examples of formu-
las, the return integer of headConnective() and the
corresponding operator. The last row is especially
interesting, here the return value is 1, which points
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Operator Sign Logic Strategy number Rule to apply

∼ + or - all 1 Double Negation rule
( + or - all 2 deMorgan
(∗ - RM3 or  L3 4 deMorgan
& + all 3 noSplitRule
& - all 5 splitRule
/ + all 5 splitRule
/ - all 3 noSplitRule
> + or - FDE, LP or K3 6 implyNoRule
> + RM3 or  L3 8 implyPlusRule
> - RM3 or  L3 7 implyMinRule

Table 3: Strategy choosing for rules to apply

to a character that is not an operator in Table 3.
rules() will thus remove the outer parentheses of
this inference.

Formula Return value Operator

A/B 1 /
∼∼ A&(B > C) 3 &
(A& ∼ A) > B 6 >
(A/B)&(D/ C) 5 &
∼∼ (A/B) 1 ∼
∼ ((∼ A/B)&C) 1 (
(A& ∼ A) 1 A

Table 4: Examples of formulas, return values
and the corresponding operator

3.4.4 Function: literalRule

The literalRule function deletes the Expression
from the to-do list, and adds it to the tree list and
the literals list

3.4.5 Function: negnegRule

The negnegRule function removes the Expression
from the to-do list, removes the first two charac-
ters from the formula (the double negation) and
adds this new formula, with the same sign as a new
Expression to the to-do list.

3.4.6 Function: noSplitRule

The noSplitRule function deletes the Expression
from the to-do list, adds it to the tree list, splits
the formula in a part before the operator (A) and

a part after the operator (B), and adds these new
Expressions (with formulas A and B, with the same
sign as the input Expression) to the to-do list.

3.4.7 Function: splitRule

The splitRule function deletes the Expression from
the to-do list, adds it to the tree list, then, splits
the formula in a part before the operator (A), and
a part after the operator (B). Two new Branch
classes are created: both are complete strong copies
of the current Branch class, and to one of the to-do
lists the new Expression with formula A and the
same sign as the Input Expression is added, and
to the other the new Expression B and the same
sign as the input Expression is added. The current
Branch is now split.

3.4.8 Function: deMorgan

First, the deMorgan function deletes the Expres-
sion from the to-do list and adds that Expression
to the tree list. Then it determines the operator
of the (sub)formula in between the parentheses of
the given Expression, and splits this new formula
in two parts: the part before the operator (A), and
the part after it (B). Now a switch on the operator
determines the next action.
If the operator is &, the new Expression with for-
mula ∼ A/ ∼ B and the same sign as the input Ex-
pression is added to the to-do list. If the operator
is /, the new Expression with formula ∼ A& ∼ B
and the same sign as the input Expression is added
to the to-do list. If the operator is >, a new switch
is encountered, this time evaluating the logic. If the
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logic is FDE, LP or K3, the new Expression with
formula ∼ (∼ A ∨ B) and the same sign as the
input Expression is added to the to-do list. If the
logic is RM3 or  L3, a new switch evaluating the
sign is encountered. If this sign is positive (1), two
new Expressions (with formulas A and ∼ B and
positive signs) are added to the to-do list. If the
sign is negative, two new Branch classes are cre-
ated, both are complete strong copies of the current
Branch class, and to one of the todo-lists the new
Expression with formula A and a negative sign (-1)
is added, and to the other the new Expression with
formula ∼ B and a positive sign (1) is added. The
current Branch is now split.

3.4.9 Function: implyNoRule

The implyNoRule function deletes the Expression
from the to-do list, adds it to the tree list, then
splits the formula in a part before the operator (A),
and a part after the operator (B). It then adds a
new Expression (with formula ∼ A/B and the same
sign as the input Expression) to the to-do list.

3.4.10 Function: implyPlusRule

The implyPlusRule function deletes the Expression
from the to-do list, adds it to the tree list, then
splits the formula in a part before the operator (A),
and a part after the operator (B). Then, three new
Branch classes are created, each being strong com-
plete copies of the current Branch class.
To the first, the new Expression with formula A
with a negative sign (-1) is added when the logic
is RM3, and a new Expression with formula ∼ A
with a positive sign (1) is added when the logic is
 L3.
To the second, the Expression with formula ∼ B
with a negative sign (-1) is added when the logic
is RM3, and the Expression with formula B with a
positive sign is added when the logic is  L3.
To the third, the new Expressions with formulas
A& ∼ A and B& ∼ A, both with a positive sign (1)
are added when the logic is RM3. When the logic
is  L3 the new Expressions with formulas A/ ∼ A
and B/ with a negative sign (-1) are added to the
third Branch class’ to-do list.

3.5 Complexity

As explained above, MULTITAB takes efficiency
into account by trying to keep the complexity of
the tableau low. The computational complexity of
the general satisfiability and validity problem for
the five logics described is however, without visu-
alizing, in PSPACE. This is because the program,
at any time during the computation process, has
to have two lists in its memory. These two lists are
the to-do list and the literals list of the current
Branch class that is being evaluated. These lists
can have at most two times as many units in it as
the number of operators in the original inference.
Thus, the validity problems as solved by depth-first
search in tableau trees are in PSPACE, similar to
those of modal logics like K. If MULTITAB is set
to visualize its tableaux, the computational com-
plexity could reach EXPTIME. This is because it
now has to print all of its branches after evaluating
them, and if each branch is split on each formula
this could create an exponentially large tableau in
comparison to the length of the original inference.

4 Example

To further clarify the implementation of the
automatic theorem solver, a short example will
be given in this section. The example will be a
step-by-step run, with comments, of the model on
the inference ¬(p∧ q)∨ s |=FDE (¬p∨ r)∨ (¬q∨ r),
searching for all counterexamples and visualizing
its proof tree. The tableau for this inference in
FDE is shown directly below.

¬(p ∧ q) ∨ s,+
(¬p ∨ r) ∨ (¬q ∨ r),−

¬p ∨ r,−
¬q ∨ r,−
¬p,−
r,−
¬q,−
r,−

¬(p ∧ q),+
¬p ∨ ¬q,+

¬p,+
⊗

¬q,+
⊗

s,+

The input arguments for the model will be “ ∼
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(p&q)/s” “(∼ p/r)/(∼ q/r)” 1 1.
The Main class will recognize this as the logic FDE
with visualization (the last two arguments), and
will create two new Expressions(“ ∼ (p&q)/s”, 1)
and (“(∼ p/r)/(∼ q/r)”, -1) and put these in the
todo-list. This list, together with an empty tree and
an empty literals list, is sent to the Branch class.
Each Expression will be noted as (“A”, x) where
“A” is the formula, and x is the sign.
The Branch class has not split and has Expressions
in its to-do list, so it will first check if any Ex-
pression in its to-do list or literals list matches the
first closing condition. Since this is not the case, it
will now assign strategy numbers to each Expres-
sion in the to-do list. For this it needs the operator
of each Expression. By calling headConnective(),
the positions of these operators are returned and
the operator can be found, as well as the strategy
numbers (holding into account the logic and sign)
for all Expressions. What the model now knows
is shown in table 5. Since 3 is the lowest strat-
egy number, the noSplitRule() will be executed on
(“(∼ p/r)/(∼ q/r)”, -1), meaning that this Expres-
sion will be placed on the tree-list, and the new
Expressions (“ ∼ p/r”, -1) and (“ ∼ q/r”, -1) are
put on the to-do list. This was the first loop of the
model. Since the Branch has not split and there
are Expressions in the to-do list, another iteration
is started, by first evaluating the literals and to-
do list on closing conditions, and then assigning
a strategy number to each Expression in the to-do
list. Table 6 now shows the knowledge of the model.
Now, the noSplitRule() function will be executed
on (“ ∼ q/r”, -1), because the strategy numbers
of both (“ ∼ q/r”, -1) and (“ ∼ p/r”, -1) are 3,
but the former is chosen because that Expression
is later in the list. The noSplitRule() will remove
the Expression (“ ∼ q/r”, -1) from the to-do list,
add it to the tree-list and add the new Expressions
(“ ∼ q”, -1) and (”r”, -1) to the to-do list.
On the next two iterations, the two latest added
Expressions are recognized as literals and are re-
moved from the to-do list, after which they are
added to both the literals and the tree lists. The
rule-selection procedure will not happen in these
cases.
On the iteration after this, the to-do list looks like
the one right above, but without the rightmost col-
umn. So the same procedure as before will hap-
pen, the noSplitRule() will remove the Expression

(“ ∼ p/r”, -1) from the to-do list, add it to the
tree-list and add the new Expressions (“ ∼ p”, -1)
and (”r”, -1) to the to-do list.
On the next two iterations, the two latest added
Expressions are recognized as literals, and are re-
moved from the to-do list, and added to both the
literals and the tree lists. The rule-selection proce-
dure will not happen in these cases. Now only the
Expression with strategy number 5 still remains in
the to-do list, and thus the splitRule() function will
be executed on that Expression.
The splitRule() function removes the Expression
(“ ∼ (p&q)/s”, 1) from the to-do list, adds it to the
tree list and creates two new Branch classes that are
both complete strong copies of the original one. To
the first of these these new Branch classes the new
Expression (“ ∼ (p&q)”, 1) is added, while to the
second one, the new Expression (“s”, 1) is added.
The original class is now split and will not do any-
thing anymore. The model continues with the first
new Branch class. This new Branch class has not
split and has one Expression in its to-do list. After
evaluation of the closing conditions (none met), the
model searches again for the lowest strategy num-
ber of all the Expressions in the to-do list (even
if there is only one, like in the current case) using
headConnective and rules(). The rules() function
evaluates as follows:

Expression (“ ∼ (p&q)”, 1)
operator position 1

operator (
strategy number 2

The deMorgan() function applies to (“ ∼ (p&q)”,
1), deleting it from the to-do list, adding it to the
tree list, and adding the new Expression (“ ∼ p/ ∼
q”, 1) to the to-do list. This new to-do list is in the
next iteration:

Expression (“ ∼ p/ ∼ q”, 1)
operator position 2

operator /
strategy number 5

So, again the splitRule is executed, leading to two
new Branches, of which the first is evaluated first.
This new Branch only has the Expression (“ ∼ p”,
1) in its to-do list , which is recognized as a literal
and handled as such (removed from to-do list and
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Expression (“ ∼ (p&q)/s”, 1) (“(∼ p/r)/(∼ q/r)”, -1)
operator position 6 6

operator / /
strategy number 5 3

Table 5: Knowledge of model at certain step

Expression (“ ∼ (p&q)/s”, 1) (“ ∼ p/r”, -1) (“ ∼ q/r”, -1)
operator position 6 3 3

operator / / /
strategy number 5 3 3

Table 6: Knowledge of model at a later step

added to literals and tree lists). Now the to-do list
of this Branch is empty, but the literals list is still
evaluated once more.The literals list consists of the
Expressions (“ ∼ p”, -1), (“r”, -1), (“ ∼ q”, -1),
(“r”, -1) and (“ ∼ p”, 1). Duplicates can exist in
the literals list and are ignored. Now, for the first
time a closing condition is met, and so the Tree list
is printed, with a neat X beneath it.
The previous splitting of a Branch led to two new
Branches, of which only the first one has been eval-
uated. This second Branch had only the Expression
(“ ∼ q”, 1) in its to-do list , which is recognized as
a literal and handled as such. Now, a closing condi-
tion is also met on the literals in this Branch, and
the tree list is printed with a neat X beneath it.
Now, the second Branch of the first split is eval-
uated. This also only had one Expression (“s”, 1)
in its to-do list. This is again recognized as a lit-
eral and handled as such. Now the to-do list of this
branch is also empty, and the literals list, consist-
ing of (“ ∼ p”, -1), (“r”, -1), (“ ∼ q”, -1), (“r”, -1)
and (“s”, 1), is once more evaluated. Since there is
no closing condition met this time, the Branch is
open. Therefore the master integer called ‘eval’ is
incremented with one. In the previous cases, where
a closing condition was met, this was not the case.
Now each member of the literals list that has a
positive sign (1) is printed, showing the counterex-
ample. In this case only sρ1 is printed.
Now, all Branches are done, and the Main class
evaluates the master integer ‘eval’. This is not zero,
thus the inference is invalid. This will be given by
the model, as well as the time it took to give this
solution in milliseconds.

5 Testing the model

Four different settings of MULTITAB were tested.
The difference between these settings were stopping
when a counterexample was encountered or not,
and in visualizing the proof tree or not. The four
different settings are named A1, A2, B1 and B2.
Table 7 shows which name corresponds to which
setting. MULTITAB was built, trained and opti-
mized on a set of 22 formal logical inferences, called
the training set (found in appendix A). After this,
its performance was evaluated on these same infer-
ences. The performance measure is split into two
parts, correctness and speed. If MULTITAB gave
the correct solution to an inference, it was said to be
100% correct on that inference. MULTITAB gives
a correct solution if the inference is valid in Ta-
ble 10 (in Appendix A) and the model’s solution
is that the inference is valid, or if the inference is
invalid in Table 10 and the model’s solution is that
the inference is invalid, and it gives at least one
correct counterexample. This means that the coun-
terexample given by MULTITAB must really be a
counterexample. If MULTITAB gave an incorrect
solution to an inference, it was said to be 0% cor-
rect on that inference. Note that giving only one
counterexample is sufficient, and therefore no dif-
ference in correctness will be recorded for a solution
with one or with multiple counterexamples.
The time in which each inference was solved was
measured in milliseconds by MULTITAB itself, us-
ing the internal clock of the system it runs on. This
leads to 10 different populations (two for each logic,
correctness and speed), four times. So for speed
testing, there are 20 groups, and for correctness
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Name Method Visualization

A1 Stop on first counterexample No
A2 Stop on first counterexample Yes
B1 Search complete proof tree No
B2 Search complete proof tree Yes

Table 7: Different testing populations

testing, there are 20 groups.
For speed testing these 20 groups can be combined
into 4 groups for the different settings, or into 5
groups for the different logics. To truly test the
performance and the reliability of MULTITAB, the
same experiment was executed using a new, other
set of 16 different formal logical inferences of which
none existed in the original set. This set will be
called the test set. These inferences can be found
in Appendix B.
Where in any of these inferences ↔ occurs, A↔ B
was rewritten as (A ⊃ B) ∧ (B ⊃ A). If errors now
arise in the solutions of MULTITAB, these errors
will be structural errors, since they occur because
of errors in the model’s code.
The results of the second experiment will be dis-
played and discussed. Different populations will be
compared. For the results of correctness, all popu-
lations will be compared. For the results of speed,
only some populations will be compared using the
Wilcoxon signed rank test, since the populations
are paired and non-normal distributed. The com-
bined populations of each setting (A1, B1, A2 and
B2) will be compared, leading to 6 different tests.
A second comparison will be done on the combina-
tion of groups for each logic, leading to 10 different
tests, since there are 5 groups to compare.

5.1 Representavity and variety

In both the training set and the test the variety
between the inferences was high. This means that
inferences were tested that were valid in some logic,
while invalid in other logics, creating differences be-
tween the tested logics. An example of this variety
is that in the test set, a lot of inferences are found
that are invalid in FDE. This is because an infer-
ence that is valid in FDE is automatically valid
in LP and K3, while inferences that are invalid in
FDE may be either invalid or valid in LP or K3.
This difference increases the variety in the test set.

Furthermore some inferences can be found in both
the training and the test set where the inference
is invalid in only one logic and valid in the oth-
ers, as well as inferences that are valid in only one
logic and invalid in the others. Using these infer-
ences in speed testing could show a difference of
speed of the system in evaluating valid or invalid
inferences. Finally having inferences that are valid
in LP but invalid in RM3, as well as inferences that
are valid in K3 but invalid in  L3, increases the vari-
ety, because this shows the difference between logics
that have the same closing conditions, but different
tableau rules. This is also true for inferences that
are invalid in LP but valid in RM3, as well as for in-
ferences that are invalid in K3 but valid in  L3. For
both the training set and the test set the above-
mentioned broad variety of inferences, with respect
to the validity of the five logics, was selected so
that the results, especially about speed, would give
a realistic picture of the landscape of inferences.

6 Results

The automatic theorem prover was 100% correct
on all inferences, on all four different settings, in all
five logics. Figure 1 shows the means and standard
error of all different testing populations in the speed
tests. These populations are grouped by logic. Fig-
ure 1 is meant purely for visualization of the re-
sults. Figure 2 shows the means and standard error
of each different settings, by combining the data
of all the logics per setting. Table 8 shows the dif-
ferent test results for these comparisons. Figure 3
shows the means and standard error of each differ-
ent logic, by combining the data of all the settings
per logic. Table 9 shows the different test results
for these comparisons.
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Figure 1: Means and SE of all different popu-
lations, Each bar represents a different setting
in the order A1 (blue), A2 (magenta), B1 (red),
B2 (green)

Figure 2: Means and SE of different settings,
Each bar is the combination of all the logics
(FDE, LP , K3, RM3 and  L3) per setting

Figure 3: Means and SE of different logics.
Each bar is the combination of all the setting
groups (A1, A2, B1, B2, see Table 7) per logic

7 Discussion

The results show that MULTITAB, in any setting,
is always correct. If anyone would want to solve
a formal logic inference in FDE, LP , K3, RM3
or  L3, they should use MULTITAB. Even more so
because MULTITAB is fast. The longest time it
took to solve an inference was 68 ms, which is less
than a tenth of a second. As for the settings, the
results show us that MULTITAB is significantly
faster when not visualising (as opposed to visualiz-
ing), for both methods used. Searching for all coun-
terexamples is also significantly slower than search-
ing for only one counterexample, in both cases of
visualizing or not. A thought on these results is
that visualizing takes longer just because the pro-
cess of printing on screen takes time. The result
that searching for all counterexamples is signifi-
cantly slower than stopping the search on the first
counterexample is not really surprising. This signif-
icant result can probably also be found when ap-
plying this method by hand. The idea there is that
stopping on the first counterexample, and there-
fore also stopping drawing the tree, is faster than
drawing the complete proof tree, with all the coun-
terexamples.
If users are interested in a complete proof tree and
all counterexamples in one of the logics discussed,
slowest setting (search for all counterexamples and
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A2 B1 B2

A1 V= 0 V= 76 V= 0
p= 5.02 ∗ 10−14 p= 1.279 ∗ 10−6 p= 1.058 ∗ 10−14

A2 V= 19335 V= 85
p= 0.001261 p= 1.286 ∗ 10−9

B1 V = 0
p= 1.045 ∗ 10−14

Table 8: Test results of Wilcoxon signed rank test on different setting groups

LP K3 RM3  L3

FDE V= 452 V= 187 V= 18 V= 54.5
p= 0.3801 p= 0.4961 p= 9.377 ∗ 10−10 p= 2.911 ∗ 10−9

LP V= 469 V= 64.5 V= 143.5
p= 0.8439 p= 4.807 ∗ 10−8 p= 2.403 ∗ 10−7

K3 V= 12 V= 13.5
p= 6.637 ∗ 10−10 p= 1.593 ∗ 10−9

RM3 V= 377
p= 0.3034

Table 9: Test results of Wilcoxon signed rank test on different logic groups

visualize, B2) should be used. If the user is however
only interested in the validity of an inference, the
much faster setting of stopping on the first coun-
terexample and not visualizing is preferred.
The results for the different logics are not really
surprising. The speed of MULTITAB is not signifi-
cantly different when the logics FDE, LP and K3

are compared with one other, nor when the log-
ics RM3 and  L3 are compared with each other. A
thought on this is that these logics use approxi-
mately the same rules internally, and only differ
on closing conditions. There are however significant
differences in speed between RM3 on the one hand
and FDE, LP and K3 on the other hand as well
as significant differences in speed between  L3 on
the one hand and FDE, LP and K3 on the other
hand. This means that MULTITAB is significantly
slower in solving inferences in RM3 and  L3 than
in the other three logics. A thought on this is that
RM3 and  L3 have more, and more difficult implica-
tion rules that greatly increase the complexity and
duration of the solution.
A comparison with another tableau solver can be
made at this point. One other free tableau solver
was found in the pytableaux solver of Douglas Ow-
ings [14]. This system gives the user the tableau
proof and validity of an inference for multiple se-

lectable logics, including FDE, LP and K3. Ow-
ings’ system does sadly not support RM3 and  L3.
Were a user to solve inferences in these logics, the
only (free) model it could use is MULTITAB. An-
other difference between MULTITAB and Owings’
system is that Owings’ system uses Polish nota-
tion, and MULTITAB classical notation. It is com-
pletely up to the reader to decide which model suits
him or her best in this case, but most of the liter-
ature concerning tableau provers, or logical infer-
ences in general, use the classical notation of logi-
cal inferences. Therefore, to use Owings’ system a
user would first have to rewrite the inference from
classical to polish notation, putting work in iden-
tifying the head connectives over and over again.
MULTITAB does this for the user, since the classi-
cal notation is mandatory as input. However, when
an inference in polish notation is encountered, the
user himself should rewrite the inference to classical
notation to use MULTITAB. The speed of Owings’
system was not tested or compared with the speed
of MULTITAB.
To finalize, MULTITAB is always correct in five dif-
ferent logics and four different settings, with vary-
ing speed. The solutions are generated in less than
a tenth of a second, faster than any logician can do
by hand. Still, the speed of the fastest setting could
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be enhanced even further. An example of this is to
let MULTITAB check the length of Expressions be-
fore the splitting of Branches and to first evaluate
the Branch with the shorter Expressions in its to-do
list. Future work could further include the creation
of a graphical or web user interface, to increase the
usability of the solver. But for now, this automatic
theorem solver is a fast and correct way for any
student, teacher, academic or other user to solve
formal logical inferences.
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Appendix A: Training set

Table 10: Logical inferences in different logics, training set

# Inference FDE LP RM3 K3  L3

1 p ∧ q |= p 1 3 6 3 7

2 p |= p ∨ q 1 3 6 3 7

3 p ∧ (q ∨ r) |= (p ∧ q) ∨ (p ∧ r) 1 3 6 3 7

4 p ∨ (q ∧ r) |= (p ∨ q) ∧ (p ∨ r) 1 3 6 3 7

5 p |= ¬¬p 1 3 6 3 7

6 ¬¬p |= p 1 3 6 3 7

7 (p ∧ q) ⊃ r |= (p ∧ ¬r) ⊃ ¬q 1,5 3,5 x8 3,5 x8

8 p ∧ ¬p |= p ∨ ¬p 1 3 6 3 7

9 p ∧ ¬p |= q ∨ ¬q x1 2 6 2 7

10 p ∨ q |= p ∧ q x1 x2 x6 x2 x7

11 p,¬(p ∧ ¬q) |= q x1 x2 x6 2 7

12 (p ∧ q) ⊃ r |= p ⊃ (¬q ∨ r) 1,5 3,5 x8 3,5 x8

13 q |= p ⊃ q 5,8 4,5 x4 4,5 4

14 ¬p |= p ⊃ q 5,8 4,5 x4 4,5 4

15 (p ∧ q) ⊃ r |= (p ⊃ r) ∨ (q ⊃ r) 5,8 4,5 4 4,5 4

16 (p ⊃ q) ∧ (r ⊃ s) |= (p ⊃ s) ∨ (r ⊃ q) 5,8 4,5 4 4,5 4

17 ¬(p ⊃ q) |= p 5,8 4,5 4 4,5 4

18 p ⊃ r |= (p ∧ q) ⊃ r 5,8 4,5 4 4,5 4

19 p ⊃ q, q ⊃ r |= p ⊃ r x5,8 x4,5 4 4,5 4

20 p ⊃ q |= ¬q ⊃ ¬p 5,8 4,5 4 4,5 4

21 |= p ⊃ (q ∨ ¬q) x5,8 4,5 x4 x4,5 x4

22 |= (p ∧ ¬p) ⊃ q x5,8 4,5 x4 x4,5 x4

1. Obtained from [2, chap. 8], page 161, problem 1, solutions L. Barson

2. Obtained from [2, chap. 8], page 161, problem 2, solutions L. Barson

3. When this inference is valid in FDE, it automatically is valid in LP and K3, because FDE is a sublogic of
these logics

4. Obtained from table in [2, chap. 7], page 126

5. FDE, LP and K3 officially do not have ⊃ in the language, therefor whenever A ⊃ B was encountered, it
was replaced with ¬A ∨B. According to [2, chap. 8.2.1], page 142

6. When ⊃ does not occur in the inference, this inference in RM3 is exactly the same as the inference in LP

7. When ⊃ does not occur in the inference, this inference in K3 is exactly the same as the inference in  L3

8. Self made tableau, validated on November 13th, 2015 by L.C. Verbrugge
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Appendix B: Test set

Table 11: Logical inferences in different logics, test set

# Inference FDE LP K3 RM3  L3

1 |= (p ⊃ q)↔ (¬q ⊃ ¬p)9 x15 15 x15 16 16

2 |= (¬p ⊃ q)↔ (¬q ⊃ p)9 x15 15 x15 16 16

3 |= ((p ∨ q) ∧ ((¬p ∨ q) ∧ (p ∨ ¬q))) ⊃ ¬(¬p ∨ ¬q)9 x15 15 x15 x16 x16

4 q ⊃ r, r ⊃ (p ∧ q), p ⊃ (q ∨ r) |= p↔ q9 x15 x15 15 16 16

5 |= (p ⊃ q)↔ (¬q ∨ q)9 x15 x15 x15 x16 x16

6 |= (p↔ q)↔ ((q ∨ ¬p)(¬q ∨ p)9 x15 15 x15 x16 x16

7 |= (p ∨ (q ∧ r))↔ ((p ∨ q) ∧ (p ∨ r))9 x15 15 x15 16 16

8 |= ((p ∧ (q ⊃ r)) ⊃ s)↔ (((¬p ∨ q) ∨ s) ∧ ((¬p ∨ ¬r) ∨ s))9 x15 15 x15 x16 x16

9 (p ∧ q) ∧ ¬p |= (p ∨ q) ⊃ ¬p10 15 15 15 x16 16

10 ¬((p ∨ q) ∧ (p ∨ r)) |= ¬(p ∧ (q ∨ r))10 15 15 15 16 16

11 p ⊃ (q ∧ r) |= ((r ⊃ ¬q) ∧ (¬r ⊃ p)) ∧ p11 x15 x15 x15 x16 x16

12 p ∧ ¬p,¬(q ∨ ¬q) |= ¬(p ∨ q) ∧ ¬(¬p ∨ q)12 15 15 15 16 16

13 ¬(p ∧ q) ∨ (¬p ∧ ¬q) |= ¬p13 x15 x15 x15 x16 x16

14 |= (p ∧ ¬(¬p ∧ (q ∨ r))) ⊃ (¬(p ∧ q) ∨ ¬(p ∧ r))11 x15 x15 x15 x16 x16

15 ¬(¬p ∨ q) ⊃ ((p ∧ ¬p) ∧ (q ∧ ¬q)) |= p ⊃ q14 15 15 15 16 16

16 ¬(p ∧ (q ∨ r)),¬(p ∨ p) ∧ ¬r |= ¬r ∧ (¬q ∨ p)14 15 15 15 16 16

9. Obtained from “Seventy-Five Problems for Testing Automatic Theorem Provers”[15]

10. Obtained from Exam Advanced Logic (June 7th, 2014), Rijksuniversiteit Groningen

11. Obtained from Resit Exam Advanced Logic (June, 2014), Rijksuniversiteit Groningen

12. Obtained from Exam Advanced Logic (April 11th, 2012), Rijksuniversiteit Groningen

13. Obtained from Exam Advanced Logic (June 16th, 2015), Rijksuniversiteit Groningen

14. Obtained from Resit Advanced Logic (July 8th, 2014), Rijksuniversiteit Groningen

15. Obtained using Doug Owings’ Pytableaux Web UI [14]

16. Self made tableau, validated on December 18th, 2015 by L.C. Verbrugge
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