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Abstract 

Populations of cells are heterogeneous. Despite single cells of a population present 
common gene expression regulation they also present small differences in the 
expression. Single cell methodologies are needed to study the impact of this 
heterogeneity in cellular processes. Single-cell RNA sequencing (scRNAseq) has 
already been used to study heterogeneity of eukaryotic cell populations at 
transcriptional level. The aim of this report is to review the current state of scRNAseq 
technology to apply it for the study of host-pathogen interactions. Studies that already 
used this technique to study immune cells response to lipopolysaccharides showed 
different activation thresholds between host cells under same stimuli and that 
heterogeneity in pathogenic cells influences heterogeneity in host cells response. 
Therefore, scRNAseq is a powerful tool to characterize expression heterogeneity 
during host-pathogen interactions.   

Introduction 

It is well known that cells in populations are heterogeneous. In stable environments, 
cells are maximally adapted to the environment conditions, and heterogeneity is 
reduced to fluctuations around the optimal phenotype (Altschuler & Wu, 2010; de Jong, 
Haccou, & Kuipers, 2011). On the contrary, if cells grow in changing environments, 
heterogeneity is favourable because it increases the change of population survival. An 
example of biological heterogeneity as survival strategy is persisters cells (Lewis, 
2010). These cells are minority subpopulation that does not grow in presence of 
antibiotics, which confers the property to escape drug treatment. In order to maintain 
heterogeneity of isogenic populations in changing environmental conditions, there are 
transcriptional regulation mechanisms to generate distinct phenotypes. For instance, 
some highly expressed genes are expressed in stochastic bursts, which generates 
biological noise (Zong, So, Sepúlveda, Skinner, & Golding, 2010). 

The reference method to study transcriptomics is RNA sequencing (RNAseq) of a bulk 
of cells. The results obtained with bulk RNAseq are the averaged expression of the 
cells in the populations under study. It is a powerful tool to capture the cell state of a 
population and serves to identify the common selective pressures. However, averaged 
results mask the heterogeneity in gene expression and usually it only represents the 
dominant subpopulation (Altschuler & Wu, 2010; Proserpio & Mahata, 2015). In order 
to study heterogeneity at transcriptional level, RNA transcripts have to be identified and 
quantified in single cells. Reference methods to study single-cell gene expression at 
RNA level are single-cell quantitative PCR (qPCR) or RNA fluorescence in situ 
hybridization (RNA FISH) (Raj, van den Bogaard, Rifkin, van Oudenaarden, & Tyagi, 
2008; Taniguchi, Kajiyama, & Kambara, 2009). However, these methods have a very 
low throughput and are hypothesis driven, limiting their use to few cells and few genes 
depending on prior knowledge. Single-cell RNAseq (scRNAseq) has emerged as a 
technique to study the whole transcriptome of many individual cells, overcoming the 
limitations of qPCR and RNA FISH (Stegle, Teichmann, & Marioni, 2015).  

During infection, pathogenic cells invade the host organism. Afterwards, host cells have 
to recognise the pathogen and initiate signalling cascades to activate the immune and 
inflammatory responses that leads to pathogen clearance. Despite pathogenic cells 
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present common features, the outcome of the infection present variability. Some 
pathogenic cells do not manage to infect any cell and die in the extracellular space 
while the ones that succeed in infecting the host cells can survive in the intracellular 
space or not. This variability does not only points out that some pathogenic cells 
present a better transcriptome to infect and survive inside the host, but also that some 
host cells are more prepared to face the infection. Therefore, host-pathogen 
interactions have to be seen as the confrontation of two groups of heterogenic cells. 
Cell heterogeneity is an important characteristic that confers plasticity and flexibility to 
survive to changing environmental conditions during infection. 

The aim of this report is to review the current state of scRNAseq technology and to 
understand how it can be used to study the role of cell heterogeneity in host-pathogen 
interactions. First of all, methods to isolate single cells are explained followed by the 
approaches developed to sequence RNA of single cells. Then, some studies that were 
carried on with scRNAseq are exposed and discussed.  

Single cell isolation 

Before RNA sequencing, cells from a population have to be isolated. There are several 
methods to achieve it. They differ in the speed of sorting (throughput), the cell 
characteristics that the experimentalist can determine before isolation (visualization) 
and the sample volume. To identify rare phenotypes (expressed in <1 % cells) 
hundreds of single cells have to be analysed and a method of high throughput is thus 
preferred (Grün & van Oudenaarden, 2015). However, for some studies is more 
important to visualize cells with microscopy, which compromises the throughput. Low 
samples volumes are recommended in order to minimize degradation and increase the 
effective concentration (Jianbin Wang, Fan, Behr, & Quake, 2012). In the next 
paragraphs the isolation methods based on microfluidic devices, on micromanipulation 
and on flow cytometry are addressed (table 1). 

Microfluidic devices can be used to sort and isolate cells based on the observed 
morphology under microscopy. Also, cells can be selected based on DNA expression 
using fluorescence reporters, as GFP (Gossett et al., 2012; Zhang et al., 2012). Electric 
and magnetic properties can also be evaluated (Huang et al., 2008; Vahey, Quiros 
Pesudo, Svensson, Samson, & Voldman, 2013). An advantage of this method is that 
the starting volume is low. A recent commercially available microfluidic system, the 
C1TM single-cell mRNA sequencing, automates the sorting and also the RNA 
sequencing inside the device. This system increased the throughput to 96 cells, 
keeping the cell visualization. However, this system is only available for eukaryotic cells 
at the moment. Two other microfluidic systems that automatized sorting and RNA 
sequencing of single cells are Drop-seq (Macosko et al., 2015) and iDrop sequence 
(Klein et al., 2015). The sorting is based on droplets. However, these systems are not 
commercialized and the device design is laborious.  
 
Another option is micromanipulation. Single cells can be aspired with micropipettes 
from a culture or complex mixtures with a joystick while visualizing them under the 
microscope. It is a suitable method when it is necessary to visualize cells before 
isolation. The drawback is that it is laborious and, consequentially, the throughput is 
really low (Fröhlich & König, 2000).   

Laser based micromanipulation is also possible, without the need of using 
micropipettes. Optical tweezers have been used to trap individual cells in suspension 
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and laser capture microdissection for cell tissues (Fröhlich & König, 2000; Saliba, 
Westermann, Gorski, & Vogel, 2014). 

Fluorescent activating cell sorting is currently the isolating method of choice for many 
scRNAseq studies (Grün & van Oudenaarden, 2015; Saliba et al., 2014). It can be 
used for both eukaryotic and prokaryotic cells. The main advantage is that it sorts and 
isolates hundreds of cells in a few minutes. The possibility to sort cells makes this 
method convenient to study only the subpopulation of interest. For example, it can 
isolate immune cells that present a specific combination of antigens. Subpopulations 
can also be sorted based on the presence of gene expression, pigment or biochemical 
activity (Verschoor, Lelic, Bramson, & Bowdish, 2015). 

When cells are loaded in a flow cytometer a nozzle produces drops that contain one 
single cell. When cells pass through a laser beam a scattering light is generated, which 
depends on the cell characteristics. Currently, up to 20 parameters can be 
characterized for every cell. Two parameters are cell size and granularity of the 
cytoplasm. The other parameters depend on the fluorescence emitted by the cell, as 
there are flow cytometers with up to 18 colour filters (Chattopadhyay & Roederer, 
2012). The fluorescence can reflect gene expression or cell-surface markers by the use 
of fluorescent gene reporters or labelled antibodies, respectively. When cells with the 
desired parameters are identified they are isolated into multi-well plates (96 or 384-well 
plates) (Saliba et al., 2014). 

The main advantage of FACS is that it is a high throughput method. The only 
disadvantages are that cells cannot be visualized and it needs fluorescence induction 
for the sorting, that might alter the cell physiology. Raman-activated cell sorting (RACS) 
has been suggested as an alternative to FACS without the need of fluorescence 
induction. Raman single-cell spectroscopy applies a laser beam to each molecule. The 
scattering incident light generates a spectrum of more than 1000 Raman bands, which 
depends on the biomolecules vibration inside the cell. Consequently, cells containing 
different amount and kind of molecules can be sorted. Therefore, Raman spectrums 
can serve as a molecular fingerprint for single cells (M. Li, Xu, Romero-Gonzalez, 
Banwart, & Huang, 2012), which have been used for antibody characterization (A. E. 
Baker, Mantz, & Chiu, 2014).  

Table 1. Isolation techniques.  
 Throughput Visualization Sample volume 
FACS (or RACS) High Not possible High 
Microfluidics Medium Yes Low 
Micromanipulation Low Yes Low 

RNA sequencing 

Once the cells are isolated, RNA sequencing for these cells can be tackled. What 
makes scRNAseq more challenging than standard bulk RNAseq is the low amount of 
starting RNA that has to be reverse transcribed to cDNA and ultimately sequenced. 
Eukaryotic cells contain around 10-50 pg of total RNA per cell and prokaryotic cells 
around 0.0015-2 pg (Y. Kang et al., 2011; Jiangxin Wang, Chen, Chen, & Zhang, 
2015). Therefore, scRNAseq has to be extremely sensitive, specially for prokaryotic 
samples. The key step to have enough amount of cDNA is the amplification. In 
traditional bulk RNAseq methods the RNA is first fragmented and then amplified 
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because polymerases processivity is limited and cannot completely extend long 
transcripts. However, for scRNAseq experiments samples are first amplified and then 
fragmented, as some RNA molecules are degraded during fragmentation. Several 
strategies have been developed for scRNAseq amplification, which try to avoid 
amplification bias, loss of strand information and low coverage.  

In the last years several single-cell transcriptomic studies with eukaryotic cells have 
been published (Grün & van Oudenaarden, 2015; Saliba et al., 2014) but the little RNA 
amount of single bacterial cells is still a limitation, with only one published study 
(Jiangxin Wang et al., 2015).  

The main steps for the RNA sequencing are RNA extraction, mRNA capture, reverse 
transcription to have the first strand of cDNA, second strand synthesis, amplification 
and finally cDNA library preparation for next-generation sequencing technologies.  The 
first steps, from RNA extraction to reverse transcription are common among the 
studies. On the contrary, several strategies have been developed for the cDNA second 
strand synthesis and amplification of cDNA. The next-generation sequencing 
technology of choice in the scRNAseq community is Illumina sequencing (Trombetta et 
al., 2014). 

First-strand cDNA synthesis 

First of all, cells are lysed to extract the RNA. A hypotonic lysis buffer with low 
concentration of both RNase-inhibitor and surfactant is the preferred method because it 
does not need a post-lysis clean-up, which causes RNA loss and reduces the 
sensitivity of the assay (Trombetta et al., 2014).  Second, the RNA of interest has to be 
captured. For both eukaryotic and prokaryotic cells, it has been calculated that the 80% 
of the total RNA is rRNA while the 15% corresponds to tRNA (Lodish et al., 2000; 
Rosenow, Saxena, Durst, & Gingeras, 2001). In order to optimize the use of next 
generation sequencing technologies they have to be removed. For eukaryotic cells, 
mRNA can be selectively amplified with poly(T) primers that anneal with the 3’ 
polyadenilated tails of mRNA, despite this also causes the loss of non-coding RNAs. 
For prokaryotic cells this approach is not possible, as in these cells the polyadenilated 
RNA is a mark for degradation. Alternatively, rRNA and tRNA can be degraded with 5’ 
monophosphate-dependent exonucleases. However, it can also degrade some mRNA, 
which introduces a bias in the relative transcript amount. Third, the captured mRNA has 
to be reverse transcribed to obtain the cDNA first-strand. The reverse polymerase of 
choice is the M-MuLV, an engineered version of the Moloney Murine Leukemia Virues 
reverse transcriptase that presents low RNase H activity and increased thermostability, 
resulting in higher yields. Poly(T) primers or DNA random primers can be used for the 
reverse transcription. This results in RNA:DNA hybrid molecules with an averaged size 
of 1.5-2 kb (Saliba et al., 2014). 

Second cDNA strand and amplification 

Several approaches have been used to synthesize the second cDNA strand and 
amplify the cDNA in order to have enough sensitivity for the sequencing. The four 
different approaches that have been developed are based on PCR amplification, in 
vitro transcription, isothermal amplification, and rolling circle amplification (figure 1 and 
table 2).  
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For PCR amplification two primers are needed. At 5’ terminal of the cDNA, the same 
that was used for the first strand synthesis can be used (generally poly(T) primer). A 
way to extend from the 3’ end is to introduce a homopolymer tailing, usually a tail of 30 
poly(A) nucleotides, and ligate the tail with the complementary sequence of an 
universal primer. As a consequence, after sequencing the cDNA the strand information 
will be lost, as it is not possible to recognise which strand originally had the poly(A) at 
the 3’ terminal end. Another problem of this approach is that during the reverse 
transcriptase the polymerase has terminations before reaching the RNA 5’, and 
sequencing at this region is underrepresented (Grün & van Oudenaarden, 2015; Saliba 
et al., 2014; Sasagawa et al., 2013). In order to solve this problem and cover the 
sequence of the whole transcript, the template-switching mechanism property of the M-
MuLV polymerase can be used. This polymerase introduces three or four cytosines at 
the 3’ end of the first cDNA strand only when it reaches the end of the RNA template. 
Then, the complementary sequence of the universal primer for the second-strand 
synthesis is ligated after these cytosines. Therefore, just the whole transcribed 
transcripts will be amplified (Islam et al., 2011; Saliba et al., 2014). Another alternative 
to have full-length coverage was developed with the use of random primers that can 
anneal along the transcript. Each primer has a different combination of 9 nucleotides at 
3’ terminal and a universal sequence with a restriction site for BciVI at 5’ terminal. This 
restriction site is surrounded by complementary sequences to form a hairpin and 
prevent self-annealing. First, overlapping amplicons, which together cover the whole 
transcript, are generated for three PCR cycles. Then, the random primers are 
substituted with universal 5’ primers that contain the restriction site. Finally, BciVI 
digestion removes the primed sequence to introduce sequencing primers (Pan et al., 
2013).  

A common problem of PCR approaches is the amplification bias. Transcripts amplified 
with primers that bind with high affinity will be overrepresented. On the other side, if a 
transcript is amplified with a primer with some mismatches the amplification will be less 
efficient and consequently the transcript will be underrepresented.  An approach to 
overcome this bias and have linear amplification is to amplify with in vitro transcription. 
In this approach, the primer for the first strand synthesis comprises a T7 promotor. 
Next, the synthesis of a second-strand is performed, which will have the T7 promoter at 
3’. Then, the in vitro transcription is possible and an RNA strand complementary to the 
original one is amplified. Reverse transcriptase for all transcripts is done afterwards to 
have the cDNA. A drawback of this technique is that during the in vitro transcription the 
polymerase can have spontaneous terminations, which cause a loss of sequence 
information at the 5’ of the original RNA transcript (Hashimshony, Wagner, Sher, & 
Yanai, 2012). 

Isothermal amplification is another option to amplify the cDNA with high sensitivity. For 
this approach, chimeric primers, DNA polymerase with strand displacement activity and 
RNaseH endonucleases are needed. The first-strand generation is performed with a 
chimeric primer, which has an RNA sequence at 5’ and a DNA poly(T) or random 
primers at 3’. The cDNA second strand is synthesized with a DNA polymerase and a 
DNA primer. Then, the amplification of this second strand is performed with the 
chimeric primer. After each cycle the RNA sequence at 5’ of the new amplicon is 
removed with RNaseH and for the next cycle new chimeric primers are introduced 
(Kurn et al., 2005). By using random hexamer primers for the first-strand synthesis, this 
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approach was used for the only published study that performed scRNAseq in 
prokaryotes. However, in this study rRNA and tRNA were not fished out previously, 
which implies that it does not overcome the problem of having low amount of RNA in 
single cells after mRNA enrichment (Jiangxin Wang et al., 2015). 

 

Figure 1. Amplification approaches. After cell lysis, RNA has to be amplified before scRNAseq. The 
three alternatives of PCR amplification (A), the amplification with in vitro transcription (B), the isothermal 
amplification (D) and the rolling-circle amplification (D) are depicted. For first strand synthesis (first step), 
random primers can also be used instead of poly(T) primers. Gray lines depict RNA and black lines cDNA. 
RNA primers are shown in light purple and DNA primers in dark purple, empty squares correspond to the 
primer sequence ligated to the template and full squares to the extension primer. In red the primer 
sequence that corresponds to the T7 promotor and, in orange, to the BciVI restriction site. Rnd stands for 
random and T7p for T7 promoter sequence. 
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Another approach uses the DNA polymerase of bacteriophage Φ29, which has strand 
displacement activity and high processivity for long DNA templates. This approach is 
called rolling circle amplification because the cDNA is ligated in order to have a “long” 
DNA template and take advantage of the polymerase high processivity. The ligation of 
3’ and 5’ ends is achieved with an intramolecular link by an ATP-dependent ligase after 
5’ phosphorylation. Then, the cDNA circle is amplified with Φ29 polymerase using 
random primers. If DNA primers are used, the polymerase can also use them as a 
template, which causes undesired by-products. RNA primers are preferentially used 
because Φ29 polymerase can extend RNA primers but cannot use RNA as a template 
(Y. Kang et al., 2011; Yun Kang, McMillan, Norris, & Hoang, 2015; Pan et al., 2013). 
This approach was reported to have full-length coverage  and it has been done for both 
eukaryotic (Pan et al., 2013) and prokaryotic cells (Y. Kang et al., 2011; Yun Kang et 
al., 2015). When this method was done for prokaryotic cells the mRNA enrichment step 
was followed. However, the studied organism, Burkholderia thailendensis, has 2 pg of 
RNA, several orders of magnitude higher than the standard prokaryotic cells.  

Spike-in RNA, barcoding, and strand specificity strategies  

In order to study gene expression with RNAseq technology is necessary to identify and 
quantify all transcripts. The sequencing results present biological and technical 
variability. In order to study biological variability in cell populations, the technical 
variability introduced mainly during amplification has to be removed. With this aim, 
spike-in RNA are unique molecular identifiers (UMIs) are used (Grün & 
van Oudenaarden, 2015; Islam et al., 2014; Stegle et al., 2015). 

Spike-in RNA molecules are introduced during sequencing as a negative controls in 
order to normalize the expression values. The External RNA Control Consortium 
(ERCC) (S. C. Baker et al., 2005) designed a set of 92 synthetic RNA with several 
lengths of known concentration that should mimic the natural RNA molecules. They are 
mixed with the extracted RNA from cells, representing a 5-10% of the total sample. 
Differences in the quantity of spike-in molecules between samples indicate technical 
variability, as the starting spike-in molecules are identical in all samples (Stegle et al., 
2015). For instance, if an RNA sample of one cell is not amplified neither its spike-in 
RNA. However, it is not clear if ERCC RNAs perfectly mimic natural RNAs and some 
authors proposed to use naturally expressed genes, for example housekeeping genes, 
for the normalization (Risso, Ngai, Speed, & Dudoit, 2014). 

Another source of technical variability is the different amplification efficiency between 
genes. For example, transcripts with higher affinity for the primers will be more 
represented than transcripts with less affinity for the primers. Other factors as the GC 
content, the secondary structure, the size and the quantity of the transcripts are other 
sources of amplification bias (Kebschull & Zador, 2015). UMIs are barcodes to cope 
with these biases. A barcode is a short sequence that is used as identifier of one 
molecule or a group of them. A different UMI barcode is introduced for each different 
transcript from the same cell. During the analysis, UMIs are counted to know how many 
times each transcript was amplified (Islam et al., 2014). 

Barcodes are also used to mark cell identity. Each RNA set from a single cell is tagged 
with a specific barcode either during first-strand synthesis or downstream to the 
sequencing primers. Then, transcripts from all cells can be pooled and sequenced 
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together, which reduces the cost of the experiment (Grün & van Oudenaarden, 2015). If 
the cell barcode is introduced during first strand synthesis, an early pooling is possible, 
reducing even more the experiment cost. 

Another information that is important to keep is which RNA strand was extracted from 
the cell, as the sequencing is done with double stranded cDNA. In order to preserve 
this information, differential primers can be used to tag the original 3’ or 5’ end. 
However, if one of these ends are tagged and selected, the coverage of the opposite 
end is lost, compromising the full-length coverage. STRT is an example of 5’ terminal 
end selection. During STRT, cDNA is immobilized on beads thorough the 5’ end after 
amplification, then samples are fragmented loosing the information at the 3’ end (Islam 
et al., 2011). A complementary method is CEL-seq. In it, the first primer sequencing is 
added during single cDNA strand synthesis, marking the 3’ end of the RNA. Then, the 
second sequencing primer is introduced after fragmentation. Just fragments that have 
both sequencing primers are sequenced, loosing coverage at the 5’ end (Hashimshony 
et al., 2012). 

 

Table 2. Developed methods of scRNAseq and its characteristics. 

 Amplification 
method Coverage Linearity UMIS Strand 

information 
Early 

pooling 
Poly(A) 

dependent1 Ref 

STRT PCR-template 
switch Only 5’ No Yes Yes Yes Yes Islam et 

al., 2011 
SMART-

seq2 
PCR-template 

switch 
Full, 

3’ bias No No No No Yes Picelli et 
al., 2014 

Quartz PCR-A tailing Full, 
3’ bias No Possible2 No Possible Yes 

Sasagawa 
et al., 
2013 

SMA PCR-based Full No No No No No Pan et al., 
2013 

CEL-seq 
/MARS-

Cell3 

In vitro 
transcription Only 3’ Yes Yes Yes Yes Yes 

Hashimsh
ony et al., 

2012; 
Jaitin et 
al., 2014 

TIVA4 In vitro 
transcription 

Full, 
3’ bias Yes Possible Possible Possible Yes Lovatt et 

al., 2014 

SPIA Isothermal 
amplification Full Yes No Possible No No 

Kurn et 
al., 2005; 
Jiangxin 
Wang et 
al., 2015 

PMA Circle-rolling 
amplification Full No No No No No Pan et al., 

2013 
 

1 Methods that are not dependent on Poly(A) tailing can be used for prokaryotes. However, only SPIA and 
PMA have been used for bacterial cells. 

2 Possible means that the design of the method is compatible with the characteristic but that it has not been 
done. 

3 MARS-cell is the automated version based on CEL-seq. 
4 TIVA: is the only in vivo method for scRNAseq. 
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Data analysis 

The aim of a single-cell RNAseq analysis is to identify which genes are being 
transcribed in each single cell and quantify its expression level. Using these 
parameters it is possible to group cells based on transcription expression and 
characterize subpopulation or different cell types. 

First of all, mapping is done aligning sequences to a reference transcriptome. If it is not 
available, a reference genome can be used. Sequences corresponding to barcodes 
have to be removed before the mapping. These initial steps are used with the same 
tools for bulk cells RNAseq data. Raw data should be filtered in order to reduce the 
technical noise. In some cases, if few bases at the ends of the transcripts have low 
quality, they can be trimmed. (Grün & van Oudenaarden, 2015; P. Li, Piao, Shon, & 
Ryu, 2015; Stegle et al., 2015). 

To quantify the expression, reads have to be assigned to each studied cell with the aid 
of cell barcodes. If cDNA was linearly amplified, the transcripts expression level for 
each cell can be estimated. On the contrary, UMIs barcodes are used to eliminate PCR 
bias. By counting the number of different UMIs for one transcript, the number of original 
copies of this transcript can be known. Cells presenting low transcript numbers can be 
eliminated of the study to avoid a biased quantification. The main causes of low 
transcript numbers are low amplification efficiency (when spike-in RNAs also have a 
low number of copies) or low input material (if spike-in RNAs are overrepresented in 
the amplification product) (Grün & van Oudenaarden, 2015). 

Normalization of expression data is necessary to compare and distinguish differences 
in expression levels between transcripts and cells. When reads cover the whole 
transcript, the expression levels are usually expressed with transcripts per one million 
reads per kilobase of transcript (RPKM). However, there are several and more refined 
methods for normalization. Some methods used for bulk RNAseq, as RSEM (B. Li & 
Dewey, 2011) and Sailfish (Patro, Mount, & Kingsford, 2014), make abundance 
estimation before normalization, improving the normalized results (P. Li et al., 2015). 
Alternatively, sub-sampling of the same number of transcripts for each cell, a method 
called down-sampling also succeeds to reduce technical-noise but then some 
transcripts are not considered, losing sample complexity. (Grün, Kester, & van 
Oudenaarden, 2014). 

After sequencing data analysis, further analysis to interpret the data can be done. 
Usually, clustering is performed in order to identify subpopulations or cell types. This 
classification is done based on the differential expression levels and the kind of 
expressed genes. A common unsupervised method is principal component analysis 
(PCA) but other methods as hierarchical clustering, k-means, network analysis or even 
combination of them (Grün & van Oudenaarden, 2015). If prior information is available, 
for example gene expression determined with reporter gens, this can be merged with 
the unsupervised methods (Stegle et al., 2015). It is important to identify and, if 
necessary, deconvolve the changes in expression due oscillatory cellular processes 
like cell cycle or metabolism, which can alter the results if cells do not grow 
synchronously (Francesconi & Lehner, 2015). 
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Single-cell RNAseq was developed to study molecular reprogramming 

Tang et al were the first ones using RNAseq for single cells (F. Tang et al., 2009; F. 
Tang, Barbacioru, Nordman, et al., 2010). They developed this method to study 
changes in expression from internal cell mass (ICM) cells to embryonic stem cells 
(ESC) in mice (F. Tang, Barbacioru, Bao, et al., 2010). Cells were manually isolated 
with a mouth pipette. A PCR based amplification, using poly(A) tailing was performed 
and then the library prepared. They sequenced a total of 12 cells simultaneously, 
barcodes to identify cells were used and finally the selected sequencing technology 
was SOLiD.  

During this study, they identified a total of 4,837 genes with a different expression 
between IMC and ESC cells. These genes are implicated in mRNA processing, 
splicing, protein modification, cytoskeleton, microtubules, carbohydrate metabolic 
processes and protein catabolic processes. Then, based on the gene expression 
dynamics during IMC outgrowth, four gene clusters were identified. One cluster of 
genes was highly upregulated in ESC, which means that they are specific for 
maintaining the self-renewal. Two other groups had a decrease of expression, one 
during early stages and the other during late stages. And finally another group of genes 
was identified as responsible of pluripotency shut down (F. Tang, Barbacioru, Bao, et 
al., 2010).  

Single cells RNAseq analysis also revealed some mechanisms of cell reprogramming 
during development. New splicing variants were observed in ESC cells compared to 
IMC cells and expression level changes were observed for epigenetic regulators (F. 
Tang, Barbacioru, Bao, et al., 2010). 

Therefore, this study proved that scRNAseq analysis is a suitable tool to identify 
different cell types. Moreover, they determined the genes that dynamically change its 
expression to reprogram ICM cells to ESC. 

Similarly, during pathogen-host immune response, cells from both organisms undergo 
changes in gene expression in order to survive and colonize the host or alternatively to 
stop colonization of pathogen. Thus, scRNAseq analysis can be used to describe the 
initial heterogeneity of pathogen and host cells and determine the expression changes 
after their encounter. RNA sequencing in single mammalian host cells as macrophages 
or dendritic cells is possible and have been done (Avraham et al., 2015; Shalek et al., 
2014). However, the study of bacterial single cells is still challenging. 

Single-cellRNAseq analysis to study the influence of LPS on host-pathogen 
interactions 

Recently, two studies (Avraham et al., 2015; Shalek et al., 2014) performed scRNAseq 
to investigate LPS response of immune cells, showing the importance of both host and 
pathogen cell heterogeneity. With the determination of single cell transcripts, genes 
that are just expressed only in few cells were identified. As a consequence, a better 
characterization of the temporal regulation and the identification of signals that trigger 
activation of pathways in response to LPS were possible. 

Signalling pathways activated during LPS stimulation 

During pathogen and host encounters, both organisms undergo changes in expression 
in order to invade host cells or eradicate the bacteria, respectively. Bacteria present 
patterns known as pathogen-associated molecular patterns (PAMP) that are 
recognized with extracellular receptors of host cells. Common PAMPS in bacteria are 
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lipoproteins, lipopolysaccharides (LPS), peptidoglycans, bacterial DNA or flagella. 
PAMPS are recognized by Toll-like receptors (TLR), which transduce the signal into the 
intracellular compartment and regulate gene expression. Each PAMP is recognised by 
a different TLR (Newton & Dixit, 2012; D. Tang, Kang, Coyne, Zeh, & Lotze, 2012).   

LPS are an important PAMP of gram-negative bacteria to activate the immune 
response in macrophages, dendritic cells (DC), lympohcytes or other immune cells. 
LPS are recognised by TLR4. This receptor has been shown to regulate the 
hypersentivity response (Freudenberg et al., 2003). In Salmonella, lack of TLR2, TLR7 
or TLR9 are compensated by TLR4 (Arpaia et al., 2011; Feuillet et al., 2006; Weiss, 
Raupach, Takeda, Akira, & Zychlinsky, 2004). Thus, TLR4 has a central role in 
immunity. Once TLR4 receptors recognize LPS, it can remain in the membrane, 
activating Myd88, or it can be internalized by endosomes, activating Trif. Activation of 
Myd88 is common with the other TLR, which results in Nuclear Factor κβ (NF-κβ) 
activation, which upregulates the transcription of pro-inflammatory cytokines. If TLR4 
activates Trif, then the transcription factor Irf3 induces the transcription of Type 1 
interferon (IFN) (figure 2). When type I IFNs are secreted, they can be recognised by 
their receptors. For example, it has been described that IFN-β is recognized by IFNAR, 
which activates the transcription factor Stat1 to express cytokines that activate the 
antiviral response of uninfected cells (Doyle et al., 2002). 	
  

	
  
Figure 2. Signalling pathways activated as a response to PAMPS in immune cells. From Gilchrist, 
MacLennan, & Hill, 2015. 

Influence of host and pathogen cell heterogeneity 

Shalek et al. (2014) studied LPS stimulation on mice DC over time. To sort DC cells 
from bone marrow extracts, cells expressing CD11 antibody were selected with FACS. 
Then, these cells were isolated with the C1 microfluidics device from Fluidigim. The 
SMART-seq amplification method was followed with Nextera sequencing. To analyse 
the sequencing data, PCA analysis were carried out and then clusters were correlated 
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with core antiviral and inflammatory genes. Finally, in order to characterize changes in 
expression, they considered two types of heterogeneity: analogue and digital. Digital 
refers to presence or absence of transcription for a given gene (on/off) and analogue to 
changes in the expression levels (more/less). For all analysed gens, they calculated 
digital heterogeneity by measuring the fraction of detectable expressing cells (α) and 
the analogue heterogeneity with changes in the variance of the mean (σ) (figure 3). 

 

 

Figure 3. Determination of digital and analogue expression. For 
each gene, the fraction of detectable expressing cells was measured (α, 
in blue), which accounts for the digital expression. The expression 
values of the expressing cells were fitted in a normal distribution and 
then the variance of the mean (σ in orange) calculated, which accounts 
for the analogue expression. Figure from Shalek et al. (2014). 

They observed that the cluster of core antiviral genes presented a bimodal response 
during early LPS stimulation response (after 2 h), with some cells having a low 
expression and others a high one. After 4 h, more cells had a high expression, and the 
expression distribution became unimodal. On the contrary, the cluster of peak 
inflammatory genes started with an unimodal high expression followed by a bimodal 
expression after 4 h, as some cells had an expression decreased. They identified IFN-
β as the key regulator of these changes in the expression.  

In this study it was possible to identify two cells out of 75 (2,7 %) that express the core 
antiviral genes after 1 h of infection. The authors described them as precocious cells 
and they hypothesized that these cells could trigger the other cells response through 
cell communication. In order to test this hypothesis, they performed the experiments 
sealing each chamber of the microfluidic device, impairing cell-to-cell communication. 
Without cell-to-cell communication, a large proportion of cells failed to express the core 
antiviral genes, maintaining the bimodal response for this cluster after 4 h. On the other 
hand, the impaired communication maintained the unimodal response of peak 
inflammatory genes. These results indicated that cell-to-cell communication is 
necessary to globally switch on the core antiviral genes and down-regulate peak 
inflammatory genes. Similar results were obtained using cells that lacked IFN-β or 
Stat1 genes (Ifnar-/- or Stat1-/-). If secretion of IFN-β was impaired after one hour, only 
the peak inflammatory genes were altered, which means that peak inflammatory genes 
are regulated in a second wave of cytokines secretion. 

In conclusion, this study supports a model of heterogenic response to LPS stimulation. 
All cells can respond to LPS, activating peak inflammatory genes. However, only a little 
percentage (around 2-3 %) of cells presents an early transcriptional change in 
response to IFN-β. The first effect is the expression of core antiviral genes. Then, these 
cells release more IFN-β, switching on the expression of neighbour cells with this 
paracrine signal. Lately, negative paracrine signals are secreted, inhibiting peak 
inflammatory genes expression (figure 4). 
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Figure 4. Conclusions of the study of Shalek et al. (2014). On the left, the gene network model 
showing how positive IFN-b signalling induces the antiviral response and reduces its heterogeneity, while 
simultaneously activates the negative paracrine feedback, which inhibits the peaked inflammatory cluster 
and increases its heterogeneity. On the right,  cell population model showing how positive and negative 
paracrine signalling alter antiviral (magenta) and inflammatory (green) gene expression variability across 
cells. Grey denotes no expression. From supplementary material of Shalek et al. (2014). 

Avraham et al. (2015) also studied LPS response in immune cells over time. They 
infected mice macrophages with Salmonella typhimurium. First, they sorted and 
isolated the cells with FACS based on the outcome of the infection. SMART-seq 
amplification method with Nextera sequencing was carried on. Sequencing data was 
clustered with PCA and weighted gene correlation network analysis (WGCNA). 

When S. typhimurium infects macrophages cells, there is heterogeneity on the 
outcome. The three possible outcomes are no infection, infection with intracellular 
bacterial death or infection with intracellular survival of bacteria. These authors 
elaborated a system to distinguish the infection outcome with FACS.  They used GFP-
expressing S. typhimurium and stained its membrane with the red dye pHrodo. 
Therefore, red signal (pHrodo) means presence of infection and green signal (GFP) 
bacterial survival. Non-infected cells would not present fluorescence, infected 
macrophages with bacterial death only red fluorescence and infected macrophages 
with bacteria survival would have a yellow signal (presence of green and red 
fluorescence) (figure 5). The macrophages isolated with FACS were used for 
scRNAseq and also unexposed macrophages were isolated as a control. 

	
  	
  	
  	
   	
  
Figure 5. Cell sorting with FACS based on the infection outcome. The design of the approach used to 
sort the three possible outcomes of S. typhimurium infection based on GFP and pHrodo fluorescence (A). 
And the FACS analysis of fluorescently labeled populations for unexposed cells in left and for exposed 
cells after 4 h in right (B). Figures from Avraham et al. (2015). 

The PCA identified two clusters. Genes in cluster I corresponded to extracellular 
bacteria exposure, which comprised genes activated in response of LPS; genes in 
cluster II corresponded to intracellular bacteria response. All exposed cells expressed 
genes of cluster I while just the infected cells expressed genes of cluster II. However, at 
later time points (8 h), uninfected cells also expressed genes from cluster II, suggesting 

A    B  

A    B  
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cell-to-cell communication. WGCNA indentified a third cluster that was enriched for the 
type I IFN response. Then, they compared the response of Tlr4-/-, Trif-/-, Myd88-/- and 
Irf3-/- mutants to determine through which signalling cascade the type IFN expression is 
induced. Trif-/- and Irf3-/- mice failed to expressed cluster III genes, indicating that TLR4 
signalling through Trif and Irf3 activates type I INF response in macrophages after S. 
typhimurium infection. 

Similar to Shalek et al. (2014) they identified a bimodal response for genes in cluster III. 
However, despite the cell-to-cell communication, cells with low gene expression were 
still present after 4 and 8 h, maintaining the bimodal response. To understand the 
differences between the two studies, Avraham et al. (2015) performed the same 
experiment using coated beads instead of bacteria. As a result, more cells had a high 
expression of cluster III genes at later time points, which resembles the previous 
results (Shalek et al., 2014). It was concluded that there is a bacterial factor that 
maintains the heterogeneity of host cells response. 

In order to identify the bacterial factor responsible to maintain the bimodal response, a 
GFP reporter to determine cells with Irf3 activity was used. Infected cells with Irf3 
activity, which means that they have the type I INF response activated, were sorted 
with FACS. For both, macrophages and bacteria, bulk RNAseq was performed for 
infected cells with Irf3 activity and for infected cells without Irf3 activity. Bacteria 
extracted from macrophages with Irf3 activity presented an increased PhoP expression 
compared with cells that did not have Irf3 activity. PhoP, together with PhoQ, are a two-
component system that regulates intracellular bacterial survival (Groisman, 2001). 
Moreover, PhoP also controls the expression of genes that modify LPS (Ernst, Guina, 
& Miller, 2001). Macrophages stimulation with LPS extracted from constitutively 
expressing PhoP bacteria, resulted in an unimodal response of high expression type I 
IFN response (figure 6). Therefore, differential LPS modifications are the cause of 
macrophages differential responses of type I IFN activity. 

	
  
Figure 6. Conclusion of Avraham et al. (2015) study. Signalling cascade activated in macrophages 
expressing genes from cluster III as a response of S. typhimurium infection (A). Schematic representation 
of the differences in the responses of macrophages to infection with live bacteria and to stimulation with 
LPS-coated beads. Live bacteria are more heterogeneous than LPS-coated beads (B). Figures from 
Avraham et al. (2015). 

In conclusion, in this study it was shown that heterogeneity of pathogenic cells induce a 
heterogenic host cell response. Concretely, macrophages infected with S. typhimurium 
bacteria expressing PhoP activated type I IFN response through Trif and Irf3. On the 
contrary, macrophages infected with bacteria without PhoP activity, did not activate 

A    B  
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genes upregulated during type I IFN response. Despite evidences of cell-to-cell 
communication were observed, the response remained heterogenic, probably because 
the source of heterogeneity was present during the whole infection. 

It is important to note that in both studies (Avraham et al., 2015; Shalek et al., 2014) 
the scRNAseq expression correlated with bulk RNAseq analysis, which shows that the 
low starting RNA sample did not biased the results (figure 7). Moreover, also in both 
studies, RNA FISH experiments were carried out for at least five genes to validate the 
results obtained with scRNAseq. 

 
Figure 7. Correlation between averaged single-cell expression and bulk expression. Scatter plots 
from Shalek et al. (2014) (A) and Avraham et al. (2015) (B) that show the relation between the average 
single-cell expression (y axis) and bulk level expression (x axis) for a gene in a concrete time after 
infection. 

To sum up, these studies showed that it is possible to perform scRNAseq studies of 
host cells during infection. Which permits to study heterogeneity in pathogenic and host 
cells and its influence during pathogen-host interaction. One study (Shalek et al., 2014) 
showed that host cells present heterogeneity in the activation threshold for IFN-β while 
the other study (Avraham et al., 2015) supports that heterogeneity in bacteria cells 
induce another level of heterogeneity in the host cells response. Therefore, scRNAseq 
studies can provide detailed information of how and when the pathways already 
described are regulated and the importance of other factors like paracrine signals. 

Discussion 

The aim of this essay is to review the technical advances of the scRNAseq technology 
and its possible application to study pathogen-host interactions. Concerning the 
technique, the main challenge of the technique is the low starting RNA amount from 
single cells. Compared with bulk RNAseq, moving the amplification step before 
fragmentation permitted to carry on scRNAseq with eukaryotic cells and with procariotic 
cells if the rRNA and tRNA is not fished out. With the development of several 
amplification approaches is possible to preserve full-length coverage, strand 
information and to either linearly amplify the cDNA or introduce unique molecular 
identifiers to correct the amplification bias. However, any amplification approach has 
been used to sequence transcripts of single prokaryotic cells after fishing out the rRNA 
and tRNA. New improvements to either make this technique even more sensitive or fish 
out the rRNA and tRNA with less mRNA looses have the potential to solve this 
limitation. 

ScRNAseq was initially developed to study changes during development in order to 
distinguish transcriptional changes between cell types. Nowadays this technique has 
been also used to study splicing events, cell reprogramming during cancer progression 
and host-pathogen interactions (Saliba et al., 2014). In this essay, two papers to study 
host-pathogen interactions were reviewed in order to understand how this technique is 
used to study the role of cell heterogeneity during infections.  
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If bulk RNAseq is performed, is not possible to determine whether changes of 
expression are due digital expression regulation (change in number of cells expressing 
a gene) or due a global analogue expression regulation (changes in the number of 
transcripts per cell). Shalek et al. (2014) could differentiate these two kinds of 
expression changes by using scRNAseq. For instance, they could identify that only a 3 
% of the total population started expressing a set of genes. On later time points, a 
greater percentage of cells expressed the same set of genes, establishing how the 
global expression is temporally regulated by paracrine signals (figure 8 A and B1). 

 
Figure 8. Comparison between insights from bulk RNAseq and scRNAseq studies in host-
pathogen interactions. With bulk RNAseq is possible to determine the averaged expression of antiviral 
genes in host cell populations as a response of bacterial infection. This approach assumes that the 
expression levels are homogeneous in all cells (A). scRNAseq studies reveled heterogeneity in the 
expression (B). Shalek et al. (2014) showed that dendritic cells, in response to a homogenic LPS 
presence, some precocious cells switch on the core antiviral gene expression earlier by determining digital 
heterogeneity (in 1h) and analogue heterogeneity (in 2h). Avraham et al. (2015) could detect a cluster of 
cells that expressed Type I IFN response when they encountered a PhoP modified LPS. In blue, antiviral 
gene expression levels (lighter, less; darker, more). In orange, Type I IFN response expression levels 
(lighter, less; darker, more). LPS in orange depicts LPS that present a PhoP modification. 

Using scRNAseq Avraham et al. (2015) could determine a cluster of cells (cluster III) 
that had the same phenotype to the other infected cells, but that presented an up-
regulation of only around 100 genes. Cells in this cluster presented a differential 
expression because they were exposed to pathogenic cells that expressed a gene that 
modify LPS (the PhoP gene). Despite scRNAseq was not carried on for S. 
typhimurium, sorting out bacteria cells based on heterogenic host cells response 
showed this PhoP expression heterogeneity. In a previous population level 
transcriptional analysis of S. typhimurium response during macrophages infection with 
bulk RNAseq (Eriksson, Lucchini, Thompson, Rhen, & Hinton, 2003), it was not 
possible to determine any increased expression of PhoP, highlighting the need of 
scRNAseq (figure 8A and B2). 
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In summary, scRNAseq is a technique still under development. The studies that 
already used this technique show that it has the potential to characterize expression 
heterogeneity during host-pathogen interaction. With further improvements in sensitivity 
for scRNAseq technique, it would be possible to carry on scRNAseq in prokaryotic 
cells, expanding even more the insights of the role of transcription heterogeneity during 
infection. 
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