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Abstract

Studying the geometry of Van der Waals surfaces of molecules gives

rise to the question: "Can we find smooth, continuous surfaces to

‘wrap around’ a certain set of spheres?". The theory of skin surfaces

gives a simple algorithm to find this kind of surfaces. Underlying

this relatively simple algorithm, however, are some quite interesting

geometric properties, most of which can be related to orthogonality of

sets of spheres. A natural way to work with orthogonal spheres is in

the Möbius (or conformal) geometry. In this thesis we show how to

view these skin surfaces inside the Möbius space directly.
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1 Introduction: Interpolating spheres

1.1 Motivation and goal

Surfaces play an important role in a number of applications, ranging from

natural sciences to computational geometry. For mathematical purposes,

surfaces in R𝑛 are usually relatively easy to describe, either explicitly, by

graphing a function: 𝑓 : R𝑛−1 → R, or implicitly, as the zero set of a suitable

function: 𝑔 : R𝑛 → R. In natural sciences however, one is often looking at

approximations, given as a point set or patches of simpler shapes.

One way to approximate surfaces using simple shapes is using unions

of spheres. In �Deformable Smooth Surface Design� [3], H. Edelsbrunner

de�nes a class of surfaces, skin surfaces, formed by a set of spheres and

smooth patches blending them. Computationally, skin surfaces have a few

useful properties. They require little memory, as a sphere can be given by

a centre and radius, and large complexity can be generated from relatively

small inputs. A generalized scheme is given in [1], where envelope surfaces are

introduced. Both methods de�ne spheres centred `between' the input spheres,

such that the shape around the union of these spheres (the envelope), is a

smooth surface.

An example of a practical application of skin surfaces is when the atoms in

a molecule are taken as the input spheres, and the resulting skin surface as an

approximation of the shape of the Van der Waals surfaces (see �gure 1.1). As

skin surfaces can be e�ciently deformed, they can be useful for modelling the

folding of proteins. In addition, the topology of the skin can be determined

quickly, making it useful for, for example the docking of proteins.

A few of the de�ning characteristics of these skin surfaces are, below the

surface, statements about orthogonal sets of spheres. These sets of spheres

are bounded sections of orthogonal �ats of spheres. These sets correspond

to convex hulls in the space of weighted points, R𝑛 × R.
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Figure 1.1: A ca�eine molecule, described by a skin surface. This image is
from [1].

The Möbius geometry is a model for describing spheres, hyperplanes and

points of the real vector space R𝑛, by representing them as points of the pro-

jective space P𝑛+1. The aforementioned orthogonality of spheres is naturally

described in Möbius geometry, therefore the goal of this thesis is:

Describe the skin surface, and its properties using Möbius geometry.

1.2 Outline and Results

The �rst step towards reaching our goal requires us to properly understand

both skin surfaces and Möbius geometry. This is done in sections 2 and

3 respectively. The skin is introduced as in Edelsbrunner's [3], using the

construction of the space of weighted points, R𝑛 × R. Here �ats of spheres
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can be viewed as a�ne hulls. To �nd skin surfaces, we:

1. Take a convex hull of weighted points.

2. Shrink these represented spheres by multiplying their radii.

3. Take the envelope, the boundary of the union of the resulting set of

spheres.

Lastly, we demonstrate two of the key properties of skin, decomposability

and symmetry, and note their relation to orthogonal sets of spheres.

The Möbius space is introduced in the classical way, using a stereo-

graphic projection and an embedding into the projective space. This identi-

�es spheres of R𝑛 with points of the projective space P𝑛+1, called the Möbius

space. A quadratic form on this space describes, among other properties, the

relation of orthogonality of spheres.

After introducing both the skin surface and the Möbius geometry, they

are brought together in section 4. One of the key properties of skin surfaces

can be viewed in the Möbius space naturally: The �ats, or a�ne hulls, of

spheres are represented by subspaces of the Möbius space. Introducing a

concept of `relative convexity' on the Möbius space allows us to �nd the

associated convex hulls as well.

The usual method for shrinking spheres is point-wise, where each radius is

simply multiplied by a factor 𝑠. Similar to how �ats of spheres are represented

by subspaces in the Möbius space, when shrunk, these shrunk �ats can be

shown to be be represented by a very restricted type of quadric. The notion

of relative convexity can be extended to these quadrics, allowing us to �nd

shrunk convex hulls of spheres in the Möbius space directly.

Having described the �rst two steps of �nding the skin surface (the shrunk

convex hulls) in the Möbius space, we leave the third step, taking the envel-

ope, for later. In section 5, the current description of shrunk convex hulls in
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the Möbius space allows us to translate certain questions on skin surfaces in

R𝑛 into questions about quadrics in P𝑛+1. We will use this to �nd, among

others, the set of all possible skin surfaces around a given set of spheres.

The symmetry of skin surfaces is the fact that we can describe the sur-

face from the in- and outside using shrunk �ats of spheres. As said, these

descriptions rely on orthogonal �ats of spheres, which can be described in the

Möbius space using a quadratic form. Section 6 uses a construction similar to

relative convexity to describe, for any convex hull of spheres the set of spheres

with the same envelope. This gives rise to a duality between two complexes,

describing the skin surface from the in- and outside respectively. Using the

duality and the decomposability of skin surfaces gives for each patch of the

decomposition of R𝑛 a pair of sets of spheres, where the dimensions of these

two sets are 𝑘 and 𝑛 − 𝑘 respectively. As �nding the envelope of a set of

spheres is easier if the parameter space is of a lower dimension, this allows us

to, for example, reduce �nding the envelope of a dimension 2 set of spheres

in R3 to one of dimension 1.

Finally, the last step used in de�ning the skin surface, �nding the envel-

ope, is viewed in the Möbius space. This changes the problem of �nding an

envelope of spheres (quadratic equations) in R𝑛 to a problem of �nding the

envelope of planes (linear equations) in P𝑛+1.

Additionally, the appendices contain among others an introduction to

projective space, orthogonality and quadratic forms. Occasionally the main

thesis will refer to this appendix, mostly for notation or small results. How-

ever, a lot of these concepts are assumed to be known, and therefore not in

the main text.
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2 The skin surface

As said, the subject of this thesis is describing surfaces in terms of sphere

geometry. We will �rst de�ne envelopes of sets of spheres. Using this, we can

de�ne the skin surface. This skin surface has a decomposition into quadratic

patches, which is introduced using the (weighted) Voronoi- and Delauney

complexes. At the end of the section the extended skin surface is introduced,

which is more suited for approximation purposes than the normal skin sur-

face.

2.1 Envelopes

Recall that we can determine a surface 𝑆 in R𝑛 implicitly, i.e. as the zero

set of some 𝐶1 function, 𝐹 : R𝑛 → R. By taking 𝑍 = {𝑥 ∈ R𝑛 : 𝐹 (𝑥) ≤ 0},
i.e. the set of points where 𝐹 is negative, we can designate one side of this

surface as an `interior', of which 𝑆 is the boundary. For a parametrized family

of surfaces, 𝑆(𝑡), the envelope is the boundary of the union over 𝑡 of these

interiors. More formally:

Definition 1. Let 𝐹𝜇 : R𝑛 → R be a family of functions for parameter

𝜇 ∈ 𝐶 where 𝐶 ⊂ R𝑑 (for some 𝑑), such that 𝐹 : (𝑥, 𝜇) ↦→ 𝐹𝜇(𝑥) is 𝐶1. The

envelope of the family is the boundary of ∪𝑍𝜇.

A point 𝑥 is on this boundary if there is a parameter 𝜇0 such that 𝐹𝜇0(𝑥) =

0, and 𝐹𝜇(𝑥) ≥ 0 for all 𝜇. This means that 𝜇0 is a global minimum of

𝜇 ↦→ 𝐹 (𝑥, 𝜇). Therefore the envelope is a subset of the discriminant set, 𝐷𝐹 :

𝐷𝐹 = {𝑥 ∈ R𝑛 : 𝐹 (𝑥, 𝜇) = 0,∇𝜇𝐹 (𝑥, 𝜇) = 0, for some 𝜇 ∈ 𝐶}

Examples of envelopes can be found in �gure 2.1.
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Figure 2.1: On the left, a parametrized set of lines. On the right a para-
metrized set of spheres. Both are visualized by showing only a few values.
The envelopes show as boundaries or as the intersections of in�nitesimally
close (with respect to the parameter) shapes.

2.2 Introduction to skin Surfaces

In [3] a method of constructing surfaces is introduced. The construction of

these skin surfaces gives us a piecewise quadratic shape based on a �nite

set of weighted input points, which we denote as 𝒫 , and a global shrink

parameter, called 𝑠.

The following useful properties of these skin surfaces are stated (and

proven) in [3]:

Decomposability: A skin surface in R𝑛 consists of a �nite number of

degree 2 patches.

Symmetry: A skin surface can be de�ned from the inside as well

as the outside.

Smoothness: A non-degenerate skin surface is everywhere tangent

continuous.

Deformability: The changes in topology, based on changes of input

can be found easily.

Continuity: The skin varies continuously on the input of weighted

points.

Universality: Every orientable surface has a skin representation.

Constructibility: There are fast algorithms for �nding the skin.
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Figure 2.2: On the left, a decomposed skin curve, middle and right show
the same skin de�ned from the in- and outside.

Economy: Complicated surfaces can be approximated by a small

input.

The �rst two of these properties (shown in �gure 2.2) turn out to be

strongly connected to orthogonal sets of spheres. Therefore, we will consider

these in more detail after the initial de�nition of Skin surfaces. The de�nition

of skin surface arises from the non-commutativity of two actions, shrinking

and taking linear combinations of spheres. To properly state the de�nition,

we will �rst need to de�ne these two concepts.

Definition 2. Let 𝐹,𝐺 : R𝑛 → R be such that the sets {𝑥 ∈ R𝑛 : 𝐹 (𝑥) = 0}
and {𝑥 ∈ R𝑛 : 𝐺(𝑥) = 0} are spheres (𝐹 and 𝐺 determine spheres implicitly).

We can identify 𝐹 and 𝐺 with these spheres, allowing us to take linear

combinations. De�ne the corresponding pencil of spheres as the set of spheres

determined by the set of functions {𝐻𝑎 : 𝑎 ∈ R} where:

𝐻𝑎 : R𝑛 → R

𝑥 ↦→ 𝑎 · 𝐹 (𝑥) + (1 − 𝑎) ·𝐺(𝑥)

The higher dimensional analogue of pencils are called flats of spheres.

To work more easily with these pencils of spheres we �rst create a frame-
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work, the space of weighted points, such that lines in this space correspond

to pencils of spheres. An identi�cation of weighted points in R𝑛 × R and

spheres in R𝑛 can be derived from the so-called power distance, between

weighted points, given by:

𝜋 : (R𝑛 × R) × (R𝑛 × R) → R

(𝑧0, 𝑤0), (𝑧1, 𝑤1) ↦→ ‖𝑧0 − 𝑧1‖2 − 𝑤0 − 𝑤1

(1)

For a chosen weighted point 𝑝, the set of {𝑥 ∈ R𝑛 : 𝜋(𝑝, (𝑥, 0)) = 0}
can be recognised to be a sphere of centre 𝑧, and radius

√
𝑤. This not only

gives us a de�nition for a sphere, it also gives a way to test whether a given

point is in the sphere. This generalizes to the fact that two weighted points

have power distance 0 if and only if their corresponding spheres intersect

orthogonally: The formula ‖𝑧0−𝑧1‖2−𝑤0−𝑤1 = 0 is a simple reformulation

of the Pythagorean Theorem.

We are de�ning R𝑛 × R to be a vector space such that lines correspond

to pencils of spheres, for this we need operations on the set. Finding a

line through a given set of points can be done by taking the a�ne hull (see

de�nition 17 from appendix A). Hence, we choose not to view R𝑛×R as the

vector space R𝑛+1 directly. Instead, a slightly di�erent set of operations is

chosen on R𝑛 × R. This is not entirely arbitrary, it is chosen such that:

𝜋(𝑎𝑝+ (1 − 𝑎)𝑞, 𝑟) = 𝑎𝜋(𝑝, 𝑟) + (1 − 𝑎)𝜋(𝑞, 𝑟)

In other words, this gives a correspondence between lines in R𝑛 × R and

pencils of spheres.

The set of weighted points, R𝑛 ×R can be made a vector space with the

above property, using a bijection Π : R𝑛 × R → R𝑛+1, where R𝑛+1 is the

usual real vector space. This bijection is de�ned:
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Π : R𝑛 × R → R𝑛+1

(𝑧, 𝑤) ↦→ (𝑧, ‖𝑧‖2 − 𝑤)

= (𝑧0, ..., 𝑧𝑛,𝑚)

(2)

This means that we de�ne addition and scalar multiplication for weighted

points 𝑝, 𝑞 ∈ R𝑛 × R and scalar 𝑎 ∈ R as:

𝑝+ 𝑞 = Π−1(Π(𝑝) + Π(𝑞)) and 𝑎 · 𝑝 = Π−1(𝑎 · Π(𝑝))

By viewing weighted points as spheres, it makes sense to de�ne shrinking

of weighted points, with shrink factor 𝑠, as the action that simply multiplies

the weight with 𝑠. We can write the image of this action, 𝑝 ↦→ 𝑝𝑠 as a linear

combination in our new vector space, by:

𝑝 = (𝑧, 𝑤) ↦→ 𝑝𝑠 = (𝑧, 𝑠 · 𝑤)

= 𝑠(𝑧, 𝑤) + (1 − 𝑠)(𝑧, 0)

Sets of spheres can be shrunk by shrinking point-wise. For a set of spheres

𝒳 ⊂ R𝑛 × R, the shrunk set is denoted 𝒳 𝑠. Note that this is only shrinking

in the strict sense of the word for 𝑠 < 1, however, we wil use the same

terminology for in�ation (𝑠 > 1). The union of spheres over all shrink factors

𝑠 ≤ 1, viewed in R is called the upwards closure of a weighted point 𝑝, ucl𝑝.

Similar to how 𝑝 corresponds to a sphere in R𝑛, the upwards closure can

naturally be identi�ed with the corresponding ball in R𝑛. Again, the upwards

closure of a set of spheres 𝒳 , corresponds to the set of points `inside' any

sphere of 𝒳 .

In this resulting vector space, we can take convex and a�ne hulls, al-

lowing us to de�ne the 𝑠−body of a set of spheres 𝒫 as the union of the

upwards closure of the shrunk convex hull. Finally the 𝑠−skin is de�ned as

the boundary of the body.
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Definition 3. For set of weighted points (or spheres) 𝒫 ⊂ R𝑛×R, we de�ne:

bdy𝑠(𝒫) = ucl(conv𝒫)𝑠 ⊂ R𝑛

skn𝑠(𝒫) = 𝜕bdy𝑠(𝒫)

In �gure 2.3 an example for |𝒫| = 2 is given, with the intermediate steps

shown.

Figure 2.3: The intermediate steps for constructing a skin, based on two
spheres. The convex hull is taken in the �rst image, which is shrunk with
factor 𝑠 = 1

2
in the second. Taking the boundaries of the union of spheres

results in the skin.

This can also be viewed as an envelope, using the framework of de�nition

1, by taking 𝐶 the set of centres of conv𝒫 , given as elements 𝜇 = (𝜇1, ..., 𝜇𝑛).

Then take 𝑤𝜇 = max{𝑤 : (𝜇,𝑤) ∈ conv𝒫}, i.e. the largest weight in the

convex hull corresponding to this centre. Finally, take functions 𝐹𝜇(𝑥) =

𝐹 (𝑥, 𝜇) such that:

𝐹𝜇(𝑥1, ..., 𝑥𝑛) = (𝑥1 − 𝜇1)
2 + ...+ (𝑥𝑛 − 𝜇𝑛)2 − 𝑠 · 𝑤𝜇

= 𝜋((𝜇, 𝑠 · 𝑤𝜇), (𝑥, 0))
(3)

Then, the zero set of 𝐹𝜇 is precisely the sphere corresponding to (𝜇, 𝑠·𝑤𝜇),

and the interior set 𝑍𝜇 is the corresponding ball. Hence the skin is the

envelope of this family of functions.
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Example 1: The skin from �gure 2.4 is the skin of the points with centres

(±1, 0) and weights 2 and 1 respectively. We can parametrize the convex

hull, by taking (𝜇,𝑤𝜇), with −1 ≤ 𝜇 ≤ 1, and 𝑤𝜇 = 𝜇2 + 𝜇+1
2
. This makes

the family of functions equal to:

𝐹𝜇(𝑥, 𝑦) = (𝑥− 𝜇)2 + 𝑦2 − 𝑠 · (𝜇2 + 𝜇+1
2

)

The tangency condition 𝜕𝐹 (𝑥,𝜇)
𝜕𝜇

= gives 𝜇 = 1
1−𝑠

(︀
𝑥 + 𝑠

4

)︀
. Recall that 𝜇 is

in the interval bounded by −1 and 1, and for these boundary values the

skin is a patch of the input sphere. Substitution of this 𝜇, gives us an

equation for the discriminant set:

𝐷𝐹 =
{︁

(𝑥, 𝑦) ∈ R2 : (𝑥, 𝑦) =
(︁
𝜇
2
− 1

8
,±1

8

√︀
15 + 8𝜇+ 16𝜇2

)︁}︁
In �gure 2.4, the skin is shown to be two patches of spheres, corresponding

to 𝜇 = ±1, and consists of the discriminant set for intermediate 𝜇.

-2 -1 1 2

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 2.4: On the left, the skin surface (a skin curve in this case) of the
two large spheres for shrink factor 𝑠 = 1

2
in red, some spheres of conv𝒫 are

shown inside. On the right, the minimum of 𝐹𝜇(𝑥, 𝑦) over 𝜇, as a function of
𝑥, 𝑦. The intersection with the grey plane is the envelope.
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2.3 Complexes in R𝑛

The (weighted) Voronoi diagram is a partitioning of the space into convex

polyhedra, used in a large number of scienti�c �elds. In the study of skin

surfaces these, together with the Delauney complex play a large role. These

two determine the quadratic patches a skin surface is comprised of. Further-

more, these complexes are orthogonal, giving room for a generalization to

the Möbius space.

We start with de�ning a weighted Voronoi cell, 𝑉𝑝. This is, for set of

spheres 𝒫 ⊂ R𝑛 × R, given as the set of points 𝑥 ∈ R𝑛 closer to 𝑝 than any

other point of 𝒫 , with respect to the power distance, 𝜋(𝑝, (𝑥, 0)) (de�ned in

equation 1). More concisely, for a subset 𝒳 ⊂ 𝒫 ,

Definition 4. For 𝒳 ⊂ 𝒫 ⊂ R𝑛 × R, the Voronoi cell 𝑉𝒳 is de�ned:

𝑉𝒳 = {𝑥 ∈ R𝑛 : 𝜋(𝑝, (𝑥, 0)) ≤ 𝜋(𝑞, (𝑥, 0)), for all 𝑝 ∈ 𝒳 , 𝑞 ∈ 𝒫}

In particular, if 𝑥 ∈ 𝑉𝒳 , then there is a sphere 𝑞, orthogonal to all spheres

in 𝒳 , and with negative power distance to 𝒫 ∖𝒳 . Two spheres with negative

power distance are called further than orthogonal, making the Voronoi cells

the set of centres of spheres, orthogonal to 𝒳 , and further than orthogonal

to all other spheres in 𝒫 .
Note that Voronoi cells can be empty (see for example �gure 2.5, for

𝑝1, 𝑝4). A weighted point is called hidden if it's Voronoi cell is empty. For

non-empty Voronoi cells 𝑉𝒳 , we de�ne the Delauney cell 𝛿𝒳 as the convex

hull of the centres in R𝑛.

𝛿𝒳 = {𝑥 ∈ R𝑛 : ∃𝑤 ∈ R such that (𝑥,𝑤) ∈ conv𝒳}

For 𝑙 points in R𝑛×R in general position, the Voronoi cell is an 𝑛+ 1− 𝑙-
dimensional polyhedron and the Delauney cell is 𝑙 dimensional. Non-zero
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p1

p2

p3

p4

-3 -2 -1 1 2 3

-2

-1

1

2

Figure 2.5: The Voronoi complex (in red) and Delauney complex (in black)
of 4 points, centred at (±2, 0), (0,±1), carrying the same weight.

-3 -2 -1 1 2 3

-2

-1

1

2

-3 -2 -1 1 2 3

-2

-1

1

2

Figure 2.6: The mixed complex for the situation of �gure 2.5 for small and
large shrink factor 𝑠 respectively.

multiplication does not change the dimension of these polyhedrons, which is

why we can de�ne the full dimensional mixed cells. The 𝑠−mixed cell of a

subset 𝒳 and shrink factor 0 < 𝑠 < 1, 𝜇𝑠𝒳 , is de�ned as the Minkowski-sum:

𝜇𝑠𝒳 = (1 − 𝑠) · 𝛿𝒳 ⊕ 𝑠 · 𝑉𝒳

The two sets of 𝑠−mixed cells for the situation of �gure 2.5 can be found

in 2.6. Using the dimensions of the Voronoi- and Delauney cells, it is obvious

that for 𝑠 ̸= 0 and 𝑠 ̸= 1 the 𝑠−mixed cell is a full dimensional polyhedron

in R𝑛 for any 𝒳 ⊂ 𝒫 .
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2.4 Properties of skin surfaces

Recall the statement of decomposability of skin surfaces. The de�nition of

the mixed complex allows us to state a lemma, regarding this decomposition:

Lemma 1. (Stated as equation 2.8 in [3]) The skin surface of a set 𝒫 is

decomposed over regions of its mixed complex, and in fact:

skn𝑠𝒫 =
⋃︀

𝒳⊂𝒫
𝜇𝑠𝒳 ∩ skn𝑠𝒳

=
⋃︀

𝒳⊂𝒫
𝜇𝑠𝒳 ∩ env(a�𝒳 )𝑠

Figure 2.7: The mixed complex and shrunk convex hull for three spheres.
As lemma 1 states, in the mixed cell corresponding to 𝒳 ⊂ 𝒫 , only the
spheres in 𝒳 determine the skin.

Note: The second equality is not an entirely trivial statement, the usual

skin is an envelope of a shrunk convex hull. However, what this implicitly

states, is that all points of a�𝒳 that contribute to this skin are in the

convex hull.

A corollary is that, if the points in 𝒫 are in general position and |𝒳 | >
𝑛 + 1, then the corresponding Voronoi (and hence mixed-) cell is empty.

Therefore these subsets do not contribute to the skin, and it su�ces to check
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𝒳 with |𝒳 | ≤ 𝑛 + 1. Furthermore, for example in the example of 2.5, only

two subsets of 3 spheres need be considered.

Another stated property of the skin is symmetry, or being de�ned as an

envelope of spheres from the in- and outside. Using the decomposition from

lemma 1, it su�ces to �nd a set of spheres to de�ne the envelope of (a�𝒳 )𝑠

from the outside. See �gure 2.8 for an example of this. For a more formal

statement of this fact, we state the following lemma:

Lemma 2. (Lemma 6 from Edelsbrunner [3]) Let 𝐹 = a�𝒳 and let 𝐺 be

the set of all spheres intersecting orthogonally with spheres in 𝒳 . In terms

of the power distance this can be written:

𝐺 = {𝑞 : 𝜋(𝑞, 𝑝) = 0 ∀𝑝 ∈ 𝒳}

Furthermore, let 𝑠, 𝑡 > 0 and 𝑠+ 𝑡 = 1. Then:

ucl𝐹 𝑠 ∪ ucl𝐺𝑡 = R𝑛

ucl𝐹 𝑠 ∩ ucl𝐺𝑡 = env𝐹 𝑠

= env𝐺𝑡

The two lemmas stated in this section already show the relation between

skin surfaces and orthogonality. The Voronoi cells are centres of orthogonal

complements, and using lemma 2, the envelope of a shrunk �at of spheres

can be written as the envelope of it's shrunk orthogonal complement.

2.5 Aside: The extended skin surface

The usual application for skin surfaces is in approximation of surfaces. This

can be done by �nding a number of spheres tangent to the surface, and then

calculating the skin surface. A problem with this skin surface is the fact

that the original input spheres are shrunk, and therefore no longer touch
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Figure 2.8: The envelope of a shrunk (1 dimensional) a�ne hull of spheres
and its shrunk (1 dimensional) orthogonal complement. Clipped to a mixed
cell this describes a patch of a skin curve.

the original surface. This can be �xed by in�ating the input spheres before

taking the convex hull.

Definition 5. For 𝑠 ̸= 0, the extended skin surface of a set of spheres 𝒫 is

given

eskn𝑠𝒫 = skn𝑠
(︀
𝒫1/𝑠

)︀
Note that this always wraps around the original spheres, as shrinking

is multiplicative and point-wise. A comparison of the normal skin and the

extended skin is found in �gure 2.9.
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Figure 2.9: On the left, the skin of �gure 2.3. On the right the correspond-
ing extended skin.

3 Möbius geometry

Recall the decomposition of skin surfaces (see lemma 1). This used the

mixed complex, which was found using the mutually orthogonal Voronoi-

and Delauney cells. Furthermore, the symmetric property also suggests that

orthogonality plays a large role in the underlying structure of the skin surface.

Orthogonal spheres are the natural invariant of the Möbius geometry,

making this geometry a natural space to try and view them. This section

will �rst (brie�y) introduce the Möbius geometry. For a more thorough

introduction of this space, see section 2.2 of Cecil's `Lie sphere geometry' [2].

The Möbius geometry is a model, where we identify the set of generalized

spheres with elements of the projective space P𝑛+1 (De�nition 20). The set

of generalized spheres is a formalization of the normal set of spheres with

the intuitive idea that planes in R𝑛 are simply `in�nitely large' spheres, that

points are spheres with radius equal to zero, and that spheres are allowed

have negative squared radius. These `negative' spheres contain no points in

R𝑛, but are found by taking, for example 𝑥2+𝑦2+1 = 0 as implicit de�nition.

To speak about orthogonality of these generalized spheres requires an

extension on the statement in section 2.2, where two spheres were called

orthogonal if they have power distance 0. The same de�nition holds for
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Figure 3.1: The stereographic projection 𝜎, identifying points of R𝑛 (the
equatorial plane) with points on the sphere 𝑆𝑛 ⊂ R𝑛+1. Shown for 𝑛 = 1
and 𝑛 = 2.

negative- and point spheres. For point spheres this means that a sphere is

called orthogonal to a point if it contains the point. A plane and a sphere

intersect orthogonally if and only if the plane contains the centre of the

sphere.

The identi�cation of these generalized spheres with points is found using a

composition of stereographic projection of R𝑛 onto 𝑆𝑛 ⊂ R𝑛+1 (see �gure 3.1)

and embedding the result into P𝑛+1. We denote this stereographic projection

by 𝜎 and write 𝜏 for the natural embedding into the projective space, these

maps can be made explicit:

𝜎 : R𝑛 → 𝑆𝑛 ∖ (−1, 0, ..., 0)

𝑥 ↦→
(︀
1−𝑥·𝑥
1+𝑥·𝑥 ,

2𝑥
1+𝑥·𝑥

)︀
𝜏 : R𝑛+1 → P𝑛+1

𝑥′ ↦→ [1 : 𝑥′]

For projective points 𝜉 = [𝑥0 : ... : 𝑥𝑛+1] and 𝜈 = [𝑦0 : ... : 𝑦𝑛+1], we

de�ne a symmetric bilinear form of signature (𝑛 + 1, 1) on P𝑛+1 (For forms

see de�nition 22, and for signature example 8):

(𝜉, 𝜈) = −𝑥0𝑦0 + 𝑥1𝑦1 + . . .+ 𝑥𝑛+1𝑦𝑛+1

Note that this form is not entirely well de�ned on P𝑛+1, as it is not
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Figure 3.2: The stereographic projection 𝜎 of a sphere and a plane in R𝑛
onto 𝑆𝑛, here shown for 𝑛 = 2.

invariant under scaling of 𝜉 and 𝜈. However, the sign of the form is, and

therefore any bilinear, quadratic form on a projective space over the real

numbers decomposes the space (see example 12). Classically, these are called

the sets of lightlike, spacelike and timelike vectors respectively.

𝑀0 = {𝜉 ∈ P𝑛+1 : (𝜉, 𝜉) = 0}
𝑀> = {𝜉 ∈ P𝑛+1 : (𝜉, 𝜉) > 0}
𝑀< = {𝜉 ∈ P𝑛+1 : (𝜉, 𝜉) < 0}

Using this notation, 𝑀0 is simply the homogenization of the equation of

the unit sphere. Thus, the map 𝜏 is the natural bijection between 𝑆𝑛 and𝑀0,

which gives the set 𝑀0 its usual name of `the Möbius sphere'. Furthermore,

the composition 𝜏𝜎 is a bijection between R𝑛 and 𝑀0 ∖ [−1 : 1 : 0 : . . . : 0].

This missing point is called the `improper point', which corresponds to the

centre of projection, which can be viewed as a `point at in�nity' of R𝑛.

So far, only the image of 𝜎 of the points of R𝑛 has been considered. The

strength of Möbius geometry, however, is in working with spheres and planes

of R𝑛, not as unions of points, but as elements of the same space. This

identi�cation follows from two facts:

1. The stereographic projection 𝜎 give a bijection of spheres and planes

in R𝑛 to spheres on 𝑆𝑛 (see �gure 3.2).
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Figure 3.3: An illustration of the identi�cation of points of P𝑛+1 (shown
here with the �rst coordinate scaled to 1, to reveal 𝑀0 as a sphere) with
spheres on 𝑆𝑛. In this case 𝑛 = 2, the same holds for higher dimensions.

2. In P𝑛+1, the tangent cone of any sphere on 𝑀0 has a unique apex (see

�gure 3.3).

Identifying spheres of 𝑆𝑛 with this apex gives a bijection between𝑀> and

the set of all spheres on 𝑆𝑛, and therefore all non-point, positive generalized

spheres.

As we will be working with the Möbius geometry, it will be useful to

have the explicit points representing certain generalized spheres. As before,

a sphere in R𝑛 is given as a weighted point (𝑧, 𝑤), where the weight is given

as the radius squared. A hyperplane of R𝑛 can be given by parameters (𝑁, ℎ)

such that the set is equal to {𝑥 ∈ R𝑛 : 𝑥·𝑁 = ℎ}. A hyperplane is determined

uniquely by taking |𝑁 | = 1. This allows us to state:

Definition 6. The explicit embedding of generalized spheres, using the para-

meters as given above, can be written:

𝜑 : {Generalized spheres in R𝑛} P𝑛+1

sphere (𝑧, 𝑤)
[︀
1+𝑧·𝑧−𝑤

2
: 1−𝑧·𝑧+𝑤

2
: 𝑧

]︀
plane (𝑁, ℎ) [ℎ : −ℎ : 𝑁 ]

Recall that [−1 : 1 : 0 : ... : 0] was called the `improper point', and corres-

ponds to the centre of projection, or a point `at in�nity' of R𝑛. Furthermore,
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ℋ𝑃 = [−1 : 1 : 0 : ... : 0]⊥ is the `hyperplane of planes'. The de�nition of

the form gives us ℋ𝑃 = {[𝑥0 : ... : 𝑥𝑛+1] : 𝑥0 + 𝑥1 = 0}. This explicit form

directly gives us bijections:

points in R𝑛 ↔ 𝑀0 ∖ {[−1 : 1 : 0 : ... : 0]}
the centre of projection ↔ [−1 : 1 : . . . : 0]

planes in R𝑛 ↔ ℋ𝑃 ∖ {[−1 : 1 : 0 : ... : 0]}
positive spheres in R𝑛 ↔ 𝑀> ∖ ℋ𝑃

negative spheres in R𝑛 ↔ 𝑀<

For a point 𝜉0 ∈ P𝑛+1 on the Möbius sphere 𝑀0, the set 𝜉⊥0 = {𝜈 ∈
P𝑛+1 : (𝜈, 𝜉) = 0} is simply the tangent plane with respect to 𝑀0. If 𝜉0 is

on a sphere 𝑆 ⊂ 𝑀0, the apex 𝜇 of the tangent cone of 𝑆 is in each of these

tangent planes, and hence 𝑆 ⊂ 𝜇⊥. Therefore 𝜇⊥ is the plane through 𝑆 in

P𝑛+1.

Furthermore, using the explicit forms immediately reveals that this is not

merely a coincidence. Some calculations reveal the following corollary:

Corollary 3. Let 𝜇, 𝜈 ∈ P𝑛+1, then (𝜇, 𝜈) = 0 if and only if the generalized

spheres corresponding to 𝜇, 𝜈 are orthogonal.

Finally, the explicit forms allows us to give an inverse, 𝜑−1, which maps

a point of P𝑛+1 ∖ {[−1 : 1 : 0 : . . . : 0]} to a generalized sphere in R𝑛. This

can most easily be given in two parts:

Corollary 4. An inverse of 𝜑 can be given by:

𝜑−1
⃒⃒⃒
ℋ𝑃

: ℋ𝑃 ∖ {[−1 : 1 : 0 : . . . : 0]} → {planes in R𝑛}

𝜉 = [𝑥0 : 𝑥1 : 𝑥⃗] ↦→
{︀
𝑣 ∈ R𝑛 : 𝑣 · 𝑥⃗

𝑥⃗·𝑥⃗ = 𝑥0

𝑥⃗·𝑥⃗
}︀

𝜑−1
⃒⃒⃒
ℋ𝑐

𝑃

: P𝑛+1 ∖ ℋ𝑃 → {spheres in R𝑛}

𝜉 = [𝑥0 : 𝑥1 : ... : 𝑥𝑛+1] ↦→
{︂
𝑣 ∈ R𝑛 :

∑︀𝑛
𝑖=1

(︁
𝑣𝑖 − 𝑥𝑖+1

𝑥0+𝑥1

)︁2

= (𝜉,𝜉)
(𝑥0+𝑥1)2

}︂
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Figure 3.4: On the left is the Möbius space, viewed by scaling 𝑥0 to 1, and

plotting
(︁
𝑥1
𝑥0
, 𝑥2
𝑥0
, 𝑥3
𝑥0

)︁
. The sphere shown is the Möbius sphere, and the black

point is [1 : 1 : 0 : 2], the representative of the sphere in R2 of centre (0, 1)
and weight 1. The blue plane is its orthogonal complement, which intersects
the Möbius sphere in a circle. In particular in [1 : 1 : 0 : 0], the image of the
origin of R2. On the right 𝑥0 + 𝑥1 is scaled to 1 instead of 𝑥0.

4 Shrunk flats in the Möbius geometry

Now that both skin surfaces and Möbius geometry are introduced, we will

�rst introduce another property of the Möbius geometry: Flats of spheres are

represented by subspaces of the Möbius space. Recall that the skin surface

is given as the envelope of a shrunk convex hull of spheres, where the convex

hull is a certain subset of a �at of spheres.

This section will view these shrunk convex hulls of spheres in the Möbius

space. Shrinking subspaces of the Möbius space will be done in terms of

quadrics. Hence shrunk convex hulls are are represented by subsets of these

quadrics. More interestingly, the reverse is introduced: A construction is

given to �nd shrunk convex hulls inside the Möbius space directly. Hence,

given a set of points Σ in P𝑛+1, we can �nd a subset of P𝑛+1 corresponding

to the shrunk convex hull of the spheres represented by Σ.
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4.1 Flats in the Möbius geometry

To show that �ats of spheres are represented by subspaces of the Möbius

space, we use the space of weighted points as an intermediate step. Recall

that in R𝑛×R, pencils of spheres were given as lines, and �ats as a�ne com-

binations. The isomorphism Π (equation 2) of the space of weighted points

to R𝑛+1 de�nes the operations on R𝑛×R. We can also embed these weighted

points directly into the Möbius space, by interpreting them as spheres. There-

fore we can write bijections 𝜑 and 𝜓 explicitly as:

R𝑛 × R P𝑛+1 ∖ ℋ𝑃

R𝑛+1 (𝑧𝑝, 𝑤𝑝)
[︁
1+‖𝑧𝑝‖2−𝑤𝑝

2 :
1−‖𝑧𝑝‖2+𝑤𝑝

2 : 𝑧𝑝

]︁

(𝑧𝑝, ‖𝑧𝑝‖2 − 𝑤𝑝)

𝜑

Π
𝜓

This diagram commutes. In fact, 𝜓 and 𝜑 preserves certain linear com-

binations.

Lemma 5. The maps 𝜑 and 𝜓 are a�ne functions, that is, they map af-

�ne subspaces of R𝑛 × R or R𝑛+1 to subspaces of P𝑛+1. In fact 𝜓(a�𝒫) =

span(𝜓𝒫), and hence, �ats of spheres are represented by subspaces of the

Möbius space.

Note: Note that a�𝒫 ⊂ R𝑛×R can not contain any planes of R𝑛, whereas

any subspace of the Möbius space does. To be more precise: The map

𝜓 maps a�𝒫 to a Zariski open subset of span(𝜓𝒫): The set span(𝜓𝒫) ∩
P𝑛+1 ∖ ℋ𝑃 . However, in the limit the �at does contain planes, which

correspond to span(𝜓𝒫) ∩ℋ𝑃 . See �gure 4.1 for an example.

Proof. It su�ces to prove the statement for 𝜓. By the de�nition of 𝜓, we
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can write an intermediate map:

𝜓′ : R𝑛+1 → R𝑛+2

(𝑧𝑝,𝑚𝑝) ↦→
(︁

1+𝑚𝑝

2
: 1−𝑚𝑝

2
: 𝑧𝑝

)︁
Taking 𝑞 : R𝑛+2 → P𝑛+1 as the quotient map, it is obvious that 𝜓 = 𝑞 ∘ 𝜓′.

Recall that a subspace of P𝑛+1 is simply the image of a subspace under the

map 𝑞. Under 𝑞, the image of a subspace and an a�ne hull, not containing 0 is

the same. Any such �at 𝒳 ⊂ R𝑛+1, can be given a basis 𝒫 = {(𝑧𝑖,𝑚𝑖)} ⊂ 𝒳
such that 𝒳 = a�𝒫 . Hence any 𝑥 ∈ 𝒳 can be written 𝑥 =

∑︀
𝛾𝑖(𝑧𝑖,𝑚𝑖), for∑︀

𝛾𝑖 = 1.

𝜓′(𝑥) = 𝜓′(
∑︀
𝛾𝑖𝑧𝑖,

∑︀
𝛾𝑖𝑚𝑖)

=
(︁

1+
∑︀
𝛾𝑖𝑚𝑖

2
, 1−

∑︀
𝛾𝑖𝑚𝑖

2
,
∑︀
𝛾𝑖𝑧𝑖

)︁
=

(︁∑︀
𝛾𝑖+

∑︀
𝛾𝑖𝑚𝑖

2
,
∑︀
𝛾𝑖−

∑︀
𝛾𝑖𝑚𝑖

2
,
∑︀
𝛾𝑖𝑧𝑖

)︁
=

∑︀
𝛾𝑖
(︀
1+𝑚𝑖

2
, 1−𝑚𝑖

2
, 𝑧𝑖

)︀
=

∑︀
𝛾𝑖𝜓

′(𝑧𝑖,𝑚𝑖)

Hence 𝑥 maps to an a�ne combination in R𝑛+2, which 𝑞 maps to a projective

subspace.

This means that, if the set Σ ⊂ P𝑛+1 represents the spheres in 𝒫 ⊂
R𝑛 × R, it is possible to �nd the image under 𝜑 of a�𝒫 without having to

map `back and forth'. Recall that the skin was given as an envelope of, not

a shrunk a�ne hull, but of a shrunk convex hull. As such, we are interested

in the image of conv𝒫 under 𝜑. A convex hull is naturally a subset of the

corresponding a�ne hull, therefore, we know the image of this convex hull is

a subset of a projective subspace of P𝑛+1.

The problem that arises: Convexity is not well de�ned in projective space.

Any two points 𝜉, 𝜈 in the projective space are connected by, not one, but two

straight line segments on the projective line (their span) connecting them.
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Figure 4.1: On the left, some spheres in a pencil of spheres in R𝑛. On the
right the same pencil represented as the blue line in the Möbius space P3,
which is viewed by scaling 𝑥0 = 1 and an intersection with the plane 𝑥4 = 0.
The sphere is the Möbius sphere. The point on the right where 𝑥1 = −1
represents the line in the left �gure.

For a hyperplane ℋ, if not both of 𝜉, 𝜈 ∈ ℋ, their span is not contained in

ℋ. Hence the span intersects ℋ in a single point, allowing us to distinguish

the segments.

Definition 7. We say a subset of P𝑛+1 is convex relative to a hyperplane ℋ
if it is convex in P𝑛+1 ∖ℋ ∼= R𝑛+1. This allows us to de�ne the convex hull of

a set Σ, with respect to ℋ, as the intersection of all convex sets containing

Σ.

These convex sets are naturally a subset of the span of Σ. As it urns

out, using the fact that a convex hull of spheres does not contain any planes

allows us to view the image under 𝜑 of a convex hull of spheres as such a

relatively convex set. This is shown in the following lemma.

Lemma 6. For set of spheres 𝒫 ⊂ R𝑛 ×R, with convex hull conv𝒫 as used

for the skin surface:

𝜑(conv𝒫) = convℋ(𝜑(𝒫))

where the convℋ is the convex hull relative to ℋ𝑃 = [−1 : 1 : 0 : . . . : 0]⊥.

Proof. We already know that the image of the a�ne hull is a projective
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Figure 4.2: Two convex hulls of spheres. These convex hulls are viewed (on
the left) as spheres in R2, and on the right in a projection of P3 into R2 given
by 𝑥0 ̸= 0, 𝑥3 = 0. The grey sphere in the right hand side is the projection
of the Möbius sphere. Here ℋ𝑃 is the set where 𝑥1 = −1.

subspace. The map 𝜑 is continuous the when viewed as a map R𝑛 × R →
P𝑛+1 ∖ ℋ𝑃 , hence it preserves convexity. Instinctively, this also makes sense:

of the two possible convex hulls for 2 points, this takes the one not containing

any 𝜉 ∈ P𝑛+1 that is a representative of a hyperplane in R𝑛.

This allows us to take the convex hull of a set of spheres, without needing

to look in R𝑛. This means that for a set of points in P𝑛+1, we can �nd the

relatively convex hull as a subset of the span. An example of this is found in

4.2.
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Figure 4.3: Stereographic projection of concentric spheres. Note that the
projections on the Möbius sphere are not concentric.

4.2 Shrinking subspaces of the Möbius space

Recall that we are trying to view skin surfaces in the Möbius space directly.

The previous section was used to �nd the convex hull of a set of spheres in R𝑛

in the Möbius space directly. As the skin surface is found by taking envelopes

of shrunk convex hulls, a similar de�nition is needed for shrinking. However,

a complication that arises when shrinking spheres in the Möbius space is a

result of the stereographic projection, used in de�ning this space (see section

3). Figure 4.3 illustrates this: Shrinking spheres deals with concentric spheres

in R𝑛, which do not necessarily map to concentric spheres on 𝑆𝑛 ⊂ R𝑛+1.

In lemma 5 it is shown that �ats of spheres can be represented in the

Möbius space by subspaces. In the following section we will not only shrink

individual spheres, but instead shrink these subspaces of P𝑛+1. These shrunk

subspaces are given by quadrics of a speci�c form. On these quadrics we

de�ne a notion of convexity similar to the one de�ned on projective spaces

(as done in lemma 6). This notion is such that a convex subset of quadric

𝑄 ⊂ P𝑛+1, represents a shrunk convex hull of spheres in R𝑛 × R.
Using this formalism it is possible to construct a set of points in P𝑛+1 that

represents a shrunk convex hull of weighted points directly, without using the

underlying space R𝑛×R. This means there is no need to, for example, write

the projective points in a speci�c form or do explicit calculations to de�ne
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these shrunk convex hulls. Furthermore, recall that the skin surface is the

envelope of the shrunk convex hull. Therefore we are one step closer to

describing the skin in Möbius space directly.

The process of shrinking maps a sphere 𝑝 = (𝑧, 𝑤) to the sphere with the

same centre and 𝑠 times the weight, 𝑝𝑠 = (𝑧, 𝑠 · 𝑤). In the Möbius space we

therefore de�ne a map such that:

𝜑(𝑝) =
[︁
1+‖𝑧‖2−𝑤

2
: 1−‖𝑧‖2+𝑤

2
: 𝑧

]︁
↦→

[︁
1+‖𝑧‖2−𝑠·𝑤

2
: 1−‖𝑧‖2+𝑠·𝑤

2
: 𝑧

]︁
= 𝜑(𝑝𝑠)

(4)

If 𝜉 ∈ P𝑛+1 represents 𝑝, and we write 𝜉𝑠 for the representative of 𝑝𝑠, then

for changing 𝑠, the 𝜉𝑠 move on a projective line through [−1 : 1 : 0 : ... : 0].

However, the points of the Möbius space are not always given in the form of

equation 4. Furthermore, we're interested in shrinking subspaces of P𝑛+1.

As shrinking is a point-wise process, we know that for sets of spheres 𝐴

and 𝐵, (𝐴∩𝐵)𝑠 = 𝐴𝑠∩𝐵𝑠. Any subspace can be found by intersecting a set

of hyperplanes, therefore to shrink subspaces of the Möbius space it su�ces

to be able to shrink hyperplanes of P𝑛+1. Furthermore, any hyperplane can

be uniquely written as 𝜉⊥, as the quadratic form induces a bijection between

hyperplanes and points of P𝑛+1 (see de�nition 25).

For a �nal assumption, assume a subspace 𝐴 ⊂ P𝑛+1 that represents a

shrunk a�ne hull of the set of spheres 𝒫 . If this set of spheres is not in

general position, 𝐴⊥ ̸⊂ ℋ𝑃 . Any set of elements Λ = {𝜆𝑖} that form a basis

of 𝐴⊥ can be chosen to write 𝐴 = ∩𝑖𝜆⊥𝑖 , allowing us to choose all 𝜆𝑖 ̸∈ ℋ𝑃 .

Therefore, to be able to shrink representatives of a�ne hull of spheres, it

su�ces to be able to shrink 𝜉⊥ ⊂ P𝑛+1, for 𝜉 ̸∈ ℋ𝑃 .

From solving the explicit equations, using the shrinking map from equa-

tion 4 and the explicit map of de�nition 6, a quadric (projective quadrics

are de�ned 27) arises. We will �rst give it explicitly, after which we give the

theorem we require it for.
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Figure 4.4: 𝑄𝑠(𝜉) for a few values of 𝑠, visualized by scaling 𝑥0 to 1. Left
for an a�ne hull containing only spheres of positive radius, the a�ne hull on
the right also contains spheres of negative radius (see �gure 4.2 for similar
cases).

Definition 8. For 𝜉 = [𝑎0 : ... : 𝑎𝑛+1] ∈ P𝑛+1, and 𝑠 ∈ R, then let 𝑄𝑠(𝜉) be

the projective quadric:

𝑄𝑠(𝜉) = {[𝑥0 : ... : 𝑥𝑛+1] ∈ P𝑛+1 : (𝑎0+𝑎1)(1−𝑠) (𝑥, 𝑥)+2𝑠(𝑥0+𝑥1) (𝑎, 𝑥) = 0}

A low dimensional example of this quadric can be found in �gure 4.4.

This describes the general shape of the quadric 𝑄𝑠(𝜉) as well.

Theorem 7. Let 𝜉 ̸∈ ℋ𝑃 such that 𝜉⊥ represents a�𝒫 for set of spheres

𝒫 (note that a�𝒫 is codimension 1) and let 𝑠 ∈ R. Then the elements in

𝑄𝑠(𝜉) ∖ ℋ𝑃 , precisely represent the spheres in (a�𝒫)𝑠. In fact, let 𝜑 be the

embedding of weighted points into the Möbius space from de�nition 6, then:

𝑄𝑠(𝜉) =

⎧⎨⎩ 𝜑(a�𝒫) ∪ℋ𝑃 if 𝑠 = 1

𝜑 ((a�𝒫)𝑠) ∪ [−1 : 1 : 0 : . . . : 0] otherwise

Note: This means that if a�𝒫 ⊂ R𝑛 × R is of lower dimension than
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Figure 4.5: Three quadrics representing shrunk 2-dimensional a�ne hulls
𝑄𝑠(𝜆) where 𝜆 are on a line in P𝑛+1. Note that any two intersect in the same
set, a shrunk 1-dimensional a�ne hull.

codimension 1, and is represented by
⋂︀
𝜆∈Λ

𝜆⊥ for Λ ⊂ P𝑛+1, then, for

𝑠 ̸= 0, (a�𝒫)𝑠 is represented by
⋂︀
𝜆∈Λ

𝑄𝑠(𝜆). This representation by Λ is

not unique, as any basis Λ′ of spanΛ also represents a�𝒫 . In corollary 11

we will prove that for 𝑠 ̸= 0, the intersection of quadrics is independent

on the choice of Λ,Λ′. An example is given in �gure 4.5.

Proof. The �rst statement is immediate using 𝑠 = 1. Now assume 𝑠 ̸= 1.

Let 𝜈 = [𝑥0 : ... : 𝑥𝑛+1] ∈ 𝑄𝑠(𝜉). Suppose 𝜈 ∈ ℋ𝑃 , then 𝑥0 + 𝑥1 = 0. As

𝜉 ̸∈ ℋ𝑃 , we have 𝑎0 + 𝑎1 ̸= 0, thus 𝜈 ∈ 𝑄𝑠(𝜉) implies (𝑥, 𝑥) = 0. This means
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𝜈 represents a point-sphere and hence 𝜈 ∈𝑀0. Recall that 𝑀0∩ℋ𝑃 is solely

the improper point [−1 : 1 : 0 : ... : 1].

We still need to prove 𝑄𝑠(𝜉) ∖ ℋ𝑃 = 𝜑 ((a�𝒫)𝑠). This will be proven by

proving inclusion both ways:

� In P𝑛+1∖ℋ𝑃 we can, without loss of generality, take the sum of the �rst

two coordinates equal to 1. Let 𝜈 = [𝑥0 : ... : 𝑥𝑛+1] ∈ 𝑄𝑠(𝜉) ∖ ℋ𝑃 . As

[−1 : 1 : 0 : . . . : 0] is not on 𝜉⊥, there is a 𝜇 of the form [𝑥0− 𝑡 : 𝑥1 + 𝑡 :

𝑥2 : . . . : 𝑥𝑛+1] on the line through [−1 : 1 : 0 : . . . : 0] and 𝜈, such that

(𝜉, 𝜇) = 0. Note that this means that 𝜇 ∈ 𝜉⊥. The inverse of 𝜑 on this

piece of P𝑛+1 shows that 𝜇 represents the sphere of centre (𝑥2, ..., 𝑥𝑛+1)

and weight (𝜇, 𝜇). Some further calculation reveals (𝜈, 𝜈) = 𝑠 · (𝜇, 𝜇),

and thus 𝜈 ∈ 𝜉𝑠.

� Let 𝜈 = 𝜑(𝑝𝑠) such that 𝜑(𝑝) is orthogonal to 𝜉, then:

(𝜉, 𝜈) = 1
2
(𝑎0 + 𝑎1)(1 − 𝑠)𝑤𝑝

Using this equality reveals 𝜈 ∈ 𝑄𝑠(𝜉).

Therefore 𝑄𝑠(𝜉) ∖ ℋ𝑃 = 𝜑 ((a�𝒫)𝑠).

As the form of 𝑄𝑠(𝜉) is already homogeneous in both variables, we homo-

genize the 𝑄𝑠(𝜉) with regard to 𝑠. Writing P1 = R∪{∞}, we can use 𝑠 = ∞
to denote shrinking towards in�nity:

𝑄∞(𝜉) = {[𝑥0 : ... : 𝑥𝑛+1] ∈ P𝑛+1 : −(𝑎0 + 𝑎1) (𝑥, 𝑥) + 2(𝑥0 + 𝑥1) (𝑎, 𝑥) = 0}

4.3 Shrunk convex hulls: Convexity on quadrics

Theorem 7 gives an explicit quadric denoting a shrunk a�ne hull. However,

for the construction of the skin surface, we require shrunk convex hulls. Recall

that, to �nd the skin of a set of spheres 𝒫 , it su�ces to �nd convex hulls of
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subsets of at most 𝑛+1 weighted points, as for more points the corresponding

mixed cells are empty. In lemma 6, the convex hull of 𝒫 , for |𝒫| ≤ 𝑛+ 1 was

mapped to the Möbius space as the convex hull of 𝜑(𝒫) in P𝑛+1 ∖ ℋ. This

was denoted convℋ(𝜑𝒫).

We de�ne 𝐶𝒫 ⊂ P𝑛+1 as the set of all representatives of spheres centred

on the convex hull of 𝒫 . This is precisely the set containing all lines through

[−1 : 1 : 0 : . . . : 0] and any 𝜈 ∈ convℋ(𝜑𝒫). In other words, this is the

projective cone with apex [−1 : 1 : 0 : . . . : 0] and basis convℋ(𝜑𝒫) in P𝑛+1.

Corollary 8. Let 𝒫 ⊂ R𝑛 × R be a set of spheres, with at most 𝑛 + 1

elements. Let 𝜉⊥ ⊂ P𝑛+1 represent a�(𝜑𝒫), then:

𝜑 ((conv𝒫)𝑠) = 𝐶𝒫 ∩𝑄𝑠(𝜉) ∖ {[−1 : 1 : 0 : ... : 0]}

Note that, when using this de�nition, 𝐶𝒫 = 𝐶𝒫𝑠 . Therefore, given a set

of points on a quadric 𝑄𝑠(𝜉), the shrunk convex hull on 𝑄𝑠(𝜉) can be found

by taking the projective cone of convℋ(𝒫𝑠) instead of convℋ(𝒫). This allows

us to de�ne a notion of convexity on the quadrics 𝑄𝑠(𝜉), by the following

equivalent statements:

Definition 9. A subset 𝑆 ⊂ 𝑄𝑠(𝜉) ⊂ P𝑛+1 is called convex in 𝑄𝑠(𝜉) if (the

following are equivalent):

� The subset 𝑆 is equal to 𝐶𝒫 ∩𝑄𝑠(𝜉) for some 𝒫 ⊂ R𝑛 × R.
� The projective cone 𝐶𝑆 is equal to 𝐶𝒫 for some 𝒫 ⊂ R𝑛 × R.
� The projection of 𝑆, from [−1 : 1 : 0 : ... : 0] onto 𝜉⊥, is relatively

convex.

� The projection of 𝑆, from [−1 : 1 : 0 : ... : 0] onto 𝑀0, is convex when

𝑀0 ∖ [−1 : 1 : 0 : ... : 0] is viewed as R𝑛 via inverse stereographic

projection.

Using this de�nition, it is clear that any convex subset of a quadric 𝑄𝑠(𝜉)

corresponds to a convex hull of spheres in R𝑛.
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Figure 4.6: 𝑄𝑠(𝜉) (from �gure 4.4) for a few values of 𝑠, visualized by scaling
𝑥0 to 1, intersected with the projective cone. On the left some examples of
the same set of spheres for di�erent 𝑠; Each projective quadric represents
one.
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Figure 4.7: A shrunk (𝑠 = 1
2
) a�ne subspace viewed by scaling 𝑥0 to 1 on

the left and 𝑥0 + 𝑥1 to 1 on the right. The solid red and yellow shapes are
a convex hull (of the three corners) and the shrunk convex hull respectively.
The blue sphere is the Möbius sphere, which is a paraboloid on the right.

An example of how the convex hull lies in 𝑄𝑠(𝜉) and corresponds to sets

of spheres can be found in �gure 4.6. Figure 4.7 is a similar case in P3. A

more explicit example, showing the corresponding set of spheres is in �gure

4.8. An example a shrunk convex hull of 4 spheres in R2 (and thus consisting

of 2 patches of convex sets) can be found in �gure 4.9.
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Figure 4.8: A shrunk convex hull of spheres, with its skins curve. On the
right the corresponding set in the Möbius space. The red shape lies in a
triangular projective cone.

Figure 4.9: Two convex hulls, sharing an edge, shrunk for a few values of
𝑠, viewed in the Möbius space P3 by scaling the �rst coordinate to 1. The
cones 𝐶𝒳 visibly clip the shrunk a�ne hulls to the shrunk convex hulls. The
Möbius sphere is shown, opaque in blue, for clarity.
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5 The set of all skins: Admissible quadrics

Similar to how, via Möbius geometry, we view spheres in R𝑛 as points in P𝑛+1,

we can also identify quadrics of P𝑛+1 with points in a higher dimensional

space. This will allow us to view shrinking a�ne hulls of P𝑛+1 as moving

on a parametrized, projective line in a higher dimensional space. In the

previous section, we've described shrunk a�ne hulls as a speci�c type of

quadric (theorem 7), and given a de�nition describing shrunk convex hulls.

We will show that the set of quadrics representing shrunk a�ne hulls

(which we will call admissible quadrics) is `almost' isomorphic to P𝑛+2 in the

projective, 1
2
𝑛(𝑛 + 3) dimensional space of projective, symmetric matrices

PSym. The question of �nding skins around a given set of spheres can be

done by intersecting the set of admissible quadrics with subspaces. This

leads up to a description of all sets of spheres used for de�ning the skin and

extended skin surfaces, as subspaces of P𝑛+2.

5.1 Viewing quadrics as matrices

As seen in de�nition 27 in appendix 𝐴, Quadrics in P𝑛+1 can be identi�ed

with their determining matrix. A quadric 𝑄 is said to be determined by

(𝑛+ 2) × (𝑛+ 2)-matrix 𝐴 if:

𝑄 = {[𝑥0 : ... : 𝑥𝑛+1] ∈ P𝑛+1 : 𝑥𝑇𝐴𝑥 = 0}

A matrix determines a quadric up to non-zero scalar multiple if it is taken

symmetric. Note that the symmetric matrices form a vector space over R,

and thus the set of projective, symmetric matrices, PSym form a projective

space over R. Recall that we want to describe shrunk �ats of spheres, and

de�nition 8 gives an explicit form for these admissible quadrics. To view

the set of shrunk �ats we restrict the identi�cation between quadrics and
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matrices, to de�ne the map that sends 𝜎 and 𝜉 to the matrix de�ning the

quadric representing the shrunk 𝜉⊥, 𝑄𝑠(𝜉). This map is well de�ned unless

𝜎 = [0 : 1] and 𝜉 ∈ ℋ𝑃 .

𝛿 : (P1 × P𝑛+1) ∖ ({0} ×ℋ𝑃 ) → PSym

(𝜎, 𝜉) ↦→ 𝐴𝜎(𝜉)

The image of 𝛿 in PSym is called the set of admissible quadrics, Adm, as

these are the matrices that can describe a shrunk a�ne hull. As the space

of projective, symmetric matrices is isomorphic to P(𝑛+2)(𝑛+3)/2−1, it quickly

becomes unwieldy to check whether a matrix is admissible. Therefore, we

will �nd a much lower dimensional projective subspace of PSym containing

this set.

Note: A small recap of the identi�cations made:

� The points of Adm ⊂ PSym represent admissible quadrics in P𝑛+1.

� The points on these admissible quadrics represent spheres in a shrunk

a�ne hulls of spheres in R𝑛.

� These shrunk a�ne hulls can be clipped to become the interior set of

spheres for a skin surface.

Using the explicit forms of the matrices 𝐴𝜎 (see appendix 𝐵), allows

us to make two statements concerning images of certain `cross sections' of

P1 × P𝑛+1. These are given in the following two lemmas.

Lemma 9. For a given 𝜉 ̸∈ ℋ𝑃 , the set {𝑄𝑠(𝜉) : 𝜎 ∈ P1} is a pencil of

quadrics (de�nition 28). In other words, the image of 𝛿 restricted to P1×{𝜉}
is a projective line.

Proof. Let 𝜉 ̸∈ ℋ𝑃 , and let matrix 𝐴𝜎 determine quadric 𝑄𝜎(𝜉), for 𝜎 = (𝑠 :

𝑡) ∈ P1. Using linear algebra we know that, 𝑥𝑇 (𝐴 + 𝐵)𝑥 = 𝑥𝑇𝐴𝑥 + 𝑥𝑇𝐵𝑥.
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Figure 5.1: Two sets of shrunk pencils of spheres, represented in P2 (as in
�gure 4.4, represented (schematically) in PSym as two (ordered) lines, that
intersect at 𝑀0.

Therefore addition on quadrics allows us to write:

𝑄𝜎(𝜉) = (𝑡− 𝑠) ·𝑄0(𝜉) + 𝑠 ·𝑄1(𝜉) = 𝑡 ·𝑄0 + 𝑠 ·𝑄∞(𝜉)

Thus we can write the set as a span of two elements, a pencil.

For a given set of spheres, we can therefore describe all skin surfaces

as a pencil of quadrics. This result is schematically shown in �gure 5.1. A

consequence of this is that the set of all admissible quadrics can be viewed as a

`bundle of lines' in PSym, where all lines are through the matrix representing

the Möbius sphere 𝑀0, and some matrix representing any 𝑄𝑠(𝜉) for �xed

𝑠 ̸= 0. This describes a projective cone, hence we need to describe {𝑄𝑠(𝜉) :

𝜉 ∈ P𝑛+1} in the space of quadrics, PSym.

Lemma 10. For a given 𝜎 ∈ P1 ∖{0}, the set {𝑄𝑠(𝜉) : 𝜉 ∈ P𝑛+1} is represen-
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ted by an 𝑛+1 dimensional subspace, called Adm𝑠, of PSym. In other words

the image of 𝛿 restricted to {𝜎} × P𝑛+1 is a projective subspace of PSym of

dimension 𝑛+ 1.

Proof. Using the explicit form of 𝐴𝜎(𝜉), for a �xed 𝜎 = [𝑠 : 𝑡], with 𝑠 ̸= 0, it

can be seen that, for [𝑎 : 𝑏] ∈ P:

𝐴𝜎(𝑎 · 𝜉 + 𝑏 · 𝜈) = 𝑎𝐴𝜎(𝜉) + 𝑏𝐴𝜎(𝜈)

This means the restricted 𝛿 maps subspaces of P𝑛+1 to subspaces of PSym,

and therefore its image, Adm𝑠 is isomorphic to P𝑛+1.

As a small aside, this allows us to prove the note near theorem 7, that

the result of intersecting shrunk quadrics is independent of choice of basis

for the orthogonal complement

Corollary 11. Any two quadrics in a pencil have the same intersection and

the same holds �ats. Therefore, for Λ ⊂ P𝑛+1:

⋂︁
𝜆∈Λ

𝑄𝑠(𝜆) =
⋂︁

𝜆∈spanΛ

𝑄𝑠(𝜆)

This means that if Λ,Λ′ span the same subspace in P𝑛+1 (and thus represent

the same a�ne hull of spheres), then the shrunk a�ne hull found like 7, is

independent on the choice of Λ,Λ′

These previous two lemmas are equivalent to saying that, using P1∖{0} ∼=
R, and P𝑛+1 ∖ ℋ𝑃

∼= R𝑛+1 the (non-projective) map restricted to R1 × R𝑛+1

is bilinear, and therefore maps to a subspace of PSym ∖𝐻 for some suitable

hyperplane 𝐻. This can be made more precise.

Lemma 12. The set of admissible quadrics, Adm, is represented in PSym
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by a subset:

Adm ⊂ PSym

Adm ∼= P𝑛+2 ∖ (R𝑛+1 ∖ {0})

∼= R𝑛+2 ∪ P𝑛 ∪ {𝛿(𝑀0)}

Proof. The set of admissible quadrics is represented by a projective cone

trough 𝛿(𝑀0) and a point and a projective subspace of dimension 𝑛+ 1, and

therefore can be viewed in a projective space of dimension 𝑛+ 2. We have 3

disjoint subsets of this via the restrictions:

𝛿 : P1 ∖ {0} ×P𝑛+1 ∖ ℋ𝑃 → R𝑛+2

P1 ∖ {0} ×ℋ𝑃 → P𝑛

{0} ×P𝑛+1 → 𝛿(𝑀0)

A schematic view of this is given in �gure 5.2.

5.2 Skins around given points

Recall that we were looking for all possible skins around a set of given spheres

in R𝑛. A sphere in R𝑛 is given as a point in P𝑛+1, and any shrunk convex

hull in P𝑛+1 containing this point gives a skin around the sphere. Any shrunk

convex hull is a subset of shrunk a�ne hull using corollary 8. This problem

thus reduces to �nding all admissible quadrics through a set of points in

P𝑛+1.

The set of quadrics through a given point 𝜆 ∈ P𝑛+1, 𝐻(𝜆), is simply a

hyperplane (see lemma 29) in PSym. Similarly, for a set of 𝑘 spheres in R𝑛,

represented by set 𝒳 ⊂ P𝑛+1, the set of quadrics containing all these points

is 𝐻(𝒳 ) =
⋂︀
𝜆∈𝒳

𝐻(𝜆). This has codimension 𝑘 if the span of 𝒳 is dimension

𝑘 − 1. In other words, 𝒳 is in general position, and therefore the spheres in

R𝑛 were in general position.
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Figure 5.2: A schematic view of the set of admissible quadrics. The planes
are the image of Adm𝑠 for �xed 𝑠 ̸= 0. These are 𝑛+1 dimensional projective
subspaces, of which 3 are shown. Any two of these planes will intersect in the
same subspace (a thick line in the �gure), the image of {𝑄𝜎(𝜉) : 𝜉 ∈ ℋ𝑃 , 𝜎 ̸=
0}. This is an 𝑛−dimensional projective subspace. As 𝛿(𝑀0) is not in either
of these spaces, it's drawn as a red point outside of these Adm𝑠. The line
drawn is a pencil of quadrics (as in �gure 5.1), the image of {𝑄𝜎(𝜉) : 𝜎 ∈ P1}
for a �xed 𝜉. On the right, the hyperplane containing the thick line and
𝛿(𝑀0) is `moved to in�nity', revealing the decomposition of lemma 12.

Corollary 13. The set of admissible quadrics through a set of spheres rep-

resented by 𝒳 ⊂ P𝑛+1 is given by:

Adm ∩𝐻(𝒳 )

This, in turn, allows us to �nd all skins around these sphere, by taking convex

subsets of these quadrics containing 𝒳 . In other words, these 4 problems are

equivalent:

� Looking for skins around a set of spheres certain spheres.

� Looking for shrunk pencils of quadrics containing these spheres.

� Finding quadrics through their representatives.

� Intersecting Adm ⊂ PSym with hyperplanes.

Using this equivalence we can easily prove a few statements about the
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uniqueness of the extended skin surface, and prove a bijection between sub-

spaces of PSym and the set of (extended) skin surfaces.

Lemma 14. The extended skin surface (see de�nition 5) is unique: For each

shrink factor 𝑠 ̸= 0, and set of 𝑛+ 1 spheres in general position in R𝑛, there

is a unique skin around these spheres.

Proof. We know that for �xed 𝑠 ̸= 0, the corresponding subset Adm𝑠 ⊂
Adm ⊂ PSym is an 𝑛+1 dimensional subspace (see lemma 10). Let 𝒳 ⊂ P𝑛+1

such that it represents 𝑛+ 1 spheres in general position. Note that therefore

𝐻(𝒳 ) is a codimension 𝑛+ 1 projective subspace of PSym. The intersection

Adm𝑠 ∩ 𝐻(𝒳 ) is not empty (by counting the dimensions), and is therefore

a subspace. Assuming the dimension of this subspace is not 0, it contains

a 𝑄𝑠(𝜆), where 𝜆 represents a hyperplane in R𝑛. Thus all spheres in 𝒳 are

centred on this hyperplane. As the spheres were taken in general position,

the dimension of Adm𝑠∩𝐻(𝒳 ) is 0, allowing for only one admissible quadric

containing 𝒳 , and thus one possible skin.

Furthermore, using the corollary, the set of all shrunk pencils describ-

ing extended skin surfaces through a set of points is `almost' a projective

subspace.

Lemma 15. Similar to the normal skin surface (see lemma 9), the extended

skin surface of a set of 𝑛+1 spheres in general position can also be described

by a pencil of quadrics. As the extended skin surface is not de�ned for 𝑠 = 0,

it is viewed as a pencil of quadrics with a point missing.

Proof. Instead of intersecting 𝐻(𝒳 ) with Adm𝑠 (as in the previous proof)

we intersect with Adm. The intersection of 𝐻(𝒳 ) with the 𝑛+2 dimensional

subspace containing Adm, which we call 𝐿𝒳 is a subspace, and any of the

extended skins of the previous lemma are admissible. As for each 𝑠, there is

only a single quadric of the correct form (the previous lemma), this subspace
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is 1 dimensional, and contains an element for each 𝑠 ̸= 0, hence:

𝐻(𝒳 ) ∩ Adm ∼= 𝐿𝒳 ∩ Adm ∼= R

This pencil of quadrics, de�ning an extended skin surface, is shown schem-

atically in �gure 5.3.

Figure 5.3: The situation of �gure 5.2, but instead of the pencil representing
the normal skin surface, a pencil is representing an extended skin surface is
shown. On the right the line does not intersect 𝛿(𝑀0) `at in�nity'.

When �nding skin surfaces, in general the set of points is not such that

the a�ne hull is 𝑛 dimensional. For lower dimensional shrunk a�ne hulls,

corollary 11 allows us to write such a shrunk a�ne hull as ∩𝜆𝑄𝑠(𝜆) where

𝜆 are in a subspace. This set of 𝑄𝑠(𝜆), is equal to a subspace (lemma 10),

which can be identi�ed with the shrunk a�ne hull. This gives us a natural

way to identify these lower dimensional shrunk a�ne hulls with subspaces of

P𝑛+2 ⊃ Adm.

Corollary 16. The de�ning sets of spheres, for any skin surface or extended

skin surface in R2, can be viewed as a subspace 𝑆 of P𝑛+2 ⊃ Adm, using the
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identi�cation

{𝑆 ⊂ P𝑛+2 : 𝑆 ̸= Adm𝑠 for some 𝑠 ∈ P1} ↔

{︃ ⋂︁
𝑄∈𝑆∩Adm𝑠

𝑄 ⊂ P𝑛+1 : 𝑠 ∈ P1
}︃
,

which identi�es, for set of spheres 𝒫 ⊂ R𝑛 × R:{︁
(a�𝒫)𝑠 ⊂ R𝑛 × R : 𝑠 ∈ P

}︁
with 𝑆 such that 𝛿(𝑀0) ∈ 𝑆{︁

(a�𝒫 1
𝑠 )𝑠 ⊂ R𝑛 × R : 𝑠 ∈ P ∖ {0}

}︁
with 𝑆 such that 𝛿(𝑀0) ̸∈ 𝑆

An example of this 𝑆, along with some intersections is given in �gure 5.4.

5.3 Shrinking in PSym

The last part of this section is devoted to shrinking quadrics in PSym directly.

This will be done by parametrizing the pencil 𝐿𝑄 through 𝑄 and 𝛿(𝑀0) such

that this parameter corresponds to the shrink factor. This parametrization

will not use the underlying Möbius space, or intuition about shrunk spheres.

This allows us to, for example, de�ne Adm𝑠 ⊂ Adm directly in PSym.

Any projective line 𝐿 can be parametrized with a projective transform-

ation from P1 to 𝐿 by �xing 3 points on 𝐿. The three points we �x are

𝛿(𝑀0) and two unique degenerate quadrics on 𝐿𝑄. Using the explicit form of

a sphere in PSym (example 14), we can see that 𝐴𝜎 is a sphere if and only

if it represents 𝛿(𝑀0), thus making 𝛿(𝑀0) unique. The two points we �x at

𝜎 = [1 : 1] and 𝜎 = [0 : 1] will be two degenerate quadrics. For this we use

the following lemma:

Lemma 17. A quadric of the form 𝑄𝜎(𝜉) for 𝜉 ̸∈ ℋ𝑃 is degenerate if and

only if 𝜎 = [1 : 1] or 𝜎 = [0 : 1].

Proof. A quadric is degenerate if and only if its matrix is singular. Calcula-
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Figure 5.4: On the left a shrunk 1-dimensional a�ne hull 𝐾𝑠 (the black
line) shown for two values of 𝑠, given as in �gure 4.5, as the intersection of a
pencil of quadrics. On the right, the identi�cation with a subspace of Adm:
The yellow plane represents 𝐾 = {𝐾𝑠}. It intersects each Adm𝑠 in a pencil,
which, corresponds to one of the left-side images. The red and blue lines
represent the upper- and lower �gure respectively.
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tion using the explicit form reveals:

det𝐴[𝑠:𝑡](𝜉) = −(𝑎0 + 𝑎1)
𝑛+2(𝑡− 𝑠)𝑛𝑡2

Thus proving the lemma.

If 𝑛 > 2, we can distinguish the two degenerate quadrics by their de-

generacy, thus giving us three identi�able points on the line. This �xes a

parametrization that is the same as the one on {𝑄𝜎(𝜉) : 𝜎 ∈ P1}.

Corollary 18. For any 𝑄 ∈ PSym, �nding 𝜎 ∈ P1 such that 𝑄 = 𝑄𝜎(𝜉) for

some 𝜉 can be done by parametrizing 𝐿𝑄 in this way. Finding 𝜉 ∈ P𝑛+1 can

then be done by shrinking to 𝑄1(𝜉) and taking the orthogonal complement

of 𝑄1(𝜉) ∖ ℋ𝑃 .

This allows us to de�ne the sets Adm𝑠 in PSym directly, without needing

the underlying sets of spheres. In addition to simply shrinking quadrics, this

can be used with corollary 16, to �nd the subspace of P𝑛+2 corresponding to

sets of skin surfaces.
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Figure 6.1: The shrunk a�ne hull of spheres and its shrunk orthogonal
complement from �gure 2.8, with their representations in the Möbius space.
The two blue lines are span𝒳 and 𝒳⊥, where the yellow lines are the same
sets shrunk.

6 Symmetry and Duality

Using the framework of Möbius geometry allowed us to view a pencil of

spheres as a subspace of P𝑛+1. Its orthogonal complement represents the

set of all spheres that intersect orthogonally with the pencil. In the Möbius

space, lemma 2 states that a subspace shrunk with factor 𝑠, de�nes the same

envelope as its orthogonal complement shrunk with factor 1 − 𝑠. A simple

example is given in �gure 6.1. Using the notation, for subset 𝒳 ⊂ P𝑛+1:

env(span𝒳 )𝑠 = env(𝒳⊥)1−𝑠

Finding such an envelope of a shrunk a�ne hull is useful for �nding the

skin surface, as lemma 1 gives a decomposition of the skin into such patches
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using the mixed cells. Furthermore, we have an alternative way of �nding

the envelope. If two sets de�ne the same envelope from the in- and outside

respectively, their intersection is this envelope.

skn𝑠𝒫 =
⋃︀

𝒳⊂𝒫
𝜇𝑠𝒳 ∩ env(a�𝒳 )𝑠

=
⋃︀

𝒳⊂𝒫
𝜇𝑠𝒳 ∩ env(𝒳⊥)1−𝑠

=
⋃︀

𝒳⊂𝒫
𝜇𝑠𝒳 ∩ ucl(a�𝒳 )𝑠 ∩ ucl(𝒳⊥)1−𝑠

It can be very useful to be able to de�ne the skin from the in- and outside.

The sum of dimensions of a subspace and its orthogonal complement in P𝑛+1

is 𝑛, and if we are able to describe both sets it is possible to pick the set with

the lowest dimension. As the complexity of �nding the envelope is heavily

dependant on the dimension of the parameter space, this allows us to reduce

the complexity of �nding the skin surface. This is illustrated in �gure 6.2.

In particular, for �nding skins in R2 or R3, this means we only need to �nd

envelopes of (at most) 1 dimensional subspaces.

However, using this alternative decomposition leaves a question: We know

each a�𝒳 contains a section (the convex hulls) such that the union (the

convex hull of 𝒫) de�nes the skin immediately:

skn𝑠𝒫 = env(conv𝒫)𝑠

Does the orthogonal complement have an analogue?

It turns out we can �nd these sections of the orthogonal complements,

and as such, the set of spheres de�ning the skin surface from the outside.

Furthermore, these sections are relatively convex in the Möbius space (see

de�nition 9) and can therefore be written as convex hulls of a set of points,

𝒬, that is a dual to 𝒫 : Their skin surfaces are the same.
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Figure 6.2: The skin surface, shown with the mixed cells, and de�ned from
the in- and outside. Note that if the set on the inside has a lot of complexity,
the set on the outside does not, and vice versa.

6.1 Subsets of orthogonal complements

Similar to how the convex hulls of spheres lie in their corresponding a�ne

hulls, we are interested in subsets of the orthogonal complement. In de�ning

the Voronoi cell (de�nition 4), however, we implicitly already de�ned such a

subset.

Recall the duality between the Delauney and Voronoi complexes; These

were both de�ned as the set of centres of certain spheres. The Delauney cell

as the set of centres of a convex hull and the Voronoi cell as the set of centres

of the set of spheres orthogonal to 𝒳 ⊂ 𝒫 , and further than orthogonal to

𝒫 ∖ 𝒳 . The convex hull of spheres is exactly the section of a�𝒳 that locally

contributes to the skin, hence suggesting the following theorem:

Lemma 19. The subset of 𝒳⊥ that can contribute to the skin is 𝑉 ′
𝒳 : the

set of spheres orthogonal to 𝒳 , and orthogonal, or further than orthogonal
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to 𝒫 ∖ 𝒳 . More precisely, for all 𝒳 ⊂ 𝒫 :

𝜇𝑠𝒳 ∩ env(a�𝒳 )𝑠 = 𝜇𝑠𝒳 ∩ env(𝑉 ′
𝒳 )1−𝑠

Note: This immediately implies that:

skn𝑠𝒫 =
⋃︁
𝒳⊂𝒫

𝜇𝑠𝒳 ∩ env(𝑉 ′
𝒳 )1−𝑠

Proof. We know that 𝒳⊥ has this property, hence it su�ces to prove that

𝑉 ′
𝒳 is a subset with the same property. If a sphere is closer than orthogonal

to 𝑝 its upwards closure will still intersect 𝑝 when shrunk with factors 𝑠 and

1 − 𝑠 respectively. Therefore, a sphere closer than orthogonal to 𝑝 ∈ 𝒫 can

not de�ne any part of the skin, as the skin does not intersect 𝑝𝑠.

Like the convex hull of 𝒫 , which contains all convex hulls of 𝒳 ⊂ 𝒫 , we
were searching for an analogue to conv𝒫 for the set of spheres de�ning the

skin surface from the outside. It turns out simply taking the union has this

property.

Theorem 20. De�ne Vor𝒫 as the union of 𝑉 ′
𝑝 over 𝑝 ∈ 𝒫 . Then the set

Vor𝒫 is a set of spheres such that:

skn𝑠𝒫 = env(conv𝒫)𝑠

= env(Vor𝒫)1−𝑠

Proof. First, note that 𝑉 ′
𝒳 ⊂ 𝑉 ′

𝑝 if 𝑝 ∈ 𝒳 . Therefore all 𝑉 ′
𝒳 ⊂ Vor𝒫 . If

𝑝 ∈ Vor𝒫 ∖ 𝑉 ′
𝒳 , it is further than orthogonal from conv𝒳 , and hence can not

contribute to the envelope in the mixed cell 𝜇𝑠𝒳 . As the mixed cells cover R𝑛,

⋃︁
𝒳⊂𝒫

𝜇𝑠𝒳 ∩ env(𝑉 ′
𝒳 )1−𝑠 = env(Vor𝒫)1−𝑠

Proving the theorem.
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Recall that the Voronoi complex de�nes a full decomposition of the space

R𝑛. As the spheres in 𝑉 ′
𝒳 are centred on the corresponding Voronoi cell, the

set Vor𝒫 is the set of spheres where, for each centre 𝑧 ∈ R𝑛 the weight 𝑤 is

the smallest weight such that 𝑝 = (𝑧, 𝑤) is orthogonal to at least one element

of 𝒫 .

6.2 Finding 𝑉 ′
𝒳 in the Möbius space

This decomposition from the previous section would not be useful if it is very

hard to �nd these subsets 𝑉 ′
𝒳 in the Möbius space. It turns out, the condition

on 𝒳⊥ to get 𝑉 ′
𝒳 is quite easy, and can be given by a simple quadratic form.

To derive this, we use the use the previously introduced method of shrinking

to check whether a point describes a smaller sphere than another.

Lemma 21. Let 𝜉 = [𝑎0 : . . . : 𝑎𝑛+1] ̸∈ ℋ𝑃 . De�ne the quadratic form:

𝑅𝜉 : [𝑥0 : . . . : 𝑥𝑛+1] ↦→ (𝑎0 + 𝑎1)(𝑥0 + 𝑥1)(𝑎, 𝑥)

The subsets of P𝑛+1 where the form in negative, zero and positive are called

𝑅<
𝜉 , 𝑅

0
𝜉 and 𝑅

>
𝜉 respectively. Note that these are the light-, time- and space-

like points from example 12. Then, 𝑅<
𝜉 represents all spheres further than

orthogonal to the sphere represented by 𝜉 and 𝑅>
𝜉 represents those less than

orthogonal to the sphere represented by 𝜉. Finally 𝑅0
𝜉 ∖ ℋ𝑃 represents the

proper spheres orthogonal to 𝜉.

Proof. Intuitively, for 𝑝, 𝑞 ∈ R𝑛×R if the sphere 𝑝 is further than orthogonal

to 𝑞, 𝑞 can be `made bigger' to become orthogonal to 𝑞. More formally, there

exists a sphere 𝑝′ with the same centre as 𝑝, and weight 𝑤𝑝′ > 𝑤𝑝, such that

𝑝′ is orthogonal to 𝑞. Let 𝜉 represent 𝑞 and let 𝜇 = [𝑥0 : ... : 𝑥𝑛+1] ∈ P𝑛+1

represent the sphere 𝑝.
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Due to symmetry, we only need to prove:

𝜇 ∈ 𝑅<
𝜉 ⇐⇒ 𝑝, 𝑞 are further than orthogonal.

If 𝑝 is a point sphere, then (𝑥0 +𝑥1) ̸= 0, and as 𝜉 ̸∈ ℋ𝑃 , we know 𝜇 ∈ 𝑅0
𝜉

if and only if 𝑝 lies on the sphere represented by 𝜉, 𝑞. Due to continuity,

the interior points of the sphere 𝑞 correspond either to 𝑅<
𝜉 or 𝑅>

𝜉 . Simply

checking an interior point sphere, the centre, proves the lemma for point

spheres.

Now let 𝑝 represent a proper (non-plane, non-point) sphere, then 𝜇 ∈
𝑄𝑠(𝜉) for some unique 𝑠 ̸= 0, which can be found by intersecting a projective

line and a hyperplane (see corollary 13). This means that there is a 𝜆 = [𝑦0 :

... : 𝑦𝑛+1], with 𝜆 ∈ 𝑄1(𝜉) ∖ ℋ𝑃 (which therefore is orthogonal to 𝜉), such

that 𝜆 represents a sphere 𝑝′ with the same centre as 𝑝, and with weight (see

corollary 4):

𝑤𝑝′ =
(𝑦, 𝑦)

(𝑦0 + 𝑦1)2
=

(𝑥, 𝑥)

𝑠(𝑥0 + 𝑥1)2
= 1

𝑠
𝑤𝑝

For 𝜇 to be further than orthogonal to 𝜉, we need 𝑤𝑝′ > 𝑤𝑝, hence:

1
𝑠
(𝑥, 𝑥) > (𝑥, 𝑥) ⇐⇒

(︀
1
𝑠
− 1

)︀
(𝑥, 𝑥) > 0

Using the explicit de�nition of 𝑄𝑠(𝜉) (de�nition 8), we can rewrite this

to: (︂
−2(𝑥0 + 𝑥1)(𝑎, 𝑥)

(𝑎0 + 𝑎1)(𝑥, 𝑥)

)︂
(𝑥, 𝑥) > 0 ⇐⇒ (𝑥0 + 𝑥1)(𝑎0 + 𝑎1)(𝑎, 𝑥) < 0

The fact that ℋ𝑃 ⊂ 𝑅0
𝜉 is immediate, completing the proof.

This lemma allows us to easily de�ne the set 𝑉 ′
𝒳 as represented in the

Möbius space P𝑛+1.
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Figure 6.3: An intersection of 𝑅≤
𝜆 , in P2, for sets of 2 or 3 elements of 𝒫 .

The 𝑉 ′
𝒳 are all on the boundaries of the polygon formed by the intersection.

Corollary 22. For subset 𝒳 ⊂ 𝒫 ⊂ P𝑛+1 (where 𝒳 and 𝒫 represent sets of

spheres in R𝑛), 𝑉 ′
𝒳 is the set of all spheres orthogonal to 𝒳 and further than

orthogonal to 𝒫 ∖ 𝒳 . This is represented in P𝑛+1 by:

𝑉 ′
𝒳 = 𝒳⊥ ∩

⋂︀
𝜆∈𝒫

𝑅≤
𝜆

Note that in the last equation the intersection is over 𝒫 , not 𝒫 ∖ 𝒳 .

Therefore, �nding the representatives of 𝑉 ′
𝒳 in P𝑛+1 is done by intersecting

𝒳⊥ with the same (full dimensional) subset of P𝑛+1. This is shown, in a low

dimension, in �gure 6.3. The application to skin surfaces is shown in 6.4.

The sets 𝑅≤
𝜉 are convex in the sense of corollary 8, in fact, they are

simply given as half spaces in P𝑛+1 ∖ ℋ𝑃 . This also means that the sets 𝑉 ′
𝒳

are convex. These sets are in general not bounded in P𝑛+1 ∖ ℋ𝑃 , as their

sets of centres (the original Voronoi cells) need not be bounded either. Being

convex subsets of subspaces of P𝑛+1 allows us to shrink these sets of spheres,

as in 4.2. An extensive example is given in �gure 6.6.
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Figure 6.4: The skin curve from �gure 4.8, de�ned from the outside. This
set of spheres is shown in the Möbius space (where 𝑥0+𝑥1 is scaled to 1). The
orthogonal planes are clipped to (in�nite) triangles. The `point' represents
the sphere in the middle of the skin.
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Figure 6.5: The sets of spheres used in �gure 6.6, with the mixed cells
shown, and the 1- dimensional sets of spheres used for the construction.
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Figure 6.6: The convex hulls in P3 (𝑥0 = 1) used for de�ning a skin surface
of the spheres in 6.5. Left from the inside, right from the outside. Above
the convex hulls and below this, their the corresponding set of centres (the
projection onto the Möbius sphere), colour-coded. The black points are 𝒫 ,
and the red points are the basis found by 𝒳⊥.
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7 Envelopes in the Möbius space

We have been concerned with the sets of spheres de�ning the skin surfaces,

and their properties in the Möbius space. The only step for �nding the

skin surface that has not been viewed in the Möbius space yet, is taking

the envelope. So far this has been glanced over, these sets of spheres and

their envelope were viewed as almost synonymous. However, �nding the

envelope is not entirely trivial. This section will generalize the process of

taking envelopes of spheres to work in the Möbius space.

This new process will change the problem of �nding an envelope of quad-

ratic shapes (spheres) in R𝑛 to one of �nding the envelope of linear shapes

(planes) in the Möbius space P𝑛+1. An intuitive way of viewing this is given

in �gure 7.1. As we have already found the representatives of all necessary

sets of spheres, as patches of admissible quadrics, we will also apply the new

process to these quadrics.

Figure 7.1: Left a shrunk convex hull of spheres in R2, visualized by 5
elements. On the right the corresponding convex hull in red, the shrunk
convex hull in yellow, and some orthogonal planes are shown. The envelope
of these planes intersects the Möbius sphere in the projection of the skin.
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7.1 Envelopes and orthogonality

De�nition 1 introduces the envelope as the boundary of a union of `interiors'.

For the set of R𝑛 → R functions {𝐹𝜇 : 𝜇 ∈ 𝐶}, the envelope was a subset of

the discriminant set:

𝐷𝐹 = {𝑥 ∈ R𝑛 : 𝐹 (𝑥, 𝜇) = 0,∇𝜇𝐹 (𝑥, 𝜇) = 0 for some 𝜇 ∈ 𝐶}

where 𝐹 (𝑥, 𝜇) : (𝑥, 𝜇) ↦→ 𝐹𝜇(𝑥). This means that, for a point 𝑥 ∈ R𝑛 to be on
the envelope, it needs to be on some sphere in the set (𝐹 (𝑥, 𝜇) = 0), and if the

parameter is changed in�nitesimally, it is still on the sphere (∇𝜇𝐹 (𝑥, 𝜇) = 0).

In the case of skin surfaces, we are interested in envelopes of spheres. This

means that all 𝐹𝜇(𝑥) are degree 2 polynomials, and therefore the derivatives

with respect to 𝜇 are non-trivial. This makes the process of computing the

envelope quite hard.

Another way of looking at the envelope of a set of spheres uses orthogon-

ality. The envelope of a set of spheres is the set of points that are orthogonal

to (or: on) some sphere in the set and further than orthogonal to (or: outside

of) all other spheres. Instead of viewing only point spheres, we can also view

this problem in the Möbius space. Let 𝒮 ⊂ P𝑛+1 describe the given set of

spheres. Using lemma 21 we can �nd the subset of P𝑛+1 that is orthogonal to

one sphere, and orthogonal, or further than orthogonal to all other elements

of 𝒮;

𝜇⊥ ∩
⋂︁
𝜆∈𝒮

𝑅≤
𝜆 ⊂ P𝑛+1

Note: When 𝒮 is a subset of a pencil, the sets 𝜇⊥ and 𝑅≤
𝜆 are fully

determined by its endpoints. This implies that for a �nite set of points

𝒳 ⊂ 𝒫 , the set 𝑉 ′
𝒳 (from lemma 19) can also be viewed as such a set.

Now let 𝒮 be shrunk subspace of P𝑛+1, with shrink factor 0 < 𝑠 < 1.
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If two in�nitesimally close spheres are orthogonal to a sphere, this sphere is

further than orthogonal from all others, thus if 𝐹 (𝜉, 𝜇) is viewed as (𝜉, 𝜇),

the described envelope can be written:

∆𝒮 = {𝜉 ∈ P𝑛+1 : (𝜉, 𝜇) = 0,∇𝜇(𝜉, 𝜇) = 0 for some 𝜇 ∈ 𝒮}

This needs a small note, in that this is not a discriminant set according

to the previous de�nition, as the used condition (𝜉, 𝜇) is not a well de�ned

function. However, the used zero-sets are well de�ned. This means that we

de�ned a set ∆𝒮 that generalises the discriminant set in R𝑛. Lastly, if 𝒮
represents (a�𝒫)𝑠, and the shrink factor is 0 < 𝑠 < 1, any sphere orthogonal

to an in�nitesimally small neighbourhood in 𝒮 is further than orthogonal to

all other 𝜆 ∈ 𝒮. This means that, for 0 < 𝑠 < 1, the discriminant set is the

envelope.

Corollary 23. The de�ned set ∆𝒮 is such that, if 𝒮 represents a set of

spheres (a�𝒫)𝑠 in R𝑛, with 0 < 𝑠 < 1 and |𝒫| ≤ 𝑛, the envelope of (a�𝒫)𝑠

in R𝑛 is given as the set of point spheres in ∆𝒮 . In shorthand notation:

env(a�𝒫)𝑠 ∼= ∆𝒮 ∩𝑀0

Note that this is not an equality, but if we project 𝑀0 back to R𝑛, using

the stereographic projection, these sets are equal.

The envelopes of a shrunk a�ne hull and its orthogonal complement are

equal. Therefore, if 𝒯 represents (𝒫⊥)1−𝑠, the set ∆𝒯 ∩𝑀0 is equal to ∆𝒮∩𝑀0.

Even more, as both sets de�ne the skin surface from di�erent sides, no proper

sphere can be orthogonal to both sets, hence ∆𝒮 ∩ ∆𝒯 ⊂𝑀0. This is shown

in �gure 7.2. The correlation between the skin and both sets ∆ is shown in

7.3.
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Figure 7.2: On the left a shrunk a�ne hull and its shrunk orthogonal
complement, for the sets of �gure 6.1. On the right the two corresponding
∆𝒮 , and the Möbius sphere. Note that any two of the three intersect in the
same set of points.

7.2 Explicit envelopes: An example

The previous section gave a method for �nding the envelope of shrunk a�ne

hulls using the orthogonal planes. This section will show how easy �nding

the sets ∆𝒮 is. We will �nd its explicit form for a general shrunk a�ne hull.

We will do this in the proof for the following, somewhat surprising, theorem:

Theorem 24. Let the set 𝒮 describe a shrunk a�ne hull of spheres, (a�𝒫)𝑠

in P𝑛+1. Let 𝒯 describe its shrunk orthogonal complement, (𝒫⊥)1−𝑠, such

that they describe the same envelope. Then the sets ∆𝒮 and ∆𝒯 are quadrics

in P𝑛+1, and using the space PSym to add and multiply quadrics:

(1 − 𝑠)∆𝒮 + 𝑠∆𝒯 = 𝑀0

Proof. If we translate and rotate our original space R𝑛, we can take the

a�ne hull such that the a�ne hull is centred on the �rst 𝑚-axes, and the

orthogonal complement on the other. This means their respective spaces of

centres intersect in the origin. In P𝑛+1, when looking only at proper spheres,
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we can view P𝑛+1 ∖ ℋ𝑃 by taking 𝑥0 = 1 − 𝑥1. In P𝑛+1 ∖ ℋ𝑃 :

𝒮 = (a�𝒫)𝑠 = {(𝑆(𝑥⃗), 𝑥⃗, 0 : ..., 0) : 𝑥⃗ ∈ R𝑚}

We know the function 𝑆 : R𝑚 → R is in general quadratic, but linear for

𝑠 = 1, as the a�ne hull is a subspace of P𝑛+1. The function 𝑆 can be written

in the form:

𝑆(𝑥⃗) =
1 − (1 − 𝑠)(𝑥21 + ...+ 𝑥2𝑚) + 𝑠 · 𝑐

2

Let 𝜉 = (𝑎1, ..., 𝑎𝑛+1) represent a proper sphere in P𝑛+1 ∖ ℋ𝑃 . If 𝜆 ∈ 𝒮
corresponds to 𝑥⃗ = (𝑥1, ..., 𝑥𝑚) ∈ R𝑚, then:

(𝜉, 𝜆) = −1 + 𝑎1 + 𝑆(𝑥⃗) + 𝑎2𝑥1 + ...+ 𝑎𝑚+1𝑥𝑚

And therefore:

𝜕(𝜉, 𝜆)

𝜕𝑥𝑖
=
𝜕𝑆

𝜕𝑥𝑖
(𝑥) + 𝑎𝑖+1 = −(1 − 𝑠)𝑥𝑖 + 𝑎𝑖+1

Equating all conditions to 0, gives explicit formulae for 𝜉.

𝜉 ∈ ∆𝒮 ⇐⇒

⎧⎨⎩ 𝑎𝑖+1 = − 𝜕𝑆
𝜕𝑥𝑖

(𝑥) ∀𝑖 s.t. 1 ≤ 𝑖 ≤ 𝑚

𝑎1 = 1 − 𝑆(𝑥) − 𝑥1𝑎2 − ...− 𝑥𝑚𝑎𝑚+1

Note that these �rst conditions are linear, and the condition for 𝑎1 quadratic.

Therefore, homogenizing the condition for 𝑎1, and using the relations between

𝑥𝑖 and 𝑎𝑖+1, reveals that ∆𝒮 is a quadric.

∆𝒮 =

{︃
𝜉 ∈ P𝑛+1 : −𝑎20 + 𝑎21 + 𝑠𝑐(𝑎0 + 𝑎1)

2 +
𝑚∑︁
𝑖=1

𝑎2𝑖+1

1 − 𝑠
= 0

}︃

For the orthogonal complement, the function corresponding to 𝑆 is for 𝑥⃗′ =
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(𝑥𝑚+1, ..., 𝑥𝑛):

𝑇 (𝑥⃗′) =
1 − 𝑠(𝑥2𝑚+1 + ...+ 𝑥2𝑛) + (1 − 𝑠) · (−𝑐)

2

Using the same reasoning as for ∆𝒮 , reveals:

∆𝒯 =

{︃
𝜉 ∈ P𝑛+1 : −𝑎20 + 𝑎21 − (1 − 𝑠)𝑐(𝑎0 + 𝑎1)

2 +
𝑛∑︁

𝑖=𝑚+1

𝑎2𝑖+1

𝑠
= 0

}︃

This reveals the wanted equality,

(1 − 𝑠)∆𝒮 + 𝑠∆𝒯 =
{︀
𝜉 ∈ P𝑛+1 : −𝑎20 + 𝑎21 + ...+ 𝑎2𝑛

}︀
proving the theorem.

Therefore these two quadrics lie on a pencil of quadrics with 𝑀0.

-2 -1 1 2

-2

-1

1

2

Figure 7.3: The skin on the right is shown in P𝑛+1 ∖ℋ𝑃 , where the stereo-
graphic projection is simply projection onto the plane 𝑥1 = 0.
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Conclusion

As stated in the introduction, this thesis set out with a single goal:

Describe the skin surface, and its properties using Möbius geometry.

The Möbius geometry turned out to have a few properties useful for,

mostly, describing the set of spheres de�ning the skin surface. Subspaces of

the Möbius space correspond to �ats of spheres. Furthermore, the orthogonal

complement of this subspace, using the natural form on the Möbius space,

was closely related to symmetry and decomposability of the skin surface.

The skin surface is given as the envelope of a shrunk convex subset of a �at

of spheres. Shrunk �ats of spheres were found to correspond to quadrics, on

which convexity was de�ned to correspond to shrunk convex hulls of spheres.

Viewing the quadrics as objects of their own a few observations were made.

The process of shrinking a quadric could be viewed as moving the object

on a pencil of quadrics. The pencil has a natural parametrization, based on

the degenerate quadrics it contains. This way of viewing quadrics allows for

a natural way of looking at the extended skin surface. Lastly, we de�ned

a bijection between the set of all (not only full dimensional) shrunk a�ne

hulls of spheres determining skin surfaces and extended skin surfaces and

subspaces of P𝑛+2.

The set of spheres determining a skin surface from the inside is, how-

ever, not a shrunk a�ne hull. Therefore its orthogonal complement is not,

generally, the set of spheres determining it from the outside. However, the

quadratic form on the Möbius space allowed for an easy way to determine

the complex that does determine the skin from the outside. This is easily

determined from a set of input spheres, allowing to switch between a 𝑘, and

an 𝑛− 𝑘 dimensional parameter space, corresponding to a subset of a 𝑘−�at
and a subset of it's orthogonal complement. As the complexity of �nding the

envelope is heavily reliant on this dimension, this means that the choice can
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be made to take the envelope of (at most) an ⌊𝑛
2
⌋ dimensional set of spheres.

Finally (again) the notion of orthogonality was used to �nd the envelope

in the P𝑛+1. This changed taking the envelope of spheres to taking the

envelope of planes, and only intersecting the result with a sphere.

However, using the Möbius space is not in every way positive. There

is the obvious initial step, doing the stereographic projection, which makes

intuitive reasoning on the spheres harder. In addition, the projective space

has its own drawbacks, mostly computationally, but also when visualizing

the space. Furthermore, the hyperplanes in R𝑛 are not used for de�ning the

skin. Usually, scaling the space to 𝑥0 + 𝑥1 = 1 is enough, resulting in the

space of weighted points.

Further research opportunities

In addition to the skin surface, the envelope surfaces, introduced in [1], could

be viewed in the Möbius space. This surface is a generalization of the skin,

which also uses quadratic interpolation as a the weight function. However,

this removes the special role set aside for orthogonality, and therefore the

natural link to Möbius geometry.

In addition, having used envelopes of certain quadrics to de�ne surfaces

leads to the question whether other weight functions can be used. This

thesis already includes a way of using the current skin surfaces to interpolate

at most 𝑛+ 2 spheres in R𝑛, but allowing higher degree weight functions will

allow for di�erent interpolations. This requires knowing the relation between

the shape of the weight function and, for example smoothness or continuity

of the resulting envelope.

Other than the Möbius geometry, the more general Lie-sphere geometry

might also be a way to view the skin and other interpolation algorithms. This

geometry deals with oriented contact of spheres, and therefore has potential
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to describe envelopes naturally. In a similar way, the set of spheres de�ning

the skin from the outside has a tangent condition to the set of spheres de-

�ning the skin from the inside, which might be describable in the Lie-sphere

geometry.
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A Definitions in vector- and projective spaces

To be able to introduce a few of the necessary concepts, we will state some

facts on vector spaces, and subsets of these. In particular subspaces, a�ne

and convex subsets are de�ned. After this, the projective space is de�ned.

A.1 Vector spaces

Definition 10. For a �eld 𝑘, we can take 𝑉 a vector space over 𝑘, that is,

a 𝑘−module. In particular, for this thesis, any 𝑉 will be �nite dimensional,

and therefore have a �nite 𝑘−basis. As a set, 𝑉 is isomorphic to 𝑘𝑛, where

𝑛 is the dimension. A 𝑘−algebra has the added structure of a ring.

Definition 11. A transformation 𝑓 : 𝑉 → 𝑊 between 𝑘−vector spaces

𝑉,𝑊 is linear if 𝑓(𝑣1 +𝑣2) = 𝑓(𝑣1)+𝑓(𝑣2) for 𝑣1, 𝑣2 ∈ 𝑉 and 𝑓(𝑎 ·𝑣) = 𝑎𝑓(𝑣)

for 𝑎 ∈ 𝑘.

Definition 12. The group of endomorphisms on an 𝑛−dimensional vector

space 𝑉 is written End(𝑉 ), and consists precisely of all linear transforma-

tions 𝑓 : 𝑉 → 𝑉 . The automorphism group Aut(𝑉 ) consists of invertible

endomorphisms. This group is usually denoted GL(𝑉 ) =Aut(𝑉 ) for general

linear group. The further GL𝑛(𝑘) =GL(𝑘𝑛) is also often used.

Properties:

� As we can de�ne point-wise addition, composition and scalar multiplic-

ation with elements of 𝑘, End(𝑉 ) is a 𝑘−algebra. In fact it is isomorphic

to the algebra 𝑀𝑛(𝑘) of 𝑛×𝑛 matrices with entries in 𝑘, and therefore

of 𝑘−dimension 𝑛2.

� GL(𝑉 ) is therefore isomorphic to the invertible 𝑛×𝑛 matrices,𝑀𝑛(𝑘)×.

For matrices we have the determinant map, det: 𝑀𝑛(𝑘) → 𝑘, which is

a polynomial in the matrix entries. We know a matrix is invertible if

it's determinant is nonzero, therefore 𝑀𝑛(𝑘)× is (Zariski) a�ne open
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in 𝑀𝑛(𝑘), and as such also of dimension 𝑛2.

A.2 Subsets of vector spaces

Definition 13. A (linear) subspace 𝑆 of 𝑉 is a subset of 𝑉 closed under

addition and scalar multiplication. A subspace always contains 0 ∈ 𝑉 (as 0

is a scalar), and can therefore be viewed as a vector space over 𝑘 on its own.

Transformations on 𝑉 may act trivially on the set 𝑆, giving rise to the

stabilizer subgroup of 𝑆 in a transformation group 𝑇 (𝑉 ).

Stab𝑆(𝑇 (𝑉 )) = {𝑓 : 𝑉 → 𝑉 ∈ 𝑇 (𝑉 ) : 𝑓(𝑠) = 𝑠,∀𝑠 ∈ 𝑆}

As transformations on an 𝑚−dimensional subspace 𝑆 ⊂ 𝑉 can be viewed as

transformations on 𝑉 `up to' elements in the stabilizer subgroup:

End(𝑆) = End(𝑉 )�Stab𝑆(End(𝑉 ))
∼= 𝑀𝑚(𝑘)

GL(𝑆) = GL(𝑉 )�Stab𝑆(GL(𝑉 ))
∼= 𝑀𝑚(𝑘)×

Recall that 𝑀𝑚(𝑘)× is open in 𝑀𝑚(𝑘) and therefore 𝑚2 dimensional over 𝑘.

Definition 14. The span of a subset 𝒫 ⊂ 𝑉 , span(𝒫) is de�ned as the

intersection of all subspaces containing the elements of 𝒫 .

Example 2: As any subspace is closed under addition and scalar mul-

tiplication, the span is precisely all linear combinations of elements of

𝒫 :
span(𝒫) =

{︁
𝑣 ∈ 𝑉 : 𝑣 =

∑︁
𝑎𝑖𝑝𝑖, for 𝑝𝑖 ∈ 𝒫 , 𝑎𝑖 ∈ 𝑘

}︁
Definition 15. A �nite set of 𝑙 points 𝒫 ⊂ 𝑉 is said to be in general position

if their span is 𝑙-dimensional in 𝑉 , or equivalently if there is no linear relation
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between them. 𝒫 is in special position otherwise.

Properties:

� A single point, not equal to 0, is always in general position.

� If 𝑙 > 𝑛, 𝒫 is always in special position.

Usually, when considering two points, one would want to be able to draw

a straight line between them, giving rise to the following de�nition:

Definition 16. An affine subspace (or a 𝑓𝑙𝑎𝑡) 𝐴 ⊂ 𝑉 is a subset of 𝑉 such

that the set of di�erences {𝑥− 𝑦 : 𝑥, 𝑦 ∈ 𝐴} forms a subspace.

Note: The term `a�ne subspace' will be avoided as much as possible due

to the confusion with a�ne subspaces of projective space, however, some

of the literature will use this name.

Properties:

� Any �at containing 0 ∈ 𝑉 is a subspace of 𝑉 .

� A �at contains the straight line between any two of its points 𝑥, 𝑦.

� The dimension of an a�ne subspace is the dimension of the set of di�er-

ences. An a�ne subspace of dimension 1 is called a line, of dimension

2 a plane and of dimension 𝑛− 1 a hyperplane.

This allows us to de�ne the a�ne hull as, intuitively, the `smallest a�ne

subspace containing a set'. More precisely:

Definition 17. The affine hull of a set 𝒫 ⊂ 𝑉 , a�(𝒫) is de�ned as the

intersection of all a�ne subspaces containing 𝒫 .

Example 3: Taking any element 𝑝 ∈ 𝒫 , and translating the a�ne hull

using 𝑥 ↦→ 𝑥−𝑝, results in a subspace, which is the span of {𝑞−𝑝 : 𝑞 ∈ 𝒫}.
This allows us to write the elements of a�(𝒫) as:

a�(𝒫) = {𝑣 ∈ 𝑉 : 𝑣 = 𝑝+
∑︀
𝑎𝑖(𝑝𝑖 − 𝑝), for 𝑝𝑖 ∈ 𝒫 , 𝑎𝑖 ∈ 𝑘}

= {𝑣 ∈ 𝑉 : 𝑣 =
∑︀
𝑎𝑖𝑝𝑖, for 𝑝𝑖 ∈ 𝒫 , 𝑎𝑖 ∈ 𝑘 such that

∑︀
𝑎𝑖 = 1}
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The �rst notation gives us an intuitive way to view the a�ne hull, as

a translation (by any of the points of 𝒫) of a span of di�erences. The

second notation writes all elements as so called affine combinations.

In this thesis, we will be looking at ways to interpolate a certain set of

points. Therefore it usually makes sense to look at convex sets.

Definition 18. A set 𝐶 ⊂ 𝑉 is convex if it contains the straight line segment

bounded by any two points in 𝐶.

Similarly to the a�ne hull, we can intersect convex sets to obtain the

convex hull:

Definition 19. The convex hull of a set 𝒫 ⊂ 𝑉 , conv(𝒫) is de�ned as the

intersection of all convex sets containing 𝒫 .

Example 4: Obviously, the convex hull is a subset of the a�ne hull, as

the a�ne hull contains entire lines, whereas the convex hull only contains

line segments. In keeping with the intuition from example (3) this results

in the following:

conv(𝒫) =
{︁
𝑣 ∈ 𝑉 : 𝑣 =

∑︁
𝑎𝑖𝑝𝑖 for 𝑝𝑖 ∈ 𝒫 , 𝑎𝑖 ∈ 𝐾 such that

∑︁
𝑎𝑖 = 1,

}︁
These kind of elements are called convex combinations.

Remark. Following from examples 2, 3 and 4, it is easy to see that:

𝒫 ⊂ conv(𝒫) ⊂ a�(𝒫) ⊂ span(𝒫) ⊂ 𝑉
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A.3 Projective space

On any vector space 𝑉 over �eld 𝑘, we can take the equivalence relation ∼
over 𝑉 ′ = 𝑉 ∖ {0} satisfying:

𝑣1 ∼ 𝑣2 ⇐⇒ ∃𝑎 ∈ 𝑘× s.t. 𝑎 · 𝑣1 = 𝑣2

This allows us to de�ne the projective space of 𝑉 .

Definition 20. The projective space of a vectorspace is the quotient space

of 𝑉 ′ with respect to ∼, denoted P(𝑉 ) = 𝑉 ′
�∼. We denote the quotient map

as 𝑞 : 𝑉 ′ → P(𝑉 ). A projective space is of dimension 𝑛 if 𝑉 is dimension

𝑛+ 1 as a 𝑘−vector space.

Note: 𝑞 is not de�ned at 0 ∈ 𝑉 , however, if we take 𝑟 : 𝑉 → 𝑉 ′ the

restriction map, then 𝑞 : 𝑉 ′ → P(𝑉 ) and 𝑞 ∘ 𝑟 : 𝑉 → P(𝑉 ) are often used

synonymously.

Remark. It is important to keep in mind that P(𝑉 ) is almost always not a

vector space. However, it has the overlying vectorspace 𝑉 and other useful

properties.

The subgroup of non-zero scalar transformations of 𝑘−algebra GL(𝑉 ) is

precisely the centre of the multiplication group, and can be denoted 𝑍(GL(𝑉 )).

Any transformation on 𝑉 induces an action on P(𝑉 ), where 𝑍(GL(𝑉 )) acts

trivially. This allows us to de�ne the projective transformations as:

PGL(𝑉 ) = GL(𝑉 )�𝑍(GL(𝑉 ))
∼= P (𝑀𝑛(𝑘)×)

Remark. The projective space of R𝑛+1 over R will be called P𝑛(R) or even

P𝑛 if there is no confusion about 𝑉 and 𝑘.

Example 5: P(R𝑛+1) = P𝑛 corresponds to any of the following:
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1. The set of (𝑛+ 1)-tuples of elements of R, up to scalar multiplication,

denoted [𝑥0 : ... : 𝑥𝑛], where not all 𝑥𝑖 = 0. Note that the `:' signi�es a

ratio. This notation is called homogeneous coordinates.

2. P𝑛 ∼= R𝑛 ∪ P(R𝑛) as a set. This can be seen by using homogeneous

coordinates and scaling to [1 : 𝑥′1 : ... : 𝑥′𝑛−1] if 𝑥0 is nonzero (which is

isomorphic to R𝑛), and `forgetting' the �rst coordinate if it is zero.

3. P𝑛 ∼=
𝑛⋃︀
𝑘=0

R𝑘. This is easily seen by noting that P(R) is a single point,

and applying induction on the previous statement.

4. The set of all straight lines through the origin in R𝑛, as these lines can

be viewed as the normals of planes given by zeroes of degree 1 equations

in R[𝑋1, ..., 𝑋𝑛], i.e.
∑︀
𝑎𝑖𝑋𝑖 = 0 where not all 𝑎𝑖 are zero.

5. The set of points on the `upper' half of the (𝑛)-sphere: (𝑆𝑛)+ ⊂ R𝑛+1.

This can be seen by identifying the previous line with its intersection

with the unit sphere.

Definition 21. We can de�ne subspaces of projective space similar to those

of vector spaces.

� A subspace 𝑆 of a projective space P(𝑉 ) is the image of a subspace of

𝑉 under the map 𝑞 : 𝑉 → P(𝑉 ).

� Similar to subspaces of vector spaces a subspace of dimension 1 is called

a projective line and of dimension 𝑛 − 1 a hyperplane. Using the next

lemma, a projective line is the image of either a subspace of dimension

2 or of an a�ne line of dimension 1 which does not contain 0 ∈ 𝑉 .

Note that a vector space of dimension 𝑛 + 1 has a projective space of

dimension 𝑛, hence P𝑛 = P(R𝑛+1) is dimension 𝑛.

� The span of a subset 𝒳 ⊂ P(𝑉 ), span𝒳 is the intersection of all sub-

spaces containing 𝒳 . Hence it is again the `smallest' subspace contain-

ing 𝒳 . Note that for 𝒫 ⊂ 𝑉 , span𝑞(𝒫) = 𝑞(span𝒫)
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� The transformations on 𝑆 are simply the projective transformations

`up to' elements of the stabilizer subgroup, which is isomorphic to

P(𝑀𝑚(𝑘)×).

Note: As translations are not well de�ned on P(𝑉 ), there is no concept

of a�ne hulls. Furthermore, in geometry an a�ne subset of P𝑛 usually

denotes a set that is (as a variety) isomorphic to a subset of 𝑘𝑙 for some

𝑙. Note that the image under 𝑞 of a �at (or a�ne subspace) of dimension

greater than 0 in V, is explicitly not a�ne in this sense of the word.

We state the following:

Lemma 25. For 𝒫 ⊂ 𝑉 , 𝑞(a�𝒫) = 𝑞(span𝒫) in P(𝑉 ).

Proof. If 0 ∈ 𝒫 , the statement is trivial. As a�𝒫 ⊂ span𝒫 it su�ces to show

that a�𝒫 ⊃ span𝒫 .
Take 𝑥 ∈ span𝒫 ∖ {0}. As in example 2, we can write 𝑥 =

∑︀
𝑎𝑖𝑝𝑖, with

some �nite basis. Without loss of generality, take
∑︀
𝑎𝑖 ̸= 0 (Note that we can

freely scale some nonzero 𝑎𝑖, if we scale 𝑝𝑖 as well). As 𝑘 is a �eld, it contains

𝜉 = (
∑︀
𝑎𝑖)

−1. Consider 𝜉𝑥 =
∑︀

(𝜉𝑎𝑖)𝑝𝑖. This is an a�ne combination, as∑︀
𝜉𝑎𝑖 = 𝜉 (

∑︀
𝑎𝑖) = 1, therefore 𝜉𝑥 ∈ a�(𝒫). Because 𝜉 ∈ 𝑘, we know

𝑞(𝜉𝑥) = 𝑞(𝑥).

A.4 Orthogonality

Definition 22. A symmetric bilinear form on vector space 𝑉 over �eld 𝑘 is

a map 𝜙 : 𝑉 × 𝑉 → 𝑘 such that for all 𝑥, 𝑦, 𝑧 ∈ 𝑉 and 𝑎 ∈ 𝑘:

𝜙(𝑥, 𝑦) = 𝜙(𝑦, 𝑥)

𝜙(𝑥, 𝑦 + 𝑧) = 𝜙(𝑥, 𝑦) + 𝜙(𝑥, 𝑧)

𝜙(𝑎𝑥, 𝑦) = 𝑎𝜙(𝑥, 𝑦)
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A form is said to be degenerate if there is any 𝑥 ∈ 𝑉 such that 𝜙(𝑥, 𝑦) = 0

for all 𝑦 ∈ 𝑉 . The scalar multiplication and (pointwise) sum of forms can

be de�ned in the normal sense, to make the set of symmetric bilinear forms

into a vector space over 𝑘. If not stated otherwise, we will assume a form to

be non-degenerate.

Example 6: If we take a basis for 𝑉 (which was isomorphic to 𝑘𝑛), we

can check what the form does on the basis {𝑥𝑖 : 𝑖 ∈ 𝐼}, and write a matrix

𝐴:

𝐴 =

(︂
𝜙(𝑥𝑖, 𝑥𝑗)

)︂
𝑖,𝑗∈𝐼

Then 𝜙(𝑥, 𝑦) = 𝑥𝑇𝐴𝑦 for some symmetric matrix 𝐴. Therefore, as a

𝑘−vector space, symmetric, bilinear forms are isomorphic to Sym(𝑉 ) =

Sym𝑛 = {𝑀 ∈𝑀𝑛(𝑘) : 𝑀 = 𝑀𝑇}. A form is degenerate if and only if the

corresponding matrix is, i.e. non-degenerate forms correspond precisely

to Sym(𝑉 )×.

Note: The matrix product of two symmetric matrices is not necessarily

symmetric, therefore Sym(𝑉 ) does not have the structure of a 𝑘−algebra.
However, we also have no concept of multiplication on forms, hence this

does not pose a problem.

Example 7: Recall that a matrix 𝐴 is skew-symmetric if 𝐴 = −𝐴𝑇 .
When char(𝐾) ̸= 2, any matrix 𝐴 in 𝑀𝑛(𝑘) can be written as:

𝐴 = 1
2

(︀
𝐴+ 𝐴𝑇

)︀
+ 1

2

(︀
𝐴− 𝐴𝑇

)︀
Therefore we have the decomposition 𝑀𝑛 = Sym𝑛 ⊕ Skew𝑛, allowing us

to write the following exact sequences of vector spaces:

0 Sym𝑛 𝑀𝑛 Skew𝑛 0

Notice that the singular matrices are given by the zero set of the determ-
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inant, hence the invertible matrices are a�ne open (same dimension) in

these sets.

Definition 23. The automorphism group of 𝑉 with respect to a non-degenerate,

symmetric bilinear form 𝜙, Aut(𝜙) is the subgroup of GL(𝑉 ) that preserves

the form:

Aut(𝜙) = {𝑇 ∈ GL(𝑉 ) : 𝜙(𝑇𝑥, 𝑇𝑦) = 𝜙(𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝑉 }

Lemma 26. The 𝑘−dimension of the automorphism group is 𝑛(𝑛− 1)/2, in

fact:

Aut(𝜙) ∼= Skew×
𝑛

Proof. Let 𝐴 be symmetric, then for any matrix 𝐵, 𝐵𝑇𝐴𝐵 is symmetric, and

therefore:

𝜙𝐴(𝐵𝑥,𝐵𝑦) = 𝜙𝐴(𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝑉

⇔ 𝜙𝐵𝑇𝐴𝐵 = 𝜙𝐴

⇔ 𝐵𝑇𝐴𝐵 − 𝐴 = 0

We can de�ne the following surjective homomorphism:

𝜓𝐴 : 𝑀𝑛 → Sym𝑛

𝐵 ↦→ 𝐵𝑇𝐴𝐵 − 𝐴

Note that by de�nition Aut(𝜙𝐴) = ker(𝜓𝐴)×. Using the exact sequence:

0 0

Skew𝑛 Sym𝑛

𝑀𝑛

ker(𝜓𝐴) Sym𝑛

0 0

𝜄

𝜏

𝜓𝐴

𝜄
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Therefore:

𝑀𝑛�Skew𝑛
∼= 𝑀𝑛�ker(𝜓𝐴) ⇒ Skew𝑛 ∼= ker(𝜓𝐴)

Example 8: Over R this group is usually called the group of (indefin-

ite) orthogonal transformations. Using a suitable change of basis, any

symmetric bilinear form on R𝑛 can be represented by a diagonal mat-

rix (𝑎𝑖𝑖)𝑖, where 𝑎𝑖𝑖 ∈ {1, 0,−1}. The signature, (𝑎, 𝑏, 𝑐) of the form is

the number of positive, zero and negative 𝑎𝑖𝑖, respectively. A form is

obviously degenerate if and only if 𝑏 ̸= 0. If 𝑎 or 𝑐 is zero, the form is

called positive-, respectively negative definite. The space R𝑛 with a form

of signature (𝑝, 0, 𝑞) will be denoted R𝑝,𝑞, and it's group of (inde�nite)

orthogonal transformations 𝒪(𝑝, 𝑞) (Note that 𝑛 = 𝑝+ 𝑞).

Example 9: As before, we can take the projective indefinite orthogonal

transformations, P𝒪(𝑝, 𝑞). Recall that the centre of GL(R𝑛) acted trivi-

ally in composition with 𝑞 : 𝑉 → P(𝑉 ). The centre 𝑍 consisted exactly of

all scalar matrices. If 𝑇 is a scalar matrix then 𝑇𝑥 = 𝑡𝑥 for some nonzero

scalar 𝑡, and as such, (𝑇𝑥, 𝑇𝑦) = 𝑡2(𝑥, 𝑦). Therefore 𝑍 ∩𝒪(𝑝, 𝑞) = {±𝐼}.
This can be written as the following commuting diagram.

GL(R𝑛) GL(R𝑛)�𝑍 PGL(R𝑛)

𝒪(𝑝, 𝑞) 𝒪(𝑝, 𝑞)�{±𝐼} P𝒪(𝑝, 𝑞)

𝑞𝑍

𝑞𝐼

𝑖 𝑖 𝑖

∼

∼

Where all maps are the obvious inclusions (with as inverses restric-

tions) and quotients.

Definition 24. Two points 𝑣, 𝑤 ∈ 𝑉 are called orthogonal with respect to

form 𝜙 if 𝜙(𝑣, 𝑤) = 0. The orthogonal complement, 𝑣⊥, of 𝑣 ∈ 𝑉 with respect

to 𝜙 is the set of all points orthogonal to 𝑣. The orthogonal complement of
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a set 𝒫 ⊂ 𝑉 with respect to 𝜙, 𝒫⊥, is the set of of all points orthogonal to

all 𝑣 ∈ 𝒫 , or equivalently:

𝒫⊥ =
⋂︁
𝑣∈𝒫

𝑣⊥ = {𝑤 ∈ 𝑉 : 𝜙(𝑣, 𝑤) = 0 ∀𝑣 ∈ 𝒫}

Note: There is usually no confusion about the form 𝜙 in question, hence

it is not speci�ed in the notation 𝑣⊥.

Properties:

� The orthogonal complement is closed under addition and scalar multi-

plication (as the form is bilinear), and is therefore a subspace.

� The orthogonal complement is inclusion reversing, that is: If 𝒫 ⊂ 𝒬
then 𝒫⊥ ⊃ 𝒬⊥.

Lemma 27. For any set 𝒫 ⊂ 𝑉 , 𝒫⊥ = (span𝒫)⊥.

Proof. We know 𝒫 ⊂ span𝒫 , therefore by the inclusion reversing property,

𝒫⊥ ⊃ (span𝒫)⊥. For 𝑣 ∈ 𝒫⊥ we know 𝜙(𝑣, 𝑝𝑖) = 0. We know that any 𝑥 ∈
span(𝒫) can be written as 𝑥 =

∑︀
𝑎𝑖𝑝𝑖 for 𝑝𝑖 ∈ 𝒫 and 𝑎𝑖 ∈ 𝑘. As the form

𝜙 is bilinear, 𝜙(𝑣, 𝑥) = 𝜙(𝑣,
∑︀
𝑎𝑖𝑝𝑖) =

∑︀
𝑎𝑖𝜙(𝑣, 𝑝𝑖). Hence 𝜙(𝑣, 𝑥) = 0 and

therefore 𝑣 ∈ (span𝒫)⊥.

Corollary 28. De�ne for 𝑛−dimensional vector space 𝑉 :

Sub(𝑉 ) := {𝐻 ⊂ 𝑉 : 𝐻 is a subspace}
Sub𝑘(𝑉 ) := {𝐻 ⊂ 𝑉 : 𝐻 is a subspace of dimension 𝑘}

For non-degenerate 𝜙 the map (.)⊥ is an automorphism on Sub(𝑉 ), such that

for any integer 0 ≤ 𝑘 ≤ 𝑛 the following induced restriction map is a bijection.

Sub(𝑉 ) Sub(𝑉 )

Sub𝑘(𝑉 ) Sub𝑛−𝑘(𝑉 )

(.)⊥

𝑖 𝑟
1:1
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As 𝒫 ⊂ 𝒫⊥⊥, we know that on subspaces (.)⊥ is it's own inverse A direct

consequence is that for subspace 𝒳 , dim𝒳+ dim𝒳⊥ = dim𝑉 . This will be

illustrated by the following example:

Example 10: Take a line (1 dimensional subspace), ℒ in 𝑉 , and any

non-zero element 𝑙 ∈ ℒ. Then ℒ=span{𝑙}. Given a basis for 𝑉 , we can

take matrix 𝐴 representing 𝜙, giving:

ℒ⊥ = 𝑙⊥

= {𝑥 ∈ 𝑉 : 𝑙𝑇𝐴𝑥 = 0}

As 𝜙 is non-degenerate 𝑙𝑇𝐴 is non-zero, hence ℒ⊥ is the zero set of a single

linear polynomial, a hyperplane (of dimension 𝑛− 1). In a 𝑘 dimensional

subspace 𝒦 we can take 𝑘 linearly independent generators, 𝑙𝑖. Let ℒ𝑖 be
the span of 𝑙𝑖.

𝒦 = (span{𝑙𝑖}𝑖)
⇒ ∀𝑗 : 𝒦 ⊃ ℒ𝑗
⇒ 𝒦⊥ ⊂ ∩𝑘𝑖=1ℒ⊥

𝑖

As 𝜙 is non-degenerate, and the 𝑙𝑖 are independent, this is the zero set of

𝑘 independent, linear polynomials, and hence 𝑛− 𝑘 dimensional.

Definition 25. In the projective space P = P(𝑉 ), we de�ne the orthogonal

complement, 𝜉⊥, of an element 𝜉 ∈ P as the image under 𝑞 : 𝑉 → P of the

orthogonal complement of (𝑞−1(𝜉))⊥ ⊂ 𝑉 . Using notation from corollary 28,

the orthogonal complement is de�ned as the induced map:

Sub(P) Sub(P)

Sub(𝑉 ) Sub(𝑉 )

𝑞−1 𝑞
(.)⊥

Example 11: Let 𝜉 = [𝑥0 : ... : 𝑥𝑛] in homogeneous coordinates on P(𝑉 ).

Then 𝑞−1(𝜉) is the line given by {𝜆 · 𝑥 : 𝑥 = (𝑥0, ..., 𝑥𝑛) ∈ 𝑉, 𝜆 ∈ 𝑘}. This
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is the span of 𝑥, therefore 𝜉⊥ = 𝑞(𝑥⊥). As 𝑉 is 𝑛+ 1 dimensional, 𝑥⊥ has

dimension 𝑛, hence 𝜉⊥ has dimension 𝑛− 1 in P(𝑉 ).

Properties:

� The orthogonal complement in P(𝑉 ) is a projective subspace.

� We know that if 𝒳 is a 𝑘−dimensional (projective) subspace of an

𝑛−dimensional P = P(𝑉 ), 𝑞−1(𝒳 ) has dimension 𝑘 + 1 in 𝑉 , hence, in

terms of corollary 28, the following diagram commutes:

Sub(𝑉 ) Sub(𝑉 )

Sub𝑘+1(𝑉 ) Sub𝑛−𝑘(𝑉 )

Sub(P) Sub(P)

Sub𝑘(P) Sub𝑛−𝑘−1(P)

(.)⊥

1:1

1:1

In particular, in the projective space there is a bijection between points

and hyperplanes.

A.5 Quadratic forms and Quadrics

Definition 26. A symmetric bilinear form 𝜙 induces a quadratic form 𝑄 :

𝑉 → 𝑘 by 𝑄(𝑥) = 𝜙(𝑥, 𝑥). Using a basis for 𝑉 , this can be viewed as 𝑥𝑇𝐴𝑥

for some symmetric matrix 𝐴.

Remark. 𝑄 is a homogeneous polynomial, therefore the composition with

𝑞−1 : P(𝑉 ) → 𝑉 is well-de�ned on the zero set, allowing us to de�ne a subset

{𝜉 ∈ P(𝑉 ) : 𝑄(𝑞−1(𝜉)) = 0}.

Note: 𝑄 ∘ 𝑞−1 is not everywhere well-de�ned as a function P(𝑉 ) → 𝑘.

Take for example 𝑝 ∈ 𝑉 such that 𝑄(𝑝) ̸= 0 (note that if 𝑄 is nonzero,
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we can). 𝑞−1(𝑞(𝑝)) = {𝑎𝑝 : 𝑎 ∈ 𝑘×}. If 𝑎 ∈ 𝑘× such that 𝑎2 ̸= 1 then

𝑄(𝑎𝑝) ̸= 𝑄(𝑝).

Example 12: As 𝑄 is of degree 2, for any 𝑎 ∈ 𝑘: 𝑄(𝑎𝑥) = 𝑎2𝑄(𝑥).

Therefore if 𝑘 = R (where squares are positive), in addition to the zero

set, also the sign of the form is preserved. This allows us to subdivide P𝑛

into:

𝑄<0 = {𝑦 ∈ P𝑛 : 𝑦 = 𝑞(𝑥), 𝑄(𝑥) < 0}
𝑄0 = {𝑦 ∈ P𝑛 : 𝑦 = 𝑞(𝑥), 𝑄(𝑥) = 0}
𝑄>0 = {𝑦 ∈ P𝑛 : 𝑦 = 𝑞(𝑥), 𝑄(𝑥) > 0}

Classically, based on relativity, these are know as timelike, lightlike and

spacelike points respectively. Note that the inde�nite orthogonal trans-

formations on R𝑛+1 respect this decomposition.

Definition 27. A quadric 𝒞𝑄 in P(𝑉 ) is the image under 𝑞 : 𝑉 ′ → P(𝑉 ) of

the zero set of a quadratic form 𝑄. A quadric is degenerate if the underlying

bilinear form is degenerate, or equivalently, if the corresponding matrix is

singular.

𝒞𝑄 = {𝜉 ∈ P(𝑉 ) : 𝑄(𝑦) = 0∀𝑦 ∈ 𝑞−1(𝜉)}

Remark. As a quadric can also be directly inferred from a bilinear form 𝜙

(such that 𝑄(𝑥) = 𝜙(𝑥, 𝑥)) or a representing matrix 𝐴 (such that 𝑄(𝑥) =

𝑥𝑇𝐴𝑥), we will sometimes write 𝒞𝜙 and 𝒞𝐴 for the same quadric.

Similar to the de�nition of projective transformations, scalar multiplica-

tion results in the same quadric. Recall that the 𝑘−vector space of 𝑛 × 𝑛,

symmetric matrices was called Sym(𝑉 ) and was isomorphic to the space of

symmetric bilinear forms. Therefore we have an isomorphism 𝜑:

{Symmetric bilinear forms} Sym(𝑉 )

{Quadrics in P(𝑉 )} PSym(𝑉 )

𝑞𝑍

𝜑
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Where PSym(𝑉 ) is de�ned to be:

PSym(𝑉 ) = Sym(𝑉 )�𝑍 = P(Sym(𝑉 ))

The upper diagonal block of a symmetric matrix contains all of its in-

formation, therefore Sym(𝑉 ) has 𝑘−dimension 𝑛(𝑛+ 1)/2, and therefore (as

a vector space) PSym(𝑉 ) is isomorphic to the 𝑘−vector space P(𝑘𝑛(𝑛+1)/2).

Example 13: A conic in R2 is given as the zero set of a quadratic poly-

nomial in 𝑘[𝑥, 𝑦]. This can be homogenized to a homogeneous polynomial

in 3 variables over P3. Using the de�nition we can view conics as points

in P(R6) by taking:

{Quadrics in P3} → PSym(R3)

𝐴𝑥2 +𝐵𝑦2 + 𝐶𝑧2

+2𝐷𝑥𝑦 + 2𝐸𝑥𝑧 + 2𝐹𝑦𝑧 = 0
↦→ R×

⎛⎜⎜⎝
𝐴 𝐷 𝐸

𝐷 𝐵 𝐹

𝐸 𝐹 𝐶

⎞⎟⎟⎠
A degenerate conic in P3 is either a line or a pair of lines and is given by:

0 = (𝑎𝑥+ 𝑏𝑦 + 𝑐𝑧)(𝑎′𝑥+ 𝑏′𝑦 + 𝑐′𝑧)

= 𝑎𝑎′𝑥2 + 𝑏𝑏′𝑦2 + 𝑐𝑐′𝑧2 + (𝑎𝑏′ + 𝑏𝑎′)𝑥𝑦 + (𝑎𝑐′ + 𝑐𝑎′)𝑥𝑧 + (𝑏𝑐′ + 𝑐𝑏′)𝑦𝑧

And indeed:

det

⎛⎜⎜⎝
2𝑎𝑎′ 𝑎𝑏′ + 𝑏𝑎′ 𝑎𝑐′ + 𝑐𝑎′

𝑎𝑏′ + 𝑏𝑎′ 2𝑏𝑏′ 𝑏𝑐′ + 𝑐𝑏′

𝑎𝑐′ + 𝑐𝑎′ 𝑏𝑐′ + 𝑐𝑏′ 2𝑐𝑐′

⎞⎟⎟⎠ = 0

Example 14: A sphere in 𝑘𝑛 with radius 𝑏 and centre (𝑎1, ..., 𝑎𝑛), can be

homogenized to a quadric in P(𝑘𝑛+1), and is represented by the following
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in P(𝑘(𝑛+1)(𝑛+2)/2)

∑︀𝑛
𝑖=1(𝑥𝑖 − 𝑎𝑖𝑥0)

2 = 𝑏2𝑥20 ↦→ 𝑘×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏2 +
∑︀
𝑎2𝑖 𝑎1 𝑎2 · · · 𝑎𝑛

𝑎1 −1 0 · · · 0

𝑎2 0 −1 · · · 0
...

...
. . .

...

𝑎𝑛 0 0 · · · −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
↦→ 𝑞

(︀
𝑏2 +

∑︀
𝑎2𝑖 ,−1, ..,−1⏟  ⏞  

𝑛

, 𝑎1, ..., 𝑎𝑛, 0, ..., 0⏟  ⏞  
𝑛(𝑛−1)/2

)︀

Definition 28. A pencil of quadrics is a one-parameter set of quadrics in

P(𝑉 ) represented by a projective line in PSym(𝑉 ) ∼= P(𝑘𝑛(𝑛+1)/2).

Pencils of quadrics have a few useful properties:

Properties:

� A pencil is fully determined by 2 quadrics, as a projective line is.

� Take two di�erent quadrics 𝒞𝐴, 𝒞𝐵 ⊂ P(𝑉 ). Using the fact that the

span and a�ne hull project to the same projective subspace (see lemma

25), we can write the pencil as 𝒞𝑠𝐴+𝑡𝐵, where not both 𝑠 = 0, 𝑡 = 0, .

Without loss of generality we can take 𝑠, 𝑡 such that (𝑠 : 𝑡) ∈ 𝑃 (𝑘2).

This is the `one parameter' from the de�nition.

� For any quadric on the pencil determined by 𝒞𝐴 and 𝒞𝐵, we know

𝑥𝑇 (𝑠𝐴 + 𝑡𝐵)𝑥 = 𝑠𝑥𝑇𝐴𝑥 + 𝑡𝑥𝑇𝐵𝑥. Therefore all quadrics in the pencil

contain 𝒞𝐴 ∩ 𝒞𝐵. As a simple result using symmetry, any two di�erent

quadrics in a pencil have the same intersection.

Lemma 29. The subset 𝑇𝜉 ⊂ PSym(𝑉 ) of quadrics containing a certain

point 𝜉 ∈ P(𝑉 ) is a hyperplane.
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Proof. We know:

𝜉 ∈ 𝒞𝐵 ⇔ ∀𝑥 ∈ 𝑞−1(𝜉) : 𝑥𝑇𝐵𝑥 = 0

⇔ ∃𝑥 ̸= 0 ∈ 𝑞−1(𝜉) : 𝑥𝑇𝐵𝑥 = 0

Therefore the set of all quadrics containing 𝜉 are represented by matrices

𝑀 = (𝑚𝑖𝑗) such that the condition
∑︀
𝑚𝑖𝑗𝑥𝑖𝑥𝑗 = 0 holds. As this is simply a

degree 1 polynomial on the elements of matrix 𝑀 it de�nes hyperplane.

Example 15: A well known classical result in geometry is the fact that

5 points `in general position' fully determine a conic in P(R3). In fact, 4

of these points determine a pencil of conics. This can be seen by simply

intersecting codimension 1 subspaces in P(R6). If we denote the line

through 𝑥, 𝑦 as 𝐿𝑥𝑦, given four points 𝑎, 𝑏, 𝑐, 𝑑, we can simply take two of

the (degenerate) quadrics 𝐿𝑎𝑏𝐿𝑐𝑑, 𝐿𝑎𝑐𝐿𝑏𝑑 or 𝐿𝑎𝑑𝐿𝑏𝑐 as generators.
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B Matrix forms of 𝑄𝑠(𝜉)

Let 𝜉 = [𝑎0 : . . . : 𝑎𝑛+1] and 𝜎 = [𝑠 : 𝑡], then the map sending a quadric to

it's corresponding projective, symmetric matrix is well de�ned if 𝑠 ̸= 0 or

𝑎0 + 𝑎1 ̸= 0 (the case that both are zero corresponds to the zero matrix and

is not a quadric), and maps:

𝑄𝜎(𝜉) ↦→⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑠(𝑎1 − 𝑎0)− 𝑡(𝑎1 + 𝑎0) 𝑠(𝑎1 − 𝑎0) 𝑠𝑎2 · · · 𝑠𝑎𝑛+1

𝑠(𝑎1 − 𝑎0) 𝑠(𝑎1 − 𝑎0) + 𝑡(𝑎1 + 𝑎0) 𝑠𝑎2 · · · 𝑠𝑎𝑛+1

𝑠𝑎2 𝑠𝑎2 (𝑡− 𝑠)(𝑎0 + 𝑎1) · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

𝑠𝑎𝑛+1 𝑠𝑎𝑛+1 0 · · · (𝑡− 𝑠)(𝑎0 + 𝑎1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑄0(𝜉) ↦→⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(𝑎0 + 𝑎1) 0 0 · · · 0

0 (𝑎0 + 𝑎1) 0 · · · 0

0 0 (𝑎0 + 𝑎1) · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 0 · · · (𝑎0 + 𝑎1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑄1(𝜉) ↦→⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2𝑎0 𝑎1 − 𝑎0 𝑎2 · · · 𝑎𝑛+1

𝑎1 − 𝑎0 2𝑎1 𝑎2 · · · 𝑎𝑛+1

𝑎2 𝑎2 0 · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

𝑎𝑛+1 𝑎𝑛+1 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑄∞(𝜉) ↦→⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1 − 𝑎0 𝑎1 − 𝑎0 𝑎2 · · · 𝑎𝑛+1

𝑎1 − 𝑎0 𝑎1 − 𝑎0 𝑎2 · · · 𝑎𝑛+1

𝑎2 𝑎2 (𝑎0 + 𝑎1) · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

𝑎𝑛+1 𝑎𝑛+1 0 · · · (𝑎0 + 𝑎1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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