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Abstract

A certain class of dynamical systems, which contain fixed points con-
nected by homoclinic or heteroclinic orbits can show chaotic dynamics
when subjected to a time periodic perturbation. Melnikov developed a
method to predict such behaviour based on the Melnikov function whose
zeros correspond to transversal intersections implying chaotic dynamics.
The method is described and applied to two cases of the Duffing oscillator.
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1 INTRODUCTION

1 Introduction

For a certain class of dynamical systems having one or more hyperbolic equilib-
rium points connected to itself by some homoclinic or heteroclinic orbit we see
a splitting of solution regimes under time periodic perturbation, i.e. the stable
and unstable manifolds no long coincide. It is shown that this ’breaking up’ of
the manifolds can give rise to transversal intersections between them. It was
shown by Moser [2] that such intersections give rise to chaotic behaviour in the
system. For systems having a hyperbolic fixed point connected to itself by the
separatix solution Melnikov developed a method to predict the occurrence of
such chaotic behaviour.

In this thesis we will describe the derivation of the homoclinic Melnikov function
following Wiggins [3]. After the derivation we will be looking at two different
cases of the Duffing oscillator: an inverted Duffing oscillator and a soft spring
Duffing oscillator respectively. Using the Melnikov function as we have derived
it allows us to find zeros of the function which correspond to transversal inter-
sections of the stable and unstable manifold which in turn prove the existence
of chaotic behaviour in the system. After computing the threshold curves of the
parameters for such behaviour to occur we will check these results numerically.
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2 MELNIKOV’S METHOD

2 Melnikov’s Method

In the following section we will be describing a method for proving the existence
of transverse intersections and therefore chaotic dynamics in time periodically
perturbed dynamic systems. The discussion of the method will closely follow
Wiggins [3].

2.1 Preliminaries

We will be considering systems of the form

ẋ =
∂H

∂y
(x, y) + εf1(x, y, t, ε)

ẏ = − ∂H

∂x
(x, y) + εf2(x, y, t, ε), (x, y) ∈ R2.

(2.1)

Setting q = (x, y), DH = (∂H∂x ,
∂H
∂y ), f = (f1, f2) and J =

(
0 1
−1 0

)
we can

rewrite this as

q̇ = JDH(q) + εf(q, t, ε). (2.2)

We assume Cr, r > 2 differentiability for H and f and we assume that that f
is time periodic with period T = 2π

ω .

When setting ε = 0 the system becomes Hamiltonian. Note that Melnikov’s
method does not require the system to be Hamiltonian. It does however simplify
things and for our purposes it is sufficient to look at the Hamiltonian case. In
order for our derivation to work out we do have to make some other assumptions
on the system.

Still considering ε = 0 we firstly assume the system to have a hyperbolic equi-
librium point p0, connected to itself by a homoclinic orbit. For the orbit we
write q0(t) = (x0(t), y0(t)).

Figure 1: General structure of the system.
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2 MELNIKOV’S METHOD

Figure 2: Structure of the autonomous system.

Secondly let the union of the stable and unstable solution set and p0 be Γp0 , i.e.

Γp0 = {q ∈ R2 | q = q0(t), t ∈ R} ∪ {p0} = W s(p0) ∩Wu(p0) ∪ {p0} (2.3)

Then the interior of Γp0 contains a continuous family of peroidic orbits qα(t)
with period Tα, α ∈ (0, 1). We assume that limα→0 q

α(t) = q0(t), and that
limα→0 T

α =∞.

It is clear that (2.1) is time dependent. We want to rewrite it as an autonomous
three dimensional system by introducing a new time variable φ such that φ̇ = ω,
resulting in

ẋ =
∂H

∂y
(x, y) + εf1(x, y, φ, ε),

ẏ = − ∂H

∂x
(x, y) + εf2(x, y, φ, ε),

φ̇ = ω,

(2.4)

or following (2.2)

q̇ = JDH(q) + εf(q, φ, ε),

φ̇ = ω.
(2.5)

As a consequence of this the fixed point p0 becomes a periodic orbit (ε = 0).
We denote this orbit as

γ(t) = (p0, φ(t) = ωt+ φ0) (2.6)

This gives rise to a set of stable and unstable manifolds which can be expressed
in term of γ(t). We denote these two dimensional manifolds as W s(γ(t)) and
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2 MELNIKOV’S METHOD

Figure 3: Visualisation of πp

Wu(γ(t)) which coincide along a two-dimensional homoclinic manifold. We
denote this manifold by Γγ .

Having set the field we can continue with our development of the homoclinic
Melnikov method. This can roughly be split into three parts, which we will
discuss in the following three sections. Firstly we will develop a parametrisation
for the homoclinic manifold of the unperturbed system. Then we will find a
method for measuring the distance between the split perturbed manifolds which
will eventually allow us to derive the Melnikov function.

2.2 Parametrisation

Considering the unperturbed homoclinic orbit q0 we note that the time of flight
to any point on q0 from p0 is unique. Therefore any point can be uniquely
written as q0(−t0) where t0 is the time of flight from q0(t0) to q0(0) along
q0. Looking at cross-sections φ0 ∈ (0, 2π] allows us to represent any point on
Γγ as (q0(−t0), φ0). As every point on q0 has a unique time of flight a map
(t0, φ0)→ (q0(−t0), φ0) is clearly bijective and as a result we can write

Γγ = {(q, φ) ∈ R2 × S1 | q = q0(−t0), t0 ∈ R1;φ = φ0 ∈ (0, 2π]}. (2.7)

Now our goal is to find a measure for the distance between the stable and
unstable manifold. In order to achieve this we first define a vector at each point
p := (q0(−t0), φ0) ∈ Γγ as

πp =

(
∂H

∂x
(x0(−t0), y0(−t0)),

∂H

∂y
(x0(−t0), y0(−t0)), 0

)
. (2.8)

Note that the stable and unstable manifold intersect our vector πp transversely
at p.
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2 MELNIKOV’S METHOD

2.3 Finding a Measure for the Distance Between the Un-
stable and Stable Manifolds

In order to be able to give a measure for the distance between the manifolds
due to the perturbation we first need some preliminary results concerning the
behaviour of the system under perturbation. The following proposition is given
regarding the persistence of γ(t) under perturbation.

Proposition 1. For sufficiently small ε, γ(t) will persist as a periodic orbit of
the form γε(t) = γ(t) +O(ε). γε(t) has the same stability type as γ(t) with γε(t)
depending on ε in a Cr manner. Also, considering the local (within some O(ε)
region) manifolds, W s

loc(γε(t)) and Wu
loc(γε(t)) are Cr ε-close to W s

loc(γ(t)) and
Wu
loc(γ(t)), respectively.

The proof of this proposition can be found in [1] and is omitted in this thesis.
In order to find the global stable and unstable manifold under perturbation
we consider the time evolution of local manifolds. We write φt(.) for the flow
generated by the system (2.5). The global stable and unstable manifold can
than be defined

W s(γε(t)) =
⋃
t≤0

φt(W
s
loc(γε(t)),

Wu(γε(t)) =
⋃
t≥0

φt(W
u
loc(γε(t)).

(2.9)

We note that φt(.) is a diffeomorphism which is Cr in ε. Now if we restrict
ourselves to compact sets in R2 × S1 containing Wu,s(γε(t)), then Wu,s(γε(t))
are Cr functions of ε on these compact sets. When studying how the manifolds
break up under perturbation we will restrict our self to a O(ε) neighbourhood
of Γγ .

Now let us look at Proposition 1 again and give a more quantitative description
of its meaning. It states that for some small ε = ε0 we can define a neighbour-
hood N (ε0) that contains γ(t) such that γ(t) is at a O(ε0) distance from the
boundary of this neighbourhood. As previously stated γε(t) = γ(t) + O(ε)
and therefore γε(t) is contained in N (ε0) for 0 < ε < ε0. We also define
Wu,s
loc (γ(t)) := Wu,s(γ(t))∩N (ε0) and see that this is Cr ε-close to Wu,s

loc (γε(t)).
For our neighbourhood N we choose a solid torus

N (ε0) = {(q, φ) ∈ R2| |q − p0| ≤ Cε0, φ ∈ (0, 2π]} (2.10)

for some positive constant C.

For many of the following arguments it is sufficient to look at a cross-section of
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2 MELNIKOV’S METHOD

Γγ with a surface of section defined as

Σφ0 = {(q, φ) ∈ R2|φ = φ0}. (2.11)

The intersection of Γγ with Σφ0 clearly becomes our original unperturbed orbit
Γp0 , independently of a choice of φ0. This is due to the fact that our unper-
turbed system is independent of φ. In the following step we will be looking
at projections onto the Σφ0 plane of trajectories of the unperturbed and the
perturbed system. We denote these as

(q0(t), φ0), (2.12)

(qε(t), φ0) (2.13)

respectively. Note that as (qε(t), φ0) is time dependent we do not know the
shape of its trajectory. We will now define a measure for the distance between
the manifolds as follows. By the definition of πp at any point p ∈ Γγ the
unperturbed stable and unstable manifold intersect πp transversely. As we have
shown that the perturbed stable and unstable manifolds are Cr in ε we know that
for sufficiently small ε they will intersect πp. We call the points of intersection
psε and puε for the stable and unstable manifold respectively. We can then write

d(p, ε) := |puε − psε | (2.14)

for an unsigned measure of the distance. As a signed measure will be useful in
determining the orientations at which the manifolds will fold around each other
we will rewrite this as

d(p, ε) =
(puε − psε) · (DH(q0(−t0)), 0)

||DH(q0(−t0))||
. (2.15)

Now as we do not know the behaviour of the perturbed trajectory it may inter-
sect πp multiple (infinitely many) times. This raises the question which point
we should pick for our calculations. We use the following definition.

Definition 1. Let psε,i ∈W s(γ(t))∩πp and puε,i ∈Wu(γ(t))∩πp for the unstable
manifold with i ∈ I for some indexing set I. Let qs,uε,i (t), φ(t)) ∈W s,u(γε(t)) be
orbits of the perturbed vector field satisfying qs,uε,i (0), φ(0)) = ps,uε,i respectively.
Then

1. For some i = ī ∈ I we call pε, ī
s closest to γε(t) in terms of positive time of

flight along the stable perturbed vector field if for all t > 0, (qsε,i, φ0)∩πp =
∅.

2. For some i = ī ∈ I we call pε, ī
u closest to γε(t) in terms of positive

time of flight along the unstable perturbed vector field if for all t < 0,
(quε,i, φ0) ∩ πp = ∅.
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2 MELNIKOV’S METHOD

This gives us our desired points to measure from. As ps,uε are the intersections
of their respective orbits with our vector πp for some value φ0 we can rewrite
(2.15) as

d(t, φ0, ε) =
DH(q0(−t0)) · (quε − qsε )
||DH(q0(−t0))||

. (2.16)

Now we have chosen our points of measurements according to definition 1 but
we have not discussed the motivation behind this choice. We explain this by
proving the following lemma.

Lemma 1. Let ps
ε,̄i

be a point on the stable manifold intersecting πp that is not

closest to γε(t) according to definition 1 and let N (ε0) denote the neighbourhood
containing γ(ε)(t) defined in (2.10). Let (qε,̄i(t), φ(t)) be a trajectory of the
perturbed stable manifold such that the trajectory is at ps

ε,̄i
for t = 0. Then

for sufficiently small ε the orbit must pass through N (ε0) before it can intersect
πp again (for t > 0).

Note that this lemma considers the stable manifold but it can be proved in
an analogous fashion for the unstable manifold. First consider an arbitrary
point (qs0, φ0) on W s(γ(t))∩N (ε0) and consider an orbit (qs0(t), φ(t)) such that
(qs0(0), φ(0)) = (qs0, φ0). Then for some finite time T s the orbit will reenter
N (ε0). We will now consider a point of the perturbed manifold (qsε , φ0) ∈
W s
loc(yε(t)) ∩ N (ε0), with its corresponding trajecotry (qsε (t), φ(t)) ∈ W s(γε(t))

such that (qsε (0), φ(0)) = (qsε , φ0). Then

|(qsε (t), φ(t)− (qs0(t), φ(t)))| = O(ε) (2.17)

for 0 ≤ t ≤ ∞ and according to Gronwall’s inequality

|(qsε (t), φ(t)− (qs0(t), φ(t)))| = O(ε) (2.18)

for T s ≤ t ≤ ∞. So the perturbed orbit must follow the unperturbed orbit O(ε)
close until it reenters N (ε0). Now another possibility for multiple intersections
with πp would be the development of kinks in the trajectory which could allow
for multiple intersections while remaining ε-close to the unperturbed orbit. To
show that this will not happen we consider the tangent vector of the perturbed
and unperturbed trajectories will also stay O(ε0) close for T s ≤ t ≤ ∞. To see
this note that (2.18) can be interpreted as

(qsε (t), φ(t)) = (qs0(t) +O(ε), φ(t)). (2.19)

So we get a tangent vector

q̇sε = JDH(qsε ) + εf(qsε , φ(t)),

φ̇ = ω.
(2.20)
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2 MELNIKOV’S METHOD

If we substitute (2.19) into (2.20) and taking a Taylor expansion over ε yields

q̇sε = JDH(qs0) +O(ε),

φ̇ = ω.
(2.21)

Similarly for tangent vectors of the unperturbed are given as

q̇s0 = JDH(qs0),

φ = ω̇
(2.22)

which is clearly O(ε) close to (2.21). So multiple intersections due to kinks can
not occur for ε small enough.

2.4 Derivation of the Melnikov Function

Having defined a function for measuring the distance between the manifolds we
are now going to work towards an actually computable Melnikov function. We
start by taking a taylor expansion over (2.16) for ε = 0:

d(t0, φ0, ε) = d(t0, φ0, 0) + ε
∂d

∂ε
(t0, φ0, 0) +O(ε2). (2.23)

Now d(t0, φ0, 0) is the distance of the manifolds for ε = 0, which evidently equals
0, and

∂d

∂ε
(t0, φ0, 0) =

DH(q0(−t0)) · (∂q
u
ε

∂ε |ε=0 − ∂qsε
∂ε |ε=0)

||DH(q0(−t0))||
. (2.24)

We can now define the Melnikov functions as follows

M(t0, φ0) ≡ DH(q0(−t0)) ·
(
∂quε
∂ε
|ε=0 −

∂qsε
∂ε
|ε=0

)
. (2.25)

The first step towards computing a computable expression for M(t0, φ0) we first
define a time dependent version of the Melnikov function

M(t; t0, φ0) ≡ DH(q0(−t0)) ·
(
∂quε (t)

∂ε
|ε=0 −

∂qsε (t)

∂ε
|ε=0

)
(2.26)

where qu,sε (t) satisfy qu,sε (0) = qu,sε respectively and therefore M(0; t0, φ0) =
M(t0, φ0). Now in order to be able to keep the manipulations which will follow
shortly somewhat readable we want to define some notations first. We set

∂qu,sε (t)

∂ε
|ε=0 ≡ qu,s1 (t)
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2 MELNIKOV’S METHOD

and
∆u,s(t) ≡ DH(q0(t− t0)) · qu,s1 (t). (2.27)

The Melnikov function can then be written as

M(t; t0, φ0) = ∆u(t)−∆s(t). (2.28)

We take the derivative of (2.27) with respect to t

d

dt
(∆u,s(t)) =

(
d

dt
(DH(q0(t− t0)))

)
· qu,s1 (t)

+DH(q0(t− t0)) · d
dt
qu,s1 (t).

(2.29)

We will now do some further investigation on the d
dtq

u,s
1 (t) term. Recall that

we have previously defined

qu,s1 (t) =
∂qu,sε (t)

∂ε ε=0
.

Now as qu,sε solves equation (2.2) we can write

d

dt
(qu,sε (t)) = JDH(qu,sε (t)) + εg(qu,sε (t), φ(t), ε). (2.30)

Differentiating this with respect to ε and switching the order of differentiation
gives us

d

dt

(
∂qu,sε (t)

∂ε
|ε=0

)
=JD2H(q0(t− t0))

∂qu,sε (t)

∂ε
|ε=0

+ g(q0(t− t0), φ(t), 0).

(2.31)

Or in terms of q1 we get

d

dt
qu,s1 = JD2H(q0(t− t0))qu,s1 (t) + g(q0(t− t0), φ(t), 0). (2.32)

Substituting (2.32) into (2.29) yields

d

dt
(∆u,s(t)) =

(
d

dt
(DH(q0(t− t0)))

)
· qu,s1 (t)

+DH(q0(t− t0)) · JD2H(q0(t− t0))qu,s1 (t)

+DH(q0(t− t0)) · g(q0(t− t0), φ(t), 0).

(2.33)
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2 MELNIKOV’S METHOD

Now this could hardly be called a simplification of matters if it were not for the
following very convenient result(

d

dt
(DH(q0(t− t0)))

)
· qu,s1 (t)

+DH(q0(t− t0)) · JD2H(q0(t− t0))qu,s1 (t) = 0.

(2.34)

In order to prove (2.34) we first note that

d

dt
(DH(q0(t− t0))) = D2H(q0(t− t0))q̇0(t− t0)

= (D2H(q0(t− t0)))(JDH(q0(t− t0))).
(2.35)

Now if we let qu,s1 (t) = (xu,s1 (t), yu,s1 (t)). We then get

(D2H)(JDH) · qu,s1 =

(
∂2H
∂x2

∂2H
∂x∂y

∂2H
∂x∂y

∂2H
∂y2

)( ∂H
∂y

−∂H∂x

)
·
(
xu,s1

yu,s1

)
= xu,s1

[∂2H

∂x2

∂H

∂y
− ∂2H

∂x∂y

∂H

∂x

]
+ yu,s1

[ ∂2H

∂x∂y

∂H

∂y
− ∂2H

∂y2

∂H

∂x

]
(2.36)

and

DH · (JD2H)qu,s1 =

(∂H
∂x
∂H
∂y

)
·

(
∂2H
∂x∂y

∂2H
∂y2

−∂
2H
∂x2

∂2H
∂x∂y

)(
xu,s1

yu,s1

)
= xu,s1

[ ∂2H

∂x∂y

∂H

∂x
− ∂2H

∂x2

∂H

∂y

]
+ yu,s1

[∂2H

∂y2

∂H

∂x
− ∂2H

∂x∂y

∂H

∂y

]
(2.37)

and we get the desired result. Therefore we can write

d

dt
(∆u,s(t)) = DH(q0(t− t0)) · g(q0(t− t0), φ(t), 0). (2.38)

Now noting that the unstable orbit solves the system for t ∈ [−∞, 0] and the
stable orbit solves the system for t ∈ (0,∞) we integrate ∆u(t) and ∆s(t) from
−τ to 0 and 0 to τ respectively, giving

∆u(0)−∆u(−τ) =

∫ 0

−τ
DH(q0(t− t0)) · g(q0(t− t0), ωt+ φ0, 0)dt (2.39)
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and

∆s(τ)−∆s(0) =

∫ τ

0

DH(q0(t− t0)) · g(q0(t− t0), ωt+ φ0, 0)dt. (2.40)

Adding up (2.39) and (2.40) and recalling that

M(t0, φ0) = M(0; t0, φ0) = ∆u(0)−∆s(0)

gives

M(t0, φ0) =

∫ τ

−τ
DH(q0(t− t0)) · g(q0(t− t0), ωt+ φ0, 0)dt+ ∆s(τ)−∆u(−τ).

(2.41)

Next we want to consider the limit of (2.41) as τ →∞. In order to do this we
first want to show that

lim
τ→∞

∆s(τ) = lim
τ→∞

∆u(−τ) = 0. (2.42)

To prove this we recall that

∆u,s = DH(q0(t− t0)) · qu,s1 (t).

Let us consider the unstable manifold first. As q0(t − t0) goes to a hyperbolic
fixed point DH(q0(t− t0)) goes to zero. Now as t→∞ quε (t) approaches γε. So

lim
t→∞

qu1 (t) =
∂quε (t)

∂ε
|ε=0 →

∂γuε (t)

∂ε
|ε=0.

As γε(t) = γ(t) +O(ε) we know that it is bounded. And thus (2.42) holds. Also
as we have just reasoned that DH(q0(t− t0)) approached zero for t→ ±∞ and
as g is a bounded function we know that∫ ∞

−∞
DH(q0(t− t0)) · g(q0(t− t0), ωt+ φ0, 0)dt

converges absolutely. Transforming t→ t+ t0 allows us to write

M(t0, φ0) =

∫ ∞
−∞

DH(q0(t)) · g(q0(t), ωt+ ωt0 + φ0, 0)dt. (2.43)

Having found our integral all that remains for us to do is to show that its zeros
correspond to transversal intersections of the manifolds. As g is periodic we
know M(t0, φ0) is periodic in t0 and in φ0, with period 2π/ω and 2π respectively.
Thus varying t0 and φ0 has the same effect. It follows from this periodicity and
(2.43) that

∂M

∂φ0
(t0, φ0) =

1

ω

∂M

∂t0
(t0, φ0); (2.44)

and therefore ∂M
∂t0

= 0 iff ∂M
∂φ0

= 0 and the following theorem can be stated in

terms of either one. We will choose to do so in terms of ∂M
∂t0

.

Gerjan Wielink 12/23 University of Groningen



2 MELNIKOV’S METHOD

Theorem 1. Suppose we have a point (t0, φ0) = (t̄0, φ̄0) such that

1. M(t̄0, φ̄0) = 0 and

2. ∂M
∂t0
|(t̄0,φ̄0) 6= 0.

Then for ε sufficiently small, W s(γε(t)) and Wu(γε(t)) intersect transversely at
q0(−t̄0) +O(ε), φ̄0). Moreover, if M(t0, φ0) 6= 0 for all (t0, φ0) ∈ R1 × S1, then
W s(γε(t)) ∪Wu(γε(t)) = ∅.

In order to prove this, recall from (2.23), (2.24) and (2.25) that we have

d(t0, φ0, ε) = ε
M(t0, φ0)

||DH(q0(−t0))||
+O(ε2). (2.45)

Defining d̄(t0, φ0, ε) = εd(t0, φ0, ε) we get

d̄(t0, φ0, ε) =
M(t0, φ0)

||DH(q0(−t0))||
+O(ε) (2.46)

and clearly if d̄(t0, φ0, ε) = 0 then d(t0, φ0, ε) = 0. And we can continue on with
d̄. At the point (t̄0, φ̄0, 0) the assumption that M(t̄0, φ̄0) = 0 clearly implies
d̄(t̄0, φ̄0, 0) = 0. From the second assumption of the theorem we get

∂d̄

∂t0
|(t̄0,φ̄0,0) =

1

||DH(q0(−t̄0))||
∂M

∂t0
|(t̄0,φ̄0) 6= 0.

From the implicit function we now conclude that for |φ− φ0| and ε sufficiently
small there exists a function

t0 = t0(φ0, ε)

s.t.
d̄(t0(φ0, ε), φ0, ε) = 0.

So we have an intersection ofW s(γε(t)) andWu(γε(t)), O(ε) close to (q0(−t0), φ0).
Now we need to prove the transversality of the intersection in order for us to be
able to apply Moser’s theorem. Suppose W s(γε(t)) and Wu(γε(t)) intersect at
some point p, then the intersection is said to be transversal if

TpW
s(γε(t)) + TpW

u(γε(t)) = R3. (2.47)

Now quε and qsε are points on the trajectories quε (t) and qsε (t) respectively and
we have previously show that we can parametrise such points in terms of t0 and
φ0 we can write a basis for TpW

s(γε(t)) and TpW
u(γε(t)) as(

∂quε
∂t0

,
∂quε
∂φ0

)
(2.48)
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and (
∂qsε
∂t0

,
∂qsε
∂φ0

)
(2.49)

respectively. Now intersections will be tangent (thus not transversal) if either

∂quε
∂t0

=
∂qsε
∂t0

(2.50)

or
∂quε
∂φ0

=
∂qsε
∂φ0

. (2.51)

Now we have written zeros of the Melnikov function as (t̄0 +O(ε), φ̄0). Looking
at the derivative of d(t0, φ0, ε) at these points gives

∂d

∂t0
(t̄0, φ̄0, ε) =

DH(q0(−t̄0)) · ((∂quε )/(∂t0)− (∂qsε )/(∂t0))

||DH(q0(−t̄0))||

= ε
∂M/∂t0(t̄0, φ̄0)

||DH(q0(−t̄0))||
+O(ε2)

(2.52)

and

∂d

∂φ0
(t̄0, φ̄0, ε) =

DH(q0(−t̄0)) · ((∂quε )/(∂φ0)− (∂qsε )/(∂φ0))

||DH(q0(−t̄0))||

= ε
∂M/∂φ0(t̄0, φ̄0)

||DH(q0(−t̄0))||
+O(ε2).

(2.53)

So a sufficient condition for W s(γε(t)) and Wu(γε(t)) not to be tangent at p is

∂M

∂φ0
(t̄0, φ̄0) = ω

∂M

∂t0
(t̄0, φ̄0) 6= 0.

This concludes our proof and gives us all we need to apply Moser’s theorem from
which follows that transversal intersections between W s(p) and Wu(p) indicate
the system to have chaotic behaviour. The actual implementation of Moser’s
theorem is beyond the scope of this paper.
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3 Application

One of the most common examples of a nonlinear oscillation is the Duffing
oscillator. In general the Duffing oscillator can be written as

ẍ+ δẋ+ βx+ αx3 = F cosωt. (3.1)

The Duffing equation describes the oscillations of a mass attached to a nonlinear
spring and a linear damper. We get a restoring force from the nonlinear spring
which then equals βx+ αx3. The behaviour changes as α changes sign. When
α < 0, the restoring force becomes weaker than the linear spring (α = 0) as
the distance increases and the spring is called soft. In order to demonstrate the
Melnikov method we will be considering two cases of the Duffing oscillator. The
first one is given by

ẍ+ x− x3 = ε(γ cosωt− δẋ). (3.2)

This represents a soft spring Duffing oscillator. The second one we will be
looking at is given by

ẍ− x+ x3 = ε(γ cosωt− δẋ). (3.3)

representing an inverted Duffing oscillator, where the parameters are the op-
posite of the soft spring case. In both cases the forcing term and the damping
term are grouped together and represent our periodic perturbation.

3.1 The Soft Spring Duffing Oscillator

For the soft spring Duffing oscillator we can write

ẋ = y,

ẏ = −x+ x3 + ε(γ cosωt− δy).
(3.4)

Our unperturbed system (ε = 0) can be reduced to

ẍ = −x+ x3. (3.5)

We see that this system has three equilibrium points, namely (0, 0), (1, 0) and
(−1, 0). We are actually only interested in the last two. We check the stability

det(Df) =

∣∣∣∣ 0 1
3x2 − 1 0

∣∣∣∣
{(1,0),(−1,0)}

= −2
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Figure 4: Phase portrait of the soft spring Duffing oscillator.

and the eigenvalues are found as

det(Dg − λ) = 0⇒ λ = ±
√

2.

In order to find the Hamiltonian for this function we take (3.5) and multiply
both sides by ẋ. This gives us

ẍẋ+ ẋx− ẋx3 = 0

which is equivalent to
d

dt

(
1

2
ẋ2 +

1

2
x2 − 1

4
x4

)
.

So we have found a time invariant function on the state space. This is actually
the energy of our system. We write

H(x, y) =
1

2
y2 − 1

4
x4 +

1

2
x2. (3.6)

We denote values of the function H by h. For the orbit connecting our saddle
points we have H(1, 0) = H(−1, 0) = 1

4 . We will now try to find a solution for

the heteroclinic orbit connecting these equilibrium points. Substituting y = dx
dt

and H = 1
4 into (3.6) we get(

dx

dt

)2

=
1

2
− x2 +

1

2
x4

Seperating the variables and integrating on both sides yields

t =

∫
dt =

∫
dx√

1
2 − x2 + 1

2x
4

=

∫
dx√

1
2

√
1− 2x2 + x4
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3 APPLICATION

which we can reduce to

t = ±
√

2

∫
dx

(1− x2)
= ±
√

2 tanh−1 x+ t0

which we can invert to give us our desired function

x(t) = ± tanh

(
t− t0√

2

)
.

Taking the derivative of x(t) gives us y(t). Our heteroclinic orbit then becomes

q0(t)± =

(
± tanh(

t− t0√
2

),± 1√
2

sech2(
t− t0√

2
)

)
(3.7)

This gives us everything we need so compute Melnikovs function. Recall that
the Melnikov function can be written

M±(t0, φ0) =

∫ ∞
∞

DH(q±0 (t)) · g(q0(t), ω(t) + ωt0 + φ0, 0)dt. (3.8)

From (3.4) we find our perturbation functions

g(q0(t), ω, γ, δ, t, 0) = (0, γ cosωt− δy)

and from our Hamiltonian we get

DH(q0(t)) =

(
x− x3

y

)
.

Substituting this into (3.8) gives

M±(t0) =

∫ ∞
−∞

y±(t)γ cosωt− δ(y±(t))2dt. (3.9)

In order to get a somewhat cleaner notation we split the integral into two parts.
Respectively

M1 = ± γ√
2

∫ ∞
−∞

sech2

(
t− t0√

2

)
cosωtdt (3.10)

and

M2 = −δ
2

∫ ∞
−∞

sech4

(
t− t0√

2

)
dt. (3.11)

And finally evaluating both parts and adding them up gives us

M±(δ, γ, ω) = −2
√

2δ

3
±
√

2πγω csch

(
πω√

2

)
cos (ωt0 + φ0) . (3.12)
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Figure 5: Phase portrait of the inverted Duffing oscillator

3.2 The Inverted Duffing Oscillator

We slightly rewrite our system as

ẋ = y,

ẏ = x− x3 + ε(γ cosωt− δẋ)
(3.13)

We first look at the unperturbed system (i.e. ε = 0). Our system reduces to

ẋ = y,

ẏ x− x3
(3.14)

which can be reduced to
ẍ = ẏ = x− x3. (3.15)

The system has a fixed point at (0, 0). Looking at the stability we get

Det(Df) =

∣∣∣∣ 0 1
1− 3x2 0

∣∣∣∣
(0,0)

= −1 6= 0.

So our fixed point is a stable fixed point. Moreover, looking at the eigenvalues

Deg(Df − λ) = 0⇒ λ = ±1,

tells us we have a hyperbolic fixed point. Analogue to the soft spring case we
compute our Hamiltonian

H ≡ 1

2
ẋ2 − 1

2
x2 +

1

4
x4. (3.16)
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From which we can compute our homoclinic orbit (H = 0)

q±0 (t) = (±
√

2 sech(t),±
√

2 sech t tanh t) (3.17)

and our integral turns out to be equal to (3.9) with a different orbit. Once again
we split it into two parts, respectively

M1 = ±
√

2γ

∫ ∞
−∞

sech t tanh t cosωt dt

and

M2 = −2δ

∫ ∞
−∞

sech2 t tanh2 t dt.

Which we can compute and combine to get

M±(t0, φ0) = −4δ

3
±
√

2γπω sech
(πω

2

)
sin(ωt0 + φ0). (3.18)

3.3 Results

Having computed the Melnikov function for both cases we want to take the
results, look at the threshold curves for the parameters and confirm our results.
Let us recall once more that for the soft spring and the inverted Duffing oscillator
we have

MS(ω, γ, δ) = −2
√

2δ

3
±
√

2πγω csch
πω√

2
cos(ωt0 + φ0) (3.19)

MI(ω, γ, δ) = −4δ

3
±
√

2γπω sech
πω

2
sin(ωt0 + φ0) (3.20)

respectively.

In order for us to see chaotic behaviour due to transversal intersections we need
simple zeros in the Melnikov function. In order for this to happen we need the
amplitude of second part of (3.19) to be greater then the first part. So

2
√

2δ

3
<
√

2πγω csch
πω√

2
, (3.21)

4δ

3
<
√

2πγπω sech
πω

2
(3.22)

respectively.
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3.4 Numerical Verification

It is sufficient to look at ω in terms of the ratio δ
γ . This gives us the following

threshold condition for the soft spring duffing oscillator:

δ

γ
<

3πω csch πω√
2

2
(3.23)

and for the inverted duffing oscillator we find:

δ

γ
<

3πω sech πω
2

2
√

2
. (3.24)

Now in order to numerically compute the stable and unstable manifold we first
need to find the fixed point after perturbation. We do this using the Newton
method of the C Numerical Recipes library. Slightly incrementing the perturba-
tion allows us to efficiently set our initial guess. Using a point slightly above and
below the fixed point for the unstable and stable manifold respectively allows
us to find their respective eigenvectors.

Splitting the eigenvector into a certain amount of equidistant points and inte-
grating each point over one period will now give us intervals of the manifolds.
By altering the parameters of this last step (the offset of the vector and the
amount of points we split it into) we can now try to get these intervals to over-
lap. This ultimately gives us the manifolds which we can plot to check our
theoretical results.

Setting ω = 1 allow us to get a value for the ratio δ
γ for which we can perform

numerical verification. Figures (6) and (7) shows us that setting δ
γ slightly

above and below the threshold curve respectively gives us the result we would
expect. For the soft spring case the manifolds remain pretty close to each other
and even zooming in quite a bit its not easy to see if there are any intersections.
However studying the graphs closely enough does confirm our results.
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Figure 6: The Inverted Duffing Oscillator for different parameters (ω = 1)
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Figure 7: The Soft Spring Duffing Oscillator for different parameters (ω = 1)
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4 Conclusion

In the first part of this thesis we described the derivation of the Melnikov func-
tion. It is stated that zeros of the function will respond to transversal inter-
sections of stable and unstable manifolds which according to Moser’s theorem
correspond to chaotic behaviour of the system. Having derived the function
we were able to apply it to two different versions of the Duffing oscillator and
find their respective threshold curves for transversal intersections. Having found
these curves we performed numerical experiments to confirm our results.
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