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Abstract

Several studies have indicated a link between scalp EEG oscillations of 4 to 9 Hertz and decision
making. An unequivocal connection has been lacking, however, as this theta activity has shown a strong
correlation with evidence accumulation irrespective of stimulus similarity in a perceptual decision
making task, but also increased with the summed similarity of a probe item to studied items in
a recognition decision making task. This current study was to deconfound these two variables by
recording scalp EEG activity in participants executing two tasks of roughly equal difficulty, but with
different similarity computations. The results should provide grounds for establishing a clearer link
between either theta oscillations and evidence accumulation independent of stimulus structure, or
between theta oscillations and the summing of similarities. In this present study, we showed left
parietal theta activity was linked to direct similarity in a perceptional task, and central alpha activity
was correlated to response time in a memory task.

Introduction

Countless evidence-based decisions are made by us
on a daily basis. A deeper understanding of how
the decision making process works would provide
useful information that could have broad implica-
tions for many aspects of our lives. It could affect
the way we look at accumulating and assessing ev-
idence for decisions with multiple options, such as
governance and business policy decisions. It could
even have influence on more mundane tasks that in-
volve evidence-based decision making, such as driv-
ing or flying.

Multiple models have been proposed to explain
the decision making process. The drift diffusion
model (DDM; Ratcliff (1978)) is a stochastic dif-
ferential equation that assumes decisions are made
by slowly accumulating evidence over time until one
of multiple thresholds is reached. Each threshold
corresponds to a response alternative, and the time
at which is it reached determines the response time.
A graph representation of this process can be seen
in figure 1.

Summed similarity models (SSM) state that each

memory is a trace. A memory or stimulus can be
represented by a vector of the features that make
up that memory:

p =


p(1)
p(2)

...
p(L)


Each vector element, p(1), p(2) · · · p(L), represents
a single feature that can be individually compared
to the corresponding feature of another stimulus.
More similar items have a shorter vector distance
between them, and thus higher similarity. To de-
cide whether a stimulus is part of a memorized
collection, the similarities of each of the stimulus’
features to the corresponding features of each ele-
ment in that collection are assessed. All similarities
are summed and the resulting summed similarity is
compared to a threshold. Only if the summed sim-
ilarity value is above the threshold, the stimulus is
assumed to be in the collection. This summed sim-
ilarity model has been successful in accounting for
experimental data concerning recognition memory
and categorization (Hintzman, 1988). Recognition
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Figure 1: A graphical representation of the Drift Dif-
fusion Model. Each colored line represents a decision
making process. The dashed lines at 1.0 and −1.0 rep-
resent decision thresholds. When one of these thresh-
olds is reached, enough evidence has been accumulated
to make a decision, and the decision making process
stops. The stochastic nature of the DDM can be seen
in the form of the swaying of the lines.

accuracy of test subjects appears to change along
with the mean similarity among study items, with
higher summed similarity increasing the probabil-
ity of endorsing an item as a target (Kahana and
Sekuler, 2002), and a probe’s similarity to stud-
ied items correlates to subjects’ false alarm rates
(Kahana et al., 2007; Nosofsky and Kantner, 2006).
This is explained by the fact that, even though a
probe may not have been one of the studied items
(a lure), if it has enough features similar to stud-
ied items, its summed similarity will be close to the
threshold, causing subjects to often falsely report
it was one of the studied items.

Previous studies indicate a connection between
decision making and brain activity measured by
EEG. Since EEG measures cranial electromagnetic
potential, the oscillations measured can be divided
in frequency ranges, such as alpha (9-14 Hz), beta
(14-31 Hz), gamma (>32 Hz), delta (<4 Hz), and
theta (4-9 Hz). Research by Guderian and Düzel
(2005) found that post-stimulus theta oscillations
(4-9 Hz) increase during recollection of personal
events, and concluded theta oscillations are re-
lated to the binding of distributed cortical rep-
resentations. This means theta oscillations seem
to play a role in exchanging information between
different brain regions, and in integrating infor-

mation from different sources into a whole. Ja-
cobs et al. (2006) have shown, among other things,
that theta oscillatory power correlates with deci-
sion making confidence at central electrodes in a
memory retrieval task, with memory recognition
at left-parietal electrodes, and with memory load
at widespread electrodes. Intracranial theta activ-
ity in the medial temporal lobe has been shown
to increase with summed similarity, demonstrating
direct neural correlates of similarity computations
(van Vugt et al., 2012a). Theta oscillations also
strongly correlate with evidence accumulation in a
perceptual decision making task, and the rate of
power decrease in the theta band covaries with in-
dividual differences in drift rates obtained from be-
havioral data (van Vugt et al., 2012b).

In these previous studies, evidence accumula-
tion for decision making was confounded with
similarity-based information: higher summed sim-
ilarity correlated with an increase in deciding a
probe matched studied items. This current study is
to deconfound these variables by using two tasks of
roughly equal difficulty, but with different similar-
ity computations. In the perceptual task, partici-
pants had to directly decide whether or not two pre-
sented stimuli were the same. In the memory task,
participants first were presented with two different
stimuli to memorize. After a short interval, they
were shown a probe, and had to decide whether it
was one of both memorized stimuli. This means
that, in the perceptual task, decision information
consists of direct similarity, whereas in the mem-
ory task, decision information consists of summed
similarity. Thus, the results of this study should
provide grounds for establishing a link between ei-
ther theta oscillations and evidence accumulation
independent of stimulus structure, or between theta
oscillations and summed similarity. This is possi-
ble because, if theta oscillations reflect decision ev-
idence accumulation in general, their power should
increase equally in both tasks. However, if theta os-
cillations reflect summing similarities, they should
increase with decision evidence in the memory task,
but decrease with decision evidence in the percep-
tual task.
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Methods

Participants

Twenty-three healthy right-handed participants be-
tween ages 17 and 28 had volunteered for paid par-
ticipation in this study. Each participant spent
about an hour on the experiment itself, requiring
up to an hour of EEG preparation beforehand.

Procedure

Each participant did one session, in which he or she
had to perform two different decision making tasks:
a perceptual task and a memory task. Participants
did twelve four-minute blocks, with two blocks of
the memory task followed by one block of the per-
ceptual task, again followed by two memory blocks
and one perceptual block, etc.

Participation was rewarded with e12 per hour.
As the time taken per participant was around two
hours, (approximately one hour of subject prepara-
tion and one hour for the actual experiment) this
made for a total base reward of e24. Additionally,
participants received a small amount per correct
decision, on average totalling e10, with a range of
e8–12.

Stimuli

Both tasks had artificial faces as stimuli, created
using the Basel Face Model (Paysan et al., 2009).
This model creates faces from a long vector of shape
values. To do so, it uses a vector that represents an
“average” face, and a set of 199 principal compo-
nents of this vector, each of which can be varied by
an amount of standard deviations. This makes it
possible to create systematic variations in the gen-
erated faces.

For the perceptual task, faces were created with
the first three principal components each varied by
−2, 0 and +2 standard deviations from the mean,
generating a set of 27 different faces. The faces for
the memory task were generated in the same fash-
ion, but with −4, 0 and +4 standard deviations.
This was done to make the faces more easily dis-
tinguishable, so the difficulty of the memory task
more closely matched that of the perceptual task.
Examples can be seen in figure 2.

Established knowledge about similarity judge-
ments indicates that more similar stimuli are more
difficult to distinguish.This means more similar
faces in our task (i.e., faces that only differ on 1
principal component, instead of 2 or 3, or faces
that differ by only 2 standard deviations instead
of 4) would also be harder to distinguish. The fact
that faces were randomly combined, meant our ex-
periment had trials with varying difficulty. Lower
similarities of presented faces made for easier trials,
and higher similarities for more difficult ones. This
provided the possibility to investigate the effects of
similarity on response times and accuracy.

Experiment setup

Perceptual task

The perceptual task consisted of viewing two faces
simultaneously, to decide whether they are the
same or different. To make this task slightly more
difficult, both faces were rotated facing slightly out-
wards, facing away from one another. Each trial
started with the well known fixation cross at the
center of a blank screen, presented for 500 ms, fol-
lowed by a delay of 700 to 775 milliseconds, ran-
domly chosen. Then, the two faces were shown,
which stayed on screen until the participant pressed
one of two keys on a keyboard. With their right
hand, the participant was to press the M-key if he
or she decided both faces were the same. If both
faces were thought to be different, the Z-key was to
be pressed. The decision was followed by a 500 ms
feedback presentation, and then a randomly chosen
400–475 ms wait before the start of the next trial.

Memory task

The memory task used the Sternberg recognition
memory paradigm (Sternberg, 1966), in which par-
ticipants were presented with a memory set of two
faces, to be remembered for a delay period, followed
by a test stimulus (the probe), a single face. The
participants’ task was to decide whether the test
stimulus was part of the memory set or not. Each
trial began just as in the perceptual task, with a
500 ms fixation period, followed by a wait of 700–
775 ms. Thereafter, the memory set was presented
for 2000 to 2075 ms. This was followed by a delay
of 1000–1150 ms, after which the probe was shown

3



(a) Example stimuli in the perceptual task. (b) Example stimuli in the memory task.

Figure 2: Example stimuli. In the perceptual task, participants were shown two faces slightly rotated away from
one another, and had to decide whether these were equal or not. In the memory task, participants were presented
two different faces, and after a brief interval, were shown another face. For this last face, participants had to
decide if it was one of the two faces shown first.

until a recognition decision was made clear, again
by pressing the M- or Z-key. Each trial ended with
feedback, shown for 500 ms, followed by a 400–
475 ms wait until the next trial. In both tasks,
times were jittered to prevent accidental temporal
correlations between EEG measurements and task
events that might occur when rhythms are fixed.

Stimulus presentation

The presentation order of faces was determined
semi-randomly, with a few restrictions. Quite ob-
viously, sets to be memorized in the memory task
should not contain two identical faces. Also, in
both tasks half of the trials were randomly assigned
to be target trials. This meant that, in the percep-
tual task, both faces shown were the same, and in
the memory task, the probe face was part of the
memory set. Consequently, the other half of the
trials were non-target (lure) trials in which the two
faces were different, or in which the probe was not
identical to any face in the memory set. Further-
more, in half of the cases in the memory task, again
picked randomly, target trials had the target be the
face presented on the left, and on the right in the
other half. Finally, the same face couldn’t reap-
pear with any less than 2 trials in between each
appearance. These restrictions were implemented
for each four-minute block separately, so each block
itself was balanced, with an equal amount of target
and non-target trials, and equally many memory
trials with the target face on the left as trials with

the target face on the right.

Each participant was shown the same 12 blocks
as the others, but in random order, and always
as two memory blocks followed by one perceptual
block. This makes for a total of four perceptual
and eight memory blocks per participant.

EEG recording

Data was recorded in 34 EEG channels, of which
thirty were from electrodes in an EEG cap, placed
according to the 10/20 system, providing the actual
scalp EEG activity. The other four channels orig-
inated from six separate electrodes, four of which
facial electrodes that recorded horizontal and ver-
tical eye movements in two channels, and two elec-
trodes located on the mastoid process, to record
both channels used for re-referencing all data. One
more electrode, located on the left clavicle, pro-
vided a ground source. All electrode channels were
adjusted to have impedances lower than 50 kΩ.

The sampling rate for recording was 500 Hz, with
AC line noise removed off-line using a 48–52 Hz
filter. To be able to link behavioral events to EEG
recordings, the task generating computer sent trial-
encoding pulses that were recorded along with the
EEG activity.

After recording, artifact removal was done upon
manual inspection of the data. Bad channels were
also detected manually, and events that were unus-
able because of high noise, eye blinks or participant
movement were rejected (only a few percent).
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Data processing

For all further processing, only events with correct
responses and reasonable response times (no more
than 2500 ms) were used, which on average was
76% of all events, and target trials and lure trials
were processed separately. To aid in processing,
FieldTrip∗ and EEGLAB† were used.

Theta activity was extracted from the EEG data
by a wavelet-transformation for frequencies of 4
to 9 Hz, using Morlet wavelets. Each trial was
baseline-corrected by using the average activity of
the 500 ms before the start of the trial. Then,
for each trial, the similarity of the presented faces
was calculated. This was based on the method de-
scribed in Kahana and Sekuler (2002), and defined
as:

η(s1, s2) = e−‖s1−s2‖

with s1 and s2 being the coordinate vectors of each
image, and each element si(k) the amount of stan-
dard deviations by which the corresponding princi-
pal component of the average face was changed to
generate the relevant face.

To evaluate the relation between theta activity
and similarity, for each subject a regression model
was established, fitting theta activity to similar-
ity values calculated using above formula. Each
model’s regression coefficients were then used for
an across-subject t-test, with the Multiple Com-
parison Problem overcome by using a cluster-based
permutation method on the t-statistics (Maris and
Oostenveld, 2007). Clusters ware used because the
probability a found result is real is higher if ad-
jacent EEG channels show similar results. The
cluster-based t-statistic was calculated by com-
paring the significance of each channel’s regres-
sion coefficients t-test to a threshold of 0.025.
For each cluster, the t-values of its channels are
summed, and compared to a permutation distribu-
tion. This distribution is generated by assigning
trials from both experimental conditions (percep-
tual and memory trials) to a single set and repeat-
edly randomly drawing as many trials from it as

∗A MATLAB software toolbox for MEG and EEG analy-
sis, developed at the Donders Institute for Brain, Cognition
and Behaviour at the Radboud University Nijmegen. It can
be found at: http://fieldtrip.fcdonders.nl/.
†An interactive Matlab toolbox for processing continuous

and event-related EEG, MEG and other electrophysiological
data, found at: http://sccn.ucsd.edu/eeglab/.

originally in the trial set. For each of these ran-
dom partitions, the t-statistic is re-calculated. The
proportion of random partitions with a higher t-
value than the observed one is the cluster signif-
icance value. If this p-value is below the critical
alpha-level, set to 0.05, the difference between both
experimental conditions is concluded to be signifi-
cant.

Results

Behavioral results

The behavioral data show a fairly linear connection
between the probability a participant responded
’yes’ (i.e., presented faces are identical) and the
(summed) similarity value of presented faces, in-
dependent of the experimental condition, as can be
seen in figure 3.

Electrophysiological results

EEG data was analysed for correct lure trials only,
using the cluster-based t-statistics. Only these tri-
als were analyzed because similarity values close
to the threshold increase the likelihood the par-
ticipant incorrectly responds the probes are equal.
This higher difficulty is expected to increase any
observed effects on the theta oscillations.

Average response time for correct lure trials was
1.11 s for the perception condition, and 0.86 s for
the memory condition. For the perceptual task, a
significant positive relation between theta activity
and similarity values was found from 1.6 to 1.65
seconds (p = 0.04), as can be seen in 4a. This
suggests a link between evidence accumuluation in
the perceptual task and observed theta activity in
the left parietal cortex. Also, a significant relation
between theta activity and response time was found
at 1.2 seconds (p = 0.0368) for the perceptual task.
This result can be seen in 4b.

As an extra check, alpha (9-14 Hz) and delta (2-
4 Hz) activity was analyzed, to see if they showed
any relation to either of the experimental tasks. No
link was found for delta activity, but a positive link
(p < 0.05) was found between alpha activity and
response time in the memory task (4c, 4d).
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Discussion

This study was to establish a link between either
theta oscillations and evidence accumulation inde-
pendent of stimulus structure, or between theta
oscillations and summed similarity. We observed
increased left parietal post-stimulus theta activity
when subjects were able to correctly identify lures
in a task that required direct evidence accumula-
tion. This corresponds with earlier studies linking
theta activity to decision making processess (van
Vugt et al. (2012b), Jacobs et al. (2006)). Similar
to the findings of Jacobs et al. (2006), it involves
left parietal post-stimulus theta activity in a deci-
sion making process, but where they relate this to
memory recognition, this present study finds it in
relation to a perceptual decision making task. This
is broadly in line with Nosofsky et al. (2012), who
posit that categorization and recognition are me-
diated by largely overlapping neural memory sys-
tems.

Central post-stimulus alpha activity was corre-
lated to response time in a memory task, where
subjects had to rely on summing similarities. De-
cision making has already been linked to central
theta activity (Jacobs et al., 2006), and now alpha
also seems connected.

In this current study, all relations found were
a substantial amount of time after the response.
Future studies might clarify this, and establish a
clearer link between theta oscillations and evidence
accumulation independent of stimulus structure,
theta oscillations and the summing of similarities,
or both.
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(a) Average accuracy in the memory task. (b) Average accuracy in the perceptual task.

(c) Average response time in the memory task. (d) Average response time in the perceptual task.

Figure 3: Average accuracies (3a, 3b) and response times (3c, 3c) for (summed) similarity values at each
task. The plots are generated with a histogram-like method. Data is averaged over all participants. For each
trial, its (summed) similarity value is calculated and added to an ordered vector. This similarity vector is then
split into eight equal parts, each treated as a single data point. For each of these parts, the average (summed)
similarity value is shown on the x-axis, and its average value and standard deviation on the y-axis.
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(a) Significant (p = 0.04) post-stimulus theta ac-
tivity in the perception task, using similarities as
regressor.

(b) Significant (p = 0.0368) post-stimulus theta
activity in the perception task, using response time
as regressor.

(c) Significant (p = 0.0436) post-stimulus alpha
activity in the memory task, using response time
as regressor.

(d) Significant (p = 0.0332) post-stimulus alpha
activity in the memory task, using response time
as regressor.

Figure 4: Significant post-stimulus theta (4a, 4b) and alpha (4c, 4d) activity, found by the across-subject
cluster-based t-test. The colors denote the values of the t-statistics. ’X’ denotes p < 0.05.
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