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Abstract

Domestic service robots need to be robust against noise and a large degree of uncertainty. This
also requires the ability to detect, recognize and resolve previously unknown failures during
their lifetime. Existing research offers promising solutions, but typically depends on what was
foreseen by its application. In this research we address this problem by the design, imple-
mentation and verification of an adaptive behavior architecture capable of autonomous failure
recovery. The recovery performance of two different methods using a non-symbolic or a sym-
bolic representation of the failure state respectively, is compared and evaluated. In addition,
a method is proposed for the autonomous perception of symbols in the environment from low
level sensory information.

The non-symbolic approach uses low level sensory information (RGBD data retrieved from
a color and depth camera) to estimate the current failure state the robot is in. A dissimilarity
measure is used to select the kmost similar failure situations. The number of k samples to use is
dynamically determined by a sudden change in either the dissimilarity or the score distribution
of the closest samples, whichever comes first.

In its most basic form, the symbolic approach uses a Naive Bayes classifier to select the
best recovery solution with the highest probability of being a success, given a set of symbols
consisting out of concepts (nouns) and their properties (adjectives). In the extended form, the
symbolic approach uses a set of transformed representations of the original symbolic repre-
sentation, of which it is able to learn the best representation most suitable of a given failure
situation.

The symbol perception module uses a region growing algorithm to segment the pointcloud,
as retrieved from a RGBD camera, into multiple surfaces. From each surface, a collection of
features are extracted, such as its similarity to known 3Dmodels using theMLESAC algorithm,
a binned color histogram and metric information using PCA. After accumulation of labelled
training samples, a template is created to which an unclassified segmented pointcloud can be
matched to. Each feature is weighted by estimating the inverse overlap of the probability den-
sity function of one class to all other classes prior to finding the most prominent prototype vec-
tors of a given class during template creation. During classification, a concept is added to the
symbolic representation if a sufficient number of segmented surfaces have beenmatched to the
corresponding concept class template. Once a concept is added to the symbolic representation,
its properties are classified using kNN.

Without knowing the different types or the total number of failure situations, both the non-
symbolic and symbolic approach of failure recovery are able to learn recovery solutions at an
adequate level. Using the symbolic representation yields the best recovery performance while
being robust againstmisclassifications in the perception of the symbols. The symbolic approach
is capable of learning the best simplification of the original representation, thereby increasing
its performance while using this new representation to provide suggestive information as to
why the failure occurred.
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Chapter 1

Introduction

It is clear that the development and application of domestic service robots is growing rapidly.
Whereas basic household robots are already common practice [1], multi-purpose domestic ser-
vice robots capable of handling complex tasks are soon on the rise [2, 3]. The complex dynam-
ics of ever-changing domestic environments require these situated robots to be robust against
noise and a large degree of uncertainty [4].

In the foreseeable future, this development and application of domestic service robots is
starting to become more of a necessity rather than a luxury. This becomes especially appar-
ent in the field of elderly healthcare, in which the ratio of elderly people to the working age
population is projected to almost double by 2050 [5, 6]. This frail group of users puts an even
higher demand for the domestic service robots to operate safely and sensibly with less down
time compared to what has previously been possible [7, 8].

1.1 Failure Recovery and Fault Tolerance

From an engineering perspective, it seems natural to regard any failure during the operation
of a domestic service robot, as something to avoid at all cost. This is especially apparent on a
physical level, at which the robot has to interact safely with the environment and its inhabi-
tants. The development of new standards [9] to ensure this safety should therefore come as no
surprise.

However, on a functional level, which involves frequent changes to the domestic environ-
ment and demands of the user, it becomes increasingly more difficult to account for all possible
failure conditions beforehand. It is therefore important to realize, that the constant anticipa-
tion, recognition and recovery of new failures, is in many cases the default state in which a
domestic service robot operates, rather than the exceptional state as often described in liter-
ature. This implies that such a robot should be able to detect and, at later stages, recognize
unseen failures or anomalies, in order to adapt its behavior in future events.

1.2 Phenomenon of Blindness

This need to overcome failures on the fly also implies that such a robot should have some sort of
situational awareness of its environment which goes beyond its initial programming. However,
in practice, the situational awareness of a robot is biased towards ideas of its designer. This is
sometimes referred to as the phenomenon of blindness [10]. The demonstrated behavior is in
such a case the result of manual behavioral programming, in which the programmer is doing
most of the integration of sensory data and the classification of certain situations relevant for
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the given task. Failure recovery is often limited and requires the different types of possible
failures to be known beforehand. This may result in a machine that is very brittle in a dynamic
environment in which goals and various (failure) conditions may vary significantly over time.
Such a robot requires constant manual programming and parameter tuning whenever a new
type of failure is discovered. Instead, a more “skull-closed” approach is desired [11], in which
the robot solely uses its sensory ends and motor ends to explore the world and communicate
with its user. If a domestic service robot is to survive, on its own, in a domestic environment,
it should be able to detect unseen situations or anomalies, be able to recognize them and adapt
its behavior autonomously in order to respond accordingly in future events.

1.3 Symbolic and Non-Symbolic Representations

At the occurrence of a failure, the robot relies on its perceptual capabilities to learn and, at later
stages, recognize failures. This perception can be represented in two different ways; a symbolic
and a non-symbolic representation. In the non-symbolic representation, the system uses low
level sensory information, such as retrieved from a laser range finder or a Color/Depth (RGBD)
camera, to perceive failures, whereas in the symbolic representation, the environment is rep-
resented in a descriptive manner as a combination of symbols or words. This differentiation
of representations can be compared to the Cognitivist vs. Emergent paradigms of cognition
[12] in which respectively either the symbolic or non-symbolic representations is used. Unlike
the non-symbolic representation, the symbolic representation can be understood by both the
robot itself and any human user if some form of Human Robot Interaction would be utilized.
However, this still begs the question as to how these symbols are learned and perceived in the
environment.

1.4 Research Goals

The research discussed in this thesis aims to design, implement and verify an adaptive behav-
ior architecture capable of autonomous failure recovery, in which the robot is capable of dis-
tinguishing one failure situation from another and is able to learn the best recovery strategy.
The robot has to do this while prior to learning, the set of all possible types of failures, is not
known by the robot. An overview of the complete project as discussed in this thesis is given in
Figure B.1.

The primary goal is to compare and evaluate the recovery performance of using a non-
symbolic (Chapter 5) vs. a symbolic (Chapter 5) representation of the failure situation. To pro-
vide a baseline performance for comparison, the general failure recovery capabilities of the
behavior architecture are first evaluated using ground truth information (Chapter 4). In this
case, the exact failure state is known to the robot, in which neither the non-symbolic nor the
symbolic representations are used.

A secondary goal is to allow the symbols in the symbolic representation to be learned and,
at later stages, perceived autonomously by the robot from low level sensory information (Chap-
ter 7). This allows the symbolic approach to indirectly use the same low level sensory informa-
tion as used in the non-symbolic approach.

The following sections describe each component inmore detail and set the specific hypothe-
ses to be verified in the remainder of this thesis.
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Figure 1.1: Schematic overview of the project and architecture discussed in this thesis. The
behavior architecture supports failure recovery using either a symbolic representation (Chap-
ter 6) or a non-symbolic representation (Chapter 5) using low level sensory information. Using
Human Robot Interaction (HRI) [13, 14] (Section 3.4), the current symbolic representation can
be explained by the robot to the user or vice versa. It furthermore allows for automatic labeling
of training samples and verification of hypotheses inferred by the symbolic interpretation. The
primary goal of this project is to compare the performance of different failure recoverymethods
using either a symbolic representation or a non-symbolic representation. The performance of
the “Ground Truth Recoverer” (Chapter 4) is used as the baseline performance in which the ac-
tual failure state is known using ground truth information. A secondary goal of this project is to
design and verify a generic perception module, capable of autonomous symbol grounding us-
ing low level sensory data. Using Symbol Perception (Chapter 7), the architecture is able detect
and classify symbols (in the form of nouns and adjectives) from low level sensory information,
while still being able to take advantage of the symbolic interpretation. See text for more details.
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1.4.1 Ground Truth Failure Recovery

The Ground Truth Recoverer neither uses the non-symbolic nor the symbolic representation,
but rather uses the ground truth information available during experimentation. In this case,
the actual failure state is known beforehand and available to the recovery method as a unique
label during experimentation. The robot is thus not required to learn or classify the failure
state itself. Using this representation is expected to yield the highest failure recovery perfor-
mance and is being used as the baseline performance for comparison with other methods. It
also serves to test the basic failure recovery capabilities of the behavior architecture in addition
to the different exploration schemes available for providing a good balance between exploita-
tion and exploration. Chapter 4 discusses this method in more detail and aims at confirming
the following hypothesis:

Hypothesis 1 Given a known failure state, the robot is capable of learning the best recovery
solution.

1.4.2 Non-Symbolic Failure Recovery

Using the non-symbolic representation, the robot only knowswhen a failure has occurred, but is
not being told any additional information. Purely using its sensory information, the robot must
estimate the current failure state and learn its solution autonomously without knowing the total
set of possible failures beforehand. Chapter 5 explains the failure recovery method using the
non-symbolic representation in more detail and aims at confirming the following hypothesis:

Hypothesis 2 The robot is capable of learning the best recovery solution in new failure sit-
uations using solely low level sensory information.

1.4.3 Symbolic Failure Recovery

Using the symbolic representation, the robot aims to recover from new failures using an ex-
plicit interpretation of the symbols themselves. For the purpose of this project, the symbolic
representation is limited to the presence of nouns and adjectives, which represent concepts and
their properties (such as color and location) in the environment. Chapter 6 explains the failure
recovery using the symbolic representation inmore detail and aims at confirming the following
hypothesis:

Hypothesis 3 The robot is capable of learning the best recovery solution using a symbolic
representation of observable concepts and their properties.

4



1.4.4 Symbol Perception

In order for the robot to utilize the symbolic recoverer, itmust be able to autonomously perceive
the world in the form of a symbolic representation. The Symbol Perception module serves to
translate the low level sensory information from the environment to this symbolic representa-
tion.

In the context of the Symbol Grounding Problem (SGP) [15, 16], the general solution pro-
vided in this thesis can be compared to work of [17], in which the symbolic representation is
grounded in the sensorimotor activities of the robot. Here, the nouns and adjectives themselves
represent the form (or “representamen”), the recovery solution themeaning (or “interpretant”)
in the context of the failure situation, while the actual perception of symbols using low level
sensory information serves to define the referent (or “object”) of the symbol in the semiotic tri-
angle [16, 18]. Since during learning, the referent is typically unknown (e.g., it can be an object
or a location, time of the day, etc.), the method proposed in this thesis aims at being as generic
as possible.

Chapter 7 explains the method of autonomous symbol perception and serves to confirm the
following hypothesis:

Hypothesis 4 The robot is capable of learning generic concepts and their properties in the
form of nouns and adjectives from low level sensory information.

1.5 Structure of this Thesis

This thesis is structured as follows. First, Chapter 2 provides the reader with a discussion on
some of the state of the art solutions in dealing with the detection and recovery of failures in
the field of robotics. Next, in Chapter 3, the reader is provided with an overview of the robotic
architecture and the experimental setup used to verify the methods proposed in this thesis.
Chapters 4, 5, 6 and 7 serve to verify and evaluate the related failure recovery performance of
respectively hypotheses 1, 2, 3 and 4, as defined in the previous sections. Finally, Chapter 8
discusses the results of the experiments in more detail and proposes ideas for future improve-
ments.
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Chapter 2

State of the Art

This chapter provides the reader with a short discussion on existing solutions in relation to fault
tolerance and failure recovery in behavior architectures as seen in literature.

2.1 Types of Failures

In the context of this thesis, we define a failure as the outcome of some anomaly which prevents
a domestic service robot from completing its task successfully. The success of a given task,
depends on the final state of the environment (e.g., move a drink from the kitchen to the living
room), but may also depend on some optimization criterion (e.g., go to the kitchen within 10
seconds). The underlying cause of an anomaly (and thus a failure), may originate fromdifferent
sources. We can roughly divide these sources in two different categories; anomalies caused as
part of the robot and those related to anomalies in the environment. The work presented in this
thesis concerns itself primarily with the second category of anomalies. The remainder of this
section discusses both categories and provides a summary of solutions as seen in the literature.

2.1.1 Internal Faults

Most research in relation to failure recovery in robotics has concerned itself with fault tolerance
on a hardware or software level. Many solutions exist [19, 20], but they are often engineered
towards a specific application.

Hardware Fault Tolerance.

Hardware failures may include defective sensors or actuators and loss in performance due to
dust or wear and tear. Relying on a robotic system in which it is assumed that all actuators and
sensors are working perfectly is often not practical. This is because in some cases, such as the
application of robotics in space, it is impossible to repair the systemafter deployment. In case of
a defective joint in space, one could utilize the dynamic coupling between joints to reposition a
manipulator to a specific position [21]. In other cases, faults happen too frequently for routine
maintenance or repair to be practical [7]. This is especially true for complex systems, which
employ numerous sensors and actuators. For example, the hexapod Haniball robot inspired
by [22], has over 60 sensors and in about every two weeks a sensor breaks down [23]. To
compensate for these faults, the system uses a distributed network of concurrently running
processes in which faults of sensors are detected autonomously and confined and abstracted
away using virtual sensors [24].
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Software Fault Tolerance.

Different techniques can be utilized to increase the general Software Fault Tolerance (SFT) of
a system. Common practises during the implementation and test phase include Unit Testing
to verify the specified functionality of a system [25] and Fault Injection to verify the error han-
dling capabilities of a system [26]. During the actual deployment of the software, either single-
version or multi-version SFT techniques can be utilized [27]. A commonly used multi-version
SFT technique is N-Version Programming [28]. Here, multiple versions of the same function-
ally equivalent piece of software are written by different development teams independently.
During execution, a decision algorithm is used to select the best output (typically by voting)
from all versions. A similar approach can be used in Machine Learning with the use of Ensem-
ble Methods [29] such as Bayesian averaging, Bagging and Boosting.

2.1.2 External Anomalies

The second category of anomalies include those related to the environment itself located outside
the body of the robot. These anomalies are often the result of some change in the environment
which prevents the robot from completing its tasks successfully. This results in failures such
as the inability to navigate inside a room due to a sudden obstruction, or to grasp an object
because the object is not located at its usual location. Many solutions exist for recovering from
external anomalies or faults. This including using simulations to predict future faults [30], and
logical reasoning to act in response to failures [31, 32]. However, in many of these cases, the
solution is engineered towards a specific application and not suitable to be used as a generic
solution to recover from an unforeseen external fault.

Compared to the first class of anomalies, traditional methods such as increasing the redun-
dancy or designing application-specific solutions for the purpose of fault tolerance (as discussed
in Section 2.1.1) work poorly. The solution must often be found on a behavioral level of the
robot. Fault tolerance should therefore, as explained in the next section, be an integral part
during the design of a behavior architecture used in domestic service robots.

Even though in general specific solutions have beendesigned for each specific type of failure,
it is important to realize that these types are not completely independent. For example, the
lack of internal (computational) resources, affects the way the robot is able to interpret the
complexity of the environment and thus the ability to cope with external anomalies.

Furthermore, a fault or anomaly might occur without the actual occurrence of a failure. A
system can be intrinsically fault tolerant without dealing with failures explicitly, for example by
avoiding faults or anomalies. In the researchpresented in this thesis, we are explicitly interested
in dealing with failing behaviors and learning a specific solution, rather thanmaking the system
fault tolerant in general.

2.2 Failure Robust Behavior Architectures

The number of robotic architectures seen in literature which explicitly employ fault tolerance
and failure recovery techniques are relatively limited. The problem is often approached bymak-
ing the specific sub-components of the system fault tolerant or by anticipating specific failure
scenarios during the design and implementation of the system. In other cases, fault tolerance
and the ability to learn failure recovery solutions are indirectly an inherent result of the algo-
rithm. The remainder of this section discusses a collection of behavior architectures which have
explicitly been designed with fault tolerance in mind.
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An interesting behavior architecture designedwith fault tolerance inmind is thework of [33].
The architecture has been applied to an autonomous underwater vehiclewhichmust remain op-
erational for several weeks without human intervention. Here, a distributed control system has
been designed capable of failure handling, even if the source of the fault cannot be identified.
The system is designed to do “whatever works” with the use of multiple behaviors providing
redundant pathways for solving a problem in different ways. Different (possibly redundant)
behaviors compete with each other using an activation net, in which the activation of the be-
havior depends on its relevance to the given tasks and its success during previous executions.
The architecture provides an interesting approach in dealing with new, unknown and unex-
pected failures, but provides no direct means of explaining the failure to a human at a later
stage.

The work of [34] provides another interesting approach to fault tolerance in a behavior ar-
chitecture for the cooperative control of teams of heterogeneous mobile robots. It employs a
hybrid solution of negotiation between team members and a motivational mechanism which
activates or inhibits the output of the behaviors to the robot’s actuators. Upon the occurrence
of a fault (such as the removal of a teammember), the activation patterns of a set of related be-
haviors is modified as a result of the changing motivation, impatience and acquiescence levels
of the robot. The architecture provides an interesting solution for a team of robots to accom-
plish a specific task, such as hazardous waste cleanup, in a cooperative manner. However, the
solution to a fault is provided as a result of the emergent characteristics of the system and is
thus not explicitly known or being conveyed to a human.

Whereas in the previous examples shown above, the solution to failure recovery is an emer-
gent property of the system, the alternative is to incorporate failure recovery mechanisms dur-
ing the preparation or execution of a plan. The hierarchical planning paradigm is a commonly
used planning approach (e.g., [35, 36]), in which first an abstract skeleton plan is constructed
before refining the detailed steps later on (possibly during execution of the plan). If a failure oc-
curs during the execution of a plan, the robot can either decide to reconstruct the whole plan or
execute a specific recovery solution. Executing a recovery solution generally increases response
time, but possibly at the cost of plan quality [37].

2.3 Reversible Computation

Another interesting approach is to use the idea of reversible computation (see [38, 39, 40] for
a more in-depth discussion on the topic) in an attempt to recover from a failure. Here, the se-
quence of perception, reasoning and action of a robot could be back-traced in order to find the
source of the fault and recover from a failure the moment a failure occurs. For example, the
work of [41] uses such an approach in which a Domain Specific Language (DSL) has been de-
signed to create reversible assembly sequences at the occurrence of an error. However, through
its interaction with the environment and the loss of information during the perception of the
environment, the entropy of the set of all possible failure scenarios increases significantly. The
practical use of reversible computation is therefore often limited to the past reasoning of the
robot and the distinct actions it took up till the occurrence of the failure. This also requires the
(symbolic) representation of the world to be as precise and abstract as possible without losing
too much information.
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2.4 Human Robot Interaction

Since a domestic service robot often operates in close relation with its human user, it seems
natural to include the user in the process of failure recovery. Rather than trying to resolve
the failure situation completely autonomously, the robot could ask for help and learn more
efficiently through Human Robot Interaction (HRI) [14].

An example includes the work of [42] which allows a robot to ask specific questions in order
to resolve the failure situation. The help requests are constructed from a probabilistic graphical
model, called Generalized Ground Graph [43], by using its semantic structure in reverse order.
This allows the method to not just ask simple questions like “Can you help me?”, but also to
generate effective and precise help requests (such as “Please give me the white table leg that is
on the black table.”) in order to resolve the failure in a more effective way.

However, the willingness of the user to comply to the instructions of the robot provides no
guarantees that the robot is recovering from a failure in the correct way [44]. Close interaction
with the user is thus of utter importance for the robot to verify its perception of the situation.

Furthermore, errors might also occur within the dialogue between a human and the robot.
The utilization of effective error handling strategies within the dialogue itself is therefore also
of great importance. One possible solution to this problem, as shown by the work of [45], is to
apply similar error recovery strategies as used in human-human dialogues to that of human-
robot dialogues.

Alternative solutions related to symbolic models and logical reasoning to act in response to
failures [31, 32] exist, but often suffer from the symbol grounding problem [15]. Symbols are
either hard-coded or perceived by independent perception modules. This results in a system
in which only part of the perceivable world is used to detect, classify and explain previously
unknown failures.

2.5 Robocup@Home

For domestic service robots to be of practical use, research should go beyond theory and con-
ducting experiments in controlled laboratory settings. This is especially true for testing the
failure recovery capabilities of a robot in a highly dynamic and unpredictable domestic envi-
ronment. Benchmarking competitions such as Robocup@Home [46] (one of the main leagues
organized by the Robocup Federation [47]) aims to foster the research in autonomous service
robots in a domestic environment. During the Robocup@Home competitions, teams from dif-
ferent universities and research institutes compete with each other by demonstrating the abil-
ities of their domestic service robot in different ways. One of the most interesting tests used
in Robocup@Home, is the General Purpose Service Robot (GPSR) test. Here, the robot is pro-
vided with a random command (for example with the aim to find and bring a specific object
to another location) which needs to be executed inside the arena (a typical apartment layout
including fully furnished rooms such as a kitchen, living room and bedrooms). However, due
to changes in the environment, incomplete information or incorrect instructions, the robot is
unable to execute the command in the usual manner.

The behavior architecture made by the BORG team from the University of Groningen of-
fers a promising solution to the GPSR test [48]. It is capable of dealing with underspecified
commands possibly with erroneous information, in which the robot is able to start a dialogue
with the user to acquire more information or learn a new type of behavior. It is able to handle
failures by executing alternative behaviors on the fly. However, the detection and classification
of failures need to be programmed by hand and there is no learning involved for the purpose of
recovering from unknown failures.
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Chapter 3

Experimental Setup

The following experiments described below are used to verify each of the methods described
in Chapter 1. This includes the methods which uses ground truth information (Chapter 4), the
non-symbolic representation (Chapter 5) and the symbolic representation (Chapter 6). In case
of themethodwhich uses the symbolic representation, the experiments are conducted with and
without autonomous symbol perception (Chapter 7). Without symbol perception, the symbolic
representation is extracted using ground truth information and is provided as-is without the
attempted recognition by the symbol perception module.

During these experiments, the general purpose of the robot is to enter a room froma random
start location using one of the three entrances in the least amount of time. At each entrance
location, a (possibly new) failure situation is introduced which prevents the robot from enter-
ing the room in the usual manner. The goal of the robot is to learn each type of failure and
the optimal (possibly unique) solution in resolving the situation using either low level sensory
information or a symbolic representation. The number and type of failures are not known to
the robot beforehand.

The failure scenarios used in the experiments are relatively easy to solve by a human pro-
grammer if all possible failures are known beforehand. However, the purpose of these exper-
iments is not to show that the system can do a specific task (navigation, path planning and
obstacle avoidance in this case) in a very efficient manner. Rather, the purpose here is to show
that the system can cope with unforeseen situations and is capable of creating its own situa-
tional awareness and strategy in order to improve its general behavior.

The following sections describe the robotic architecture and simulation environment used
during the experiments. The setup of the actual test scenarios, as used to verify each hypothesis
(see Figure B.1), are described in Section 3.6.
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3.1 The RITA Robot

The work presented in this thesis uses the RITA (Reliable Interactive Table Assistant) robot1

(see Figure 3.1) for experimentation. RITA is an autonomous moving table and has been de-
signed to assist elderly to live at home for a prolonged period of time. It has a variety of sensors,
including a laser range finder, two RGBD cameras and a microphone. It has a differential drive
and the tabletop (including most of its sensors) can be move up and down. An overview of
the software and hardware components as used on the RITA robot platform is provided in Fig-
ure 3.2. The RITA robot has been designed and developed by Enacer B.V. of which the author
of this thesis is a co-founder.

(a) (b) (c)

Figure 3.1: (a) The RITA robot as seen in the Gazebo simulator. The blue cone-shaped planes
indicate the orientation and range of the laser range finder and sonars. The RGBD cameras
are mounted on top of the screen and just underneath the tabletop (marked in orange). (b)
An earlier prototype of the RITA during the RoCKIn@Home Camp 2014 [3]. (c) The newest
prototype of the RITA.

1https://www.enacer.com/en/en/rita.htm
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Figure 3.2: An overview of the software and hardware components as used on the RITA robot
platform. The Robot Operating System (ROS) (see Section 3.3) is used for communication be-
tween the modules. A custom made controller board is used to actuate and control up to four
actuators (of which two are used for the differential drive and one for the linear actuator) and
a collection of sensors (such as encoders, sonars and accelerometers).
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3.2 Behavior Architecture

The RITA uses a behavior architecture developed by Enacer B.V.2 to perform its daily tasks.
Its design is loosely based on the BORG architecture [49], in which behaviors can be run in
parallel and are hierarchically structured. There exists one top level behavior and each behavior
can create one or more subbehaviors to accomplish different tasks. Similar to the subsumption
architecture [50], higher level behaviors allow for the execution of more abstract tasks (e.g.,
serve drinks at a cocktail party), while lower level behaviors are responsible for the more lower
level control of locomotion and manipulation (e.g., avoiding an obstacle or opening a door). A
behavior can retrieve observations from the environment using a central memory which is in
turn populated by perception modules using low level sensory information.

For the purpose of this project, the behavior architecture has been modified to handle fail-
ing behaviors and is extended with two different failure recovery methods; one using only low
level sensory information and another using a symbolic representation. The architecture is fur-
thermore extended with a separate autonomous symbol perception module as described in the
remainder of this thesis.

3.3 Robot Operating System

In addition to the behavior architecture, the Robot Operating System (ROS) framework [51]3

(specifically the Indigo Igloo release) has been used to facilitate the communication between
different software modules (using ROS topics and services). A collection ROS software stacks
(generic software components which use the utilities provided in ROS) are used for the purpose
of navigation, perception andmanipulation. The “move_base” package4 is used for the purpose
of Simultaneous Localization andMapping (SLAM) [52] inwhichGMapping [53] is used tomap
the environment and Adaptive Monte Carlo Localization (AMCL) [54] for localization.

A detailed list of ROS packages as used and implemented for the purpose of the project is
provided in Appendix B.

2http://enacer.com
3http://www.ros.org/
4http://wiki.ros.org/move_base
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3.4 Human Robot Interaction

Using the Open Source speech recognition toolkit CMUSphinx [55]5, the robot is capable of un-
derstanding spoken sentences. As with many implementations of speech recognition software,
it uses hiddenMarkov acousticmodels [56] for the purpose of speaker-independent recognition
of sentences. The multilingual Text-to-Speech Synthesis platformMaryTTS6 has been used for
the purpose of speech synthesis to the user.

3.5 Simulation

The experiments have been conducted using the Gazebo simulator [57]7. Using a simulator
makes the system more prone to failure in a real world setting (this is often referred to as the
“Reality Gap”). However, running the experiments in a simulated environment allows for test-
ing of more experiments in different conditions in less time compared to what would have been
possible in a real world setting. Furthermore, the Gazebo simulator allows for different physics
engines to be used and mimics the input and output of the robot as close to the reality as possi-
ble. The architecture is thus “unaware” of the fact that it is being run inside a simulator. Some
randomization has been be applied to the structure and location of the environment and ob-
jects during the experiments. Figure 3.3 provides a screenshot of the simulation environment
as seen in Gazebo and Figure 3.4 illustrates what the robot “sees” from it own point of view.

Figure 3.4: Point of view as seen by the robot during a possible failure scenario. Left; the color
(RGB) image as seen by one of the RGBD cameras of the robot. Right; the depth (D) image as
seen by one of the RGBD cameras of the robot.

5http://cmusphinx.sourceforge.net/
6http://mary.dfki.de/
7http://gazebosim.org

15

http://cmusphinx.sourceforge.net/
http://mary.dfki.de/
http://gazebosim.org


Figure 3.3: The 3-entrance simulation environment as seen in the Gazebo simulation. The goal
of the robot is to enter the room using one of the three entrances. Each entrance could possibly
be blocked by a different colored person, a box or a ball, causing the top level behavior (designed
to enter the room) to fail. Given the location and color of the objects and persons, the robot
must increase its overall recovery performance by learning the most optimal recovery solution
(e.g., push, ask, continue or take an alternative route) in the fewest number of attempts. There
exists one optimal recovery solution per failure situationwhich on average results in the highest
reward. See Section 3.6 for more details.
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3.6 Test Scenarios

The performance of the different methods is tested using three different sets of test scenarios.
In each scenario, the aim is to model a situation in which a programmer has provided an initial
solution (e.g., a top level behavior which is able to enter the room in most cases), while he did
not account for all possible failures (e.g., objects and persons blocking the entrance, etc.), but
does allow the robot to find new solutions whenever a (previously unseen) failure occurs using
the methods described in the remainder of this thesis.

The basic setup of all failure scenarios is illustrated in Figure 3.5. The top level behavior
of the robot aims to proceed from the start location to the target location. Different obstacles
can be present which differ in type (either a box, a ball or a person), color (red, blue, green or
yellow), location (either on the left, in themiddle or on the right) and distance (either distant or
nearby). At each entrance, there exists at most one obstacle per type (so at most three obstacles
are observed per failure).

The entrance as well as the obstacles are either represented in a non-symbolic way (low level
sensory information retrieved from the RGDB camera) or in a symbolic way (e.g., a sentence
like “There is a red ball nearby on the left and a distant person in the middle.”). In the symbolic
representation, the obstacles are perceived as concept observations, in which each conceptmay
have a different type (box, person or ball) and different properties (color, location anddistance).

3.6.1 Required Recovery Solutions

At the occurrence of a failure (e.g., something is blocking the entrance), the robot may use any
of the following recovery solutions to resolve the issue:

1. Continue.
The robot may try to continue its original behavior in an attempt to gain entrance to the
room. This solution is only useful if the failure has resolved itself (e.g., the obstaclemoved
just after the failure).

2. Push.
The robot can try pushing against the object or person to gain entrance to the room.

3. Ask.
The robot can try to ask for the object or person to give way to the robot.

4. Alternative Route
Taking an alternative route using another entrance is a save option for the robot to use
if it does not know any better solution. This does however cost more time and the robot
might stumble onto another blocking obstacle at the alternative entrance.

The best recovery solution to use does not only depend on the type of obstacle, but also on
the color and location of the obstacle. These dependencies and the best solution are not known
to the robot: it must try to increase its performance with the fewest number of attempts. The
performance of each of the methods discussed in the remainder of this thesis is tested using
three different scenarios as described below. Each scenario increases the difficulty of finding
the right recovery solution for a given failure and, as can be seen in the remainder of this thesis,
tests different aspects of each method.
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Figure 3.5: Schematic top-down overview of the simulated failure scenario used during exper-
iments. The larger blue circles indicate possible locations for a concept (either a person, a box
or a ball) to be present. Each concept may have four different colors (red, yellow, blue or green)
and only one of each type may be present at each time (such that at most three unique concepts
are present). Some uniform noise is applied to the location and orientation of the robot and
any object or person. Only the location marked with a cross is relevant for the interpretation of
the failure state. See text for more information.

3.6.2 Test Scenario 1; Basic Concepts

In this scenario there exists only one possible observable concept (either nothing, a box, a ball
or a person), which blocks the entrance (marked with a red cross in Figure 3.5) and makes
the top-level behavior fail. This results in the following combination of failure conditions and
recovery solutions.

1. There is no obstacle.
Best solution: The failure has resolved itself, continue top level behavior.

2. There is a ball blocking the entrance.
Best solution: Halt, push against the ball and resume the top level behavior.

3. There is a box blocking the entrance.
Best solution: Cancel the top level behavior and replace it with another top level behavior
which uses an alternative entrance.

4. There is person box blocking the entrance.
Best solution: Halt, ask the person to step aside and resume the top level behavior.

In each run there is a probability of 25% for any given solution to be a success if one would pick
a solution at random.
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3.6.3 Test Scenario 2; Different Colors

This test scenario is similar to test scenario 1, but now the observable concept may have four
different colors; red, yellow, blue or green. For each unique combination of concept and color,
a different solution may exist (either “push”, “ask” or “taking an alternative route”). The exact
combination of concepts, their colors and solutions, are uniformly randomized at each run.
This with the exception of the case when there is no obstacle in front of the entrance, in which
case the valid solution is always to “continue”. In each run there is a probability of 25% for any
given solution to be a success if one would pick a solution at random.

3.6.4 Test Scenario 3; Different Locations

This test is very similar to test scenario 2 with the same randomized combination of failure
conditions and recovery solutions. However, now theremay exist multiple observable concepts
each having a different location. These locations are marked as the bigger blue circles in Fig-
ure 3.5. Only the obstacle marked with the red cross is responsible for blocking the entrance,
all other observable concepts ought to be ignored by the robot. This scenario is expected to
be especially difficult to solve using the symbolic representation, because in this scenario, the
robot must infer the fact that only an obstacle located nearby and in the middle matters. In
each run there is a probability of 25% for any given solution to be a success if one would pick a
solution at random.

3.7 Performance Measure

Each recoverymethoddiscussed in the remainder of this thesis is tested using the test procedure
mentioned below. The mean performance of each method is calculated over multiple indepen-
dent runs. Each test for each method consists of 1000 runs. The order of failures is randomized
for each run in which there is an equal uniform probability for each solution to be a success.
Thismeans that if one would pick a solution at random each time, themean performance would
be around 0.25.

A single run consists of multiple attempts in which the robot tries to recover from a single
failure of the top level behavior. At each successive attempt, the robot gains more experience,
thus allowing to gain a higher overall performance over the course of all attempts. This is a
form of online machine learning, since the data is presented in sequential order and there is no
explicit training phase. For all tests, a single run consists of 200 attempts.

It is not very informative to compare the performance of different recoverymethods in terms
of their reward as described in Section 4.2, especially since taking an alternative route, may
still result in a very low reward. We are more interested in whether the method picked the best
recovery solution or not for a given failure. We therefore record the performance of a single
attempt as either being a one or a zero. The performance is a one if the method has picked the
best recovery solution (as described in Section 3.6) and zero otherwise, even if this results in a
non-zero reward.

For a given number of attempts (up to 200), the mean performance (0− 1) of all 1000 tests
is calculated. This results in a learning curve, in which the mean performance increases from
zero to (almost) one. The performance can also be seen as a measure of probability for the
method to pick the best solution at any given number of attempts experienced in the past. A
good recovery method is able to reach a mean performance of one using the fewest number of
attempts. It is important to note that all methods still use the original rewards for learning.
The (0 − 1) performance measure is only used to compare the different recovery methods in a
meaningful quantitative manner.
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3.8 Dataset Generation

With the number of recovery methods to test (see Figure B.1) and total number of runs to ex-
ecute in order to calculate the mean performance (see Section 3.7), it is impractical to execute
all tests in the Gazebo simulator (see Section 3.5). For this reason, a separate dataset has been
generated to test each variation of recovery method. The dataset consists of 2340 failure situa-
tions in which the top level behavior fails to enter the room. At each failure situation, in which
the robot looks at the entrance and sees any observable concepts, a snapshot of all raw sensor
data is stored. The dataset also includes ground truth information about the environment at
each failure, such as the exact state of the observable concepts. This ground truth information is
used to infer the best recovery solution during performance measuring (see Section 3.7) which
the recoverymethod (with no access to this ground truth information) should have taken. Some
uniform noise is applied to both the location (−0.25 to 0.25meters) and orientation (−0.5 to 0.5
radians) of the observable concepts and the robot. During the experiments, the architecture is
used the same way as it would run in the Gazebo simulator. However, the top level behavior
now fails without actually moving towards the entrance. The raw sensor information which is
presented to the perception modules is retrieved from the dataset.

3.8.1 Simulated Rewards

During each attempt of recovering a failing behavior, the reward (see also Section 4.2) for tak-
ing a given recovery technique and action ar in a failure state sf resulting in the final state s,
is calculated as follows (in which U is the continuous uniform distribution for the purpose of
introducing noise):

R(sf , ar, s) =


1

d+U(−α,α) If the recovery attempt succeeds with

probability p.

0 If the recovery attempt fails.

Here, for each recovery solution (see Section 3.6), the base duration d, noise factor α and
success probability p are defined as follows:

d α p

Continue: 7.0 2.5 0.9
Push: 10.0 2.5 0.9
Ask: 10.0 2.5 0.9

Alternative Route: 15.0 5.0 0.5

These numbers are based on actual attempts run in the Gazebo simulator and calculated
using the formula mentioned in Section 4.2. The order of prerecorded failure situations are
randomized for each run.
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Chapter 4

Ground Truth Failure Recovery

The easiest form of failure recovery is the one in which ground truth information of the envi-
ronment is used. In such case, the robot is told (in the form of a unique label) what the current
failure is. There is therefore no need for the robot to learn or recognize any failures itself. If
there is no credit assignment problem [58] and we assume the failure state to be known (either
by information provided internally or externally), the solution is straightforward and similar to
solving the k-Armed bandit problem [59, 60] since the robot only has to learn the best recovery
solution for a known failure state.

This method is expected to yield the best recovery performance in comparison to the other
methods discussed in this thesis. It is, however, also an unrealistic representation, since in
practice the robot never knows the exact failure state beforehand (unless it is told by a human
or some fault detection module). Failure recovery using the ground truth representation of the
failure is used as the baseline for comparing the performance of all failure recovery methods.

The following sections describe the different failure recovery techniques and exploration
schemes, used in the behavior architecture, in more detail. The same behavior architecture is
also used when either the non-symbolic (Chapter 5) or symbolic (Chapter 6) representation is
used. Sections 4.5 and 4.6 discuss the actual results of the failure recovery method solely using
ground truth information in each of the three test scenarios described in Section 3.6.

4.1 Failure Recovery Techniques

The main goal of the proposed method of recovering failing behaviors, as described in this the-
sis, is to allow the system architect to identify behaviors prone to failures and specify a set of
possible recovery solutions whenever the behavior fails. This allows the system architect to not
account for all possible failure conditions manually, but rather to have the robot learn the best
solution for a particular failure autonomously.

In this project we limit ourselves to failures that occur within the behavior architecture as a
result of an external anomaly in the environment (see Section 2.1.2). Here we assume that the
behavior architecture is capable of executing a collection of tasks successfully most of the time
(e.g., navigating to a specific location, fetching an object from a room, searching for person,
serving drinks, etc.), but that due to changes in the environment (e.g., blocking of entrances,
displacement of objects, etc.), demands of the user (e.g., changing preferences, different usabil-
ity constrains, etc.) or other unforeseen circumstances, previously successful behaviors start to
fail more frequently.
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For the purpose of failure recovery, the architecture allows behaviors to either:

1. Fail and give up on achieving the goal of the failing behavior completely. This requires
the parent behavior (the one initiating the behavior) to cancel the task or provide a custom
(hand-coded) solution in resolving the issue.

2. Resolve the failure autonomously using one of the following techniques:

(a) Continue the original behavior. In some cases the failure has resolved itself, and
no special action is needed except to continue.

(b) Cancel and replace the failing behavior with an alternative behavior in an at-
tempt to resolve the failure. The alternative behavior can be of the same type as the
original behavior but with different initial parameters set. Examples include tak-
ing an alternative route when trying to enter a room or trying a different grasping
technique if the object cannot be picked up at the first attempt.

(c) Halt and resume the failing behavior. Here the failing behavior is halted tem-
porarily, and a specific recovery behavior is executed to resolve the failure in place.
Once the recovery behavior has succeeded, the original behavior is (unlike the “can-
cel and replace” technique) allowed to be resumed. Examples of halting the original
behavior and executing a recovery behavior include pushing against a door in order
to open it while entering the room or removing clutter from a surface in order to free
an object and allow it to be grasped by the original behavior.

For a given failure-prone behavior, the architecture allows the designer to specify a set of alter-
native behaviors and recovery behaviors to be utilized by respectively the “Cancel and replace”
technique and the “Halt and resume” technique mentioned above. The methods described in
the remainder of this thesis, use these behaviors to autonomously learn the best technique
(“Continue”, “Cancel and replace” or “Halt and resume”) as well as the best behavior to exe-
cute in order to maximize the probability of resolving the failure.

4.2 Rewards

The methods described in the remainder of this thesis, use a reward or score to credit the pro-
vided solution in resolving the failure. The reward function R(sf , ar, s) for taking a given re-
covery technique and action ar in an unknown failure state sf resulting in the final state s is
defined as follows:

R(sf , ar, s) =



1
do

If the failing behavior is

succesfully recovered using

the “Halt and resume”

or “Continue” technique.
1

do+da
If the failing behavior is

succesfully recovered using

the “Cancel and replace”.

technique.

0 If the failure could not

be resolved using any of the

techniques.
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With do being the duration (in seconds) of the original failing behavior and da the duration of
the alternative behavior. The efficiency of the solution is thus measured in terms of the time it
takes to recover from the failure. Here the best action yielding the best estimated reward (the
mean reward for a given training set for each failure state) is chosen during exploitation (after
training).

4.3 Exploration Schemes

Without exploration, the system cannot learn all possible solutions efficiently. It is required to
succeed as well as fail in order to identify the best possible recovery solution from the full set of
possible behaviors. However, a balance must be found between exploration and exploitation to
avoid failing toomuch in general but still be able to find an optimal solution as soon as possible.
For this purpose, the behavior architecture offers several exploration schemes [61] to be utilized
by the designer. The utilities of these different exploration schemes are evaluated inmore detail
in Section 4.5.

4.3.1 “Naïve”

Here each possible combination of a failure state and recovery action is first tested for a fixed
number of times during the training phase. Then, during the exploitation phase, the best esti-
mated reward is chosen for a given combination of a failure state and recovery action thereafter.

In many cases the Naïve method does not seem adequate to be used since a domestic ser-
vice robot is expected to operate in a changing environment in which continuous learning is
required. However, a specific exploration phase might be beneficial to quickly bootstrap the
system in the early stages of development.

4.3.2 ϵ-Greedy

With this exploration scheme, the system explores after each failure with probability ϵ and ex-
ploits after each failure (i.e., be greedy) with probability 1− ϵ. This allows continuous learning,
but at the cost of a lower overall performance if the environment does not change.

4.3.3 Interval Estimation

This exploration technique is based on the work discussed in [62, 63] which has in turn been
inspired by [64]. Here, for each combination of a failure state and a recovery action, the ex-
ploration scheme calculates a confidence interval of all previous experienced rewards. After
each failure, the method chooses the recovery action with the highest upper confidence inter-
val. This results in the method exploring relatively untested combinations of failure states and
recovery actions (i.e., those with a large confidence interval) more often in the early stages of
development. In contrast, the method starts to exploit more often, the more experience has
been accumulated at later stages of development (i.e., when the mean confidence intervals for
each combination become small and more towards the mean of the reward distributions).
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4.4 Gaining Experience

During its lifetime, the robot gains experience by storing information at each failure. This in-
cludes information such as the name of the failing behavior, configuration parameters being
used, the solution which has been selected and the reward after execution of the solution. Fur-
thermore, depending on the method being used, either symbolic or non-symbolic information
is stored for the purpose of failure recognition in future times.

4.5 Results

The results of the failure recovery using ground truth information are shown in Figure 4.1. Us-
ing theNaïve exploration scheme, themethod is allowed to explore for either 25 or 100 attempts,
after which it will solely exploit and try to perform as well as possible. In the ϵ-Greedy explo-
ration scheme, ϵ is set to 0.05, meaning that themethod will explore and pick a random solution
in 5% of all attempts. In case of the Interval Estimation exploration scheme, α is set to 0.05 to
select the upper bound of the 100(1− α) confidence interval.

The results of test scenario 1 clearly show that all exploration schemes are able to reach a
goodperformance ofmore than 0.8. Results of theNaïve exploration scheme indicate that initial
training for an arbitrary number of attempts may lead to a suboptimal performance during
exploitation. This suggests that good balance between continuous exploration and exploitation
is indeed required. The ϵ-Greedy exploration scheme performs well, but is never able to reach
a mean performance of 1.0, due to random exploration in 5% of all attempts. The Interval
Estimation exploration scheme, however, is able to reach a mean performance of 1.0 once the
confidence interval for each failure state shrinks, thus allowing it to use the mean expected
reward with a minimal bias from the true mean.

The results in test scenarios 2 and 3 clearly show that themethod starts to struggle to reach a
good performance once the complexity of the environment increases. This can be explained by
the fact that the total number of possible failure states increases significantly with the increase
of complexity of the environment. Where in test scenario 1, there were only 4 possible failure
states, test scenario 3 has 13 possible failure states. With the added possibility to have extra
visible concepts of different types and colors, test scenario 3 has a total of 741 possible failure
states, thereby diminishing the performance of the method significantly.

4.6 Discussion

Amongall exploration schemes, Interval Estimationperformsbest and avoids performingworse
due to excessive exploration at a later stage. However, the amount of exploration is unpre-
dictable since it very much depends on the training sample size and the 100(1− α) confidence
interval. The ϵ-Greedy exploration scheme is therefore used instead for the Ground Truth fail-
ure recoverer and Non-Symbolic recoverer in the remainder of this thesis.

Results from test scenarios 2 and 3 clearly show, that even if perfect state information is
known to the robot, learning failure recovery solutions on the exact state of the failure is im-
practical. The failure state space is therefore required to be reduced to a lower dimensional
state space in which there are more training samples to be utilized per state. This suggests that
both the non-symbolic and symbolic methods of failure recovery, as discussed in the remainder
of this thesis, require to find the right level of abstraction in their attempt to make sense of the
failure situation.
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(a) Test Scenario 1.

(b) Test Scenario 3.

(c) Test Scenario 4.

Figure 4.1: Learning curves for different exploration schemes when ground truth information
is being used (see Chapter 4 for details).
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Chapter 5

Non-Symbolic Failure Recovery

As shown in Chapter 4, once the failure state is known, it becomes relatively easy to learn the
best solution to a given failure situation. This is especially true if the total set of possible failure
states is small (see Chapter 4). However, in practice the robot does not knowwhat type of failure
has occurred, it only knows that a failure has occurred. Furthermore, the set of all possible
failures is also not known: the current failure could be a previously unseen type of failure, in
which case the robot cannot utilize everything it has learned in the past.

This section proposes a method of learning how to resolve failures, without a pre-learned
model on how to do so. Furthermore, the robot is required to only use low level sensory infor-
mation (such as retrieved from a color and depth camera) to create some sense of what type of
failure state it is in. This also requires the method tomake an optimal selection of its past expe-
rience (as accumulated by previous attempts to resolve failures in the past) which most likely
belongs to the same type of failure it is currently facing. Moreover, the robot should be able to
cope with unseen types of failures (after extensive learning) and allow for efficient exploration
for these new type of failures using the methods provided in Section 4.3.

5.1 Low Level Sensory Information

For the purpose of this research, the robot is allowed to extract low level sensory information
from the color and depth camera of the RGDB sensor (see Section 3.1). At any given failure,
a snapshot of both the depth and color image is stored. These two images are divided in nine
consecutive areas as shown in Figure 5.1. From each area a binned histogram is calculated
from the depth image and from each channel (red, blue and green) in the color image. Each
histogram in the depth image has 20 bins while each histogram of each channel in the color
image has 10 bins. After normalization of each histogram, all histograms are merged into a
single 450-dimensional feature vector. This feature vector is used to calculate a dissimilarity
measure as discussed in the following section.

5.2 Dissimilarity Measure

During exploitation, when the robot should perform at its best, it seems sensible to assume that
the best recovery solutions to choose, can be found using its experience which is most similar
to the current observed failure. For this purpose, the method calculates and orders all train-
ing samples (its experience, as described in Section 4.4) in terms of increasing dissimilarity.
Figure 5.2 illustrates an example of such selection relative to the current observed failure.
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(a) Example histograms of the color image ex-
tracted from nine consecutive areas.

(b) Example histograms of the depth image ex-
tracted from nine consecutive areas.

Figure 5.1: Example snapshot of the low level sensory information as retrieved during a sin-
gle observation of a failure situation. Both the color and depth image are segmented in nine
consecutive areas. From each area an x-binned normalized histogram is calculated for each
channel. The color image has three channels (RGB) while the depth image has one channel (a
gray-scale value).

For low level sensor information, one can estimate a dissimilarity measure by calculating
the euclidean or Mahalanobis [65] distance between the current feature vector and all other
feature vectors experienced in the past. For more abstract observations, in which the ability to
quantify each observation is limited to a boolean value, a more generic distance measure such
as the Tanimoto coëfficient [66] can be used. Since we assume as little as possible about the
types of failure situations, low level sensory information (see Section 5.1) in combination with
the euclidean distance (to calculate the dissimilarity measure) has been used in this research.

5.3 Experience Selection

Similar to using the k-Nearest Neighbor algorithm [67], one could simply pick the kmost simi-
lar training samples and pick the recovery technique and actionwith the highestmean expected
reward. However, choosing a random k is prone to errors since the sample distribution changes
over time and differs from one failure state to the other.

An alternative solution is to use cross-validation [68] for different numbers of k over the
dataset to determine the best k to use. However, apart from being computational expensive,
this is also expected to be suboptimal since the best k depends very much on the different sized
and shaped failure state distributions in the training set.

A better alternative, as described in the following section, is to choose k on the fly the mo-
ment a failure occurs and select just the right amount of experience to utilize. This is especially
important for the Interval Estimation exploration scheme (see Section 4.3) in which the confi-
dence interval will otherwise be too small for novel failures if k is too large.
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(a) Example dissimilarity graph of a failure state
in which the “Alternative Route” is the best solu-
tion to use.

(b) Example dissimilarity graph of a failure state
in which the “Push Recovery Behavior” is the best
solution to use.

(c) Example dissimilarity graph of a failure state
in which the “Continue Current behavior” is the
best solution to use.

(d) Example dissimilarity graph of a failure state
in which the “Ask Recovery Behavior” is the best
solution to use.

Figure 5.2: Examples of different dissimilarity graphs. Each graph illustrates the dissimilarity
(left axis) of all training samples compared to the current failure state being observed. Each
diamond, circle, star or square represents the score (right axis) of taking a specific recovery
solution. Recovery actions that have failed have a score of 0.0 (visible at the very bottom of the
graph). The vertical lines represent two of the possible cut-off selection criterion, see text and
see Section 5.4 for more details. The examples shown here have been generated from a single
random test using test scenario 1 as discussed in Section 3.6.2. For each of the possible failure
states used in the experiments, there exists one recovery action (as described in Section 3.6.1)
which provides the optimal solution. The solution can be found as a single grouping of a single
type of recovery actionmost to the left side of the graphs (those with the least amount of dissim-
ilarity) with the highest mean reward. The method estimates this recovery action by taking the
maximum mean score over all scores before the lowest cut-off selection criterion (all samples
before the most left positioned vertical line).
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5.4 Failure State Estimation

Once a proper dissimilaritymeasure is used, in which preferably variance, feature selection and
normalization are taken into account, one can expect a given failure state to consist of one or
more separable clusters, in which each cluster represents a group of similar experiences. A tra-
ditional unsupervised learning method such as k-Means [69] (a Vector Quantization method)
or Hierarchical Clustering [70] could be used to identify these clusters autonomously. The use
of the resulting clusters as a possible selection is expected to perform better than taking an arbi-
trary or maximum k, but still suboptimal since the number of clusters (and thus failure states)
is unknown. This in turn requires intensive cross-validation1 for these clustering algorithms to
work.

An alternative solution as proposed in this thesis, first regards all matching experiences
(ordered in terms of dissimilarity as seen in Figure 5.2) as an initial cluster, and then removes
a specific range of samples (with an overall higher dissimilarity) from the cluster based on the
following two cut-off criteria;

1. a sudden increase in dissimilarity (the dashed horizontal line in Figure 5.2), or;

2. a sudden change in the distribution of scores (the dashed horizontal line in Figure 5.2).

For both cut-off criteria, a sliding window (with size 10) is used to determine where either the
samples themselves become too dissimilar or where the score distribution becomes too dissim-
ilar compared to the samples within the window. A more detailed description of this algorithm
is illustrated in appendix A. A similar algorithm is used for the determining the selection crite-
rion based on the dissimilarity of the samples themselves. Figure 5.2 gives an example of the
selection procedure for different failure state instances. The lowest cut-off criterion (e.g. the
one most to the left in Figure 5.2), is used for the final selection and is regarded as belonging to
the same cluster and thus the same failure situation.

The window size m needs to be chosen carefully and should as a rule of thumb be at least
the number of recovery action types to the power of two. A too small window size is preferred
over a too large window size since taking a bit of all correct information is always better than
taking all the correct information in addition to a lot of false information.

1Such as testing the algorithm for different numbers of clusters and determining the goodness of the fit using a
measure such as the chi-squared and Kolmogorov-Smirnov statistics [66].
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5.5 Results

The results of using failure recovery using low level sensory information in the different test
scenarios is illustrated in Figure 5.3. In test scenario 1, ϵ-Greedy using Ground Truth infor-
mation easily outperforms the non-symbolic failure recovery method. As the complexity of the
environment increases in test scenario 2, the performance of both methods drops. However,
the performance drops significantly less for the non-symbolic failure recovery method when
the complexity increases even more in test scenario 3.

(a) Test Scenario 1. (b) Test Scenario 2. (c) Test Scenario 3.

Figure 5.3: Learning curves in the different test scenarios for the non-symbolic recoverymethod
(see Chapter 5 for details).

5.5.1 Incremental Failure States

Another interesting case is to see how the method performs when the set of all possible failures
changes over time. This new test scenario is similar to the first test scenario mentioned in
Chapter 3, but with the difference that new previously unseen failure states are introduced to
the robot slowly one by one. For each test, the set of all possible failure states increases by
one additional type of failure after every 70 recovery attempts. This means that it becomes
increasingly more difficult for the robot to provide the optimal solution the more failure states
are introduced. Furthermore, the distribution of the probability of possible failures changes
over time. This means that the method should thus be robust enough to cope with previously
unseen failure states even after significant learning has occurred.
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Figure 5.4: Learning curves for different experience selection methods. Every 70 recovery attempts (each shade of gray), a new previously
unseen failure state is introduced to the set of possible failure states. The exact combination and order of failure states is randomized at each
test. There is no unique number (k) of training samples to use which yields an optimal performance. The method of dynamically selecting
just the right number of training samples (k = dynamic), outperforms all other methods. The method needs at least 10 training samples
before experience selection is enabled. This explains the initial high performance for all methods (that temporarily behave similar to k = N).
See text for more information.
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The performance of the method is shown in Figure 5.4. As expected, the mean performance
quickly drops after the introduction of a previously unseen failure state. If the complete set
of matches is used (k = N), a performance of almost 1.0 is easily reached if there is only one
possible failure state (s1). However, if there is more than one failure state, the performance
quickly drops since taking the mean best action does not provide a good overall solution. This
thus shows, that it is essential for themethod to discriminate from one failure state to the other.
If one uses a fixed number of matching samples to use (k = 10 or k = 50), the performance is
significantly increased compared to using all matches (k = N). However, using a fixed num-
ber, introduces the risk of either using too much experience (including those not related to the
current failure situation) or too little. Only by using a dynamic number of matching samples
(k = dynamic, see Section 5.4 on an explanation on the dynamic selection of matching sam-
ples), it is possible to reach a more optimal performance of about 0.9.

5.6 Discussion

The implementation is similar to the k-Nearest Neighbor algorithm [67], in which the k most
similar training samples are used to estimate the best recovery solution. However, in the pro-
posedmethod, k is dynamically chosen with the aim to include just the right number of training
samples most similar to the current failure situation. Unlike many traditional unsupervised
clustering methods, the method only identifies the first most similar cluster of training sam-
ples without making any further assumptions such as the total number of clusters (or type of
failures) and statistical properties of the distribution (see Section 5.4).

Results in Figure 5.4 show that the proposed method is effective compared to the baseline
of randomly selecting a recovery solution or simply picking the one with the mean best reward.
The dynamic selection of k-closest training samples has also proven to be more effective than
using a fixed number for k during online learning. Furthermore, the method has proven to be
robust against the introduction of new failure types even after extensive learning has occurred.
However, the method is not able to reach a final performance of anything near 1.0, even in the
simpler first test scenario.

Learning faster and with a higher final performance requires the need to: a) explore for
new solutions at the right moment and b) discriminate between different types of failures more
clearly. Better discrimination is possible by using more sensor information and better feature
selection. However, in order to overcome the curse of dimensionality and reduce the compu-
tational load on calculating the dissimilarity between failure situations, more abstract obser-
vations (such as the observation of different objects and locations in the environment) as pre-
processed and provided by other perception modules, could be used. Better exploration could
be improved by modifying the ϵ-Greedy exploration method in such a way that the probabil-
ity of exploration depends on how dissimilar the current situation is compared to the full set
of known training samples (i.e., the robot’s experience). This might however decrease the ini-
tial performance of the method since exploration is preferred whenever a new type of failure is
introduced, but is expected to yield a better performance in the long run.
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Chapter 6

Symbolic Failure Recovery

Failure recovery using low level sensory information (see Chapter 5) has shown to be effective,
if and only if sufficient training data can be collected. However, this means that in practice
the robot will have to fail a lot before it is able to collect sufficient training data to achieve its
optimal performance of resolving (known) failures1. This is impractical for a domestic service
robot which from the start ought to operate at its best with minimal efforts in recovering from
new failures.

Furthermore, small changes to the environment have little impact on the context of the fail-
ure, but may be of large influence on the low level sensory representation. The latter greatly
increases (for the wrong reasons) the dissimilarity of the new change compared to similar fail-
ures experienced in the past, thus requiring the method to retrain what it has learned before
for every new condition.

The low level sensory representation suffers from the same old problem: the curse of di-
mensionality, and as a result, data starvation. The solution to the problem is to lower the di-
mensionality, increase the level of abstraction of the representation and thereby to lower the
entropy of this representation. This section proposes a method of failure interpretation and
recovery using a symbolic representation with a very high level of abstraction compared to the
low level sensory representation.

6.1 Symbolic Representation

The symbolic representation used in this project aims at being as close to human language
as possible, in order for both the robot as well as the user to understand the failure state and
solution aswell as possible. For the purpose of this project, we limit the symbolic representation
to nouns and adjectives. Here, nouns (box, person or ball) are represented as a collection of
observable concepts and adjectives (red, green, blue, yellow, distant, nearby, middle, right or
left) as the properties of these concepts. The concepts and their properties correspond to the
simulated failure scenario shown in Figure 3.5 in Chapter 3.

Using the symbolic representation is expected to yield a better performance compared to
using solely the low level representation. However, the symbolic representation is useless with-
out proper symbol grounding. That is, the meaning of the symbols must be grounded using the
perceptual capabilities of the robot. Chapter 7 provides a solution to this problem in which the
robot is able to detect and classify observations of concepts and their properties in the environ-
ment autonomously. In this chapter, recovery performance results are shown for both with and

1This takes at least 100 recovery attempts for four different failures using the solely low level sensory represen-
tation as can be seen in Chapter 5.
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without autonomous symbol perception (see Chapter 7 for more details). Using autonomous
symbol perception does increase the probability of the symbolic representation to be (to some
degree) incorrect.

6.2 The Bayesian Approach

A simple, yet effective method of symbol interpretation is to use a modified Naive Bayes classi-
fier [71] similar to what often has been used for the purpose of text classification such as e-mail
spam filtering [72, 73]. Here, given the total set of all possible solutions S and the current set of
unique observationsO, we seek to find the recovery solution s ∈ S with the highest probability
of being a success:

p(s) = argmax
s∈S

(
p(s|O)

)
(6.1)

Here, each observation o ∈ O is a single unique textual representation of an observable
concept and its properties (e.g., a “distant blue box on the right” is represented as “distant-
blue-right-box”). The conditional probability p(s|O) of s being a success, given observation O,
is calculated using:

p(s|O) =

∏
o∈O

p(s|o)∏
o∈O

p(s|o) +
∏
o∈O

(
1− p(s|o)

) (6.2)

The conditional probability p(s|o) for a solution s ∈ S to be a success given the presence of
some observation o ∈ O is calculated using the Naive Bayes rule:

p(s|o) = p(o|s)p(s)
p(o|s)p(s) + p(o|u)p(u)

(6.3)

Here, the conditional probabilities p(o|s) and p(o|u) of the solution s to be successful or
unsuccessful respectively, given the observation o, is calculated using the expected value of the
score ξ(s) to be either higher than or equal to 0.0:

p(o|s) = E
(
o ∧

(
ξ(s) > 0.0

))
(6.4)

p(o|u) = E
(
o ∧

(
ξ(s) ≡ 0.0

))
(6.5)

The prior probabilities p(s) and p(u) of any solution s to be successful or unsuccessful re-
spectively, is calculated using the expected value of the score ξ(s) being higher than 0.0, inde-
pendent of the presence of any observation:

p(s) = E
(
ξ(s) > 0.0

)
(6.6)

p(u) = 1− p(s) (6.7)

Here, the conditional probability p(o|s), of observing o given that a solution s is a success,
is corrected by the subtraction of p(o|u) into p∗(o|u) in Equation 6.8. Here, p(o|u) is the con-
ditional probability of observing o given that a solution s is unsuccessful. This allows the algo-
rithm to ignore observations that correlate less with the solution s being a success.

p∗(o|s) = [0, p(o|s)− p(o|u), 1] (6.8)
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6.2.1 Results

The learning curves of the Bayesian approach in using the symbolic representation, can be seen
in Figure 6.1 for all three test scenarios. In test scenario 1 and 2, the performance of theBayesian
approach of using the symbolic representation is similar to that of using ϵ-Greedy using Ground
Truth information (Chapter 4). Interestingly, in test scenario 3, the Bayesian approach outper-
forms ϵ-Greedy using Ground Truth information and almost reaches a similar performance as
the Non-Symbolic interpretation method (see Chapter 5).

6.3 Dynamic Representations

Many variations in the properties of the concepts result likewise in many variations of possible
symbols when using the Bayesian approach of symbolic interpretation. This is especially true
for test scenario 3 in which not only the color differs but also the location and distance of the
concept. This explains why the results of the Bayesian approach of symbolic interpretation per-
forms poorly in test scenario 3 (see Figure 6.1). This problem can be solved by transforming the
original set of observations O into a new representation r(O) in which there are less variations
of symbols possible, meaning that there is more data available for each symbol variation, thus
providing a solution to the classic “data starvation” problem as seen in many machine learning
applications.

6.3.1 Ontology Generalization

One way of forming new representations is to use general knowledge about concepts and their
properties, for example, by using an ontology as seen in Figure 6.2 (see [74] for an overview of
ontology evaluation techniques). The ontology allows to generalize over the different types of
concepts and their properties. For example, by regarding everything as a “thing” and simpli-
fying the location in either being “in the middle” or “on the side”, the total number of symbol
variations can be reduced significantly.

6.3.2 Formulas in First-Order Logic

An alternative way of creating new symbolic representations is to form formulas in first-order
logic and include, if the formula holds for the original representation, its unique label in the
new representation. For example, a statement such as ∃x

(
Nearby(x)∧Middle(x)

)
can be very

useful in order to discard anything that is not in front of the entrance.
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(a) Test Scenario 1. (b) Test Scenario 2.

(c) Test Scenario 3.

Figure 6.1: Learning curves of the Bayesian approach in using the symbolic representation for
all three test scenarios. Performance results for the Non-Symbolic Interpretation and ϵ-Greedy
usingGround Truth information, are copied fromFigure 5.3. Results for the Bayesian approach
both without and with (Chapter 7) Symbol Perception (SP) are shown.
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Figure 6.2: A diagram of the ontology as used in the experiments, defined using the Unified
Modeling Language (UML) [75]. The symbolic representation of the environment in each fail-
ure state can be expressed in concepts (person, ball or box) and their properties (color, distance
and location). The leaves of the ontology tree are the words (similar to the ones described in
Figure 3.5 in Section 3.6) present in the original symbolic representation.

6.3.3 Representation Selection

New representations allow for less variations in symbols and thus increase the amount of data
per symbol. This increases the reliability of the probabilities being calculated. However, this
does not mean that the transformation results in a better representation. Sometimes the rea-
son for the failure (and a given solution to be of any success) depends very much on a single
detail, which is possibly lost during transformation. For this reason, the algorithm uses a set
of possibly useful representations R and tries to maximize the probability of a given solution
to be successful using R. To be specific, given the set of representations R and set of solu-
tions S, the algorithm seeks to find a solution s which maximizes p(s|r(O)) for the current set
of observations O. This essentially transforms the original equation of the Bayesian approach
(Equation 6.9) into the following:

p(s) = argmax
r∈R

(
argmax

s∈S

(
p
(
s|r(O)

)))
(6.9)

Equation 6.8 in Section 6.2 ensures that any representation that is not representative of the
current failure situation, automatically results in a lower probability value. The representation
yielding the highest probability p(s) for any given solution s ∈ S, is regarded as being the most
meaningful and is used to select the best recovery solution.
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6.3.4 Results

The performance of using dynamic (selection of) representations can be seen in Figure 6.3 for
two different test scenarios. One of these is a custom test scenario, similar to test scenario 1
with 12 different failure states, but in which only the color of the concept matters to select the
best recovery solution (solution “Push” works best for any concept that is either blue or green,
while solution “Ask” works best for any concept that is either red or yellow). The other test
scenario is test scenario 3 as described in Section 3.6.4.

In both test scenarios, the method uses a set of representations R, consisting of the follow-
ing:

1. The original representation as also used in the original Bayesian approach (Section 6.2).

2. Using an ontology tree, a simplification based on a given concept type level and property
level. Given the ontology tree (Figure 6.2), a total of two different concept type levels and
two different property type levels are possible, resulting in four different representations.

3. A selection of symbols based on the logic statement: ∃x
(
Nearby(x) ∧Middle(x)

)
4. The logic statements: ∃x

(
Blue(x) ∨Green(x)

)
or

∃x
(
Red(x) ∨ Y ellow(x)

)
, resulting in two different representations.

This results in a total of eight different representations. Even though each transformation
results in a very different representation of the original, the algorithm is able to utilize the best
representation for a given solution. This results in a significantly higher performance compared
to the original Bayesian approach (see Figure 6.3).

6.4 Discussion

The Bayesian approach of interpreting the symbolic representation is able to learn the best
recovery solution inmost cases without any additional knowledge of the environment. With the
addition of dynamic representation selection, the performance can be increased significantly,
thereby surpassing the performance of failure recoverywhen only low level sensory information
is used using the non-symbolic failure recovery method. It even surpasses the performance
of the Ground Truth method in which the exact failure state is given. This shows that perfect
information about the failure situation is neither sufficient nor necessary, but that rather a good
interpretation of this information is more important.

Using the different representations, not only allows for a higher final performance, but also
allows for faster learning compared to the other methods. It is able to quickly remove any ir-
relevant data, thereby allowing it to accumulate more useful data in earlier attempts. However,
it remains to be investigated as to how these representations can be extracted from the infor-
mation in the ontology tree efficiently. A possible solution is to use Human Robot Interaction,
in which the robot can ask for suggestions or verifications about possible hypotheses.
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(a) Custom test scenario.

(b) Test scenario 3.

Figure 6.3: Learning curves of the Bayesian approach in using the dynamic symbolic repre-
sentation for test scenario 3 (same as in Figure 6.1) and a custom test scenario (as described
in Section 6.3). The dynamic representation approach allows the method to utilize a known
ontology of concepts and any suggestive information provided by the user. In both the custom
test scenario as well as in test scenario 3, the dynamic representation approach tests all possible
representations simultaneously without knowing which one is the best. Results are shown for
both without and with (Chapter 7) Symbol Perception (SP). See text for more details.
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Chapter 7

Symbol Perception

The symbolic interpretation method for recovering of failures, shows promising results. How-
ever, its performance is only as good as the reliability of the original symbolic representation.
Also here, the classic rule holds; garbage in→ garbage out.

This section proposes a method of Symbol Perception (SP) in which the original symbolic
representation, as used in Chapter 6, is deduced from the low level sensory information using
a selection of machine learning methods. Except for the specific feature extraction methods
being used, the method assumes as little as possible about the original data or classification to
be made1. A complete overview of the symbol perception method is illustrated in Figure 7.1.

7.1 Learning Procedure

Using the symbolic representation of failure recovery allows the robot to utilize whatever sym-
bol it has learned before. By the recognition of known concepts, the robot can already start
interpreting the failure upon the first occurrence. While using the low-level sensory informa-
tion as in the non-symbolic representation, the robot has to accumulate a lot more experience
for each failure type over time before it can try resolving it.

However, this benefit is only of use if these symbols are known and learned beforehand.
As such, the robot is allowed to first learn the concepts and their properties during a training
procedure in which the robot is presented with the perception of different objects and persons
in a special training location (without walls and a floor). In the training location, the robot is
told what it sees and the properties of the concepts, for example, “There is a green distant ball
on the left.”.

7.2 Specialized Perception Modules

One possibility is to use specialized perceptionmodules to recognize themeaning of these sym-
bols in the environment. One could, for instance, use existing recognition algorithms such as
SIFT/SURF [76, 77] to recognize objects or HAAR/HOG [78, 79] to detect humans in the envi-
ronment, and use the resulting combination of detections and classifications for the symbolic
representation directly. However, this requires specialized training and careful selection for
each of these algorithms, thereby introducing a stronger bias to the ideas of the designer. It
also makes the recognition of generic properties of these symbols (i.e., adjectives to describe
the location, size, color etc.) harder.

1Especially since the type of referent, as explained in Section 1.4, is assumed to be unknown.
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Figure 7.1: An overview of the symbol perception method. The symbolic representation as
used in this thesis can either be explained to the robot by a human or recognized from low level
sensory data using the symbol perception method explained in Chapter 7. During training,
annotated surfaces are stored in the database after segmentation and feature extraction. Once
a sufficient number of training samples have been stored for each concept (about 10 per concept
(box, ball and person) and unique configuration of properties (location, color and distance)), a
template is created for matching during classification. See Figure 7.2 for an Unified Modeling
Language (UML) diagram of the Object-Relational Mapping (ORM) database of the dataset as
used to store a single observation of a failure situation. See text for more details.
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Figure 7.2: An Unified Modeling Language (UML) diagram of the Object-Relational Mapping
(ORM) database of the dataset. A single observation of a possible failure situation can consist
of one or more sets of features (forming multiple feature vectors) as a result of the pointcloud
segmentation procedure.

7.3 Background Subtraction

The environment in which the concepts are being learned (an empty location), is distinctively
different from the failures situations (in front of an entrance with walls, a floor and possibly
other visible concepts) as used in the previous sections. During the detection and classification
of the symbols, the key challenge is to identify the relevant information from the (unknown)
background information (such as walls, floors and other (partially observable) concepts). This
process of filtering relevant information from the background information can in essence be
compared to the one-class classification problem [80] or outlier detection problem [81]. The
Symbol Perception method is therefore designed, and the template classification procedure as
discussed in Section 7.6, with this challenge in mind.

7.4 Pre-Processing

For the purpose of this research, only the top color and depth (RGBD) camera is used to extract
low level information about the environment. However, unlike the feature vector extracted in
Chapter 5, feature extraction for symbol grounding occurs in a significantly different manner.
Unlike the previous method, in which a single feature vector is used for the classification of a
failure state, the method explained here extracts a set of feature vectors which represent the
presence of none, one or multiple known concepts in the scene. One or more feature vectors
may originate from the presence of a single concept. Some feature vectors are part of the back-
ground scene (such as the door, walls and the floor) or belong to an unknown class of concepts.

The following sections explain the process of extracting this set of feature vectors from a
single observation snapshot (either during training or at the failure situation itself). The actual
classification of this set of feature vectors and its transformation to the symbolic representation,
is discussed in Section 7.5 and Section 7.6. The Point Cloud Library (PCL) [82] is used for most
operations required to segmentize the original pointcloud and extract features from a single
segmented set of points.
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7.4.1 Segmentation

Before feature extraction can occur, the pointcloud data extracted from the overlapping color
and depth frames is segmented into different surfaces. The region growing algorithm2 as pro-
vided by the Point Cloud Library (PCL) [82] is being used to segment surfaces from the original
point cloud. The resulting surfaces (the different colors as shown in Figure 7.3) are segmented
based on a specific smoothness and curvature threshold.

7.4.2 Feature Extraction

From each surface pointcloud (as illustrated in different colors in Figure 7.3), the following
features are extracted, forming a single 28-dimensional feature vector:

1. A least-squares plane fit, resulting in three estimated plane parameters; x, y and z, to-
gether with the surface curvature.

2. A similarity measure compared to a known model such as a plane, cylinder, sphere and
a line. Using the MLESAC (Maximum Likelihood Estimator SAmple Consensus) algo-
rithm [83], which is in turn based on the RANSAC (RANdom SAmple Consensus) algo-
rithm [84]. The similarity is calculated by dividing the inliers which correspond best to
the model by the total number of points for a given model. Additional models could be
added using expert knowledge about the type of concepts to be recognized. However, only
primitive models are used in order to reduce the phenomenon of blindness [10].

3. The color image is merged with the pointcloud, which results in each point having a red,
blue or green component in addition to the x, y, z coordinates. This is used to calculate
a normalized 4-binned color histogram for each red, blue or green channel, resulting in a
total of 12 features.

4. Some metric information, such as the centroid of the surface, its surface and cubic size
and the width, height and depth dimensions. Principal Component Analysis (PCA) [85] is
used to transform the original pointcloud to the origin in which the principal components
represent the different dimensions of the surface pointcloud.

2http://pointclouds.org/documentation/tutorials/region_growing_segmentation.php
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Figure 7.3: Four different example pointclouds as seen by the robot (while looking through
the door), shown in different orientations. Using the region growing algorithm as provided in
the Point Cloud Library (PCL), each pointcloud is segmented into different surfaces (shown
in different colors). Regions shown in red are discarded and not part of the resulting set of
surfaces. See text for more details.
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7.5 Template Creation

Once enough concept training data has been collected (i.e., there is a sufficient number of la-
belled example surfaces for each concept), a template can be created to recognize a specific
concept during the classification of a new scene. This section discusses the template creation
algorithmas used in this research; the actual classification procedure is explained in Section 7.6.

The algorithm explained here assumes the input to be a collection of observations, in which
each observation contains multiple feature vectors labelled as one or more concepts. The fea-
ture vectors originate from the feature extraction process described in Section 7.4.2. However,
one could use the algorithm discussed here and in Section 7.6 using any form of perception as
long as the same assumption holds.

The main purpose of the algorithm explained here, is to create a set of prototype feature
vectors which best represent the original training data. Using only a few prototype feature
vectors, rather than the complete training set, has the advantage of being less computationally
expensive while increasing the overall generalization of the solution. The complete step-wise
procedure to create these prototypes is illustrated in Figure 7.1. The following sections discuss
each step in more detail.
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7.5.1 Feature Weighting

Each type of feature as discussed in Section 7.4.2 ought to be useful. However, some might be
more relevant (such as the dimensions of the surfaces) than others (such as the color). There-
fore, featureweighting or selection is preferred, see [86, 87] for an overviewof featureweighting
and selection methods seen in literature.

It is natural to assume that features whose values are unique among all concept classes
are more relevant than features of which the values are more common to all concept classes. In
essence, the smaller the overlap between the values of one probability density function p(f, c, x)
of class c ∈ C and all other classes C \ {c}, the higher the relevance (or weight w) for a given
feature type f .

The weight w(f, c) for any feature f and class c is calculated using the following:

w(f, c) = 1−
max(f)∫

min(f)

(
p(f, c, x)

∑
o∈C\{c}

p(f, o, x)

N − 1

)
dx (7.1)

One simple and effective way to calculate the probability density function, is to calculate the
mean value and its standard deviation for a given feature type value. However, this assumes
the underlying distribution to be unimodal and symmetric. This is, however, often not the
case since each concept has been learned in many different orientations and conditions. The
overlap is therefore instead calculated using Kernel Density Estimation (KDE) also known as
the Parzen-Rosenblatt window method [88, 89], using a Gaussian kernel. The SciKit Learn
library [90] is used for the implementation of the Kernel Density Estimation.

7.5.2 Training Data Normalization

After the calculation of the weights for each class, one could modify the distance function re-
quired for the creation of prototypes and the classification of concepts. However, this would
imply modifying all methods which normally assume a standard euclidean distance. The com-
plete training set is therefore normalized prior to finding the prototypes, while any new feature
vectors are normalized prior to classification (Section 7.6) using the feature weights calculated
during training.
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7.5.3 Finding Prototypes

After normalization, a k-means clustering algorithm [69] as provided by [90] is used to find the
best prototypes representing a given class. The algorithm is allowed to run for a maximum of
300 iterations with a minimum tolerance of 10−4. The number of prototypes per class depends
on the mean number of feature vectors in all observations during the training procedure. For
each prototype, the standard deviation of the distances of all matching feature vectors to the
prototype are calculated.

7.6 Concept Template Classification

After training and template creation (Section 7.5), the template can be used to recognize the
presence of one or more concepts in a single observation. Each feature vector present in the
observation, is matched with the closest prototype. The distance from a given feature vector
to the prototype is calculated as the total amount of standard deviations (as calculated from all
matching training feature vectors). This is done in order to account for a difference in variance
among different classes. Feature vectors whose distance is too large from any prototype, are
discarded and assumed to be part of the background or an unknown class of concepts.

For each concept class, the number ofmatching feature vectors is used to determinewhether
or not the given concept is present in the observation. In order for a given concept class to be
added to the symbolic representation, the number of matching feature vectors must be equal to
or higher than the mean number of expected feature vectors minus twice its expected standard
deviation.

7.6.1 Property Classification

After classification of the concept, the ontology tree (as illustrated in Figure 6.2) is used to
identify the properties to be classified (color, location and distance). A k-Nearest Neighbor
algorithm [67] (with k = 3) is used to classify each type of property in which only the training
samples corresponding to the same concept class is being used.
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7.7 Results

During the training procedure the robot is provided with 10 different training samples for each
concept (box, ball, person) in each variation of color (red, green, yellow and blue), location (left,
middle and right) and distance (distant and nearby), resulting in a total of 720 training samples.
In each training sample, some random uniform noise is applied to the orientation and location
of the concepts. During training, all concepts were placed in an empty environment without
any background information such as a floor and walls.

Testing the classification on the complete dataset as specified in Section 3.8 (a total of 2340
samples), results in a mean total performance of 0.71. This means that in 71% of all classifica-
tions, the classified symbolic representation exactly matches the ground truth representation
as extracted during dataset generation. In all other cases, the Symbol Perception module is
either providing incorrect, insufficient or too much information in the symbolic representa-
tion. Figure 7.4 and Figure 7.5 provide examples of classification results for different failure
situations.

The performance of the symbol perception module (using the same training set as men-
tioned above) is tested in combination with the symbolic recoverer (see Chapter 6). The recov-
ery performance results for all test scenarios in combination with Symbol Perception (SP) are
shown in the previous section in Figure 6.1 and Figure 6.3.

7.8 Discussion

With a totalmean classification performance of 0.71, the Symbol Perceptionmodule is unable to
classify the symbolic representation correctly at all times. However, as can be seen in Figure 6.1
and Figure 6.3, the actual recovery performance using the symbolic recoverer in combination
with the Symbol Perception module, is almost equal to the recovery performance using the
symbolic representation extracted from the ground truth information. This suggests that the
symbolic recoverer is robust against misclassifications in the symbolic representation, while
the Symbol Perception module does provide sufficient information despite its suboptimal per-
formance.
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(a) The color image as seen by the robot. The text
shown at the very top indicates what the robot is
saying. The text shown at the very bottom indi-
cates the last failure recovery solution executed by
the robot.

(b) A top-down view of the arena as seen in sim-
ulation. Some uniform noise is applied to the lo-
cation and orientation of the objects and persons.
The environment changes the moment the robot
moves from one room to the other.

(c) The classification result of each surface anno-
tated in the original gray-scale depth image. The
number of detected surfaces for each type of con-
cept is shown at the very top. At the very bottom,
a textual form of the resulting symbolic represen-
tation is shown. See also figure 7.5.

(d) A side view of the arena as seen in simulation.

Figure 7.4: An example snapshot of the demonstrated failure state interpretation and recovery
as seen in simulation. Each screenshot is taken at the same time at the occurrence of a single
failure situation while the robot tries to move from one room to the other. See text for more
details.
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Figure 7.5: Example classification results in three different failure situations in which the sym-
bol perception method is unable to classify all surfaces correctly. However, the resulting sym-
bolic representation, shown in textual format the very bottomof each image, is still valid despite
this misclassification.
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Chapter 8

Conclusion

The results discussed in this thesis have shown that, for a domestic service robot, efficient fail-
ure recovery is possible using both a non-symbolic and symbolic representation of the environ-
ment. Efficient failure recovery is possibly even if the robot has no prior knowledge about the
number or different types of failures that may occur. This eliminates the strict need for the de-
signer to account for all possible failures (on a behavioral level) prior to the actual application
of a domestic service robot.

In most cases, the performance of the method of symbolic interpretation of failures sur-
passes the performance of the non-symbolic method. In cases where there is a lot of variation
possible in the failure state, the symbolic representation suffers from the classical data starva-
tion problem. This problem can be solved by transforming the original symbol observations to
a new more abstract representation. The method is efficient at selecting the best representa-
tion to use for a given failure state, thereby in essence describing and explaining the failure in
its most abstract explanatory form.

The Symbol Perceptionmodule has proven to be adequate to classify the symbolic represen-
tation, thereby allowing the symbolic failure recoverer to surpass the recovery performance of
the non-symbolic recoverer, even though the same sensory information is used. This while the
symbolic recoverer also allows to express the failure situation in amore human comprehensible
form.

With the results shown in this thesis, all four hypotheses, as described in Section 1.4, can be
confirmed, thereby making a step forward in achieving our goal of designing domestic service
robots capable of meeting the changing demands of their users while dealing with the complex
dynamics of ever-changing domestic environments.
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8.1 Limitations

The symbolic interpretation method using symbol perception is efficient at selecting the best
representation to use for a given failure state as can be seen in the custom test scenario (see
Figure 6.3). Here, it has a significantly higher final mean score (0.985) compared to both the
recoverer using solely ground truth information (a mean score of 0.795, with a two-tailed p-
value of 5.6 × 10−10 as calculated using T-test on the means of the two independent samples)
and the non-symbolic recoverer (amean score of 0.74 with a two-tailed p-value of 2.25×10−13).

However, in test scenario 3, the symbolic interpretation method using symbol perception
does have a significantly higher mean score (0.54) than the ground truth recoverer (0.315, with
a two-tailed p-value of 4.3 × 10−6), but not a significantly higher score than that of the non-
symbolic recoverer (0.535, with a two-tailed p-value of 0.92). Furthermore, it remains to be
investigated as to how these representations can be extracted more efficiently. This can be
achieved either with a more in depth investigation of the ontology, or by interaction with the
user.

Although the experiments conducted in this research have been designed to reflect a domes-
tic environment as well as possible in a simulated environment, future research should focus
on the verification of the methods explained in this thesis in a real world environment using
real robots.

8.2 Future Perspective

For a service robot to operate successfully in a domestic environment, we should accept the
idea that the constant anticipation, recognition and recovery of failures is the default state in
which it operates. Not all potential failure situations can be accounted for during the design
and development of a domestic service robot. This implies that a domestic service robot should
demonstrate behavior and have a situational awareness of its environment which goes beyond
its initial programming.

The field of AutonomousMental Development [91, 12] andDevelopmental Robotics [92, 93,
94] might offer solutions for the development of such systems in which cognition is scaffolded
through the robot’s interaction with the environment. However, this raises the question as to
how to make a robot accountable for its actions, in which it is able to share knowledge with
humans, explain its reasoning and provides arguments for its decisions. In contrast, meth-
ods related to (classical) Cognitivism offer easier solutions for backward reasoning and sharing
knowledge while increasing the explanatory capabilities of the system.

Clearly, a combination of both is required if we desire to develop robots, which not only learn
and perform complex tasks in a domestic environment, but also operate safely and responsibly
in which their actions are accountable (in court).
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Appendix A

SlidingWindow Score Distribution
Cut-off Algorithm

In case of using the score distribution as a selection criterium (see Chapter 5), the algorithm
uses the following steps:

1. Select an initial window of sizemmost similar experiences (ordered in terms of dissimi-
larity).

2. Using this window, create a vectorwi in which each element represents the mean reward
for each type of recovery action.

3. Using the total training set, create a vectorwt in which each element represents themean
reward for each type of recovery action.

4. Calculate the euclidean distance dit betweenwi andwt.

5. i = 0

6. Until dn > 1.0 (and at most till the end of the training set):

(a) Move the window with one position.

(b) Using the window, create a vector wc in which each element represents the mean
reward for each type of recovery action.

(c) Calculate the euclidean distance dic betweenwi andwc.

(d) Normalize using: dn = dic
dit

(e) i = i+ 1

7. k = m+ i

8. Use the kmost similar experiences of the training set to determine the best recovery action
as discussed in Chapter 5.
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Appendix B

ROS Packages

The following sections provides a list of ROS packages as used in the project1.

B.1 RITA Platform

The following list of ROS packages are being used in order to make use of the RITA robotic
platform.

en_behavior:
The (modified) core of the behavior architecture.

en_platform:
Required to control (the movements of) the RITA robot outside simulation.

en_nav:
Required for navigating theRITA in amapped environment (which in turnuses themove_base
ROS package).

en_description:
The URDF model of the RITA robot to be used in the Gazebo simulator.

en_gazebo:
Additional utilities for the Gazebo simulator (such as world and map files) for using the
RITA robot in simulation.

1See the project webpage for more (up-to-date) technical (API) documentation: http://cno.nu/msc.
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B.2 Project Related

The following list of ROS packages are explicitely made for the purpose of the project described
in this thesis.

rs_behavior_recovery:
The specific behavior recoverers which extends the basic mechanism in the original ar-
chitecture.

rs_symbol_grounding:
Anything related to the autonomous perception of symbols/concepts in the environment.

rs_exp:
Themain package related used to setup the experiments. Includes utility libraries, scripts
and Gazebo models.

rs_msgs:
Custom ROS messages related to the project.

rs_util:
Utility libraries.
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B.3 ROS Graph

The diagram below illustrates the connection between all ROS nodes as used during exper-
imentation. The behavior architecture and recovery mechanisms are run inside the “brain”
node (part of the en_behavior package).

Figure B.1: The ROS graph during experimentation as generated by the rqt_graph ROS pack-
age.
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