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By convention there is color,
By convention sweetness,
By convention bitterness,
But in reality there are atoms and space

Democritus
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Unifying Conformal Gravity and the Standard Model of particle physics

by Karin Dirksen

This thesis is a literature study centered around the question ‘How can we use conformal in-
variance to unify the Standard Model with Gravity?’ After refreshing the Standard Model and
renormalization and regularization techniques, as well as Einstein’s theory of General Relativity,
it is explained why conformal invariance is a useful tool in the unification program. The dif-
ferences between the related concepts of ‘conformal’, ‘scale’ and ‘Weyl’ invariance are explained
and the two types of Conformal Gravity theories are introduced: Conformal Weyl gravity based
on the squared Weyl tensor and Conformal Dilaton Gravity which uses a Stückelberg trick to
turn the Einstein-Hilbert action into a conformally invariant theory. Pursuing the latter due to
unitarity concerns in the former, the Conformal Standard Model in the presence of gravity is
developed. We distinguish between two toy models, one with an unphysical scalar dilaton field
χ and one with a physical dilaton ϕ. As conformal invariant theories do not allow the explicit
presence of scales, conformal symmetry breaking is necessary to generate the scale needed for
electroweak symmetry breaking (EWSB). The Weyl invariance of the theory with the unphysical
dilaton can be extended to the quantum theory and the additional gauge freedom allows gauge
fixing of the dilaton to a constant, thus ensuring EWSB. The theory with the physical dilaton
suffers from a conformal anomaly. Boldly assuming that this anomaly is cancelled at some scale,
a Gildener-Weinberg analysis of the theory shows the possibility of radiative breaking of the
conformal symmetry. The two theories differ in one minus sign, but have vastly different results.
Experiments and astronomical observations could help in understanding which, if any, of these
theories could be a toy model for a Theory of Everything.
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Preface

Context

It was not until the early 19th century when Hans Christian Ørsted noted the deflection of
a magnetic compass needle caused by an electric current and demonstrated that the effect is
reciprocal. With contributions from Michael Faraday this lead to Maxwell’s equations forming
a unified theory of electricity, magnetism, and light: electromagnetism.

Michael Faraday believed that the forces of nature were mutually dependent and more or less
convertible into one and another. Furthermore, the electrical and gravitational forces share fun-
damental characteristics: they both diminish with the inverse square of the distance; they are
both proportional to the product of the interacting masses or charges; and both forces act along
the line between them. This let him to search for a connection between gravity and electric or
magnetic action, which his experiments were unable to ascertain [1].

After the publication of Albert Einstein’s theory of gravity, the search for a theory which would
relate gravity and electromagnetism to a unified field1 began with a renewed interest. ”If the
special theory of relativity had unified electricity and magnetism and if the general theory had
geometrized gravitation, should not one try next to unify and geometrize electromagnetism and
gravity?” [2].

Ultimately unsuccessful in his quest2, Einstein considered a variety of approaches which were by
and large, a reaction to proposals advanced by others like Hermann Weyl, Theodor Kaluza and
Arthur Edington. These approaches proved troublesome for various reasons and were to some
extent discarded by Einstein. The first original approach put forward by Einstein himself was
published in a paper of 1925 in which also the term ‘unified field theory’ appeared for the first
time in a title. The last approach of Einstein’s work along his unified field theory program was
based on a local Riemannian metric but on an asymmetric one. Einstein spent the rest of his
life elaborating the asymmetric theory and his very last considerations were presented by his
last assistant, Bruria Kaufmann, a few weeks after Einstein’s death.

Though unification of electromagnetism with gravity proved unsuccessful, the unlikely unifi-
cation of electromagnetism with the weak force was established 35 years after the first theory
on the weak interaction by Enrico Fermi. The road to electroweak unification (adapted from
Kibble [4]) started already when Paul Dirac attempted to quantize the electromagnetic field in
the 1920s. This eventually resulted in Quantum Electrodynamics (QED), a quantum field theory
that successfully describes processes where the number of particles changes like the emission of
a photon by an electron dropping into a quantum state of lower energy. The theory was plagued

1Hence the name ‘Unified Field Theory’. In the past it solely was used in the context of a unified field theory
in which electromagnetism and gravity would emerge as different aspects of a single fundamental field. Nowadays
this term is used for a type of field theory that allows all fundamental forces and elementary particles to be
written in terms of a single field. The ‘Theory of Everything’ and ‘Grand Unified Theory’ are closely related to
unified field theory, but differ by not requiring the basis of nature to be fields.

2See Sauer [3] for a further, more detailed discussion on Einstein’s unified field theory program from a
conceptual, representational, biographical, and philosophical perspective.

iv



by infinite, divergent contributions from for example the self-energy of the electron. These diffi-
culties were overcome by the development of renormalization theory by Julian Swinger, Sin-Itiro
Tomonaga, Freeman Dyson and Richard Feynman which rapidly promoted QED to the most
accurately verified theory in the history of physics. The next goal was to find similar elegant
theories describing the other forces of nature, hoping of course to find a unified theory.

In 1958 Richard Feynman and Murray Gell-Mann published the V −A theory which showed that
the weak interactions could be seen as proceeding via the exchange of spin-1 W± bosons, just as
the electromagnetic interactions are mediated by the photon. This hinted at a possible unifica-
tion, but was complicated by the fact that the W-bosons needed to be massive, while the photon
is massless. Furthermore, weak interactions do not conserve parity whereas the electromagnetic
interactions are parity-conserving. The latter problem was resolved by Sheldon Glashow, who
proposed an extended model with a larger symmetry group, SU(2)× U(1), and a fourth gauge
boson Z0.

Any mass term appearing in the Lagrangian will spoil the gauge-invariance property because
gauge symmetry prohibit the generation of a mass for the vector field. Therefore, the nonzero W
and Z masses require incorporating spontaneous symmetry breaking into the theory. This break-
ing mechanism was described by the Goldstone theorem which stated that the appearance of
massless spin-zero Nambu–Goldstone bosons is a consequence of spontaneous symmetry break-
ing in a relativistic theory. For a gauge theory it was later shown that spontaneous breaking let
to massive bosons. This is known as the Higgs mechanism.

Then in 1968 Steven Weinberg and Abdus Salam independently combined these ideas into a
unified gauge theory of weak and electromagnetic interactions of leptons. Meaningful calcula-
tions were the made possible when Gerardus ’t Hooft and Martinus Veltman showed the theory
was renormalizable. One immediate prediction of this now proven viable theory was the “neu-
tral current” which has to exist to assure its renormalizability. In 1973 the neutral current was
discovered in the Gargamelle bubble chamber at CERN. This verification of what nowadays
is known as the Glashow-Weinberg-Salam model (GWS model) lead to the Nobel prize for its
namesakes. The later discovery of the W and Z particles was even further evidence of the validity
of the GWS model.

Meanwhile, during the 1970s and 1980s there had been a separate, parallel development of
a gauge theory of strong interactions, quantum chromodynamics (QCD). This lead to the devel-
opment of the Standard Model (SM). The model started with the proposal of quarks by Murray
Gell-Mann and George Zweig, followed by significant experimental evidence on its validity like
the discovery of the charmed quark, the tau neutrino and the Higgs particle. However, the SM
contained a degree of arbitrariness as well as too many unresolved questions to be considered
the final theory. These are the problems which grand unified theories (GUT3) which unify the
strong force with the electroweak force, hope to address.

In 1974 Abdus Salam and Jogesh Pati proposed the first GUT, known as the Pati-Salam model4.
It addresses the intriguing similarity between quarks and leptons, namely the fact that each gen-
eration of fermions in the Standard Model has two quarks and two leptons. The Pati-Salam model
identifies the ‘lepton-ness’ (non-quark-ness) of leptons as the fourth color, lilac, of a larger SU(4)c
gauge group which then needs to be broken by means of some Higgs scalar. The model also con-
siders the difference between left- and right-handed fermions: where the former are in a nontrivial
representation of SU(2), the latter are part of a trivial representation and thus non-participating
in the weak force. The model instead treats them on equal footing by assuming the existence of
a ‘right-handed’ weak isospin SU(2)R gauge group. Assuming discrete parity symmetry Z2, the

3The acronym GUT was first coined in 1978 by CERN researchers John Ellis, Andrzej Buras, Mary K.
Gaillard, and Dimitri Nanopoulos.

4Technically, it does not give a unified description. Even at high energies, the gauge group is the product of
three groups and not a single group as is the case in the more conventional GUTs such as SU(5) or SO(10). Still,
due to the unification of quarks and leptons and the fact that left-handed and right-handed fields are treated on
the same footing, it is referred to as a GUT.
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total symmetry group of the Pati-Salam model becomes SU(4)c × SU(2)R × SU(2)L × Z2.

Although quarks and leptons are now unified5, there are nevertheless two6 independent gauge
couplings resulting in two arbitrary parameters. This difficulty is resolved by embedding the
Standard Model gauge group into the simple unified gauge group SU(5), with one universal
gauge coupling αG defined at the grand unification scale MG which is expected to be of the
order 1016 GeV. Quarks and leptons sit in two irreducible representations, as before, but the low
energy gauge couplings are now determined in terms of the two independent parameters αG and
MG. Hence there is one prediction. This is known as the Georgi-Glashow model and elegantly
explains the fractional charges of quarks. Unfortunately, this theory has since been ruled out by
experiment; it predicts that protons will decay faster than the current lower bound on proton
lifetime. Furthermore, LEP data showed that gauge coupling unification is not achieved in non-
supersymmetric SU(5) GUTs, further promoting the development of supersymmetric models.

As the Pati-Salam model fully unifies fermions but not the gauge fields and the Georgi-Glashow
model fully unifies gauge fields but not fermions, a bigger/other model that unifies them all is
sought. Besides SO(10) models, unification through string theory, supersymmetry or (compact)
extra dimensions is pursued as well. These GUT models become highly complex because they
try to reproduce e.g. the observed fermion masses and mixing angles. Due to this difficulty, and
due to the lack of any observed effect of grand unification so far, there is no generally accepted
GUT model.

Though the existence of a GUT is far from a proven fact, the idea of unification can be ex-
tended all the way to the Planck scale, the energy scale at which the gravitational attraction of
elementary particles becomes comparable to their strong, weak and electromagnetic interactions.
Already at energies of the order 1018 GeV the gravitational attraction becomes comparable to
the gauge force due to the vector bosons of a GUT. Though this scale is slightly larger than
the scale at which the SM couplings meet, a link between grand unification and unification of
gravity is is not unreasonable.

A Theory of Everything (ToE) which deals with this unification of gravity and matter faces
a multitude of challenges. One of the biggest is that the existence of quantum matter and
the fact that this matter acts on spacetime seems to make it unavoidable to assign quantum
nature also to spacetime itself under the name of Quantum Gravity. At present, cosmological
observations give us no unambiguous clue as to how such a theory would have to look. Though
experiments have put constraints on parameters of indirect relevance to quantum gravity, they
still allow a wide variety of theories.

One of the most important and well understood aspects of Quantum Gravity is the so-called
semiclassical approach, where quantized matter fields are treated using a classical curved met-
ric.However, even this situation is plagued by severe technical and conceptual problems, since
crucial tools of QFT in flat spacetime such as energy- momentum conservation, Fourier trans-
formation and analyticity, Wick rotation, particle interpretation of asymptotic scattering states,
are no longer available due to the lack of spacetime symmetries.

Even at the classical level there are numerous attempts at unifying gravity with the three other
fundamental forces. As Einstein’s theory of General Relativity is such a success on solar system
distance scales, the most straightforward generalization of gravity is to augment the Einstein-
Hilbert action with additional general coordinate invariant pure metric terms which due to the
smallness of theory coefficients or structure have negligible effects in the solar system. Other
options are introducing additional gravitational fields (often scalars) besides the metric tensor
itself as proposed e.g. by Carl H. Brans and Robert H. Dicke in 1961, or increasing the number
of spacetime dimensions as original put forward by Theodor Kaluza and Oskar Klein (1919).

5Note that unification of quarks and leptons leads to proton-decay since B and L numbers are violated. Some
βB+αL- number is preserved: B+3L number for the Pati-Salam model and B−L number for the Georgi-Glashow
model.

6Without assuming parity symmetry (L↔ R symmetry) there are three independent gauge couplings.

vi



Less orthodox is the possibility to modify the nature of the geometry itself, for example by in-
troducing torsion (e.g. Elie Cartan, 1922), discarding the symmetry of the indices of the metric
(e.g. Behram Kurşunoğlu, 1952), or, more radical, replace the Riemann geometry with a new
type of geometry as was proposed by Hermann Weyl (1918).

Focus of the thesis

In this thesis we cannot hope to give a comprehensive overview of the current research on Stan-
dard Model unification with (quantum) gravity, much less come up with a new theory. Therefore,
we will focus on one particular avenue which has proved beneficial in the development of the
Standard Model, namely we will require a additional symmetry to be present at the Planck scale
which will subsequently be broken. This additional symmetry is invariance under the conformal
group.

The Standard Model contains a number of freely adjustable coupling constants and mass pa-
rameters. There seems to be no physical principle to determine these parameters as long as they
stay within certain domains dictated by the renormalization group. However, Gerard ‘t Hooft
[e.g. 5] argues that when gravity is coupled to the system, local conformal invariance should be a
spontaneously broken exact symmetry. This condition fixes all parameters, including masses and
the cosmological constant. Before this result can be grasped, the connection between conformal
symmetry and gravity in what is known as Conformal Gravity should be understood.

We will look at a toy model Lagrangian which includes the Standard Model and Conformal
Gravity contributions and assume it to be valid for high energy scales, e.g. the Planck scale.
When lowering the energy one encounters a breaking scale of conformal symmetry where the
theory breaks down in gravity and for example some Grand Unified Theory. This breaking is nec-
essary as a conformally invariant theory is also scale invariant whereas our daily reality certainly
includes scales. We will consider the different mechanisms in the case of our toy model.

Outline of this thesis

This thesis starts in Chapter 1 with explaining the Standard Model, specifically the elements of
the Lagrangian. This Lagrangian has terms that in perturbation theory receive infinite contri-
butions from diverging Feynman diagrams. In the second part of the first chapter regularization
and renormalization are used to deal with these infinities. These procedures render the coupling
constants energy dependent. This is known as the ‘running of the coupling constants’. The exact
dependence on the energy scale is encoded in the beta function. Having then established a firm
understanding of the Standard Model, the chapter ends by concisely explaining the reasons for
looking Beyond the Standard Model.

As pointed out already, one of the major reasons is that we want to include Gravity in our
description. Chapter 2 starts with an introduction of Einstein’s theory of General Relativity.
We show why Einstein Gravity is unsatisfying and give arguments why a conformal invariant
theory of gravity would give more desirable results. The intricate relationship between conformal
invariance and scale and Weyl invariance is explained with great care after which the conformal
algebra and its restrictions on the theory are introduced. We end the chapter by applying the
idea of conformal invariance on a theory of gravity. There we will introduce two important the-
ories, namely Conformal Weyl Gravity as advanced by P. D. Mannheim and Conformal Dilaton
Gravity as advanced by Gerard ‘t Hooft. These theories are intimately linked with each other,
as will be shown. We will also include matter fields into our theory, and for that the tetrad
formalism will be developed. This formalism tells us how to minimally couple the Standard
Model to Gravity. The constraint of conformal invariance then requires us to further include a
non-minimal term, finally giving us our toy model.
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Chapter 3 proceeds by exploring how scales are generated through symmetry breaking. First
the different symmetry breaking mechanisms are explained, including an extensive review of the
Coleman-Weinberg and Gildener-Weinberg formalisms for radiative symmetry breaking. This
allows us to investigate the generation of scales in the toy model with the physical and unphysical
dilaton and to compare them.

In the last chapter some of the advantages and drawbacks of the developed theory are pre-
sented. We will try to give suggestions for further research.

Appendices include derivations that are too long to include in the main body of the text.

Acknowledgements

Foremost, I would like to thank my supervisor, prof. dr. Elisabetta Pallante, for her continuous
support, patience and expert knowledge. Writing my thesis has proofed a more profound under-
taking than originally anticipated and I am grateful that she was there to guide me along the
journey.

A big thank you also to Marco Boer, a PhD student of Elisabetta, for sharing his insights
and enthusiasm with me when I was lost in a confusing jungle of research papers on the same
research topic.

I would also like to acknowledge prof. dr. Rob Timmermans as the second reader of this
thesis, and I am gratefully indebted to him for his very valuable time and feedback.

Finally, I must express my very profound gratitude to my boyfriend, Lukas de Boer, for provid-
ing me with unfailing support and continuous encouragement throughout my study and through
the process of researching and writing this thesis. This accomplishment would not have been
possible without him. Of course, my family and my friends have also been with me all the way
and their compassion, understanding and support has meant a lot to me and still does.

Thank you.

viii



Notation and conventions

Indices

i, j, . . . SU(2) gauge group indices running from 1 to 3
a, b, . . . SU(3) gauge group indices running from 1 to 8
C Color index associated with the quarks in the fundamental representation

of SU(3): C = 1, 2, 3 corresponds to red (R), green (G) and blue (B).
M,N Generation or family index. The STandard Model has 3 genera-

tions, each divided into two types of leptons (one electron-like and one
neutrino-like) and two types of quarks (up- and down-like): M,N =
1, 2, 3.

µ, ν, . . . General coordinate indices in XD

m,n, . . . Local Lorentz indices in XD, used e.g. in tetrad formulations of gravi-
tational theories

The Einstein summation convention is used. Furthermore, i is imaginary constant (upright in
mathmode, as compared to i which is used as an index).

Fields and gauge group objects

Most of the following notations and conventions will be introduced more detailed in Chap-
ter 1.

Φ Generic field
φ Scalar field
ψ, ψ̄ Fermion field, ψ̄ = ψ†γ0.
Xa
µ General gauge field. The gauge potentials associated with the

SU(2)L, U(1)Y , SU(3)c gauge groups are W i
µ, Bµ, G

a
µ.

χ, ω, ϕ Dilaton field as a unphysical St́’uckelberg field, unphysical metas-
calar or physical scalar field, respectively.

T a Generators of the group
fabc Structure coefficients [T a, T b] = ifabcT c

Dµ Gauge covariant derivative acting on matter fields Φ like DµΦ =(
∂µ + iηgAaµTa

)
Φ where g is coupling strength and η = ±1 to

signal the different conventions used in the literature (see below).
F aµν General field strength tensor: F aµν = ∂µF

a
ν − ∂νF

a
µ −

ηgfabcF bµF
c
ν . The field strength tensors associated with the

SU(2)L, U(1)Y , SU(3)c gauge groups are W i
µν , Bµν , G

a
µν .

The fundamental representation of the SU(2) gauge group is given by T i = i
2σ

i with σi the
Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
which are Hermitian and unitary.
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The fundamental representation of the SU(3) gauge group is given by T a = 1
2λ

a with λa the
Gell-Mann matrices

λ1 =

0 1 0
1 0 0
0 0 0

, λ2 =

0 −i 0
i 0 0
0 0 0

, λ3 =

1 0 0
0 −1 0
0 0 0

, λ4 =

0 0 1
0 0 0
1 0 0

,
λ5 =

0 0 −i
0 0 0
i 0 0

, λ6 =

0 0 0
0 0 1
0 1 0

, λ7 =

0 0 0
0 0 −i
0 i 0

, λ8 =
1√
3

1 0 0
0 1 0
0 0 −2


These matrices are traceless, Hermitian, and obey the extra trace orthonormality relation
Tr(λiλj) = 2δij .

The Dirac matrices γµ in the Dirac representation are

γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

, γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0



γ2 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

, γ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0


They obey the anti-commutating relation {γµ, γν} = γµγν + γνγµ = 2gµν . The gamma ma-
trices can be raised and lowered with the metric gµν . The product of four gamma matrices is
γ5 = iγ0γ1γ2γ3. Furthermore, the Feynman slash notation is used: /v = vµγ

µ.

From [6], we denote the different sign conventions η = ±1 for the Standard Model used by
some well known texts which are used in this thesis:

Ref. η η′ ηZ ηθ ηY ηe Y

Peskin and
Schroeder [7]

- - + + + -

Zee [8] - - + + + - *
Srednicki [9] - - + + + -

where η, η′ is associated with the electroweak coupling constant g, g′ from the SU(2)L × U(1)Y
model, ηs with the strong coupling constant gs from SU(3)c, ηY with the sign of the hypercharge
Y , and ηZ , ηθ are associated with the signs used for the Zµ gauge boson and Weinberg mixing
angle. We have set ηs = η and ηee = ηηθg sin θW = η′g′ cos θW . An asterisk on the last column
means that such authors have Q = (T 3 +ηY Y )/2 instead of our definition Q = T 3 +ηY Y .

Geometric spaces

Most of the following notations and conventions will be introduced more detailed in Chap-
ter 2.

LD D-dimensional differentiable manifold
UD D-dimensional Riemann-Cartan space
VD D-dimensional Riemann space
MD D-dimensional Minkowski space with metric ηab = (+,−,−,−)
ED D-dimensional Euclidean space
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Geometric objects

∂µ, ∂a Coordinate and local frame base of the tangent space related by ∂µ =
eµ
a∂a, ∂a = eµa∂µ where eµ

a are the D-beins (specifically vierbeins or
tetrads) and eµa their inverses

dxµ ,dξa Coordinate and local frame base of the cotangent space

g metric tensor with components gµν = g(∂µ, ∂ν) in a general coordinate
frame and ηab = g(∂a, ∂b) in a local (i.e. flat) frame of reference

Γλµν Affine connection

Tλµν(Γ) Torsion of the connection Γ: Tλµν(Γ) = Γλµν − Γλνµ

Rµνρσ(Γ) Curvature of the connection Γ: Rµνρσ(Γ) = ∂ρΓ
µ
νσ − ∂σΓµνρ + ΓλνσΓµλρ −

ΓλνρΓ
µ
λσ

∇µΓ Covariant derivative with respect to an affine connection

{µνλ} Levi-Civita connection which is a linear, metric compatible and torsion-
free connection associated with V4 and is given in terms of the Christoffel
symbols: {µνλ} = 1

2g
µρ (∂νgλρ + ∂λgνρ − ∂ρgλν)

∇µ({}) Covariant derivative with respect to the Levi-Civita connection. Often
shortened to ∇µ({})F = F;µ

ωµ
a
b Spin connection, which is related to the affine connection as ωµ

a
b =

eν
aeλbΓ

ν
µλ − eλb∂µeλa

∇µ() Covariant derivative with respect to the spin connection

Further conventions

Units are chosen such that c = ~ = 1 where c is the velocity of light and ~ = h/(2π) in terms of
Planck’s constant h. Next to that we denote the different sign conventions ε = ±1 for the the
following tensors as used by some well known texts which are used in this thesis:

εg g = −(x0)2 + (x1)2 + (x2)2 + (x3)2 Sign of the metric

εRR
µ
νρσ = ∂ρΓ

µ
νσ − ∂σΓµνρ + ΓλνσΓµλρ − ΓλνρΓ

µ
λσ Sign of Riemann tensor

ε Rµν = Rαµαν Sign of the Ricci tensor

εT 8πTµν = Rµν − 1
2gµνR Sign of the Einstein equation

Ref. εg εR ε εT
Alvarez et al. [10] - + + +
‘t Hooft [11] + + + +
Mannheim [12] + - + -
Misner, Thorne and Wheeler [13] + + + +
Sundermeyer [14] - + + -
Wald [15] + + + +
Yepez [16] - + + -
This thesis - + + +

We also use ∂µ = ∂
∂xµ , � = ∂µ∂

µ and x2 = xµx
µ.
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Abbreviations and acronyms

BEH Brout-Englert-Higgs

CDG Conformal Dilaton Gravity

CKM Cabibbo-Kobayashi-Maskawa

CW Coleman-Weinberg

CWG Conformal Weyl gravity

dS de Sitter

EAdS Euclidean Anti-de Sitter

EEP Einstein’s Equivalence Principle

EFT Effective Field Theory

EWSB Electroweak symmetry breaking

GR General Relativity

GUT Grand Unified Theory

GW Gildener-Weinberg

GWS model Glashow-Weinberg-Salam model

NEP Newton’s Equivalence Principle

NJL Nambu and Jona-Lasinio

PGB Pseudo-Goldstone boson

PMNS Pontecorvo-Maki-Nakagawa-Sakata

QCD Quantum Chromodynamics

QED Quantum Electrodynamics

QFT Quantum Field Theory

SEP Strong Equivalence Principle

SM Standard Model

SR Special Relativity

SSB Spontaneous Symmetry Breaking

ToE Theory of Everything, a quantum gravity theory that is also a grand unification
of all known interactions

WEP Weak Equivalence Principle

xii



Contents

Abstract iii

Preface iv

Notation and conventions ix

Abbreviations and acronyms xii

Contents xiv

Figures and tables xv

1 The Standard Model and beyond 1
1.1 Field content and structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Field content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Gauge group SU(3)c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Gauge group SU(2)L × U(1)Y . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Standard Model Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Fermions and the gauge sector . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Brout-Englert-Higgs mechanism . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Yukawa interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.4 Faddeev-Popov gauge-fixing procedure . . . . . . . . . . . . . . . . . . . . 8
1.2.5 Complete Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Dealing with infinities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 LSZ reduction formula and generating functionals . . . . . . . . . . . . . 11
1.3.2 Renormalization and regularization . . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Callan-Symanzik equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.4 Standard Model beta functions . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Beyond the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Conformal Gravity 21
2.1 Einstein Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Using conformal symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Scale, Weyl and conformal invariance . . . . . . . . . . . . . . . . . . . . 28
2.2.2 The Conformal Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.3 Restrictions due to conformal invariance . . . . . . . . . . . . . . . . . . . 32

2.3 A conformal invariant theory of Gravity . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.1 Conformal Weyl Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.2 Conformal Dilaton Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.3 CWG versus CDG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Adding matter: the Conformal Standard Model . . . . . . . . . . . . . . . . . . . 42
2.4.1 Tetrad formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.2 The Standard Model in the presence of gravity . . . . . . . . . . . . . . . 45
2.4.3 A conformal toy model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Scales in a scaleless theory 52
3.1 Origin of mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.1 The Coleman-Weinberg mechanism . . . . . . . . . . . . . . . . . . . . . . 53

xiii



3.1.2 Gildener-Weinberg formalism . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 CSMG toy model: an unphysical dilaton . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.1 Symmetry breaking in curved CSMG . . . . . . . . . . . . . . . . . . . . . 62
3.2.2 Going quantum: anomalous breaking . . . . . . . . . . . . . . . . . . . . . 63
3.2.3 ’t Hooft’s interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 CSMG toy model: a physical dilaton . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Strengths, challenges and outlook 73

Appendices 76
A Standard Model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
B Derivation of the Einstein equations . . . . . . . . . . . . . . . . . . . . . . . . . 79
C Conformal invariance of Weyl tensor . . . . . . . . . . . . . . . . . . . . . . . . . 82
D Derivation of the Bach equation of motion . . . . . . . . . . . . . . . . . . . . . . 85
E CDG Lagrangian derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
F Conformal covariance of the non-minimal scalar action . . . . . . . . . . . . . . . 91

Bibliography 93
Primary references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Secondary references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xiv



Figures and tables

Figures

2.1 Geometrical interpretation of the affine connection . . . . . . . . . . . . . . . . . 22

2.2 Relation between familiar differentiable manifolds including Riemann-Cartan, Rie-
mann and Minkowski spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Difference between a scale and a conformal transformation. . . . . . . . . . . . . 29

Tables

1.1 The quantum numbers of the different fields of the GWS model. . . . . . . . . . 5

1.2 Dynkin indices and Casimir operators for the Standard Model. . . . . . . . . . . 20

2.1 Overview of the infinitesimal and finite transformations of the conformal group. . 31

3.1 The results of the Gildener-Weinberg analysis on the minimally extended Confor-
mal Standard Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.1 Standard Model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xv



Chapter 1

The Standard Model and
beyond

The Standard Model is constructed by first postulating a set of symmetries of the system, and
then by writing down the most general renormalizable Lagrangian from its field content that
respects these symmetries. In Lie algebra jargon the Standard Model is known as a non-abelian
gauge theory7. The global Poincaré symmetry8 is postulated for all relativistic quantum field
theories. Additionally there is the local U(1)Y × SU(2)L × SU(3)c → U(1)EM × SU(3)c gauge
symmetry which is based on the electroweak gauge group of the GWS model SU(2)L × U(1)Y
and the SU(3)c color gauge group of QCD. The electroweak symmetry group is spontaneously
broken to the electromagnetic symmetry U(1)EM by the Brout-Englert-Higgs mechanism.

We start this chapter by identifying the particle content of the Standard Model and discuss
the group structure in more detail. In the next section the different components of the La-
grangian are recounted culminating in the full Standard Model Lagrangian LSM [6]. To deal
with the infinities that arise in the calculations, we introduce regularization and renormalization
in section 1.3. Despite its enormous success, the Standard Model is not the final Theory of
Everything as we will argue in the last section.

1.1 Field content and structure

1.1.1 Field content

The Standard Model including including neutrino masses and mixing angles (also known as the
minimal9 extended Standard Model) depends on 25 free parameters. Namely, 3 lepton masses,
6 quark masses, the coupling constants g, gs, g

′, the Higgs VEV, 3 quark flavor mixing angles,
3 neutrino mixing angles, and 2 CP violating phases (or 4 if massive neutrino’s are Majorana
fermions). Note that the set of parameters is not unique, e.g. fermion masses can be replaced
by Yukawa couplings. Most of their numerical values have been established by experiment (see
Appendix A). The ESM is able to calculate any experimental observable in terms of its input
parameter set and has done so successfully. The Standard Model precisely predicted a wide
variety of phenomena, e.g. the existence of the Higgs boson and the Z and W± masses.

7The term ‘gauge’ refers to local nature of the symmetry transformations. The gauge group of the theory
is a Lie group of gauge transformations. For each group generator of the Lie group there arises a corresponding
vector field called the gauge field. Gauge fields are included in the Lagrangian to ensure gauge invariance. When
such a theory is quantized, the quanta of the gauge fields are called gauge bosons. If the symmetry group is
non-commutative, the gauge theory is referred to as non-Abelian.

8The Poincaré symmetry comprises symmetry under translations, rotations and boosts, which are transfor-
mations connecting two uniformly moving bodies.

9It is still called ‘minimal’ because we only assume the number of flavors that are experimentally verified.
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1. The Standard Model and beyond 1.1. Field content and structure 2

The field content of the Standard Model consists of 12 flavors or matter fields, 12 gauge fields
and the Higgs boson defined as follows:

• Matter fields (spin-1
2 fermions), namely:

– 6 leptons eM and νM where M = 1, 2, 3 is the generation index such that eM is the
electron, the muon or the tau and νM is the corresponding neutrino.

– 6 quarks uCM and dCM with C = 1, 2, 3 corresponding to the three types of SU(3) color
R,G,B and M = 1, 2, 3 is the generation index such that uCM is either the up, charm
or top quark and dCM is the down, strange or bottom quark.

• Gauge fields (spin-1 bosons), namely:

– Photon Aµ which mediates the electromagnetic interaction

– 3 weak bosons W±µ and Z0
µ which mediate the charged and neutral current weak

interactions

– 8 gluons Gaµ where a = 1, 2, . . . 8 which mediate the strong interactions

• Higgs boson (spin-0) H which is the result of the complex Higgs fields φ+ and φ0 that
spontaneously break the electroweak SU(2)L × U(1)Y symmetry

1.1.2 Gauge group SU(3)c

The strong interactions between quarks and gluons are described by Quantum Chromodynam-
ics (QCD), a non-Abelian gauge theory with SU(3)c color symmetry. The SU(3)c symmetry
group has 8 generators T a, a = 1, 2, . . . 8 satisfying [T a, T b] = ifabcT

c where fabc are the an-
tisymmetric structure constants of the group10. The fundamental representation is given by
the Gell-Mann matrices λa according to T a = 1

2λ
a. The other important representation is the

adjoint representation: (T aadj)
bc = −ifabc. In QCD the gluons transform under the adjoint rep-

resentation whereas quarks transform under the fundamental representation and are given by a
triplet:

q =
(
qR, qG, qB

)
(1.1)

The dynamics of the quarks are given by the field strength tensor, which in general is defined
as Fµν = i

g [Dµ, Dν ] with g the coupling constant and Dµ the appropriate gauge covariant
derivative.

Dµq =
(
∂µ + iηsgsT

aGaµ
)
q (1.2)

with gs is the gauge coupling constant related to SU(3)c and Gaµ(a = 1, 2, . . . 8) the gauge vector
fields known as gluons. Using ηs = ±1 to reflect the two sign conventions used in the literature
(see ‘Notations and conventions’, page x), the field strength tensor of SU(3)c is then given
by:

Gaµν = ∂µG
a
ν − ∂νGaµ − ηsgsfabcGbµGcν (1.3)

The combination Dµ provides the coupling between the fields and ensures that the equation is
invariant under the local SU(3)c gauge transformation of the quark fields and fields strength
tensor, which is given by the matrix

U(β) = eiηsgsT
aβa (1.4)

such that the fields transform as

10The structure constants are given by: f123 = +1, f458 = f678 = 1
2

√
3, f147 = f165 = f246 = f257 = f345 =

f376 = 1
2

and all others that are not related by permutations are zero. Note that we don’t have any structure
constants that have both a 3 and an 8 since λ3 and λ8 commute.
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q′ = q + δq, δq = iηsgsT
aβaq (1.5)

Gaµ
′ = Gaµ + δGaµ, δGaµ = −∂µβa − ηsgsfabcβbGcµ (1.6)

where βa(a = 1, 2, . . . 8) is the group parameter and the second equality holds for infinitesimal
transformations. With these definitions one can verify that the covariant derivative transforms
like the field itself, ensuring the gauge invariance of the Lagrangian.

1.1.3 Gauge group SU(2)L × U(1)Y

Electroweak interactions are described by the GWS model which is based on chiral SU(2)L
gauge invariance: parity violation is built into the model by assigning the left- and right handed
fermions to different representations of SU(2)L where the subscript signals the fact that the
right-handed fermions do not transform under SU(2)L (they are singlets). The SU(2)L symme-
try group has 3 generators T i, i = 1, 2, 3 satisfying [T i, T j ] = iεijkT k where εijk is the Levi-Civita
symbol. The fundamental representation of the group generators is given by the Pauli matrices:
T i = i

2σ
i and the adjoint representation is (T iadj)

jk = −iεijk.

The other group of the GWS model is U(1)Y which is the Abelian group of phase transfor-
mations. Its generator is the hypercharge Y and it is related to the charge of the fermion Q and
the T3 generator of SU(2) by Q = T3 + ηY Y . Both the left-handed and right-handed fermions
transform non-trivially under this group.

Left- and right-handed fermions are defined as follows:

ψL ≡ 1
2 (1− γ5)ψ, ψR ≡ 1

2 (1 + γ5)ψ (1.7)

In the Standard Model, the left-handed leptons and neutrino’s are grouped together in the
fundamental representation of SUL(2), as are the left-handed quarks. Right-handed fermions11

are invariant, i.e. singlet states. Suppressing the generation and color indices, we have

ψL =

(
νL
eL

)
,

(
uL
dL

)
, ψR = νR, eR, uR, dR (1.8)

Also for this symmetry group a covariant derivative needs to be introduced to uphold gauge
invariance:

Dµ = ∂µ + iηgW i
µT

i + iη′g′ηY Y Bµ (1.9)

where W i
µ(i = 1, 2, 3) and Bµ are the gauge boson fields that correspond to the SU(2)L and

U(1)Y symmetry group, respectively. The covariant field strength tensors become

W i
µν = ∂µW

i
ν − ∂νW i

µ − ηgεijkW j
µW

k
ν (1.10)

Bµν = ∂µBν − ∂νBµ (1.11)

The local transformations of the fields under SU(2)L × U(1)Y are given by the matrices

U(α) = eiηgT iαi(x), U(θ) = eiη′g′ηY Y θ(x) (1.12)

such that

11There is no evidence that there are right-handed neutrino’s, yet they are needed for the generation of neutrino
masses.
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SU(2)L :


ψ′L = ψL + δψL, δψL = iηgT iαiψL

ψ′R = ψR

W i
µ
′

= W i
µ + δW i

µ, δW i
µ = −∂µαi − ηgεijkαjW k

µ

(1.13)

U(1)Y :


ψ′L = ψL + δψL, δψL = iη′g′ηY Y θψL

ψ′R = ψR + δψR, δψR = iη′g′ηY Y θψR

B′µ = Bµ + δBµ, δBµ = −∂µθ
(1.14)

where αi(i = 1, 2, 3) and θ are the group parameters for the weak isospin and weak hypercharge
operators, respectively. Again η, η′, ηY = ±1 to reflect the different sign conventions used in the
literature. Note that the gauge fields only transform under their associated subgroup.

For later computations it is convenient to write the covariant derivative in terms of the mass
eigenstates W±µ , Zµ (weak gauge bosons) and Aµ (photon):

ηZZµ = cos(θW )W 3
µ − ηθ sin(θW )Bµ, Aµ = ηθ sin(θW )W 3

µ + cos(θW )Bµ

W±µ =
W 1
µ ∓ iW 2

µ√
2

, tan(θW ) =
η′g′

η ηθ g

(1.15)

Where ηθ = ±1 and θW the Weinberg angle that relates the former W i
µ and Bµ fields with the

physical gauge bosons.

Dµ = ∂µ +
iηg

2

[
σ+W

+
µ + σ−W

−
µ

]
+ iηeeQAµ +

iηg

cos(θW )

[σ3

2
−Q sin2(θW )

]
ηzZµ (1.16)

where

σ± =
σ1 ± iσ2√

2
, ηee = η ηθ g sin(θW ) = η′g′ cos(θW ) (1.17)

1.2 Standard Model Lagrangian

1.2.1 Fermions and the gauge sector

The fermion Lagrangian becomes

LFermion =
∑

leptons

(
ν̄L, ēL

)
i /D

(
νL
eL

)
+ ν̄Ri /DνR + ēRi /DeR

+
∑

quarks

(
ūL, d̄L

)
i /D

(
uL
dL

)
+ ūRi /DuR + d̄Ri /DdR (1.18)

where the full gauge covariant derivative for fermions in the fundamental representation is given
by

Dµ = ∂µ +
iηg

2

[
σ+W

+
µ + σ−W

−
µ

]
+ iηeeQAµ

+
iηg

cos(θW )

[σ3

2
−Q sin2(θW )

]
ηzZµ +

iηsgs
2

λaG
a
µ

(1.19)

with σi (i = 1, 2, 3) the Pauli matrices, λa (a = 1, . . . 8) the Gell-Mann matrices and the quantum
numbers of the fields are given in table 1.1.
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Field σ3

2 ηY Y Q Field σ3

2 ηY Y Q

νmL + 1
2 − 1

2 0 νmR 0 0 0

emL − 1
2 − 1

2 -1 emR 0 -1 -1

umL + 1
2 + 1

6 + 2
3 umR 0 + 2

3 + 2
3

dmL − 1
2 + 1

6 − 1
3 dmR 0 − 1

3 − 1
3

Table 1.1 – The quantum numbers of the different fields of the GWS model.

The gauge invariant dynamical terms of the gauge bosons is built from the asymmetric, covariant
field strength tensor for each group, namely equation (1.3), (1.10) and (1.11). For the the
Standard Model the Yang-Mills Lagrangian thus becomes:

LYM = − 1
4BµνB

µν − 1
4W

i
µνW

iµν − 1
4G

a
µνG

aµν (1.20)

Note that due to the nonlinearity of the W i
µν and Gaµν , this Lagrangian contains trilinear and

quartic self-interaction terms of the non-Abelian gauge fields W i
µ and Gaµ.

1.2.2 Brout-Englert-Higgs mechanism

At this point in the review of the Standard Model both the gauge bosons and fermions are
still massless as there is no SU(2)× U(1) invariant mass term possible. In 1964 another mech-
anism of mass generation was investigated by three separate groups: (i) Robert Brout and
François Englert; (ii) Peter Higgs; and later by (iii) Gerald Guralnik, Carl Hagen and Tom Kib-
ble. Their results are known as the Brout-Englert-Higgs-Guralnik-Hagen-Kibble mechanism,
often just called the Brout-Englert-Higgs (BEH) or Higgs mechanism, which is a prescription
for breaking the gauge symmetry spontaneously (SSB).

The Higgs multiplet H is introduced in the theory. It needs to have four degrees of freedom as
there are four weak gauge bosons W i

µ (i = 12, 3) and Bµ. The simplest model for the Higgs field
is that of a SU(2) doublet with 2 complex scalar fields φ+ and φ0:

H =

(
φ+

φ0

)
, with

φ+ : T 3 = + 1
2 , ηY Y = + 1

2 and Q = +1

φ0 : T 3 = − 1
2 , ηY Y = + 1

2 and Q = 0
(1.21)

The CP-even neutral component of the complex doublet scalar field H acquires a nontrivial
vacuum expectation value (VEV) υ ≈ 246 GeV which sets the scale of electroweak symmetry
breaking (EWSB):

〈H〉 ≡ 1√
2

(
0
υ

)
, such that σi

(
0
υ

)
6= 0, Y

(
0
υ

)
6= 0, Q

(
0
υ

)
= 0 (1.22)

which means that the vacuum is not invariant under SU(2)L transformations and that U(1)Y
is also broken. However, the electromagnetic symmetry U(1)em remains exact. The Higgs field
thus ‘spontaneously breaks’ the local gauge symmetry SU(2)L × U(1)Y to U(1)em.

The above mentioned vacuum expectation value (VEV) is realized by a ‘Mexican hat poten-
tial’ containing a tachyonic mass term and quartic self-interaction:

V (H†H) = −µ2H†H+ λ(H†H)2 (1.23)

where µ2 > 0 and λ > 0 are real, constant parameters.



1. The Standard Model and beyond 1.2. Standard Model Lagrangian 6

The minimum of the potential is at:

1
2υ

2 = H†0H0 =
µ2

2λ
⇒ υ =

√
µ2

λ
(1.24)

The gauge invariant Higgs Lagrangian is then established by replacing the normal derivative
with the covariant derivative (1.19) using the appropriate quantum numbers as mentioned in
equation (1.21).

LHiggs = (DµH)†(DµH) + µ2H†H− λ(H†H)2 (1.25)

Perturbation theory requires smallness of the terms in the expansion, so the fields must have
average value zero in the ground state, but 〈0|H|0〉 = υ 6= 0. Therefore, we need to redefine H.
Here we treat two of these redefinitions: the unitary gauge and the Rξ gauges.

Unitary gauge

This parametrization is based on the introduction of four new fields H(x) and ζi(x) with i =
1, 2, 3:

H =
1√
2
U−1(ζ)

(
0

υ +H(x)

)
, with U−1(x) = e

−iζi(x)Ti

υ (1.26)

where H(x) is the Higgs boson. Exploiting the gauge invariance, the fields ζi(x) can be trans-

formed away via a gauge transformation (equation (1.13) with ~α =
~ζ
υ ):

H′ = U(ζ)H =
1√
2

(
0

υ +H(x)

)
(1.27)

and replacing H with H′ everywhere. The Higgs Lagrangian LHiggs in the unitary gauge becomes
(up to a constant):

LHiggs = 1
2∂µH∂

µH − 1
2M

2
HH

2 − M2
H

2υ
H3 − M2

H

8υ2
H4

+M2
WW

+
µ W

µ−
(

1 +
2

υ
H +

1

υ2
H2

)
+ 1

2M
2
ZZµZ

µ

(
1 +

2

υ
H +

1

υ2
H2

) (1.28)

We see that expanding the potential around the minimum such that terms linear in H(x) drop
out, gives physical masses to the Higgs and weak gauge bosons:

MW =
gυ

2
, MZ =

MW

cos(θW )
, MH =

√
2µ2 (1.29)

Before SSB there were 4 massless gauge fields and 4 degrees of freedom form the Higgs field of
which 3 would-be Goldstone bosons (~ξ). After SSB, the Goldstone bosons are absorbed to give
masses to the W±µ and Zµ gauge bosons, leaving the photon massless. The remaining component
of the complex doublet becomes the Higgs boson, a new fundamental scalar particle. The number
of degrees of freedom before and after spontaneous symmetry breaking is thus equal.

Rξ gauge

The disadvantage of the unitary gauge is that the propagators of the gauge fields behave as
k0 when the momentum k → ∞ seemingly indicating that the theory is non-renormalizable.
However, since physical quantities are gauge invariant, any physical quantity can be calculated
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in a gauge where renormalizability is manifest. While the particle content is manifest in the
unitary gauge, we could also choose to work in the more conventional class of Rξ gauges.

H =

 φ+(x)

υ+H(x)+iφZ(x)√
2

 (1.30)

Plugging this into equation (1.25) gives:

LHiggs = 1
2∂µH∂

µH − 1
2M

2
HH

2 − M2
H

2υ
H3 − M2

H

8υ2
H4 (1.31)

+M2
WW

+
µ W

µ−
(

1 +
2

υ
H +

1

υ2
H2

)
+ 1

2M
2
ZZµZ

µ

(
1 +

2

υ
H +

1

υ2
H2

)
+ ∂µφ

+∂µφ− + 1
2∂µφZ∂

µφZ + iηMW

(
W−µ ∂

µφ+ −W+
µ ∂

µφ−
)
− ηηZMZZµ∂

µφZ

+ trilinear interactions + quadrilinear interactions

where the masses are defined as in equation (1.29). As is now evident, spontaneous symmetry
breaking in the Rξ gauge introduces mixing terms between the gauge bosons and the would-
be Goldstone fields. As we will see in section 1.2.4, these terms can be cancelled but the
unphysical φZ , φ± do not disappear and will contribute to the propagator. It means we have
the desirable behavior of the propagator at the cost of increasing the number of particles and
Feynman diagrams. These Rξ gauges are therefore only used when calculating higher-order
corrections to transition amplitudes.

1.2.3 Yukawa interactions

The Yang-Mills, fermion and Higgs Lagrangian of the Standard Model have now been discussed.
Next, we note that the introduced Higgs field H also couples to the fermions in the so-called
Yukawa interaction terms. These interaction terms have to be SU(2)L singlets with the property
ΣY = 0 in order for them to be SU(2)L × U(1)Y gauge invariant. Because of this, the charge
conjugated Higgs doublet is needed.

H̃ = iσ2H† =

(
φ0†

−φ−

)
, with

φ0† : T 3 = + 1
2 , Y = − 1

2 and Q = 0

φ− : T 3 = − 1
2 , Y = − 1

2 and Q = −1
(1.32)

Summing over the generations and allowing for mixing of generations, the gauge invariant
Yukawa Lagrangian becomes:

LYukawa =−
∑

quarks

(
ūL d̄L

)
ΓuH̃uR + ūRΓu∗H̃†

(
uL
dL

)
+
(
ūL d̄L

)
ΓdHdR + d̄RΓd

∗H†
(
uL
dL

)

−
∑

leptons

(
ν̄L ēL

)
ΓνH̃νR + ν̄RΓν∗H̃†

(
νL
eL

)
+
(
ν̄L ēL

)
ΓeHeR + ēRΓe∗H†

(
νL
eL

)
(1.33)

where Γu,d,ν,e are the Yukawa couplings represented by 3× 3 complex matrices. In general, the
matrices are not diagonal because the fermion fields in the Lagrangian are not mass eigenstates.
The “true fermions” (primed fields) with well-defined masses are linear combinations of those in
LYukawa which are flavor eigenstates.

ψ̄LΓψψR =
(
ψ̄LUψ

L

)(
Uψ
L

†
Γψ Uψ

R

)(
Uψ
R

†
ψR

)
= ψ̄′LM

ψψ′R (1.34)

Here, ψ = u, d, ν, e and Mf is the mass matrix with the masses of the three generations of ψ
on the diagonal. The unitary matrices U can be derived from the Cabibbo-Kobayashi-Maskawa
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(CKM) mixing matrix Vq = Uu
LUd

L

†
and Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing

matrix V` = Uν
LUe

L
† with V in both cases parametrized as

V =

1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

 (1.35)

where sij = sin θij , cij = cos θij , and δ is the phase responsible for all CP-violating phenomena
in flavor-changing processes in the SM. The known values are listed in Appendix A.

Once the Higgs acquires a VEV (i.e. plug either (1.26) or (1.30) in LYukawa), and after rota-
tion to the fermion mass eigenstate basis that also diagonalizes the Higgs-fermion interactions,
all fermions acquire a mass given by mψ = λψ

υ√
2
. The fermion masses, accounting for a large

number of the free parameters of the SM are also listed in Appendix A. It should be noted
that the electroweak symmetry breaking mechanism provides no additional insight on possible
underlying reasons for the large variety of masses of the fermions, often referred to as the flavor
hierarchy.

Before continuing we point out that in the above we assumed neutrino’s to be Dirac particles.
The idea of the Dirac neutrino works in the sense that we can generate neutrino masses via the
Higgs mechanism. Yet a strong point of critique is that this suggests that neutrinos should have
similar masses to the other particles in the Standard Model, something that can be avoided if we
also assume that interaction strength of the neutrino with the Higgs boson is at least 1012 times
weaker than that of the top quark. Few physicists accept such a tiny number as a fundamental
constant of nature. The other option is to consider neutrino’s as Majorana particles, which is
a fermion that is its own antiparticle, contrary to Dirac fermions. They were hypothesized by
Ettore Majorana in 1937. In this scheme, it is possible for right-handed neutrinos to have a mass
of their own without relying on the Higgs boson, but two additional CP violating phases must
be added to the PMNS mixing matrix via the matrix diag(1, eiα21/2, eiα31/2).

Currently, one uses a mixture of the two possibilities to explain the smallness of the neutrino
masses. This (type I) see-saw mechanism of neutrino mass generation assumes Yukawa interac-
tions with the SM leptons and Higgs doublet as in (1.33) as well as a Majorana mass term for
right-handed neutrino’s:

Lsee-saw = LYukawa −
1

2
Mν̄Rν

c
R (1.36)

where M is a diagonal Majorana mass matrix when using the mass eigenstates and νcR is the
CP conjugate of a right-handed neutrino field, in other words a left-handed antineutrino field.
In the case when the elements of Dirac mass matrices mν are much smaller than those of the
Majorana mass matrix M , the complete neutrino mass matrix may be diagonalized yielding
a small mass term for the left-handed flavor neutrinos [17]: Mν = −mνM

−1mT
ν . Adding the

Majorana mass term thus yields the desired result of small neutrino masses. It is important to
note that this term could also be generated through the vacuum expectation value of some extra
scalar singlet.

1.2.4 Faddeev-Popov gauge-fixing procedure

Similarly to an Abelian theory like QED, the gauge invariance of the theory leads to too many
degrees of freedom, ruining the naive way of calculating the propagator. In the unitary gauge
it is possible to determine the propagators without these difficulties. However, if we want to
apply the arguments of power counting renormalizability, the boson propagators have to behave
as k−2 for large momenta k2. Therefore, one uses the class of Rξ gauges, but also fix the gauge
to reduce the degrees of degree of freedom.
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To address the problem of the degrees of freedom gauge-fixing terms are added to the gauge
invariant Lagrangian in perturbation theory.

LGF = − 1

2ξG
C2
G −

1

2ξA
C2
A −

1

2ξZ
C2
Z −

1

ξW
C−C+ (1.37)

where

CaG = ∂µGaµ δCaG = ∂µ(δGaµ)

CA = ∂µAµ δCA = ∂µ(δAµ)

CZ = ∂µZµ + ηηZζZMZφZ δCZ = ∂µ(δZµ) + ηηZζZMZδφZ

C± = ∂µW±µ ± iηζWMWφ
± δC± = ∂µ(δW±µ )± iηζWMW δφ

±

(1.38)

The class of Rξ gauges refers to the different values we can give to ξa and ζa in the above equa-
tion to simplify calculations. Familiar combinations are the ’t Hooft gauge where ζZ = ξz and
ζW = ξW and the ‘t Hooft-Feynman gauge has in addition ξw = ξZ = ξA = 1. Both of which
would also cancel the cross terms that arise in equation (1.31). Another gauge is the Landau
gauge ξW = ξZ = ξA = 0 and ζw = ζZ = 0, whereas working in the unitary gauge is equivalent
to ζW = ξ2

W → ∞ and ζZ = ξ2
Z → ∞. All these choices are allowed as the dependence on the

gauge should cancel in physical quantities.

Next recall the gauge transformations under SU(3), SUL(2) and UY (1), (1.5), (1.13) and (1.14)
respectively. Applying these gauge transformations on the gauge-fixing terms, to find the missing
terms in the second column of (1.38), shows that gauge fixing breaks the local gauge symmetry
non-linearly. As a consequence of the broken gauge Ward identity the unphysical part of the
vector bosons interacts and contributes to the physical scattering matrix in the tree approxi-
mation. In order to cancel these interactions additional fields, the Faddeev-Popov ghosts, are
needed12. For each gauge field there is such a ghost field, but as they are unphysical particles
they only occur inside loops. Where the gauge field acquires a mass via the Brout-Englert-Higgs
mechanism, the associated ghost field acquires the same mass but only in the Feynman-’t Hooft
gauge. Furthermore, they obey Fermi statistics just like fermions do, giving rise to an extra
minus sign in Feynman diagrams as compared to the same diagrams made up of gauge fields.

LFP = ηG

4∑
i=1

[
c̄+
∂(δC+)

∂αi
+ c̄−

∂(δC−)

∂αi
+ c̄Z

∂(δCZ)

∂αi
+ c̄A

∂(δCA)

∂αi

]
ci + ηG

8∑
a,b=1

ω̄a
∂(δCaG)

∂βb
ωb

(1.39)

In the above equation, c±, cA, cZ are the electroweak ghosts associated with U(αi) with i =
1, . . . 4 and ωa with a = 1, . . . 8 the ghosts associated with the SU(3) color transformations. The
various δC are given in equation (1.38). Gauge invariance of the full Lagrangian of the Standard
Model can be explicitly checked [see e.g. 6].

Choosing the Rξ means that the Goldstone boson is still present and has acquired a mass
from the gauge fixing term. It has interactions with the gauge boson, with the Higgs scalar and
with itself. Furthermore, Faddeev- Popov ghosts needed to be introduced, which interact with
the gauge bosons, the Higgs scalar and the Goldstone bosons.

12Note that the conventional way for introducing Faddeev-Popov fields into gauge theories does not start from
unitarity arguments but from the path integral formulation of quantum field theory: To implement the gauge
fixing program in path integrals one needs a compensating determinant. This determinant can be rewritten in the
form a path integral over a set of anti-commuting scalar fields. Since these scalar fields have the wrong statistics
(they should have been bosons instead of fermions) they are not physical and therefore called ghosts. A third
way of introducing Faddeev-Popov ghosts in the theory is provided by the algebraic method of BRS quantization
[18].
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1.2.5 Complete Lagrangian

The full Standard Model Lagrangian consists of the contributions from the Yang-Mills sector
(1.20), the fermions (1.18), the Higgs sector (1.25), the yukawa interactions (1.33), the gauge-
fixing terms (1.37), and the Faddeev-Popov ghosts (1.39).

LSM = LYM + LFermion + LHiggs + LYukawa + LGF + Lghosts (1.40)

Including neutrino masses via the see-saw mechanism requires (1.36) instead of (1.33) and add
an additional Majorana mass term for right-handed neutrino’s to the above lagrangian. Before
spontaneous symmetry breaking of the electroweak interactions, this is Lagrangian takes the
following form:

LSM = − 1
4BµνB

µν − 1
4W

i
µνW

iµν − 1
4G

a
µνG

aµν (U(1), SU(2), SU(3) gauge terms)

+
(
ν̄L ēL

)
i /D

(
νL
eL

)
+ ν̄Ri /DνR + ēRi /DeR (lepton dynamical terms)

−
(
ν̄L ēL

)
ΓeHeR − ēRΓe∗H†

(
νL
eL

)
(e, µ, τ mass terms)

−
(
ν̄L ēL

)
H̃ΓννR − ν̄RΓν∗H̃†

(
νL
eL

)
− 1

2
Mν̄Rν

c
R(neutrino mass term)

+
(
ūL d̄L

)
i /D

(
uL
dL

)
+ ūRi /DuR + d̄Ri /DdR (quark dynamical terms)

−
(
ūL d̄L

)
ΓdHdR − d̄RΓd

∗H†
(
uL
dL

)
(d, s, b mass term)

−
(
ūL d̄L

)
ΓuH̃uR − ūRΓu∗H̃†

(
uL
dL

)
(u, c, t mass term)

+ (DµH)†(DµH) + µ2H†H− λ(H†H)2 (Higgs dynamical and mass term)

− 1

2ξG
C2
G −

1

2ξA
C2
A −

1

2ξZ
C2
Z −

1

ξW
C−C+ (Gauge-fixing term)

+ ηG

8∑
a,b=1

ω̄a
∂(δCaG)

∂βb
ωb (Faddeev- Popov ghosts)

+ ηG

4∑
i=1

[
c̄+
∂(δC+)

∂αi
+ c̄−

∂(δC−)

∂αi
+ c̄Z

∂(δCZ)

∂αi
+c̄A

∂(δCA)

∂αi

]
ci (1.41)

and the full gauge covariant derivative is given in (1.19)

Dµ = ∂µ −
ig

2
σiA

i
µ − ig′Y Bµ −

igs
2
λaG

a
µ

= ∂µ +
iηg

2

[
σ+W

+
µ + σ−W

−
µ

]
+ iηeeQAµ +

iηg

cos(θW )

[σ3

2
−Q sin2(θW )

]
ηzZµ +

iηsgs
2

λaG
a
µ

Summation over the generation, color indices and contracted indices (Einstein convention) is
implied in all above formulae.
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1.3 Dealing with infinities

We start by noting that the Standard Model Lagrangian of the previous chapter is still classi-
cal. In order to correctly calculate physical observables like cross sections and decay rates, we’ll
have to transform it to a quantum theory. To change the classical Lagrangian to a quantum
theory we’ll write the particle fields in terms of creation and annihilation operators and then im-
pose the canonical (anti)commutation relations. This procedure is called canonical quantization.

Instead, we can also use the path integral formalism as shown by means of the LSZ reduction
formula in Section 1.3.1. Added benefits of that method are that it uses LSM of the previous sec-
tion directly, and explicitly preserves all symmetries of the theory. The LSZ formula allows us to
calculate transition amplitudes via the n-point correlation functions. To calculate those we need
the procedures of regularization and renormalization as explained in Section 1.3. This introduces
an energy dependence in the coupling constant and the function describing this dependence is
explained in the next-to-last section and is applied to the Standard Model in Section 1.3.4.

1.3.1 LSZ reduction formula and generating functionals

We start by writing down the transition amplitude Ti→f with an initial state |i〉 of n incoming
particles at t = −∞ and a final state |f〉 of n′ of outgoing particles at time t = +∞. The
LSZ reduction formula, named after its inventors Harry Lehmann, Kurt Symanzik en Wolfhart
Zimmermann, relates the amplitude to an expression involving the particle fields Φ: the n-point
correlation function or Green’s function.

Ti→f = 〈f |S|i〉 = in+n′
∫
d4x1e

ik1x1(−∂2
1 +m2) . . . d4x1′e

ik1′x1′ (−∂2
1′ +m2) . . .

×〈Ω|T{Φ(x1) . . .Φ(xn)Φ(x1′) . . .Φ(xn′)}|Ω〉
(1.42)

where S is the S-matrix, |Ω〉 the vacuum of the theory and T is a time-ordering symbol that
orders operators such that operators at later times are left of operators at earlier times. The
n-point correlation function can be expressed in terms of functional integrals. Actually, using
Wick’s theorem, the correlation functions can be evaluated in a perturbative expansion in powers
of the coupling g based on all connected Feynman diagrams. The result is

〈Φ(x1) . . .Φ(xn)〉 = lim
T→∞(1−iε)

∫
DΦΦ(x1) . . .Φ(xn)ei

∫
d4xL∫

DΦei
∫

d4xL =

(
sum of Feynman
diagrams with xi

)
Defining the generating functional Z[J ] of all general correlation functions, where J(x) an ex-
ternal current that acts as a source for every field Φ(x), we get

〈Φ(x1) . . .Φ(xn)〉 =
(−i)n

Z[J ]

δnZ[J ]

δJ(x1) . . . δJ(xn)

∣∣∣∣
J=0

with Z[J ] =

∫
DΦ ei

∫
d4x(L(x)+J(x)Φ(x))

Next, we can defineW [J ] as the generating functional of all connected correlation functions:

〈Φ(x1) . . .Φ(xn)〉conn. = −in+1 δnW [J ]

δJ(x1) . . . δJ(xn)

∣∣∣∣
J=0

with W [J ] = −i logZ[J ]

Lastly, we define Γ[Φcl] as the generating functional for the 1-particle irreducible13 (1PI) corre-
lation functions, most often referred to as the (1PI) effective action:

Γ[Φcl] = W [J ]−
∫

d4xJ(x)Φcl(x) and Φcl =
δW [J ]

δJ(x)
(1.43)

13A 1-particle irreducible diagram is an amputated Feynman diagram which does not fall into two pieces if
you cut one internal line.
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such that

〈Φ(x1) . . .Φ(xn)〉1PI = i
δnΓ[Φcl]

δΦcl(x1) . . . δΦcl(xn)

∣∣∣∣
Φcl=〈Φ〉

if 〈Φ〉 =
δW [J ]

δJ(x)

∣∣∣∣
J=0

and if the connected 2-point function takes a nonzero value which is identified with the exact
propagator D. The effective action Γ[Φcl] contains the full information about the quantum dy-
namics of a theory in a classical language, in the sense that the full loop-corrected value of any
S-matrix element can be obtained by using the effective action and computing only tree-level
diagrams.

Now taking into account that we usually have an interacting, multiparticle theory, we find
that additional conditions are needed for the LSZ formula to work. This is because the ground
state is in general 〈0|Φ(0)|0〉 ≡ υ 6= 0. In a free theory the annihilation and creation operators
annihilate the vacuum to the right or left respectively. Thus, we require

〈0|Φ(x)|0〉 = 〈0|Φ(0)|0〉 = 0 (1.44)

to hold also in the interacting theory, which can be achieved by performing a linear shift, as was
also done in Section 1.2.2: Φ → Φ + υ. With this linear shift, the ground state is again |0〉,
normalized via 〈0|0〉 = 1. Given that only tadpole Feynman diagrams (diagrams with only one
external line) contribute, setting 〈0|Φ(x)|0〉 = 0 is equivalent to omitting from the generating
functional all the tadpole graphs [9].

Furthermore, we need to make sure the asymptotic states at t = −∞ and t = +∞ are one-
particle states. In the free theory Φ(0) |0〉 creates a single particle state |k〉 with an appropriate
normalization14, because

〈k|Φ(x)|0〉 = e−ikµxµ〈k|Φ(0)|0〉 = e−ikµxµ (1.45)

For this relation to hold in a multiparticle, interacting theory we define

Φ0(x) = ξ
√
ZΦr(x), with Z = |〈k|Φ(0)|0〉|2 (1.46)

The subscript 0 signals that this is the bare field whereas Φr is the renormalized field, which has
a propagator with a pole at the physical mass m with residue ξ. The renormalized field strength
ZΦ is the probability that Φ(0) creates a given state from the vacuum and ξ is the field-strength
normalization factor.

We can write the bare Lagrangian as the sum of the renormalized Lagrangian which has the
same form as the original but with field-strength normalized to 1 and physical mass m and cou-
pling g, and residual counter terms. These counterterms are finally determined order by order
in perturbation theory to enforce the renormalization conditions defining the physical mass m
and couplings g.

Consider for example the φ4 bare Lagrangian with only scalar fields

L(φ0, λ0) = 1
2∂µφ0∂

µφ0 − 1
2m

2
0φ

2
0 − 1

4!λ0φ
4
0

Next we shift and apply the reparametrization such that the Lagrangian satisfies the normaliza-
tion requirements (1.44) and (1.45). The Lagrangian can now be re-written as

L(φ, λ) + Lcounter = L(φ0, λ0) = 1
2Z∂µφ∂

µφ− 1
2Zm

2
0φ

2 − 1
4!Z

2λ0φ
4

=
[

1
2∂µφ∂

µφ− 1
2m

2φ2 − 1
4!λφ

4
]

+
[

1
2∆φ∂µφ∂

µφ− 1
2∆mφ

2 − 1
4!∆λφ

4
]

14The one-particle state is normalized via 〈k′|k〉 = (2π)32k0δ3(k′ − k)
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where ξ = 1 and ∆Z = Z − 1,∆m = m2
0Z −m2,∆λ = λ0Z

2−λ. Note that equation (1.45) fixes
only one of the three normalization parameters introduced. The remaining two parameters are
fixed by equating m2 to the location of the pole of the propagator (exact two-point function)
and λ to the magnitude of the scattering amplitude at zero momentum.

To see how the effective action is affected by writing the Lagrangian L0[Φr] = Lr[Φr] + ∆L[Φr],
we similarly split the external current

J(x) = Jr(x) + ∆J(x) where
δSr[Φr]

δΦr

∣∣∣∣
Φr=Φcl

= −Jr(x)

where Jr and the counterterm ∆J are defined to enforce the definition of Φcl(x) at the lowest
order and order by order in perturbation theory, respectively. We can then evaluate the exact
integral as a saddle-point expansion, corresponding to a loop expansion in powers of ~, by writing
Φr(x) = Φcl(x) + η(x). Then we can write

Γ[Φcl] = Sr[Φcl]±
i

2
Tr log

(
−δ

2Sr[Φcl]

δΦ2
r

)
− i

(
sum of

conn. diag.

)
+ ∆S[Φcl] (1.47)

where the sign depends on whether the fields are bosonic or fermionic. Applying it for example
to our φ4-model:

Γ0[Φcl] =

∫
d4x
(

1
2∂µΦcl∂

µΦcl − 1
2m

2Φ2
cl − 1

4!λΦ4
cl

)
(1.48a)

Γ1[Φcl] =
i

2
Tr log

(
� +m2 +

λ

2
Φ2
cl

)
+ ∆1S (1.48b)

=
i

2
Tr log

(
� +m2

)
+

i

2
Tr log

(
1 +

λ

2
DΦ2

cl

)
+ ∆1S

= const.−
∑
n

i

2n
Tr

(
−λ

2
DΦ2

cl

)n
+ 1

2∆φ∂µΦcl∂
µΦcl − 1

2∆mm
2Φ2

cl − 1
4!∆λλΦ4

cl

where we used log(1− x) = −
∑
n
xn

n in the last line. Diagrammatically, this corresponds to the
counter-terms and summing up all the 1-loop diagrams with an arbitrary number n of vertices
between the fluctuation field η and the background field Φcl. They indeed reproduce the correct
factor 1/(2n) because rotations (1/n) and reflections (1/2) of the loop do not change the diagram.
The factor 1/2 in the numerator is an extra bose factor, since exchanging two external lines at
the same vertex does not give a new diagram.

1.3.2 Renormalization and regularization

As explained in the previous section, we know that the LSZ-formula allows us to calculate tran-
sition amplitudes via the n-point correlation function. This function can be expressed as a sum
of fully connected and amputated Feynman diagrams. Feynman diagrams and rules for external
lines, vertices, propagators and counterterms offer a very transparent way of constructing pro-
cess amplitudes, order-by-order in perturbation theory. This section explains the procedure for
calculating the correlation function, see also e.g. any textbook on QFT like [7, 9] which contain
explicit examples.

First, use the Feynman rules to write down the amplitude of each diagram. We then change to an
integral representation and use the identities (valid for any positive definite A,B,C, . . . )

1

AB
=

∫ 1

0

dx
1

[Ax+B(1− x)]
2 ,

1

A2B
=

∫ 1

0

dx
2x

[Ax+B(1− x)]
3 ,

1

ABC
= 2!

∫ 1

0

dy y

∫ 1

0

dx
1

[A(1− y) + y (Bx+ C(1− x))]
3 etc.
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where x, y are Feynman parameters. This method of Feynman parameters allows us to combine
the denominators of the propagators to a single expression. Next we complete the square in the
new dominator by introducing a new loop momentum variable ` and express the numerator in
terms of this variable. The integral over terms linear in ` vanishes.

Using another trick called Wick rotation to Euclidean momentum(`0 ≡ i`0E , ` = `E) the momen-
tum integral can be evaluated using four-dimensional spherical coordinates. Standard integrals
can be used to simplify the expression further and they can be derived from only one inte-
gral:

I0(α) ≡ i (−1)α

(2π)d

∫
ddk

(k2 +A2 − iε)α
= i

(−1)α

(4π)d/2
Γ(α− d/2)

Γ(α)
Ad−2α (1.49)

If α > d/2, the integral is finite, but in relativistic QFTs we often encounter α ≤ d/2 and the
integral becomes UV divergent. To deal with this divergence the integral must be ‘regularized’
using a regularization scheme. Here we use UV dimensional regularization, developed by Gerard
‘t Hooft, where we change the dimension of the integral to d = 4− 2ε. Then the loop integrals
can be split in a divergent part in the form of inverse powers of ε and an arbitrary finite part.
We can then choose the renormalization constants Zi such that the counterterms exactly cancel
these divergent Feynman diagrams, e.g. ‘renormalize’ these parameters to maintain the renor-
malization conditions. Finally, we take the limit ε → 0 to get finite physical observables. This
procedure is known as renormalized perturbation theory.

Dimensional regularization introduces a mass scale µ into the theory. Because we extend from
dimension d = 4 to dimension d = 4−2ε, a previously dimensionless g must now have dimensions
2ε. So we let µ be some scale with mass dimension one and then g → gµ̃2ε such that g itself is
dimensionless and the Lagrangian will still have dimension four. Here, µ2 = 4πe−γE µ̃2 and γE
the Euler-Mascheroni constant15. Note that bare parameters are per definition independent of µ.

Notice that there is a freedom in splitting the integral into two pieces. The amount of the
finite piece that we absorb into the divergent piece depends on what regularization scheme we
use. Specifically, the modified minimal subtraction scheme16 (MS) is used. This prescription
absorbs only the infinities that arise in perturbative calculations beyond leading order into the
counterterms.

QFTs are called renormalizable if there are a finite number of counter-terms needed to ren-
der perturbation theory useful. The superficial degree of divergence D can give a tentative
indication whether or not a particular diagram diverges.

D = d+

(
d− 4

2

)
V −

(
d− 2

2

)
Nγ −

(
d− 1

2

)
Ne (1.50)

with d the dimension, V the number of vertices, Nγ the number of external photon lines, and Ne
the number of external electron lines. Naively, a diagram will show divergence ∝ ΛD for D > 0
with Λ the momentum cut-off, the divergence will be logarithmic for D = 0, and there will be
no divergence when D < 0. There are of course exceptions.

The coefficient in front of V is the mass dimension of the coupling constant of the theory. There-
fore, we can say that renormalizability is related to the mass dimensions of the theory.

• Super-renormalizable theory: Only a finite number of Feynman diagrams superficially
diverge. This is the case when the coupling constant has positive mass dimension.

• Renormalizable theory: When the coupling constant is dimensionless, only a finite number
of amplitudes superficially diverge. However, divergencies occur at all orders in perturba-
tion theory.

15It appears in Γ(ε) = 1
ε
− γE +O(ε) and is γE ≈ 0.5772. It will cancel in observable quantities.

16Had we set µ̃ = µ in gµ̃ε then the scheme would be just the minimal subtraction or MS scheme.
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• Non-renormalizable theory: All amplitudes are divergent at a sufficiently high order in
perturbation theory. This happens when the coupling constant has negative mass dimen-
sion.

The spin of the matter fields also has to be taken into account: in d = 4 dimensions spin 0 and
spin 1

2 fields are renormalizable, spin 1 fields only when associated with a gauge symmetry, and
fields with higher spin are never renormalizable for d ≥ 4 dimensions.

The ‘old’ view was that only renormalizable Lagrangians can function as models for physi-
cal phenomena. In nonrenormalizable theories, physical observables do not decouple from the
UV modes and we cannot make predictions in the high energy limit. However, Kenneth Wil-
son realized that nonrenormalizable theories can still make valid predictions below a certain
ultraviolet cutoff Λ [19] because then the UV modes are negligible. These theories are so called
Effective Field Theories (EFT) and allow us to make predictions at present energies without
making unwarranted assumptions about what is going on at higher energies.

The central ingredient of EFT is the Wilsonian effective action (not to be mistaken with the
1PI effective action). Suppose we have a theory at a high energy scale, the bare scale Λ0, which
is described by the bare action SΛ0

=
∫

ddxL0. Now, we integrate out degrees of freedom be-
tween the bare scale and a lower, effective scale, Λ and rescale the theory. These continuously
generated transformations of Lagrangians are referred to as the ERG. The resulting action, the
Wilsonian effective action SΛ is in general different from the original action. This effective action
now describes the theory at the effective scale [20]. Unlike the 1PI effective action, one still has
to perform the path integral in the Wilsonian case.

On the other hand, if we do not know the high energy theory, we adopt the following gen-
eral procedure:

1. Identify the low energy degrees of freedom and symmetries.

2. Using only these fields write down the most general Lagrangian consistent with these
symmetries. This Lagrangian can be ordered in an energy expansion in terms of increasing
dimensions of the operators involved, where the operators of the lowest dimension(s) form
the leading order interactions.

3. Quantize the fields and identify the propagators in the usual way.

4. Observables like the cross section can be calculated in the usual way, using regularization
and renormalization to deal with the infinities. However, an effective theory requires an
infinite amount of terms in order to absorb all divergences. The coefficients of various terms
in the effective Lagrangian cannot be predicted and are thus determined by matching them
to experiments. This only needs to be done once per term and once fixed each coefficient
can be reliably used to compute further observables.

5. Use the theory to make predictions.

As can be seen, this procedure differs little from conventional renormalizable theories. The only
difference being in the number of terms to absorb the infinities. However, only a finite number
of terms are required to make predictions to within a required accuracy.

1.3.3 Callan-Symanzik equation

In this section we want to focus on one particular important aspect of the above explained
renormalization and regularization procedure, namely the fact that a scale dependence is intro-
duced. Specifically, the renormalization conditions that we have imposed involve an arbitrary
renormalization scale µ and field strength normalization ξ. However, we could have equally well
used µ′, ξ′. In order for it to be the same theory, there needs to exist a continuous relation-
ship between the regular and primed expressions. This again means that the dependence of the
Green’s function on µ, ξ, g is constrained.
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Recall the connected n-point function, which we call G(n)(x1, . . . , xn;µ, g)

G(n)(x1, . . . , xn; g0) = 〈Φ(x1) . . .Φ(xn)〉conn. (1.51)

The renormalized Green’s function is

G(n)
r (x1, . . . , xn;µ, g) = 〈Φr(x1) . . .Φr(xn)〉conn. (1.52)

where the only renormalization scale dependence is hidden in Z such that

G(n)(x1, . . . , xn; g0) = Z
n/2
Φ G(n)

r (x1, . . . , xn;µ, g) (1.53)

Then the trajectories of the parameters (µ, g) defining the same theory through different renor-
malization conditions are determined by requiring that the bare Green’s function should be
invariant under infinitesimal transformations µ → µ + δµ, g → g + δg combined with ZΦ →
ZΦ + δZΦ, done at fixed values for the bare coupling g0.

0 =

(
δµ

∂

∂µ
+ δg

∂

∂g
+ δZ

∂

∂Z

)
Zn/2G(n)

r (x1, . . . , xn;µ, g)

=

(
δµ

∂

∂µ
+ δg

∂

∂g
+
n

2

δZ

Z

)
G(n)
r (x1, . . . , xn;µ, g)

=

(
µ
∂

∂µ
+ β

∂

∂g
+ nγ

)
G(n)
r (x1, . . . , xn;µ, g)

In going from the first to the second line we did the derivative with respect to Z and multiplied
everything by Z−n/2. Going from the second to third line, which is known as the Callan-
Symanzik equation, we multiplied by µ/δµ and defined

β = µ
∂g

∂µ
=

∂g

∂ logµ
, γ =

µ

2Z

∂Z

∂µ
=
∂ log

√
Z

∂ logµ
(1.54)

Allowing also for mass terms by rewriting the dimensional couplingm2 in terms of a dimensionless
coupling gm = m2/µ2

0 =

(
µ
∂

∂µ
+ β

∂

∂g
+ βm

∂

∂gm
+ nγ

)
G(n)
r (x1, . . . , xn;µ, g, gm), with βm = µ

∂gm
∂µ

=
∂gm
∂ logµ

The general Callan-Symanzik equation for multiple interactions with dimensionless couplings
{gi} and fields {Φf} of which some contain mass terms, isµ ∂

∂µ
+
∑
i

βi
∂

∂gi
+
∑
j

(βm)j
∂

∂(gm)j
+
∑
f

nfγf

G({nf})
r (x1, . . . xn;µ, {gi}, {gmi}) = 0

(1.55)

The function β(g) is the beta function, which gives the behavior of the coupling constant as a
function of µ (‘the running of the coupling’), and γx is the scaling of the field Φx and named the
anomalous dimension. The general solution to the Callan-Symanzik equation in the presence of
mass parameters will involve not only a running coupling and a running field-strength normal-
ization, but also a running mass parameter.

From now on, we are only interested in the beta functions, since they determine the strength of
the interaction and the conditions under which perturbation theory is still valid. They provide
insights in the energy dependence of cross sections, hints to phase transitions and can provide
evidence to the energy range in which a particular theory is valid. Consider, for example, what
we can learn from the three possible signs of the beta function for small g.

1. β(g) > 0: the g goes to zero in the infrared, leading to definite predictions about the small-
momentum behavior of the theory. However, the coupling g(µ) increases with an increase
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of the mass scale. Thus the short-distance behavior of the theory cannot be computed using
Feynman diagram perturbation theory. Theories with this particular property, everywhere
or only in a particular region, are called infrared free. The theory of QED is an example
of such a theory.

2. β(g) = 0: by the definition of the beta function, the coupling constant is independent of
the energy scale µ. These so-called finite quantum field theories are scale invariant.

3. β(g) < 0: the coupling decreases with an increase of µ, so the theory is strongly coupled
at small energies and weakly coupled at large energies. This means that we can only use
perturbation theory at large energies. Theories with this property, like QCD, are called
asymptotic free.

The zeros of the beta function, so called fixed points, dictate the ultraviolet and infrared proper-
ties of the theory. Both QCD and QED have a trivial, also called Gaussian, fixed point at g = 0,
but their behavior in that point differs greatly. The difference lies in the energy regime at which
the coupling constant approaches its critical value. Non-trivial fixed points are those for which
β(g∗) = 0 with g∗ 6= 0 and they come in two flavors: an ultraviolet fixed point (UVFP) when for
g < g∗ the beta function is positive and for g > g∗ β(g) < 0, and an infrared fixed point (IRFP)
when the opposite is true. Theories with the latter are scale invariant at large distances, since
the coupling constant renormalization flow stops in the infrared. This scale invariance is part of
a larger conformal symmetry which we will encounter in the next chapter.

1.3.4 Standard Model beta functions

Now we turn our attention back to the Standard Model. Specifically, we are interested in the
one-loop beta function of the different gauge coupling constants, though we will mention the
current precision as well.

Computing the beta functions is rather involved. For later convenience we write gi =
√

4παi,
such that the beta function is given by:

µ2 d

dµ2

αi
π

= βi({αj}, ε) (1.56)

where the dependence on the regulator ε explicitly indicates that we work with Dimensional Reg-
ularization. For gauge couplings, the beta functions are scalar functions, while for the Yukawa
and scalar couplings, the beta functions have the same dimension as the Yukawa-coupling tensor
and the scalar-coupling tensor.

First consider the simpler theory of QED. We write the theory in terms of the renormalized
parameters. Comparison with the bare lagrangian shows that the QED coupling constant can
be written as α0 = Z2

1Z
−2
2 Z−1

3 µ̃2εα. The different renormalization factors Zi have to be deter-
mined, which can be done by calculating the relevant Feynman diagrams for the QED vertex
(Z1), the electron propagator (Z2) and the photon propagator (Z3). Using the fact α0 does not
depend on the renormalization scale, the beta function of α can be successfully determined via
(1.56).

To calculate the gauge coupling beta functions of the Standard Model, we rewrite equation
(1.56) using

α0
i = µ2εZαiαi with Zαi =

Z2
vrtx

ΠkZk
(1.57)

Noting that α0
i is independent of the mass scale µ, we find [21]:
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0 = µ2 d

dµ2
α0
i = µ2 d

dµ2

(
µ2εZαiαi

)
= ε+ µ2 1

Zαi

dZαi
dµ2

+ µ2 1

αi

dαi
dµ2

= αiε+ µ2 αi
Zαi

n∑
j=1

∂Zαi
∂αj

dαj
dµ2

+ µ2 dαi
dµ2

= αiε+
αi
Zαi

n∑
j=1
j 6=i

∂Zαi
∂αj

πβj +

(
1 +

αi
Zαi

∂Zαi
∂αi

)
πβi

⇒ βi = −

εαiπ + µ2 αi
Zαi

n∑
j=1
j 6=i

∂Zαi
∂αj

βj

(1 +
αi
Zαi

∂Zαi
∂αi

)−1

(1.58)

In the third line we used that Zαi depends on µ2 implicitly via αj . In the fourth line we used the
definition of the beta function (1.56). The number of couplings n is equal to 7 in the Standard
Model. Namely α1,2,3 are the gauge couplings, α4,5,6 refer to Yukawa couplings for the three
heaviest leptons x = t, b and τ respectively, and α7 is the Higgs self-coupling λ

α1 =
5

3

α

cos2(θW )
=

5

3

g2
1

4π
, α2 =

α

sin2(θW )
=
g2

2

4π
, α3 = αs =

g2
3

4π
,

αx =
αm2

x

2 sin2(θW )M2
W

, α7 = λ̂ =
λ

4π
=

1

4π

M2
H

2υ2

(1.59)

where α = 1
4πε0

e2

~c is the fine structure constant, θW the weak mixing angle, αs the strong cou-

pling constant and mx and MW are the fermion and W boson mass, respectively. The factor 5
3

in α1 is a normalization constant and arises from embedding the Standard Model in the larger
gauge group SU(5).

The first term in the first factor of equation (1.58) vanishes in four space-time dimensions.
The second term in the first factor contains the beta functions of the remaining six couplings of
the SM. That means that if the coupling renormalization Zαi depends on αj we also need βj .
Suppose you need one of the gauge coupling beta functions βi at loop order `, then you’ll need Zi
also at loop order `. All other couplings except α7 are present from two loops onward, meaning
we need to know βj for j = 1, . . . 6, j 6= i to loop order ` − 2 and β7 to order ` − 3. Zeroth
order is just the ε-dependent term. If we are just interested in the one-loop gauge coupling beta

functions, we will see no contributions from the other sectors in the result. However, β
(1)
j for

the Yukawa couplings and scalar self-interaction are affected by all sectors.

Using this equation in combination with equation (1.57) for Zαi and the renormalization pro-
cedure to calculate17 the field and vertex renormalization constants, the beta functions for the
gauge couplings α1, α2, α3 can be determined.

The one loop contribution to the gauge β-function for a non-abelian gauge theory was first
presented in light of asymptotic freedom by Gross and Wilczek [22], and Politzer [23]. The beta
functions for a general theory involving fermions and scalars with Yukawa and quartic scalar
interactions like the SM, were presented in [24]. The subsequent two loop corrections for such a
general theory were presented in a series of papers by Marie Machacek and Michael Vaughn [25].
The most precise and complete set of gauge beta functions is established by Mihaila et al. [21],

17Note that the number of diagrams grows exponentially with each loop order. Nowadays, advanced computer
programs are used to calculate these diagrams. The workings of these programs are outside the scope of these
thesis.
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which correspond to the results of Bednyakov et al. [26] though there is a factor 4 difference due
to a different definition of the beta function than (1.56). They have computed the beta functions
for the three gauge couplings of the Standard Model in the minimal subtraction scheme to three
loops, taking into account contributions from all sectors of the Standard Model. Furthermore,
in [27] the four-loop beta-function of the strong coupling in the Standard Model was calculated,
though only the top-Yukawa and self-Higgs interactions were taken into account. Higgs [28, 29]
and Yukawa couplings [30] taking into account contributions from all sectors of the Standard
Model are known to three loop order. Additionally, leading top-Yukawa and QCD contribution
to the β7 function are known to fourth order [31].

As said earlier, we are merely interested in the 1-loop results which we will provide below:
It goes beyond the scope of this thesis explain the calculations and results for the higher loop
beta functions, so we refer to the given references for more information.

To understand the 1-loop results from Mihaila et al. [21] we need to introduce group theoretical
invariants. Recall that the generators T a of the gauge group can be represented by matrices,
e.g. the Pauli matrices and the Gell-Mann matrices in case of the fundamental representation of
SUL(2) and SUc(3). We use this to define an inner product: Tr

(
T aT b

)
= S(R)δab. Here S(R)

can be any number and depends on the representation R of the generator. This number is called
the Dynkin index. The other invariant we are interested in, is the quadratic Casimir operator
C2(R) = T aT b, which is a d(R)×d(R) matrix with d(R) the dimension of the representation. A
useful formula for determining the Casimir operator is T (R)d(A) = C2(R)d(R). Here d(A) is the
dimension of the adjoint representation of the group and T (R) is the index of the representation.
This gives (N2 − 1)/2N for the fundamental representation of SU(N) and N for the adjoint
representation of the same group.

The generic 1-loop result for α for a theory with 1 gauge group is:

(4π)2β(1)
α = 4

(
− 11

3 C2(G) + 4
3κS2(F ) + 1

6S2(S)
)
α2 (1.60)

where S, F,G are the representations of the scalar, fermion and gauge field, respectively. The
constant κ = 1, 1

2 appears in terms originating from fermion loops and takes the first or second
value depending on whether the fermion representation is Dirac or Weyl, respectively. Similar
generic function for the Yukawa and Higgs contribution exist as well, but are omitted for read-
ability considerations.

For the Standard Model the result needs to be extended to the three gauge groups SUc(3) ×
SUL(2)×UY (1). Using Table 1.2, the Standard Model results for the 1-loop gauge coupling beta

functions β
(1)
i in terms of αi follow:

(4π)2β
(1)
1 =

82

5
α2

1, (4π)2β
(1)
2 = −38

3
α2

2, (4π)2β
(1)
3 = −28α2

3 (1.61)

The three Yukawa coupling beta functions at 1-loop are:

(4π)2β
(1)
4 =

(
6α5 + 18α4 + 4α6 − 17

5 α1 − 9α2 − 32α3

)
α4 (1.62)

(4π)2β
(1)
5 =

(
18α5 + 6α4 + 4α6 − α1 − 9α2 − 32α3

)
α5 (1.63)

(4π)2β
(1)
6 =

(
10α6 + 12α5 + 12α4 − 9α1 − 9α2

)
α6 (1.64)

Lastly, the beta function of the self-interaction of the Higgs field at 1-loop order [28]:

(4π)2β
(1)
7 = 48α2

7 − 36
10α1α7 − 18α2α7 + 27

100α
2
1 + 9

10α1α2 + 9
4α

2
2

− 12α2
4 − 12α2

5 − 4α2
6 + 24α4α7 + 24α5α7 + 8α6α7

(1.65)

where we accounted for the factor 4 difference between our convention and those of the source.
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C2(G) C2(S) C2(F ) S2(S) S2(F )

SU(3) 3 0 4
3R

3 0 6

SU(2) 2 3
414

3
4R

2 1 6

U(1) 0 1
414 (R1)2 1 10

Table 1.2 – Dynkin indices and Casimir operators for the Standard Model.
For SU(3) we note that S2 measures the amount of color: scalars have no color and of the fermions
only the 6 quarks have color. Fermions are in the fundamental representation and the gauge fields
in the adjoint representation, from this we can determine C2. R3 is a block diagonal matrix with
ones and zeros depending on the Gell-Mann matrices. For SU(2) S2 counts the number of left-
handed components, i.e. 3 lepton doublets and 3 quark doublets. The Casimir depends on the
pauli matrices and R2 is diagonal matrix with ones and zero depending on the fermions considered.
In U(1) the total hypercharge is measured by S2. C2 can be determined by noting that a scalar
has hypercharge + 1

2
. Furthermore R1 is a diagonal matrix with the hypercharges of the respective

spinors on the diagonal. Based on Appendix D from [21].

1.4 Beyond the Standard Model

The Standard Model including including neutrino masses and mixing angles (also known as the
minimal extended Standard Model) depends on 25 free parameters. Most of their numerical
values have been established by experiment (see Appendix A). The ESM is able to calculate any
experimental observable in terms of its input parameter set and has done so successfully. The
Standard Model precisely predicted a wide variety of phenomena, e.g. the existence of the Higgs
boson and the Z and W masses. However, the SM is not able to calculate these 25 parameters
and in this sense the SM is not a predictive theory, nor expected to be the final theory. And
there are more reasons for expecting physics beyond the Standard Model. In no particular order
a few examples are [32]:

i. The Hierarchy problem: the free parameters of the Standard Model need to be extremely
fine-tuned in order to get the observed Higgs mass.

ii. Why do the fermion masses and mixing exhibit structure when in the SM they are just
free parameters?

iii. Why is the number of fermion families equal to 3?

iv. Why is the number of spacetime dimensions 3+1?

v. What is the nature of neutrinos?

vi. The strong CP problem: there is another invariant term which could be added to the SM
Lagrangian:

Lθ = θ
g2
s

64π2
εµνρσF aµνF

a
ρσ

where εµνρσ a totally antisymmetric tensor. However, the parameter θ must be exceedingly
small in order not to give rise to strong interaction contributions to CP violating quantities
such as the electric dipole moment of the neutron. The current experimental limits on this
dipole moment tell us that θ < 10−10. Why this term is absent (or so small)?

vii. How does color confinement emerge from QCD?

viii. What gave rise to the matter-antimatter asymmetry?

ix. What is the nature of dark matter and dark energy?

x. Can the four forces of nature be unified in one Theory of Everything and if yes, what are
its properties? Should Gravity be quantized?



Chapter 2

Conformal Gravity

Our current understanding of the physics of our Universe is based on the quantum field theory
(QFT) description of the Standard Model (SM) and Einstein’s theory of gravity, General Rela-
tivity (GR). As such, GR is relevant in regions of both large-scale and high-mass whereas the SM
is the theoretical framework in which the other three forces of nature are explained, applicable in
regions of both small scale and low mass. Moreover, Einstein drastically changed the concepts of
time and space in GR when he promoted the metric of space-time to a dynamical object. QFT,
however, takes for granted some fixed background spacetime determining the causal structure,
as one of its very foundations. It furthermore requires that any dynamical field is quantized and
is governed by probabilistic laws. Combining the two theories irrevocably leads to fundamental
conceptual difficulties regarding the nature of time and spacetime.

Nonetheless, GR and QFT should be unified in a theory of Quantum Gravity18 not only to
be able to unify gravity with the Standard Model, but also to explain for example black holes
and address the aforementioned problem of (space-)time.

With the lack of any direct experimental hints, most focus on constructing a mathematically and
conceptually consistent (and appealing) Quantum Gravity framework. We distinguish ‘primary’
and ‘secondary’ theories of quantum gravity. In the former one starts with a given classical
theory and applies heuristic quantization rules. A further division in canonical and covariant
approaches can be made: the first uses a Hamiltonian formalism whereas the latter employs
four-dimensional covariance at some stage. The main advantages of primary theories is that the
starting point is known unlike for the secondary theories. There one starts with a fundamental
quantum framework of all interactions and tries to derive (quantum) GR in certain limiting
situations, for example, through an energy expansion [33].

Here we will use the covariant approach and thus start this chapter by looking at Einstein
gravity as a (classical) field theory, following [14, 16] in the conventions of this thesis (see ‘Nota-
tions and conventions’, page xi). Despite the fact that GR can be made an effective field theory,
it is not suited to unify with the Standard model interactions. In Section 2.2 we argue why we
want to impose conformal invariance on our theory. In Section 2.3 we develop a conformal field
theory of gravity, called Conformal Gravity and show that it can indeed describe the results
from GR. In the last section Section 2.4 we will construct a Conformal Standard Model and use
it to find a conformal toy model.

18Strictly speaking, the aim of Quantum Gravity is only to describe the quantum behavior of the gravitational
field. However, some quantum gravity theories also try to unify gravity with the other fundamental forces. We
refer to such a theory as a ‘Theory of Everything’ and its existence is the most prominent unresolved question in
modern day physics.

21
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2.1 Einstein Gravity

In Einstein’s theory of General Relativity, spacetime is represented as a connected real, 4-
dimensional linear differentiable manifold L (a collection of smoothly connected points). This
manifold can only be determined in connection with a solution to the field equation and has by
itself no physical meaning; it gets meaning only through fields defined on it. The field equations
follow from the principle of least action using an action that respects background independence19.

S = Sg + Smat =

∫
ddx
√
g(Lg + Lmat) (2.1)

where g = |det(gµν)| and
√
g ensures that

√
gL transforms as a scalar density under coordinate

transformations. Note that gµν is a nondegenerate metric with signature20 (1,3) and is said to
be dynamical. This Lorentizian metric guarantees that Special Relativity (SR) with its non-
gravitational laws remains approximately valid locally even if gravitational fields are taken into
account.

The gravitational Lagrangian Lg needs to be a scalar, but also needs to depend on the deriva-
tives of the metric21 to get dynamics in the vacuum (i.e. the Einstein equations). The notion
of differentiation on a smooth manifold requires the introduction of the affine connection ∇(Γ),
which can be identified as a covariant derivative. Consider a vector field Xα(x) at a point xα on
a manifold. The curvature of a manifold will cause a distortion: the parallel transported vector
field to xα + δxα is different from Xα(x+ δx). This is depicted in figure 2.1.

The change of the coordinate field due to the manifold is defined as

Xα(x+ δx) = Xα(x) + δxβ∂βX
α = Xα(x) + δXα(x)

On the other hand, the parallel transported vector field is Xα(x) + δ̃Xα(x), where the second
term must vanish if either δxα vanishes or Xα vanishes. Therefore, we write

δ̃Xα(x) = −Γαβγ(x)Xβ(x)δxγ

Figure 2.1 – Two spacetime points xα and xα +
δxα are labeled as i and j, respectively. The vec-
tor field at i is Xα(x), and at j it is Xα(x+ δx) =
Xα(x)+δXα(x). However, the parallel transported
vector (the blue vector) at j is Xα(x) + δ̃Xα(x).
The difference between the two vectors at j is col-
ored red. (The figure is based on figure 1 from
Yepez [16]).

19Other terms used are ‘general coordinate invariance’, ‘general covariance’ or ‘diffeomorphism invariance’.
There have been extensive discussions on the precise definition especially as myriad terminology exist to describe
these concepts, see e.g. section 4 of Pooley [34] for the details. Superficially this just means that one can use
whatever coordinates or frames of reference one likes to formulate the laws that govern the joint evolution of matter
and space-time. However, Erich Kretschmann (1917) already noted that any physical law can be rewritten in
an equivalent but generally covariant form. Hence general covariance alone cannot rule out any physical law.
Therefore we distinguish on the one side passive diffeomorphism invariance (i.e. general covariance or coordinate
invariance) and on the other side active diffeomorphism invariance (i.e. background independence). In this thesis
we assume the latter, which we understand as the fact that the laws of GR, in contrast to those of e.g. Newtonian
physics and SR, do not presuppose the existence of an absolute spacetime structure which is specified categorically
prior to dynamical laws and not influenced by physical processes.

20The signature (p, q, r) of a metric tensor g is the number of positive, negative and zero eigenvalues of the real
symmetric matrix gµν of the metric tensor with respect to a basis. In this thesis the signature is either denoted
by a pair of integers (p, q) (because we work in spaces where r = 0) or as an explicit list of signs of eigenvalues
such as (+,−,−,−) or (−,+,+,+) for the signature (1,3) respectively (3,1).

21From the link between GR and Newtonian gravity, it follows that the metric has the meaning of a gravita-
tional potential, and that derivatives of the metric take on the role of gravitational forces.
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The covariant derivative can then be written as

∇γ(Γ)Xα = lim
δxγ→0

Xα(x+δx)−(Xα(x)+δ̃Xα(x)
δxγ

where the numerator is the difference between the two vectors at j (depicted red in the figure).
Using the definitions, the above formula gives after dropping the explicit dependence on x

∇γ(Γ)Xα = ∂γX
α + ΓαβγX

β (2.2)

We call Γαβγ the affine connection and it transforms under a coordinate transformation as

Γµνρ
′(x′) =

∂xβ

∂xν ′
∂xγ

∂xρ′
Γαβγ

∂xµ′

∂xα
+
∂xµ

′

∂xσ
∂2xσ

∂xν′∂xρ′
(2.3)

to ensure that the covariant derivative of a tensor is again a tensor, i.e. it ensures the coordinate
independence.

The covariant derivative with respect to a general affine connection ∇γ(Γ) of a tensor is thus
given by its partial derivative and correction terms, one for each index, involving the connection
coefficients contracted with the tensor. Explicitly, the covariant derivative of a generic tensor
Tµ1,...,µm
ν1,...νn

∇γ(Γ)Tµ1,...,µm
ν1,...νn = ∂γT

µ1,...,µm
ν1,...νn

+ Γµ1
αγT

α,µ2,...,µm
ν1,...νn + · · ·+ Γµmαγ T

µ1,...,µm−1,α
ν1,...νn

− Γβγν1
Tµ1,...,µm
β,ν2,...νn

− · · · − ΓβγνnT
µ1,...,µm
ν1,...νn−1,β

(2.4)

From this definition one immediately sees that when tensor has no indices, i.e. if it is a scalar,
the covariant derivative simplifies to an ordinary one. At this point, it also becomes clear that
the definition of Γµνρ contains some ambiguity, because (2.4) remains a tensor if one adds to Γµνρ
any tensor Γ̃µνρ.

From the affine connection, two tensors can be built. Firstly, there is the torsion tensor which
is related to the fact that infinitesimal parallelograms on the manifold do not close in general,
the closure failure being proportional to the torsion tensor:

Tλµν(Γ) = Γλµν − Γλνµ = 2Γλ[µν] (2.5)

The other tensor built form the connection is the (Riemann-Cartan) curvature tensor

Rµνρσ(Γ) = ∂ρΓ
µ
νσ − ∂σΓµνρ + ΓλνσΓµλρ − ΓλνρΓ

µ
λσ (2.6)

The name ‘curvature tensor’ stems from the fact that a given spacetime will be flat if and only
if every component of the curvature tensor is zero. In that case, the geodesic equation describes
Newton’s second law of motion for a free particle in the absence of gravity in an arbitrary acceler-
ating coordinate frame. If the curvature tensor is nonzero, the geodesic equation in combination
with the Schwarzschild metric will give Newtonian gravity.

The curvature and torsion tensors are related as can be seen by considering the non-commutativity
of the covariant derivatives. For a scalar field φ and vector field Xα we have

[∇µ,∇ν ]φ = −Tσµν(Γ)∂σφ

[∇µ,∇ν ]Xα = Rαβµν(Γ)Xβ − Tσµν(Γ)∇σ(Γ)Xα

Note that spacetime strictly has neither curvature nor torsion as a manifold can have different
connections and both torsion and curvature are properties of the connection.
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As stated at the start of this section, for General Relativity we assume we work on a manifold
which is also a metric space, i.e. it is equipped with a non-degenerate metric tensor gµν . These
manifolds are known as Riemannian and pseudo-Riemannian manifolds22. With the metric we
can use the torsion and curvature tensor to define related tensors:

Rµν = Rαµαν Ricci tensor (2.7)

R = gµνRµν Ricci scalar (2.8)

Qµνλ = −∇µ(Γ)gνλ Nonmetricity tensor (2.9)

Kλ
µν = 1

2 (Tλµν − Tνλµ −µ λν) Contortion tensor (2.10)

Note that the contortion tensor is antisymmetric in the first two indices (Kλµν = −Kµλν), while
torsion itself is antisymmetric in the last two indices (Tλµν = −Tλνµ).

The above definitions allow us to decompose a general affine connection as

Γµνλ = {µνλ}+Kµ
νλ + (Γµνλ)S (2.11)

where (Γµνλ)S is the segmental connection

(Γµνλ)S = 1
2g
µσ (Qλνσ +Qνλσ −Qσλν)

and {µνλ} are the Christoffel symbols

{µνλ} = 1
2g
µρ (∂νgλρ + ∂λgνρ − ∂ρgλν) (2.12)

The splitting of a connection according to (2.11) allows for the distinction of various spaces, each
with its own geometry, see item 2.1. One particular geometry is the Weyl geometry, which we
will encounter later. For Einstein Gravity, we use the fact that we can define a unique connection
as given by the ‘Fundamental Theorem of Riemannian Geometry’. This theorem states that for
a Riemannian or pseudo-Riemannian manifold there is a unique connection Γµνλ which satisfies
the following conditions:

i. It preserves the metric, i.e. Qµνλ = 0. This condition is sometimes referred to as the
metric compatibility condition and ensures that lengths and angles are preserved under
parallel transport.

ii. The torsion tensor T vanishes.

These two properties uniquely define the so-called the Levi-Civita connection given by the
Christoffel symbols Γµνλ = {µνλ}. If we only had the first condition, the resulting space would
be a Riemann-Cartan space where the metric and the connection are still independent objects,
unlike the connection in Riemann geometry, which can be calculated completely from the deriva-
tives of the metric (the geometry is completely described by the metric). Due to the symmetry
properties of the Christoffel symbols, the Riemann curvature tensor with respect to the Levi-
Civita connection Rµνρσ({}) then obeys the following relations

Rµανβ = Rνβµα (2.13)

Rµανβ = −Rαµνβ = −Rµαβν (2.14)

Rµανβ +Rµβαν +Rµνβα = 1
6Rµ(ανβ) = 0 (2.15)

∇βRλµαν +∇νRλµβα +∇αRλµνβ = 1
6R

λ
µ(αν;β) = 0 (2.16)

where equation (2.15) and (2.16) are known as the first and second Bianchi identity, respectively.

22A Riemannian manifold is a smooth manifold M equipped with a positive-degenerate metric tensor gµν .
A pseudo-Riemannian manifold has a metric tensor which is only required to be nondegenerate rather than the
stronger positive-definite requirement of a Riemannian manifold.
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Figure 2.2 – In order to preserve lengths and an-
gles under parallel transport one imposes the met-
ric compatibility condition (nonmetricity equals
zero) on the linear differentiable manifold L4. The
space with the most general metric-compatible lin-
ear connection is called a Riemann-Cartan space
U4. If the torsion (and thus also the contortion)
vanishes we have a Riemann space V4, and if, al-
ternatively, the curvature vanishes, we have the
teleparallel space T4 of Weitzenböck. If both cur-
vature and torsion vanish identically, we arrive at
Minkowski space M4, the stage for Special Relativ-
ity. (The figure is based on figure 7.2 from Sunder-
meyer [14]).

This means the Ricci tensor is symmetric. The Ricci scalar, which is the object of our interest
in constructing the gravity lagrangian, becomes

R = gµνRµν = gµν({σµν},σ − {σµσ},ν + {ρµν}{σσρ} − {ρµσ}{σνρ})

where the covariant derivative with respect to the Levi-Civita connection is traditionally abbrevi-
ated by a semicolon∇µ(Γ)T = T;µ and a partial derivative is abbreviated by a comma ∂µT = T,µ.

We can now construct a general coordinate invariant action known as the Einstein-Hilbert action
Sg = SEH:

Stotal = SEH + Smat =
1

2κ2

∫
ddx
√
g (R− 2Λ) + Smat, where g = |det gµν | (2.17)

The Einstein-Hilbert action is the simplest form23 that adheres the coordinate invariance: the
square root of the determinant is the simplest possible volume element and R is the simplest
possible scalar that can be formed from the covariant derivatives of the metric. The second term
in equation (2.17) is related to the cosmological constant. It should in principle be included, but
cosmology bounds give |Λ| < 10−56cm−2 meaning that this constant is unimportant at ordinary
energies. Furthermore, κ has been chosen such that the non-relativistic limit yields the usual
form of Newton’s gravity law.

2κ2 = M−2
p = 16πGN with GN = 6.674× 10−11Nm2kg−2 (2.18)

Mp is the 4-dimensional Planck mass. From the Einstein-Hilbert action Einstein’s gravitational
field equations can de derived via the principle of least action (see Appendix B for the full
calculation):

Rµν − 1
2gµνR+ Λgµν = 8πGNTµν (2.19)

23Here, we justify the choice of the Einstein-Hilbert action on grounds of simplicity, but we do note that
simplicity itself is not a law of nature.
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where Tµν is Hilbert’s energy-momentum tensor corresponding to the matter Lagrangian Lmat

Tµν ≡ − 2
√
g

δ

δgµν
(
√
gLmat) = −2

δLmat

δgµν
+ gµνLmat (2.20)

which is a symmetric, conserved quantity containing the energy density (T00), the energy flux
in the i-direction (T0i), the 3-momentum density (Ti0), and the 3-momentum flux (Tij).

Einstein’s equations work well as a classical theory with more and more of its predictions be-
ing verified by experiments (including gravitational waves). The problems arise at the next
step, namely the quantization of the theory (as a quantum field theory of the spin-two gravi-
ton). We refrain from entering in too much detail at this point. Simply stated, it is known
that some quantization of gravity is inevitable because part of the metric is determined by the
energy-momentum tensor which depends upon the other particle fields whose quantum nature
has been well established. Divergences arise due to these other fields. The quadratic and quartic
divergences can be absorbed into renormalizations of Newton’s constant and the cosmological
constant, but there is no parameter in general relativity in which to absorb the logarithmic
divergence. One can only absorb it if new, fourth derivative terms of the metric are added to the
gravitational field equations [35]. Kellogg Stelle [36] showed that if the equations of motion be
changed to include terms with up to four derivatives (the theory is then different from GR), the
resulting quantum theory is perturbatively renormalizable. However, the theory also becomes
unstable as cross sections blow up thus violating the unitarity of the theory. This is of course
inconsistent with the observed reality of a universe which is 13.8 billion years old.

In conclusion, the quantization of Einstein gravity gives a theory that is unitary, but nonrenor-
malizable24. On the other hand, higher order derivative theories turn out to be renormalizable
at the one-loop quantum level, but at the price of losing the unitarity of the S-matrix. As of
yet, it is not known how to build a higher-derivative theory that is renormalizable and unitary
at the same time.

Nonetheless, within the framework of Effective Field Theory, quantization of nonrenormaliz-
able theories can make perfect sense provided they are applied to low energy (i.e. well below
some ultraviolet (UV) cutoff of the EFT) predictions. Thanks to the work of John F. Donoghue
[e.g. 38, and references therein] it appears that the Einstein-Hilbert Lagrangian is just the least
suppressed term in the Lagrangian of an effective field theory containing every possible generally
covariant function of the metric and its derivatives.

S =

∫
d4x
√
g
(
λ+ 1

2κ2R+ c1R
2 + c2C

2 + c3E + c4�R+ · · ·+ Lmat

)
(2.21)

where C2 = R2
µνρσ − 2R2

µν + 1
3R

2 is the square of the Weyl tensor which is conformal invariant
in 4 dimensions (see Section 2.3), and E is the so called Euler term:

E =
(
RµνρσR

µνρσ − 4RµνR
µν +R2

)
(2.22)

which in four space-time dimensions, also known as a Lanczos term or Gauss-Bonnet topological
invariant, vanishes for space-times topologically equivalent to flat space [39].

As with the Standard Model this requires the introduction of gauge-fixing terms as well as
Faddeev-Popov ghost fields. The background field method, which relies on the expansion of the
metric about a smooth background field ḡµν(x) as gµν(x) = ḡµν(x) + κhµν offers a small relief
as it ensures that no gauge-fixing terms are needed for terms of order O

(
∂2
)
. This is because

24‘t Hooft and Veltman [37] calculated that in a theory of gravity alone the counterterms can be absorbed
by a renormalization of the metric tensor gµν . They showed that this is no longer the case and a real infinity
remains for the simplest case of one massless Klein-Gordon field φ interacting with gravity. If other fields or other
interactions are added in L, the number of possible terms in the counterterm Lagrangian increases rapidly and
only miraculous cancellations could restore renormalizability.
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the total set of terms linear on hµν (including those from the matter Lagrangian) will vanish if
ḡµν satisfies Einstein’s equations. The remaining Lagrangian is of higher order and still requires
gauge fixing and the introduction of the associated Faddeev-Popov ghost fields.

2.2 Using conformal symmetry

So we can make a quantum field theory out of General Relativity, but only an effective field the-
ory. Furthermore, it uses the Einstein equation (2.19) as given while any extrapolation from its
weak classical gravity solar system origin runs into trouble (e.g. the dark matter problem, dark
energy problem, singularity problem, etc.)[12]. To describe the physics at the Planck scale an
alternative theory has to be developed, preferably one that 1) does not encounter these problems
and 2) would allow unification with what we already know of the strong, weak and electromag-
netic interactions.

Despite intense efforts over the last years it is far from clear at this time what a consistent
theory of Quantum Gravity will look like and what its main features will be. The most straight-
forward way to alter the physics of a field theory is to change the action principle for that theory.
Specifically, to extend the theory of General Relativity by changing the symmetry of the action
because using symmetry to relate and unify physical theories has been very successful in the
past, the Standard Model being one of those successes.

The use of conformal invariance is one of the possibilities and numerous reasons support its
use. First of all, the classical SM Lagrangian is devoid of any intrinsic mass or length scales,
if the Higgs mass term is dropped. As it is associated with the energy-momentum tensor, it
is thus quite natural that gravity should be devoid of any intrinsic mass or length scales too.
Furthermore, we know from the ultrarelativistic limit of special relativity that rest masses of
particles have negligible effects. This is another argument why one might expect a high-energy
theory of physics to lack any explicit mass scales. A conformally invariant theory would fit this
expectation beautifully.

Besides, conformal invariance is highly restrictive, more so than simple scale invariance: the
energy-momentum tensor of the theory should be traceless. Lacking experimental constraints in
the quantum gravity domain, these conformal constraints would be very welcome in our search
for a Theory of Everything. Furthermore, it allows us to address several issues in SM, most
notably it can naturally accommodate a see-saw mechanism to give mass to neutrino’s and ad-
dresses the hierarchy problem due to missing tachyonic mass term.

Last but not least, conformal field theories are fundamentally linked to quantum field theo-
ries. Firstly because they are a very usefull tool in describing a system close to its critical point,
i.e. the the point at the end of a phase equilibrium curve where a continuous phase transition
occurs. It turns out there are quantum critical points at T = 0 where transitions are driven
by quantum fluctuations. These phase transitions also exhibit infinite correlation lengths and
thus are also describable via CFTs. Secondly, we can think of any quantum field theory as
a perturbation of a conformal field theory by relevant operators (which push the theory away
from the fixed point). In other words, any point in our parameter space can be considered as a
renormalization group flow perturbed away from some fixed point CFT.

Having now clear why we are interested in a conformal invariant theory, we continue this section
by explaining the terms ‘scale invariance’, ‘Weyl invariance’ and ‘conformal invariance’ and their
relation to each other as they are often used interchangeably in the literature. Following Chapter
4 of Di Francesco et al. [40], unless otherwise specified, we proceed by discussing the conformal
group. This allows us to show that conformal invariance is indeed highly restrictive. In the next
section we will use conformal invariance to develop a theory of Conformal Gravity.
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2.2.1 Scale, Weyl and conformal invariance

We define a general coordinate transformation as

x→ x′, gµν(x)→ g′µν(x′) =
∂xα

∂xµ′
∂xβ

∂xν ′
gαβ(x) (2.23)

Following Forger and Romer [41], a rigid scale transformation (also known as a dilation or
dilatation) in flat spacetime is then

xa → Ω̃xa, Φ(x)→ Ω̃−∆ΦΦ(λ−1x) (2.24)

where λ is a real, arbitrary constant and ∆Φ the scaling dimension of the field Φ. The flat metric
is understood to be invariant under dilatations and so can be viewed as having scaling dimen-
sion 0 and only pick up factors of λ due to the scaling of the coordinates. From (2.24) it can
also be deduced that if a field Φ has scaling dimension ∆Φ, then all its partial derivatives ∂µΦ
will have scaling dimension ∆Φ + 1, meaning that the partial derivative has scaling dimension
+1. To ensure that the covariant derivative has the same dimension, also the gauge fields will
need to carry a scaling dimension equal to +1. However, considering the scale invariance of the
Yang-Mills sector shows that the field strength tensor has scaling dimension d

2 and the gauge

field thus has dimension d−2
2 , i.e. scale invariance of the Yang-Mills sector thus occurs only in

d = 4 spacetime dimensions. The scaling dimension of specific fields can be found by inspection
of their kinetic terms and gives a scaling dimension of 1

2 (d− 2) for scalar fields and 1
2 (d− 1) for

fermions.

Rigid transformations like translations, Lorentz transformations and dilatations do not have
a direct analogue on arbitrary spacetime manifolds. However, the equivalence principle and
the principle of general covariance suggest that when considering generally covariant classical
field theories on a arbitrary spacetime manifold, rigid spacetime symmetries should be replaced
by flexible spacetime symmetries. This can be resolved by switching from the active to the
passive point of view: In a general background we should consider scale transformations not
as active transformations that move points in spacetime, but rather as passive transformations
that change the scale of the metric by which we measure distances between points in spacetime.
Scale transformations in this latter sense are called global Weyl rescalings. The link between
them is that in flat spacetime both should lead to the same rescaling for the distance between
points, i.e. the metric and more general a field should transform under a global Weyl rescaling
as:

gµν → Ω̃2gµν , Φ→ Ω̃−∆̃ΦΦ (2.25)

The Weyl weight ∆̃Φ differs from the scaling dimension: we see that the metric and its inverse
have weight 2 and -2, respectively. Furthermore, the partial derivative and with it the covariant
derivative, the gauge fields and the connection, now have weight 0. The Weyl weight of scalar
and fermion fields is again found by inspection of the kinetic terms, which means that the Weyl
weight in those cases coincides with the scaling dimension.

As the list of theories that are scale-invariant coincides exactly with the list of global Weyl
invariant theories, we can indeed say that the generalization of scale invariance in flat spacetime
is the invariance under global Weyl rescaling in general spacetime (though this is not a coordi-
nate transformation but a simultaneous pointwise transformations of both the metric and the
fields) [41, 42].

Next we need to interpret what we mean by a local Weyl rescalings, which is a rescaling by
an arbitrary function on spacetime:

gµν → Ω̃(x)2gµν , Φ→ Ω̃(x)−∆̃ΦΦ (2.26)
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Figure 2.3 – Difference between a scale and a conformal transformation (based on figure 1 from
Nakayama [44]).

Fields that transform like this are called Weyl covariant. We note that partial derivatives of Weyl
covariant fields are no longer Weyl covariant. This is cured by “gauging” the global symmetry
under Weyl rescaling so that it becomes local, i.e. replacing the partial derivative with an
appropriate gauge covariant derivative, e.g. for scalars this means

∂µΦ→ DµΦ = (∇µ − ∆̃ΦWµ)Φ (2.27)

which is called the Weyl covariant derivative in order to distinguish it from the gauge covariant
derivative Dµ and the space-time covariant derivative ∇µ.

However, Iorio et al. [42] show that a necessary and sufficient condition for a scale invariant
action to become local Weyl invariant without the need for introducing the Weyl gauge field is
that the flat space limit of the ungauged action is conformally invariant. The conformal symme-
try in a d-dimensional spacetime is defined as the subgroup of coordinate transformations that
leaves the metric invariant up to a conformal scaling factor, i.e.

xµ → xµ′, gµν(x)→ g′µν(x′) = gαβ(x)
∂xα

∂xµ′
∂xβ

∂xν ′
= Ω(x)2gµν(x) (2.28)

where Ω form a subgroup of the group of local Weyl transformations that is induced by confor-
mal transformations. So local Weyl invariance does imply conformal invariance, but conformal
invariance does not necessary imply Weyl invariance, as shown in [43] where explicit examples
are given.

The name ‘conformal’ comes from a Latin word ‘conformalis’ which means ‘having the same
shape’. It is the group that contains all the coordinate transformations that preserve the angle
v·w√
v2w2

between any two vectors v, w with v · w = gµνv
µwν , which is more general than scale

invariance (see figure 2.3). It is important to note that, unlike the Weyl transformation (2.26), a
conformal transformation does not act on the metric, but changes the integration variables and
the derivatives.

Last but not least, we note that upon considering conformal transformations (2.28), isometries
correspond to Ω2(x) = 1, meaning they are a subset of conformal transformations. In flat space-
time this group is simply the Poincaré group. Another subset of conformal transformations
are the scale transformations (dilations) which correspond to Ω2(x) = constant. Conformal in-
variance thus demands scale invariance, but the converse is not necessarily true. The question
regarding the precise condition under which a scale-invariant field theory is also invariant under
the conformal group was already posed in 1971 by Coleman and Jackiw. In two space-time
dimensions Zomolodchikov (1986) showed that a unitary and scale-invariant action is necessar-
ily conformally invariant. In four space-time dimensions this issue is more subtle since unitary,
scale-invariant but not conformally invariant Lagrangians are known. Nakayama [44] spoke of a
consensus on this issue in d = 4 dimension under the assumptions of 1) unitarity, 2) Poincarè
invariance, 3) discrete spectrum in scaling dimension, 4) existence of scale current and 5) unbro-
ken scale invariance in the vacuum. Sachs [45] showed that requiring diffeomorphism invariance
additional to unitarity ensures scale invariance is enlarged to conformal invariance in d = 4.
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To summarize, we have shown that global Weyl invariance generalizes scale invariance to general
spacetimes. A global Weyl invariant theory can be made local Weyl invariant, without introduc-
ing the scale covariant derivative if the flat spacetime limit of the theory is conformally invariant.
So if a theory is locally Weyl invariant is is also conformally invariant, but a conformally in-
variant theory is not necessarily local Weyl invariant. This means that even though many texts
on Conformal Gravity actually use the stricter Weyl invariance, conformal invariance is also a
property of the theory.

Furthermore, we have shown that conformal invariance implies scale invariance, but that the
converse is not necessarily true. We have given some conditions that, if met, allow us to pro-
mote scale invariance to conformal invariance. These conditions are so reasonable that many
texts that discuss scale-invariant theories can actually be considered conformal invariant as
well.

2.2.2 The Conformal Group

Consider the metric for the infinitesimal transformation xµ′ = xµ + εµ

gµν → gµν +∇µfν +∇νfµ

The requirement that the transformation be conformal (2.28)

gµν → Ω(x)2gµν ≈ (1 + 2w(x))gµν

gives

∇µfν +∇νfµ = 2w(x)gµν , w(x) = 1
d∇µf

µ (2.29)

where ∇µ({}) is the Levi-Civita covariant derivative and w(x) is determined by taking the trace
on both sides. Note that for a local Weyl transformation w(x) would be unconstrained, again
showing that local Weyl invariance implies conformal invariance though not the converse.

Equation (2.29) is known as the conformal Killing equation and fµ as a Killing field, which
is a vector field that preserves the metric on a Riemannian manifold. In flat spacetime, it
becomes

∂µεν + ∂νεµ = ηµν
2
d∂µε

µ (2.30)

with ηµν the Minkowski metric with signature (d − 1, 1), and εµ the flat space-time analog of
fµ. Using this result, we find that for d > 2 the most general conformal Killing vector has the
form

εµ(x) = aµ + bxµ + λµνx
ν + cν

(
2xµxν − ηµνx2

)
(2.31)

with (aµ, ω
µν , b, cν) a total of (d+1)(d+2)

2 parameters and x2 = xνx
ν . We find that the constant

term aµ can be seen as an infinitesimal translation (d in total). The term bxµ represents a dila-
tion (infinitesimal scale transformation) and because ωµν = −ωνµ that term can be identified as
a rigid rotation (d(d− 1)/2 Lorentz transformations). The quadratic term corresponds to the d
special conformal transformations. The results are summarized in table 2.1.

If the dimension of the set of conformal Killing vectors is 15, then the space is conformally
flat. However, if we allowed (aµ, ω

µν , b, cν) to become spacetime dependent, we anticipate that
we have only 11 local symmetries instead of 15 (in d = 4). This is because the global special

conformal transformation of x2 → x2

1+2cµxµ+x2 can be considered a particular transformation

under the local dilations x2 → λ(x)x2.
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Type Infinitesimal form Finite form

Translation xµ → xµ + aµ xµ → xµ + αµ

Dilatation xµ → xµ + bxµ xµ → λxµ

Lorentz transformation xµ → xµ + λµνx
ν xµ → Λµνx

ν

Special conformal transformation xµ → xµ + 2(xνcν)xµ − cµx2 xµ → xµ−βµx2

1−2βµxµ+β2x2

Table 2.1 – Overview of the infinitesimal and finite transformations of the conformal group.

With the conformal transformations as given in table 2.1, we can now turn to the generators of
the conformal group. The general definition of a generator Ga of a symmetry transformation
x→ x′ and Φ(x)→ Φ′(x′) = F(Φ(x)) where Φ is the collection of fields, is given as

xµ′ = xµ + εa
δxµ

δεa

Φ′(x′) = Φ(x) + εa
δF
δεa

−iεaGaΦ(x) ≡ Φ′(x)− Φ(x)


⇒ iGaΦ =

δxµ

δεa
∂µΦ− δF

δεa
(2.32)

Assuming that the fields are unaffected by the transformation (i.e. F(Φ) = Φ), the confor-
mal group enlarges the flat space Poincaré group25 of the Pµ (translation) and Lµν = −Lνµ
(Lorentz transformation) generators to include a dilatation operator D and special conformal
transformation generators Kµ.

Pµ = −i∂µ Lµν = i(xµ∂ν − xν∂µ)

D = −ixµ∂µ Kµ = −i(2xµx
ν∂ν − x2∂µ)

(2.33)

The generators obey

[Lµν , Lρσ] = i (ηνρLµσ + ησµLνρ − ηµρLνσ − ηνσLµρ) [Pµ, Pν ] = 0,

[Lµν , Pρ] = −i (ηµρPν − ηνρPµ) , [D,D] = 0,

[Lµν , D] = 0, [D,Pµ] = iPµ,

[Lµν ,Kρ] = −i (ηµρKν − ηνρKµ) [D,Kµ] = −iKµ,

[Kµ, Pν ] = 2i (ηµνD − Lµν) , [Kµ,Kν ] = 0

(2.34)

where the first three commutation relations indicate that the conformal algebra has indeed a
Poincaré subalgebra. The first three lines together show that generators Lµν , Pµ and D span a
subalgebra, sometimes called the Weyl algebra. This illustrates our previous point that math-
ematically full conformal symmetry is not necessarily implied by scale symmetry plus Poincaré
invariance.

Because the conformal group is isomorphic to SO(4, 2), we can define

Jµν = Lµν J4µ = 1
2 (Pµ −Kµ), J45 = D, J5µ = 1

2 (Pµ +Kµ)

where Jab = −Jba with a, b ∈ 0, 1, . . . 5 and µ, ν ∈ 0, 1, 2, 3. The conformal algebra is then given
by the commutation relations of the SO(4, 2) group of four dimensional spacetime:

[Jab, Jcd] = i (ηadJbc + ηbcJad − ηacJbd − ηbdJac) (2.35)

where the diagonal metric ηab has signature (−+ + + +−).

25Poincaré symmetry applies to flat Minkowski space-time. It would be in principle replaced by either de
Sitter (dS) SO(4, 1) or anti-de Sitter (AdS) SO(3, 2) symmetries in a positively or negatively curved spacetime.
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Having established the space-time part of the generators of the conformal group, we need to take
into account how a field transforms under a conformal transformation (2.28)

xµ → xµ′, gµν(x)→ g′µν(x′) = Ω(x)2gµν(x)

For fields Φ with spin the result is the following:

Φ(x)→ Φ′(x′) =

∣∣∣∣∂x′∂x

∣∣∣∣∆Φ/d

Φ(x) = Ω(x)−∆ΦSµ
′

µ Φ(x) (2.36)

where ∆Φ is the scaling dimension of the field and Sµ
′

µ the matrix representation of the Lorentz
generator acting on the indices of Φ (S is the spin operator associated with Φ and usually
constructed from the gamma matrices). Fields that transform in this way are called ‘quasi-
primary’ fields. Now, using equation (2.36) for the F(Φ) term in the definition for the generator
(2.32), the generators of the conformal algebra become:

Pµ = −i∂µ Lµν = Sµν + i(xµ∂ν − xν∂µ)

D = −i(xµ∂µ + ∆) Kµ = i(−2xµx
ν∂ν + x2∂µ)− 2ixµ∆− Sµνxν

(2.37)

A theory is called conformal invariant at the classical level if its action is invariant under con-
formal transformations of table 2.1. This is local symmetry if the metric gµν is dynamical as in
gravity theories, but global if the metric is fixed, which is usually assumed in QFTs. Conformal
invariance at the quantum level is a whole different story as the renormalization procedure, as
outlined in section 1.3, introduces a renormalization scale in the theory, thus breaking scale
(and conformal) invariance. We will come back to this in a later chapter. Classical or quantum
theory, spontaneously broken conformal symmetry gives only 1 Goldstone bosons, namely the
one related to the scale operator.

2.2.3 Restrictions due to conformal invariance

In the presence of fields, there is a nonzero stress-energy tensor Tµν . Next we will be interested
in how conformal transformations affect Tµν . For that we consider a classical field theory on flat
d > 2-dimensional space-time containing matter and gauge fields Φi and a metric tensor g. The
Lagrangian is furthermore assumed to be the sum of two terms, a purely gravitational part Lg
depending only on the metric tensor g and its first and second order partial derivatives but not
on the matter fields or their derivatives, and a matter field part Lm depending on the matter
fields and their first order partial derivatives as well as on the metric tensor g and its first and
second order partial derivatives [41]:

L(g, ∂g, ∂2g,Φ, ∂Φ) = Lg(g, ∂g, ∂2g) + Lm(g, ∂g, ∂2g,Φ, ∂Φ)

The equations of motion for the fields are then derived from the variational principle δS = 0
with respect to the fields. This leads to the Euler-Lagrange formula:

δLm
δΦi

=
1√
|g|

(
∂(
√
|g|L)

∂Φi
− ∂µ

∂(
√
|g|L)

∂∂µΦi

)
= 0 (2.38)

Recall the Hilbert energy-momentum tensor26 from equation (2.20)

26Different definitions of the energy-momentum tensor exist, namely the so-called canonical energy-momentum
tensor. This is described via the Noether prescription and improved by Belinfante to be symmetrical. In a similar
way, the Belinfante tensor can be further improved as was done by C. Callan, S. Coleman and R. Jackiw (1970)
who gave a recipe for constructing an energy-momentum tensor which is divergence-free, symmetric and traceless
within conformal invariant theories. Iorio et al. [42] provide a more structured, differential-geometry based
approach to the rather ad hoc recipe followed by the previously mentioned authors. Taking into account that
the processes of varying with respect to gµν and taking the flat limit do not commute, we note that on shell the
canonical energy-momentum tensor and the Hilbert energy-momentum tensor coincide.[46].
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Tµν = − 2
√
g

δ

δgµν
(
√
gLmat)

For an infinitesimal local Weyl transformation (2.26)

gµν → Ω̃(x)2gµν ≈ (1 + 2w̃(x))gµν

we have

δSm =

∫
ddx

(
δ
√
gLm
δΦi

δΦi +
δ(
√
gLm)

δgµν
δgµν

)
= − 1

2

∫
ddxTµνδgµν

= −
∫

ddxTµνw̃(x)gµν = −
∫

ddxTµµ w̃(x) = 0

where we assumed the fields are on shell, i.e. satisfy the equation of motions, in the first line.
We conclude that invariance of the action under Weyl transformations requires tracelessness of
the energy-momentum tensor Tµµ = 0 because w̃(x) is an arbitrary function. The inverse is
not necessarily true, because tracelessness can also be achieved if under infinitesimal local Weyl
rescaling, Lm picks up a total divergence or terms that vanish upon insertion of the equations
of motion for the matter fields.

For a scale transformation (i.e. global Weyl rescaling) where w̃(x) = w̃ =constant, the above
result is modified to

δS = −w̃
∫

ddxTµµ = 0

Meaning that the trace of the energy-momentum tensor for a scale-invariant theory vanishes
up to a total derivative in flat spacetime: Tµµ = −∂µDµ. As conformal invariance implies scale
invariance, this is also a property of conformal invariant theories. Actually, invariance under
special conformal transformation is equivalent to Tµµ being a double divergence (Tµµ = ∂µνD

µν),
which is a much more restrictive condition [47]. Following the standard procedure, we can
improve the energy-momentum tensor by

Θµν = Tµν + ∂α∂βΥµανβ

where

Υµν =
1

d− 2

(
ηανCβµ + ηβµCαν − ηµνCαβ − ηαβCµν

)
+

1

(d− 1)(d− 2)

(
ηµνηαβ − ηανηβµ

)
Cρρ

Unitarity demands that the only allowed improvement term in unitary quantum field theories
in d > 2 is from Cµν = ηµνC with a dimension d − 2 scalar operator C if we demand the
energy-momentum tensor has the canonical scaling dimension ∆ [44]. Following this improve-
ment procedure, we find that the improved tensor Θµν for a conformal invariant theory also
exhibits tracelessness [44, 46].

A theory with conformal invariance thus satisfies the following properties [48, p.9-12]:

1. There is a set of fields Φ̃i(x), which in general is infinite and contains in particular the
derivatives of all the fields.

2. There is a subset of quasi-primary fields Φj ∈ Φ̃i that transform according to (2.36).
The theory is then covariant under this transformation, in the sense that the correlation
functions satisfy

〈Φ1(x1) . . .Φn(xn)〉 =

∣∣∣∣∂x′∂x

∣∣∣∣∆1/d

x=x1

. . .

∣∣∣∣∂x′∂x

∣∣∣∣∆n/d

x=xn

〈Φ1(x′1) . . .Φn(x′n)〉 (2.39)
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where ∆j is the scaling dimension of Φj .

3. The rest of the Φ̃i’s can be expressed as linear combinations of the quasi-primary fields
and their derivatives.

4. There is a vacuum |0〉 invariant under the global conformal group.

5. The energy-momentum tensor is traceless.

Equation (2.39) in combination with the transformations of table 2.1 is highly restrictive. Con-
sider for example a theory with several spinless fields φi, the two-point function is then:

〈φi(x1)φj(x2)〉 =

∣∣∣∣∂x′∂x

∣∣∣∣∆1/d

x=x1

∣∣∣∣∂x′∂x

∣∣∣∣∆2/d

x=x2

〈φi(x′1)φj(x
′
2)〉

Translation invariance implies that the left-hand side does not depend on the independent coor-
dinates but rather their differences. Rotational invariance limits this further to r12 = |x1 − x2|.
Scale invariance allows only the dependence on ratios

〈φi(x1)φj(x2)〉 =
Mij

r
∆i+∆j

12

where we note that the matrix Mij will be positive definite in a unitary theory. This implies that
there exists a field basis such that Mij = Mδij . Lastly, the special conformal transformation of
rij in combination with its jacobian, further restrict the form of the two-point function to:

〈φi(x1)φj(x2)〉 =

{
Mδij
r2∆
12

for i = j, ∆i = ∆j = ∆

0 for i 6= j
(2.40)

Similarly, the 3-point function is uniquely determined up to a constant C123, which can be
determined using e.g. the Operator Product Expansion (OPE):

〈φ1(x1)φ2(x2)φ3(x3)〉 =
C123

r∆−2∆3
12 r∆−2∆1

23 r∆−2∆1
13

, with ∆ =
∑
i

∆i (2.41)

However, n ≥ 4-point functions are not fully determined. In general, they have an arbitrary (i.e.
not fixed by conformal symmetry) dependence on the n(n− 3)/2 ratios

rijrkl
rikrjl

:

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 = f(u, v)

4∏
i<j

r2∆l+2∆k−∆
ij (2.42)

where

u =
r2
12r

2
34

r2
13r

2
24

, v =
r2
14r

2
23

r2
13r

2
24

, and
( v
u

)∆

f(u, v) = f(v, u)

2.3 A conformal invariant theory of Gravity

Having explained the conformal group and shown how restrictive conformal invariance is, it is
time to turn our attention to a conformal theory of gravity. For that we note that already
in 1918 did Hermann Weyl attempt at unification of electromagnetism with gravitation. His
ideas were discarded because all mass parameters would be identically zero, which was unac-
ceptable in the time prior to the development of spontaneous symmetry breaking. However,
Weyl also discovered a tensor with a remarkable geometric property, the so-called conformal or
Weyl tensor Cµνρσ. Renewed interest in Weyl’s work and subsequent work by Rudolf Bach, was
sparked by the work of Philip Mannheim ([12]), who used the conformal tensor as the basis for
a conformal invariant theory of gravity dubbed Conformal Weyl Gravity (CWG) (Section 2.3.1).
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Another popular approach to obtain a conformally invariant theory of quantum gravity is Con-
formal Dilaton Gravity (CDG), named like this by Alvarez et al. [10]. One particular theory has
already been proposed by Paul A.M. Dirac in a paper from 1973, where he used the procedure of
group averaging, that is, perform a conformal transformation on the Einstein-Hilbert lagrangian
and promote the Weyl rescaling factor to the status of a new field. This received new interest
after the work of e.g. Gerard ‘t Hooft ([11]) and Alessandro Codello [49] and will be explained
in the second section. In Section 2.3.3 we will compare the two theories.

2.3.1 Conformal Weyl Gravity

In this section we study the 4 dimensional conformal invariant theory of gravity based on the
conformal (actually local Weyl) invariant quadratic curvature terms built from the contractions
of the Riemann tensor, i.e. the Weyl tensor squared. The Weyl tensor Cµνρσ in d dimensions is
given as [10]

Cµνρσ = Rµνρσ +
1

(d− 2)(d− 1)
(gµρgνσ − gνρgµσ)R

− 1

d− 2
(gµρRνσ − gµσRνρ − gνρRνσ + gνσRµρ)

(2.43)

For dimensions d ≥ 3 it is defined as the trace-free part of the Riemann curvature tensor. The
Weyl tensor furthermore has all the algebraic properties of Rµανβ i.e.

Cµνρσ = Cρσµν (2.44)

Cµνρσ = −Cνµρσ = −Cµνσρ (2.45)

Cµνρσ + Cµσνρ + Cµρσν = 0 (2.46)

and in addition is traceless. It transforms under the conformal transformation (2.28) as Cµνρσ →
Cµνρσ (see Appendix C). Therefore, the Weyl tensor can be used to construct an action which
is invariant under the local conformal transformation of equation (2.28), namely the Conformal
Weyl Gravity action in d dimensions [10]

SCWG = αg

∫
ddx
√
gCµνρσC

µνρσ

= αg

∫
ddx
√
g

(
RµνρσR

µνρσ − 4

d− 2
RµνR

µν +
2

(d− 1)(d− 2)
R2

) (2.47)

where αg is a dimensionless gravitational coupling constant. In d = 4, the CWG action is the
unique conformally invariant action constructed solely from the Weyl tensor. In 4 spacetime
dimensions we can use the Euler term (2.22) to write the CWG action as:

SCWG = 2αg

∫
d4x
√
−g
(
RµνR

µν − 1
3R

2
)

(2.48)

Conformal invariance of the gravitational action forbids any fundamental (Planck) scale, mean-
ing Newton’s constant as well as the Einstein-Hilbert action are not allowed. Luckily it is not
necessary to achieve the Einstein equations exactly as long as the dynamical equations of Con-
formal Gravity pass the three classical tests27 of General Relativity, namely the gravitational red
shift, gravitational bending of light, and the precession of planetary orbits. Specifically, what is
needed for the three tests is knowledge of the metric exterior to a static, spherically symmetric
source, namely the Schwarzschild metric which obeys Rµν = 0 in the source-free region. But

27Mannheim notes that besides these three tests, there is one other phenomena which needs to be explained on
solar sized distance scales. This is the decay of the orbit of binary pulsar. This decay will happen in any covariant
metric theory since in all of them gravitational information cannot be communicated faster than the speed of
light. The problem lies in the calculating of the specific amount of decay which has actually been observed, with
calculations having so far only been carried through (and with stunning success) is the second order Einstein
theory itself.
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the exterior Schwarzschild solution is an exterior solution to any pure metric theory of grav-
ity which replaces the EH action with any Ricci tensor based higher order action. So having
a Ricci tensor based action will suffice to recover the standard solar system phenomenology28 [12].

Rudolf Bach derived the fourth order dynamical gravitational field equations for Conformal
Weyl Gravity (2.47) in 1921. We present the results for the vacuum case here (the derivation
can be found in Appendix D):

Bµν = ∇α(Γ)∇β(Γ)Cµανβ − 1
2R

αβCµανβ = 0 (2.49)

where we call Bµν the Bach tensor, which is symmetric, divergence-free ∇νBµν = 0, traceless
gµνB

µν = 0 and behaves under a conformal transformation as Bµν → Ω−2Bµν . In the literature
one encounters the above expression also in terms of the Schouten tensor Sµν or in terms of the
Ricci tensor and scalar. These equivalent expressions are also given in Appendix D.

The Bach equation admits trivial solutions, i.e. all conformal Einstein spaces29. These are
topological spaces that are conformally related to an Einstein space for which Rµν = αgµν . This
is equivalent to saying that the metric is a solution to the vacuum Einstein field equation with
arbitrary value of the constant α. Specifically, this includes solutions with vanishing Ricci tensor.
Solutions with vanishing Ricci tensor include all vacuum solutions to Einstein gravity such as
the Schwarzschild solution exterior to a static, spherically symmetric source.

To be specific, start by assuming a static, spherically symmetric metric in the vacuum. The
line element is then given by

ds2 = −A(r) dt2 +B(r)dr2 + C(r) dΩ2

where dΩ2 = dψ2 + sin2(ψ) dφ2 is the metric of the standard 2-sphere. The functions A, B and
C have to be positive. This line element is conformally equivalent to the Mannheim-Kazanas
solution [50, 51]

ds2 = −A(r) dt2 + dr2

A(r) + r2 dΩ2 , where A(r) = 1− 3βγ − (2−3βγ)β
r + γr − kr2 (2.50)

Now we see that γ = k = 0 and β = m exactly returns the Schwarzschild metric from the
ordinary flat space Einstein-Hilbert theory. The other two parameters (k, γ) stem from the fact
that the theory is fourth order and thus the vacuum solution possesses two extra constants of
integration as compared to Einstein Gravity. For k 6= 0, the background is a de Sitter (or anti-de
Sitter) geometry. Note that this could only occur in the presence of a cosmological cosntant in
Einstein gravity, which is not needed in the Weyl theory. The second integration constant (γ)
effectively measures all departures of the above metric from that in the Einstein case.

Several authors have used this solution to explain galactic rotation curves as well as deflec-
tion of light and time delay in the exterior of a static spherically symmetric source without
the need for copious amounts of dark matter. For this they relayed on the γr term, though
its validity was doubted at the time. Hans-Jürgen Schmidt30 [52] resolved the discussion by
showing that the value of γ can be made to vanish by a conformal transformation. Even though
Dark Matter is not needed to explain rotation curves, we do point out that other astronomical
observations still point to its existence.

28This would not necessarily be true for any higher order Riemann tensor based action since the Schwarzschild
metric is not Riemann flat, only Ricci flat. The CWG Lagrangian does contain the Riemann tensor but in 4
dimensions it vanishes due to the Euler term.

29To see that this is indeed a solution to the Bach equation, plug in Rµν = αgµν . Then we find that R is a
constant and that all derivative terms in Bµν vanish automatically. The remaining terms can only be proportional
to gµν , but the tracelessness of the Bach tensor ensures that these terms also vanish, leading to the conclusion
that for an Einstein space indeed Bµν = 0.

30Schmidt also showed conclusively the existence of solutions to Conformal Weyl Gravity which are not con-
formally equivalent to Einstein spaces. These non-trivial solutions include all the homogeneous and isotropic
spacetimes (i.e., described by the Robertson-Walker line element) have zero Weyl tensor. How our Universe
could result from such an empty high symmetric spacetime was investigated in [82, and references therein].
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Finally, we need to consider the fact that the Bach field equations are fourth-order and special
attention for the unitarity of the theory is warranted. Recall that in quantum field theories we
want conservation of probabilities, i.e. the Hamiltonian should be hermitian and the S-matrix
unitary. Unitarity is also related to evolution of time and is characterized by the absence of
negative norm states in the theory. On the other hand, the Bach equation is a fourth-order
equation meaning that its correlation functions, upon quantization, could lead to ghost excita-
tions and/or tachyon behavior (negative norm states).

Based on the work of Carl Bender, Mannheim [53, and references therein] provided a solution
for this problem by showing that PT symmetry, i.e. symmetry under the combined operation of
parity P and time reversal T , is a necessary and sufficient condition for unitary time evolution
whereas hermiticity is only a sufficient condition: Though hermiticity of the Hamiltonian implies
unitarity, one cannot conclude that lack of Hermiticity implies lack of unitarity. To be specific,
for Conformal Weyl Gravity, Mannheim argues that the presence of a negative Dirac norm (ghost
state) could signal that the theory is not Hermitian rather than not unitary. Moreover, by es-
tablishing that the fourth-order derivative conformal gravity theory is indeed a PT theory31,
meaning that the gravitational field gµν is anti-Hermitian and a PT eigenstate, Conformal Weyl
Gravity is now able to emerge as a fully renormalizable and unitary theory of quantum gravity
in four spacetime dimensions.

Dropping the hermiticity requirement in favor of PT symmetry is not generally accepted and
other solutions have been proposed. Another approach to the problem of unitarity, for example,
is by James T. Wheeler [54]. Specifically, he proposes to vary all of the connection fields of
conformal gravity independently instead of only the metric. The torsion-free solutions of the
resulting field equations differ from those of GR only in the fact that they show local dilatational
covariance. This way the whole discussion regarding the unitarity of the theory is irrelevant.

Another way to deal with the fourth-order aspect of CG was proposed by Juan Maldacena
[55]. He started with the observations that 1) the on shell action for four dimensional Einstein
gravity in an Einstein space that is locally asymptotically Euclidean Anti-de Sitter (EAdS) can
be computed in terms of the action of Weyl gravity, and 2) any space that is conformal to an
Einstein space is a solution to the equations of motion of conformal gravity. Knowing this, he
wanted to select the solutions of Einstein gravity from the solutions of conformal gravity so that
the Einstein action can be replaced by the Conformal Weyl Gravity action and at the same time
only second-order dynamical equations in the pure gravity sector will be retrieved. Imposing
a Neumann boundary condition on the metric at the boundary results in the semiclassical (or
tree level) wave function of the universe of four dimensional asymptotically de-Sitter (dS) or
Euclidean anti-de Sitter spacetimes.

This can be illustrated, without entering in too much detail, as follows. Given that confor-
mal gravity has fourth order equations, we expect that it has four solutions for a given spatial
momentum. Requiring a EAdS or dS spacetime, kills already two of the solutions. The Neu-
mann boundary condition ∂zgij = 0 kills another solution. Since an Einstein space is conformal
to a solution obeying all the boundary conditions, we conclude that the remaining solution is a
(conformal) Einstein space and that classically there is complete equivalence between ordinary
gravity with a cosmological constant and conformal gravity. However, keep in mind that this
equivalence has not been proved at the quantum level nor for other than EAdS and dS spacetimes.

At last we stress that in order for the quantum system to be unitary, its classical counter-
part has to have stable evolution for arbitrary initial conditions. Otherwise quantum tunneling
will connect stable and unstable regions of the phase space and will inevitably lead to violation
of unitarity. Examples are known, for example the Pais-Uhlenbeck oscillator, which are unitary
even though they are in possession of a ghost mode [56].

31Unlike Hermiticity, PT symmetry does not need to be postulated as it is derivable from Poincaré invariance.
Recall from section 2.2 that the conformal group is an extension of the Poincaré group: conformal invariant
theories include Poincaré invariance and thus, according to Mannheim, PT symmetry.
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2.3.2 Conformal Dilaton Gravity

While the objective of Wheeler and Maldacena in the previous section was to generate Einstein’s
theory of gravity starting from the conformal theory, the framework of Weyl gauging as used by
e.g. ‘t Hooft [11] and Codello et al. [49] allows us to do the converse. We will use the latter to
introduce this general framework and comment on ’t Hooft alternative interpretation afterwards.

Any theory can be made local Weyl invariant by Weyl gauging, that is, we treat Weyl in-
variance as local Abelian gauge symmetry, promote one mass parameter to a field called the
dilaton (Stückelberg trick) and use it to construct the Weyl gauge field. Then we find the Weyl
covariant derivative and construct the Weyl connection. Next we construct the Weyl-invariant
curvature tensor using Weyl covariant derivative, which upon twice contracting the indices gives
Ricci scalar curvature for Weyl geometry. Now we express every dimensional parameter of our
theory in terms of the dilaton and replace all spacetime covariant derivatives by Weyl covariant
derivatives and all Ricci scalar curvatures R by the Weyl covariant curvatures R̃. The resulting
theory is then locally Weyl invariant by construction. (Recall that this symmetry implies con-
formal invariance, but is more restraining.)

Next we use the above described procedure on the Einstein-Hilbert action (2.17)

Stotal = SEH + Smat =
1

19πGN

∫
d4x
√
g (R− 2Λ) + Smat, g = |det gµν |, M−2

p = 16πGN

(2.51)

and demand it should be invariant under a Weyl transformations (2.26)

gµν → g′µν = Ω(x)2gµν , Φ→ Φ′ = Ω(x)−
(d−2)

2 Φ

To do that we treat the Planck mass Mp as a Stückelberg field, which we call the dilaton:

χ(x) =

√
8(d− 1)

16(d− 2)πGN
eσ(x) (2.52)

which transforms as χ→ Ω−1χ under a Weyl transformation. We then use it to define the Weyl
gauge vector Wµ as

Wµ = −χ−1∂µχ

This means we have extended the electroweak gauge symmetry to to include Weyl invariance
SU(2)L × U(1)Y × U(1)W where the local Abelian U(1)W introduces the above defined scalar
field χ(x) and gauge boson Wµ. To eliminate the additional terms that arise under these gauge
transformations the partial derivative operator should replaced with a gauge covariant derivative
Dµ:

DµΦ = ∂µΦ− ∆̃ΦWµΦ

with ∆̃ the Weyl weight of the field.

Now we can find the Weyl connection, which is constructed to ensure that gauge covariant
derivative terms are conformal invariant on a general manifold:

Γ̃µνρ = 1
2g
µρ (Dνgλρ +Dλgνρ −Dρgλν) = {µνρ} − 1

2∆̃
(
δµνWρ + δµρWν − gµλgνρWλ

)
where {µνρ} is the Levi-Civita connection given by the Christoffel symbols (2.12). The partial
derivative operator in Dµ should now be replaced with a spacetime covariant derivative based

on the Weyl connection ∇µ(Γ̃), such that we find the Weyl covariant derivative (2.27):
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DµΦ = ∇µ(Γ̃)Φ− ∆̃ΦWµΦ

Equation (2.6) then allows us to construct the curvature tensor for the Weyl connection. Twice
contracting gives the Ricci scalar for Weyl geometry:

R̃ = R+ 2(d− 1)∇µ(Γ)Wµ − (d− 1)(d− 2)WµW
µ

Plugging R̃ into the Einstein-Hilbert action (2.51) and writing all dimensional parameters in
terms of the dilaton field χ(x), gives

Stotal = SCDG + Smat =

∫
ddx
√
g

(
d− 2

8(d− 1)
χ2R− 1

8 (d− 2)2∂µχ∂
µχ+ λχ4

)
+ Smat (2.53)

or more precisely,

Stotal = SCDG + Smat =

∫
ddx
√
g

(
d− 2

8(d− 1)
φ2R+ 1

4 (d− 2)χ∂µ∂µχ+ λχ
2d
d−2

)
+ Smat (2.54)

which differs from the previous one by a covariant total divergence of the form d−2
4 ∇

µ(Γ)(χ∂µχ),
and hence has the same equations of motion and the same energy-momentum tensor.

In 4 spacetime dimensions, we have

SCDG =

∫
d4x
√
g

(
1

12
χ2R− 1

2∂µχ∂
µχ+ λχ4

)
(2.55)

This action is therefore referred to as the Conformal Dilaton Gravity action (name is due to
Alvarez et al. [10]). For the dilaton we can identify a kinetic term as well as a ‘mass’ term
proportional to the background scalar curvature R. It is the same action as that obeyed by a
conformally coupled scalar field. Observe that CDG lagrangian does not contain a kinetic term
for the ĝµν field. Any such kinetic terms should arise solely from higher order effects due to the
interactions with the matter fields.

We immediately see that the kinetic term of the dilaton has the wrong sign considering we
used the mostly minus convention for the metric. This means that the dilaton is a unphysical
scalar field. However, the the additional gauge freedom can be used to gauge fix the dilaton to
a constant such that we can retrieve Einstein gravity: σ(x) = 0, or

χ(x) =

√
12

16πGN
, λ =

2

9
πGNΛ

The above demonstrated equivalence between CDG action and the EH action need not survive
at the quantum level, due to quantum fluctuations and in particular to Faddeev-Popov terms
associated with the Weyl symmetry.

Actually, the above results were also obtained by ‘t Hooft [11] by splitting the metric in such a
way that all scale dependences are contained in the dilaton field32 ω(x). He extends the classical
theory to the quantum theory. Key in his approach is treating the dilaton in the metric as an in-
dependent dynamical degree of freedom instead of evaluating the path integral as a perturbative
series in the metric components (which would render the Einstein-Hilbert action nonrenormal-
izable). He then finds that the renormalization procedure leads to a quantum counter-term in
the total action which is proportional to the Conformal Weyl Gravity action, which we discussed
before.

32To distinguish between the dilaton field introduced in the geometric approach from ’t Hooft’s approach, we
use χ(x) for the former and ω(x) for the latter. For an overview of the used notation, see the ’Notations and
conventions’ section at the start of this thesis.
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To be specific, the metric tensor is split similar to a Weyl rescaling

gµν = ω̂2(x)ĝµν (2.56)

where the quantity ĝµν does not transform as an ordinary tensor but as a ‘metatensor’, mean-
ing that it transforms as a tensor, but with prefactors containing unconventional powers of the
Jacobian of the coordinate transformation. In the same sense, ω(x) is then called a metascalar,
encoding all scale dependencies of gµν .

The functional integration procedures thus becomes∫
DgµνeStotal [. . . ] =

∫
Dω̂(x)

∫
Dĝµν(x)eStotal [. . . ]

where additional constraints are needed to deal with the coordinate reparametrization ambigu-
ity (i.e. a gauge-fixing condition that only depends on ĝµν) and right-hand side additionally
requires a constraint for the conformal gauge ambiguity. One choice could be ∂µĝ

µν = 0 and
det(ĝµν) = −1.

’t Hooft then continues by proposing to first integrate over ω̂(x) together with the matter
fields Φmat(x), and then over ĝµν(x). (Recall that in standard perturbation theory the inte-
gration order does not matter.) Anticipating dimensional regularization and renormalization
procedures, we switch to d dimensions by replacing ω̂ → ω̂2/(d−2) in equation (2.56), which then
becomes

gµν = ω̂
4
d−2 (x)ĝµν (2.57)

Plugging this into the Einstein-Hilbert action (2.17) and rescaling the ω̂ field according to

ω̂ =
√
ξκ2ω, where ξ =

(d− 2)

4(d− 1)

such that Newton’s constant (recall κ2 = 8πGN ) completely disappears33 in the gravity part of
the action and becomes (see Appendix E for the derivation)

Ssplit =

∫
ddx

√
ĝ
(

1
2

d−2
4(d−1) R̂ω

2 − 1
2 ĝ
µν∂µω∂νω

)
(2.58)

where ĝ = |det{ĝµν}|, ω is a scalar field called the dilaton and everything in S is now associated
with ĝµν . In 4 dimensions this equals the CDG action found earlier, but there is one impor-
tant difference. The geometric method modifies the connection while leaving the metric as it is
whereas ‘t Hooft modifies the metric which in turn also modifies the connection. The introduc-
tion of Weyl invariance is enforced in the geometric theory by extending the gauge symmetry
whereas it emerges from the peculiar treatment of the metric as done here. The methods would
thus lead to different results for the matter part of the action.

However, it is important to observe that the split action for the ω field has an overall sign
opposite to that of ordinary scalar fields, just as the dilaton found in CDG. Regardless of which
action we consider, ’t Hooft claims that since it is an overall sign, it has no net effect on the
Feynman rules. This can be exploited by rotating the field in the complex plane3435: ω = iη
(or χ = iη). Then, the dilaton integration is technically identical to the integration over a
conventional, renormalizable scalar field. From the work of ’t Hooft and Veltman [37], we then
find that this action leads to an effective action for ĝµν that largely coincides with the familiar

33Interesting question is whether a constant that can be scaled away can be considered fundamental. Recall
that it is not possible to scale away the coupling constant in a Yang-Mills theory for example.

34If the dilaton had been chosen real, then the Wick-rotated functional integral would diverge exponentially,
so that ω or χ would no longer function properly as a Lagrange multiplier.

35The validity of this step is questioned by Dietz et al. [83].
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conformally invariant action from Conformal Weyl Gravity (2.47), but with an infinite numerical
coefficient, which would have to be renormalized (we come back to this in the next chapter). So
even if a squared Weyl tensor term was not included in the initial action as a kinetic term for
the metric, one would be generated as a renormalization counterterm.

2.3.3 CWG versus CDG

In this chapter we motivated our search for a conformally invariant theory of gravity. The usual
procedures to obtain a conformally invariant gravity theory are either to adopt the Conformal
Weyl Gravity action (2.47) (or for d = 4 (2.48)) as for example proposed by Mannheim, or
the conformal Einstein-Hilbert action called Conformal Dilaton Gravity (2.55) as proposed by
Codello by Weyl gauging the EH action or ’t Hooft via the splitting of the metric. Both theories
have their merits and drawbacks. So lets compare Conformal Dilaton Gravity and Conformal
Weyl Gravity at this stage.

Conformal Weyl Gravity is renormalizable and its fourth-order dynamical equations can re-
produce the Schwarzschild metric of our Solar System. However, it leads to ghost excitations
which spoil the unitarity of the theory. Mannheim proposes to deal with this by relaxing the
hermiticity constraint to PT symmetry, which amounts to making the gravitational field anti-
Hermitian. However, the full proof of the unitarity of the PT theory is not complete since
interactions are not yet considered. Other ideas for handling this problems were for example
proposed by Wheeler and Maldacena. Conformal Weyl Gravity may explain gravitational ro-
tation curves without the need of Dark Matter. However, the theory is formulated only in the
negative gravitational constant, so the gravitational interaction is not attractive but repulsive.
It seems to be difficult for this exotic feature to be reconciled with the observation of the cosmic
microwave background [57].

Conformal Dilaton Gravity is related to Einstein Gravity, i.e. gauge-fixing the CDG action
returns the Einstein-Hilbert action. However, it has inherited the nonrenormalizability of the
theory. Explicit calculations have shown that if we can rotate the dilaton in the complex plane,
SCDG results in a one-loop effective action which is proportional to the CWG action SCWG with
a divergent factor in front, which needs to be dealt with. Adding the same term with opposite
sign as a counterterm may resolve the divergence, but spoils again the unitarity. This theory
was proposed by e.g. Faria [58] under the name ‘Massive Conformal Gravity’

SMCG = − 1
12

∫
d4x
√
g
[
(φ2R+ 6∂µφ∂

µφ)− 1

m2
CµνρσCµνρσ

]
(2.59)

and plays the role of a proper quantization action when quantizing the dilaton φ in the fixed
curved background gµν . Faria argued that MCG is a renormalizable quantum theory of gravity
which has two massive ghost states, but Myung [59] refuted the renormalizability based on the
work from Stelle [36].

Currently, there is no obvious way to attain the renormalizability without violating the unitar-
ity in quantizing the gravity. So we can only conclude that CDG is either renormalizable but
non-unitary due to the adding of the Weyl tensor squared counterterm or unitary but nonrenor-
malizable due to the infinities present in the CDG action.

Assuming that our final Theory of Everything is a 4 spacetime dimensional, renormalizable,
unitary, conformally invariant theory, we are thus faced with a problem. Insisting on the 4
spacetime dimensions and conformal symmetry, we can either pursue the ideas of Mannheim
further and hope to address the issue of its unitarity at a later stage or we work with Conformal
Dilaton Gravity and address the renormalization aspect later. Here we choose the latter path
for a multiple of reasons.

Firstly, the principle of unitarity is heavily embedded in various domains of physics. It will
be difficult to judge which techniques and results are applicable to a situation where we are
working with a theory that is not unitary. Secondly, accepting nonrenormalizable field theories
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as effective field theories has become commonplace. Predictions from CDG as viewed as an EFT
are not without meaning. Experimental and astronomical evidence should then provide more
insights into its validity, not forgetting that the assumptions of four spacetime dimensions and
conformal invariance are no more than that, namely assumptions. Lastly, quantization of gravity
is far from understood and so ideas and procedures regarding the quantization and renormal-
izablity of a theory of Gravity are still under development. Dismissing or accepting a theory
purely on this aspect is hardly a sufficient reason at this stage.

2.4 Adding matter: the Conformal Standard Model

With the gravity sector discussed in the preceding sections and the Standard Model (SM) ex-
plained in Chapter 1, the remaining question of this chapter and main question of this last
section is, assuming Conformal Gravity, what is the Lagrangian of the complete theory?

First, we need to look at how the SM Lagrangian is modified in the presence of gravitational
field. This can be achieved by means of Einstein’s Equivalence Principle. As a small reminder
from any course on gravity, we list the different equivalence principles again[60]:

i. Newton’s equivalence principle (NEP): In the Newtonian limit, the inertial and gravita-
tional masses of a body are equal.

ii. Weak equivalence principle (WEP) is the empiric law of the universality of the free-fall. It
indicates that the worldlines of test particles in a gravitational field do not depend on the
particle properties, but only on their gravitational environment.

iii. Einstein’s equivalence principle (EEP): Fundamental non-gravitational test physics is not
affected, locally and at any point of spacetime, by the presence of a gravitational field.
In other words, a non-gravitational test experiment in a locally non-rotating, freely-falling
frame in a gravitational field gives the same results as performed in an inertial frame in
the absence of gravity.

iv. Strong equivalence principle (SEP): All test fundamental physics (including gravitational
physics) is not affected, locally, by the presence of a gravitational field.

The EEP is often also stated as the joint requirement of the WEP, local position invariance,
and the local Lorentz invariance for non-gravitational test experiments. Local position invari-
ance means that the outcome of any local non-gravitational experiment is independent of where
and when in the universe it is performed. Furthermore, with local Lorentz invariance we mean
that the outcome of any local non-gravitational experiment is independent of the velocity of the
free-falling reference frame in which it is performed.

Regardless of the specific formulation, the general idea at the core of EEP is the correspon-
dence between local reference frames in a gravitational field and reference frames in the absence
of gravity. But EEP says more; namely, that fundamental non-gravitational physics in a curved
spacetime is locally Minkowskian. The procedure one should follow in order to introduce the
gravitational interaction in any field theory built in flat space-time starts by taking the Lorentz
invariant action of the theory and identify the coordinates appearing in it with that of the lo-
cally inertial system. Gravitational interaction will then appear once a coordinate change to an
arbitrary system is made. For this, Einstein’s vierbein or tetrad formalism is needed. After its
introduction in Section 2.4.1, we will investigate how it affects the Standard Model Lagrangian.
In the last section, Section 2.4.3, we include conformal invariance and establish the Conformal
Standard Model.
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2.4.1 Tetrad formalism

Recall from Section 2.1 that the affine connection Γµνρ was introduced to implement translation
invariance on a general manifold. To also implement Lorentz invariance a set of vierbeins36 eaµ
is introduced, where the coordinate a refers to a fixed, special-relativistic reference coordinate
system with metric ηab and the coordinate µ refers to general coordinate system with metric gµν .

The vierbein field theory approach was proposed in 1928 by Einstein in his pursuit of a unified
field theory of gravity and electricity. Full understanding of the principle is based on the math-
ematics of fiber bundles. However, here we limit ourselves to a mathematically less involved
introduction of only the elements that concern our discussion, based on Yepez [16] (supported
by Sundermeyer [14]).

The conventional coordinate-based approach to GR uses a ‘natural’ differential basis for the
tangent space TP at a point P given by the partial derivatives of the coordinates at P (the
holonomic basis), i.e.

êµ = ∂µ, êµ = dxµ , êµ ⊗ êν = 1µν (2.60)

where we use a bold face symbol to denote a basis vector and apply a caret symbol to denote a
unit basis vector. Also, the use of a Greek indices denotes a component in a (general) coordinate
system representation. They are called holonomic (or world, or coordinate space) indices and
are raised and lowered with the metric tensor gµν . With this notation a contravariant vector
A ∈ TP is A = Aµêµ = (A0, A1, A2, A3) and a covariant vector B = Bµê

µ = gµνB
ν êµ =

(B0, B1, B2, B3).

We are free to choose any orthonormal basis we like to span TP , so long as it has the ap-
propriate signature of the manifold on which we are working. Therefore, we use that we can
find at any point P a local inertial frame for which the physical laws become those known from
Minkowski space. In other words, we choose a basis such that the metric gµν becomes locally
flat het point P. The vierbein field eaµ is then the 4× 4 transformation matrix between these lo-
cally free-falling basis vectors êa (Riemann normal coordinates) and the conventional coordinate
vectors.

êµ = eµ
aêa = eµ

a∂a, êµ = eµaê
a = eµa dξa (2.61)

where inertial coordinates ξa are labeled by latin letters, which are called the Minkowski, or
tangent frame indices and can be raised and lowered with the Minkowski metric ηab.

Because the vierbein field satisfies the orthonormality condition

eµa(x)eν
a(x) = δµν , eµ

a(x)eµb(x) = δab

the above equation can be reversed and we write the tetrad basis in terms of the coordinate
basis

êa = eµaêµ, êa = eµ
aêµ, êa ⊗ ên = 1mn (2.62)

This way a line element can be written as

ds2 = gµν dxµ dxν = ηab dξa dξb ⇒ gµν = ηabeµ
a(x)eν

b(x) (2.63)

with ηmn = diag(+,−,−,−) (the mostly minus convention). Note that taking the determinant
of this last expression, we see that the volume element is d4ξ =

√
|g|d4x, explaining the form

36In 4 dimensions we speak of vierbein or tetrad field, where the former is German for ’four legs’. The term
‘local frame fields’ is also used. There are generalizations to different dimensions, for example in three dimensions
there is the triad or dreibein. In general, vielbein (German for ’many legs’) is used to refer to a collection in
arbitrary dimensions.
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of (2.1) and subsequent equations.

Equation (2.63) imposes 10 constraints on the 16 components of the tetrad, leaving 6 com-
ponents arbitrary. These 6 components are determined by local Lorentz transformations

êa = eµaêµ → êa′ = eµa′ êµ = Λaa′(x)eµaêµ (2.64a)

êa = eµ
aêµ → êa

′
= eµ

a′ êµ = Λa
′

a(x)eµ
aêµ (2.64b)

where Λaa′(x) is a position-dependent transformation which, due to (2.63), satisfies the or-
thogonality condition Λaa′Λ

b
b′ηab = ηa′b′ , i.e. transformed tetrads leave the metric invariant.

Consequently, the Lorentz group can be regarded as the group of tetrad rotations in GR.

Any vector at a spacetime point has components in the coordinate and non-coordinate orthonor-
mal basis related to each other by the vierbein field:

V = V µêµ = V aêa, V a = eµ
aV µ, V µ = eµaV

a

A multi-index tensor can then have both Latin and Greek indices in its components:

T aµbν = eµmeν
nT ambn = eα

aaβbT
αµ
βν

and a general coordinate transformation then becomes

T aµbν → T a
′µ′

b′ν′ = Λa
′

a
∂xµ

′

∂xµ
Λbb′

∂xν

∂xν′
T aµbν

With the introduction of the tetrad basis we need to review again the covariant derivative as
we explicitly used the coordinate basis in the derivation in section 2.1. In non-coordinate-
based differential geometry, the derivation is the same except that the ordinary affine connection
coefficients Γλµν are replaced by the Lorentz or vector connection coefficients ωµ

a
b, i.e. parallel

transport of the vector Xa(x) is given by

Xa(x) + δ̃Xa(x) = Xa(x)− ωγabXb(x)δxγ

The non-coordinate based equivalent of equation (2.2) then becomes

∇γ(ω)Xa = ∂γX
a + ωγ

a
bX

b (2.65)

where the dependence on x is to be understood. Comparing the above equation with (2.2), note
that we use ∇µ(Γ) for the spacetime covariant derivative with respect to the linear connection
Γ (e.g. ∇µ({}) for the Levi-Civita connection) and ∇µ(ω) for the spacetime covariant derivative
with respect to the Lorentz connection ω.

The covariant derivative for a generic (non-coordinate based) tensor T a1,...,ak
b1,...bl

is then

∇γ(ω)T a1,...,ak
b1,...bl

= ∂γT
a1,...,ak
b1,...bl

+ ωa1
αγT

α,a2,...,ak
b1,...bl

+ · · ·+ ωakαγT
a1,...,ak−1,α
b1,...bl

− ωβγb1T
a1,...,ak
β,b2,...bl

− · · · − ωβγblT
a1,...,ak
b1,...bl−1,β

(2.66)

Similar to the affine connection coefficients which transform as (2.3) to ensure coordinate in-
variance of the covariant derivative, the Lorentz connections coefficients have to transform in a
particular way as to ensure Lorentz invariance of the covariant derivative. Namely,

ωµ
a′
b′ = Λa

′

aωµ
a
bΛ

b
b′ − Λbb′∂µΛa

′

a
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Because tensor equations are valid regardless of the bases, the two formalisms have to agree.
Therefore, we express (2.65) in the coordinate basis and compare with (2.2) to establish the
affine connection in terms of the Lorentz connection and vice versa

Γνµλ = eνa∂µeλ
a + eνaeλ

bωµ
a
b (2.67)

ωµ
a
b = eν

aeλbΓ
ν
µλ − eλb∂µeλa = −eνb∇µ(Γ)eν

a (2.68)

Left multiplying the last expression and rearranging terms gives:

∇µ(Γ, ω)eσ
a ≡ ∂µeσa − Γνµσeν

a + ωµ
a
beσ

b = 0 (2.69)

where ∇(Γ, ω) is used to signal a covariant derivative that ‘sees’ the holonomic indices with the
affine connection, and all anholonomic indices with the Lorentz connection. (In some texts this
derivative is abbreviated by a vertical bar ∇µ(Γ, ω)T = T|µ.) The above statement is known as
the ‘tetrad postulate’ and states that the vierbein field is invariant under parallel transport.

Using the expression for the affine connection (2.67) in the definition of the torsion and cur-
vature tensor, (2.5) and (2.6) respectively, we find

Tλµν(Γ) = eλaT
a
µν(ω) = 1

2e
λ
a (∇µ(ω)eν

a −∇ν(ω)eµ
a) (2.70)

Rλσµν(Γ) = eλaeσ
bRabµν(ω) = eλaeσ

b(∂µων
a
b − ∂νωµab + ωµ

a
cων

c
b − ωνacωµcb) (2.71)

Similarly, the Ricci tensor and Ricci scalar definitions, (2.7) and (2.8), become

Raµ(ω) = Rabµν(ω)eνb R = Raµe
µ
a (2.72)

2.4.2 The Standard Model in the presence of gravity

The next step is to look at the Standard Model in the presence of a gravitational field. The effect
of gravity is encoded in the properties of spacetime itself as deviations from e.g. the Minkowski
or Euclidean metric are the graviton field itself: gµν = ηµν + hµν where hµν is the graviton with
spin 2 (two-index tensor).

In order to construct the actions of matter fields in an external gravitational field, the prin-
ciples of locality and general covariance are imposed. It is also natural to forbid the introduction
of new parameters with the dimension of inverse mass, besides renormalizability and simplicity.
Following these three principles (locality, covariance and restricted dimension), the form of the
action is fixed except the values of some new parameters which remain arbitrary (non-minimal
scheme). We could furthermore follow the Einstein Equivalence Principle, i.e. we demand the
symmetries of the original flat-space theory also hold for the general curved-space theory. This
is referred to as ‘minimal coupling’37, which is the idea that the basic equations of physics in
the presence of gravity differ from their counterparts in flat spacetime only by replacing partial
derivatives for spacetime covariant derivatives, the flat metric for the generic metric gµν and the
volume element d4x→ √gd4x.

Following the EEP to establish the minimal coupling of the Standard Model with gravity, we
start with the Dirac action and identify the coordinates appearing in it with that of the locally
inertial system. Specifically, we will treat local Lorentz invariance in a similar manner to gauge
symmetries to establish the curved spacetime theory.

37Strictly speaking, the EEP is not identical to the minimal coupling scheme. The EEP requires that under
given conditions physical phenomena in a sufficiently small region of spacetime unfold in the same way when
there is, or is not, a gravitational field. This is a condition on solutions, rather than on equations unlike the idea
of minimal coupling. The term ‘minimal coupling’ refers to the fact that the fields are coupled to the background
metric only via the covariant derivative, which is obviously not the case for the non-minimal coupling scheme
where explicit coupling terms are introduced.
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Consider the Dirac equation for fermions in locally free-falling coordinates ξa:

(iγa∂a −m)ψ = 0

where γa are the coordinate-invariant Dirac matrices which satisfy {γa, γb} = 2ηab. The
spacetime-dependent Dirac matrices, γµ = eµaγ

a, thus obey

{γµ, γν} = 2gµν

Following Yepez [16], we distinguish between the external Lorentz transformations that act on
4-vectors, Λµν of the Lorentz group SO(3, 1), and the internal Lorentz transformations that act
on spinor wave functions, U(Λ) of the spinor representation of the SU(4) group. These commute:
[Λµν , U(Λ)] = 0. Explicitly, the internal Lorentz transformation of a quantum spinor field in
unitary form is

U(Λ) = e
1
2λab(x)Gab ≈ 1 + 1

2λab(x)Gab

where λab = −λba is the group parameter and Gab is the tensor generator of the transformation,
which appears in the representation corresponding to the object that is transformed (vector, ten-
sor, scalar, etc.). The fundamental representation of SU(4) are the 42 − 1 = 15 Dirac matrices,
which include four vectors γa, six tensors σab = 1

4 [γa, γb], one pseudo scalar γ5 = iγ0γ1γ2γ3,
and four axial vectors γ5γa. The generator associated with the internal Lorentz transformation
of a fermion (spinor) is Gab = σab. With these formulae, the invariance of the Dirac equation
under a Lorentz transformation can be explicitly checked.

Next we make the transformation local for a general spacetime, and we replace the partial
derivative with the spinor covariant derivative

∇µ = ∂µ + Γµ (2.73)

we get, in the spirit of a local gauge theory for the special Lorentz group, the generally covariant
expression

(iγaeµa∇µ −m)ψ = 0 (2.74)

where the Lorentz transformations of a Lorentz 4-vector xa, 4-spinor ψ and γµ are

xa′ = Λabx
b, ψ′ = U(Λ)ψ, ψ̄′ = ψ̄U(Λ)−1, γµ

′
= U(Λ)γµU(Λ)−1 (2.75)

and the spinor connection Γµ transforms according to

Γ′µ = U(Λ)ΓµU(Λ)−1 + (∂µU(Λ))U(Λ)−1

To derive the form of the spinor connection, we look at the parallel transport of the Lorentz
transformation matrix. From the Lorentz transformation of the vierbein (2.64) we have

eµ
a′(xα)eµb(x

α) = Λa
′

b(x
α)

Because the left-hand side has two upper indices of a different kind, the Latin non-coordinate
index a′ and the Greek coordinate index µ, we need to take extra care in treating them with
respect to parallel transport. Specifically, a Taylor expansion can be used to connect a quantity
in its Latin non-coordinate index at one point to a neighboring point, but the affine connection
must be used for the Greek coordinate index:

Λa
′

b(x
α + δxα) = eµ

a′(xα + δxα)eµb(x
α + δxα)

=

(
eµ
a′(xα) +

∂eµ
a′

∂xα
δxα

)(
eµb(x

α)− Γµβα(xα)eβb(x
α)δxα

)
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= δa
′

b +
(
eµb∂αeµ

a′ − Γµβαeµ
a′eβb

)
δxα

= δa
′

b − ωαa
′

bδx
α

where equation (2.4) was used in the second line, the explicit dependence on xα was dropped
in line 3, and the Lorentz connection in the last line is given by (2.68). Writing the Lorentz
transformation matrix in its infinitesimal form, gives the group parameter λab:

Λab = δab + λab = δab − ωαabδxα = δab + eνb(∇α(Γ)eν
a)δxα

Next, recall the Lorentz transformation of a spinor (2.75)

U(Λ)ψ =
(
1 + 1

2λab(x)Gab
)
ψ = ψ + δψ where δψ = − 1

2 (ωα)abδx
αGabψ = Γαψδx

α

The generalized derivative that is needed to correctly differentiate the Dirac 4-spinor field in
curved space time is thus the spinor covariant derivative (2.73) with the spinor connection

Γµ = − 1
2 (ωµ)abG

ab = 1
2e
ν
b(∇α(Γ)eνa)Gab = 1

2e
ν
b(∂αeνa)Gab, Gab = i

2 [γa, γb] (2.76)

Because the spinor covariant derivative of the γ matrices is zero, the Dirac equation in curved
spacetime with the above definition of the spinor covariant derivative is obtained by variation
with respect to ψ̄ of the Lagrangian38

LDirac = i
2

(
ψ̄γµ(∇µψ)− ∇̄µψ̄γ

µψ
)
−mψ̄ψ = i

2 ψ̄γ
µ
↔

∇µψ −mψ̄ψ (2.77)

Following the above arguments we can write the complete Standard Model Lagrangian, which
was developed in Section 1.2 in flat spacetime, now in curved spacetime. First the fermion
Lagrangian (1.18), which becomes

SFermion =

∫
d4x
√
g

[(
ν̄L, ēL

)
L

i/D
(
νL
eL

)
+ ν̄Ri/DνR + ēRi/DeR

+
(
ūL, d̄L

)
i/D
(
uL
dL

)
+ ūRi/DuR + d̄Ri/DdR

] (2.78)

where summation over all leptons and quarks is assumed. The gauge covariant derivative (1.19)
is extended to include the spinor covariant derivative as understood in (2.77):

Dµ =
↔

∇µ + iηg
2

[
σ+W

+
µ + σ−W

−
µ

]
+ iηeeQAµ

+ iηg
cos(θW )

[
σ3

2 −Q sin2(θW )
]
ηzZµ + iηsgs

2 λaG
a
µ

(2.79)

38If we include torsion, but still work with a metric compatible metric, the Dirac equation is written as

LDirac = iψ̄
(
γµ∂µ − i

2
γµ{µab}Gab − i

8
γ5γµSµ

)
ψ −mψ̄ψ

which is the same result as e.g. equation 8.15 from Dobado et al. [61]. It can be established by inserting the
general affine connection (2.11) in the expression for the spin connection (2.68), but keeping the nonmetricity
equal to zero:

ωµ
a
b = eν

aeλbΓ
ν
µλ − e

λ
b∂µeλ

a, Γµνλ = {µνλ}+Kµ
νλ

and Sµ is defined as the axial part of the torsion tensor Sρ = εµνλρT
µνρ.

There is no consensus on the status of torsion within a (quantum) theory of gravity. Arguments for
keeping it include that quantum effects or modification of Einstein gravity to include higher derivative terms
could produce torsion. More important, Friedrich W. Hehl [84] already advocated in 1979 that where mass
is coupled to the metric via the energy-momentum tensor, the other elementary notion needed to describe an
elementary particle, spin, should also be coupled, namely to a geometrical quantity related to rotational degrees
of freedom in space-time which is the contortion tensor Kµ

νλ. More recently, Luca Fabbri argues for a conformal
theory including torsional degrees of freedom, see e.g. [85]. Some other interesting papers on the subject are e.g.
[86–89]. Because the inclusion of torsion, especially in a nonminimal scheme, leads to an increasing number of
possible terms that can be included in the Lagrangians, we will not consider it further.
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Gravity enters only via the above covariant derivative (minimal coupling) as there are no non-
minimal terms algebraically possible.

In contrast, scalar contributions are not modified in the minimal scheme because they do not
transform under Lorentz transformations: Gab = 0 and the spacetime covariant derivative is
just an ordinary partial derivative. However, a nonminimal generalization of the scalar action
is

SScalar = 1
2

∫
d4x
√
g
(
gµν∂µφ∂νφ−m2φ2 − ξφ2R

)
(2.80)

where ξ is a new dimensionless quantity called the nonminimal parameter with ξ = 0 corre-
sponding to the minimal coupling. The reason for considering a nonminimal term of the form
Rφ2 and not some other extension is twofold. Firstly, we are interested in the simplest gener-
alization from a special relativistic field theory to a general space-time and are only inclined to
consider one of the unlimited number of other possible additions when there is other evidence
suggesting we should do so. For this term there is such evidence, because the renormalization
of an interacting field in curved spacetime necessarily involves a counterterm proportional to
Rφ2.The second reason for considering this term in the nonminimal scheme is its relevance to
conformal invariance, as we will see in the next section.

This nonminimal extension of the scalar sector only influences the Higgs sector. So the Higgs
and Yukawa sectors of the Standard Model in the presence of a gravitational field become:

SHiggs + Yukawa =

∫
d4x
√
g
(
gµν(DµH)†(DνH)− V (H†H)− ξH†HR+ LYukawa

)
(2.81)

where Dµ and LYukawa are given by (1.19) and (1.33), respectively.

The last sector we need to consider is the gauge sector in flat spacetime which is given by
the Yang-Mills sector (1.20). Gauge fields transform under Lorentz transformations as Gab

i
j =

δiaηbj − δibηaj . The spinor covariant derivative of a gauge field thus becomes:

∂aAj → ∇aAj = eµa
(
∂µ − 1

2ωµ
abGab

)
Ai

= eµa∂µ
(
eνjAν

)
− 1

2e
µ
a(ωµ

i
j − ωµji)eνiAν

= eµae
ν
j ∂µAν + eµa(∂µe

ν
j − ωµijeνi )Aν

In combination with the tetrad postulate (2.69), this gives Faj = eµae
ν
j (∂µAν − ∂νAµ), meaning

that the product F amnF
mn
a is invariant under Lorentz transformations. The Yang-Mills sector

the requires thus only replacing the flat metric with the general metric:

SYM = − 1
4

∫
d4x
√
ggµρgνσ

(
BµνBρσ +W i

µνW
i
ρσ +GaµνG

a
ρσ

)
(2.82)

where field strength tensors of SU(3)c, SU(2)L, U(1)Y are given by equations (1.3), (1.10) and
(1.11).

2.4.3 A conformal toy model

Having established the form of the Standard Model in the presence of a nontrivial metric gµν , it is
now time to impose the conformal restrictions and include the gravity sector. Conformal invari-
ance includes scale invariance meaning mass terms or other scales explicitly break the symmetry.
Therefore no mass scales - no gravitational constant, no mass for the Higgs field, no cosmological
constant and no mass parameters for the quarks, leptons or gauge bosons - can be included in the
theory. This requirement means that the tachyonic Higgs mass term in the Higgs sector and the
Majorana mass term in the Yukawa sector cannot be included in the Conformal Standard Model.
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Next we need to investigate the behavior of the different sectors under a conformal transfor-
mation (2.28):

Φ(x)→ Ω∆̃ΦΦ(x), eµ
a → Ω(x)eµ

a, such that gµν = ηabeµ
aeν

b → Ω(x)2gµν (2.83)

where we included explicitly the behavior of the vierbein field under a conformal transformation.
Recalling the Weyl weight of the fields from Section 2.2.1, we can readily see that the Yang-Mills
action transforms in a conformally invariant way:

S′YM =

∫
d4x

√
Ω8g(Ω−2gµρ)(Ω−2gνσ)(Ω0Fµν)(Ω0Fρσ) = SYM

We will not demonstrate conformal invariance of the fermion sector explicitly, but instead refer
to [41, Section 5].

That leaves the Higgs sector of the Standard Model. A conformal invariant scalar action re-
quires a nonminimal coupling term where ξ = d−2

4(d−1) in d spacetime dimensions, i.e. in four

spacetime dimensions

SHiggs = 1
2

∫
d4x
√
g
(
gµν(DµH)†DνH+ 1

6H
†HR

)
(2.84)

which can be derived upon considering the equation of motion of the nonminimal, massless scalar
theory (2.80) (see Appendix F). Curiously, this value can also be argued on the basis of the
EEP and thus without reference to any conformal argument [62].

Now we have all the ingredients for the construction of a Conformal Standard Model. There
remains one aspect to be discussed and that is the coupling with Gravity. In the above equa-
tions we have minimal coupling in the Yukawa, fermion and Yang-Mills sectors and nonminimal
coupling with the Ricci scalar curvature in the scalar sector. We could furthermore include the
CDG action (2.55) of the previous section either by 1) identifying the Higgs boson with the (un-
physical) dilaton or 2) include the (unphysical) dilaton as an additional field. Another option is
to 3) include the dilaton as an additional physical scalar field. The remainder of this section is
devoted to investigating these different options.

Suppose we identify the Higgs doublet with the dilaton39:

H =
1√
2
U−1(ζ)

(
0

φ(x)

)
with U−1(ζ) = e

−iζi(x)Ti

υ

where the 3 Goldstone bosons that appear in the exponent can be eliminated by a local SU(2)
transformation fixing the unitary gauge for the Higgs field. In the broken phase of the theory
the scalar field in (2.84) is gauge fixed, following the procedure of Appendix E, to a fixed value
to retrieve the familiar Einstein-Hilbert action. We need to choose φ = υ:

1

2κ2
=
ξυ2

2
⇒ GN =

1

8π

1

ξυ2
(2.85)

Because Newton’s constant GN = M−2
p (we work in ~ = c = 1), we get that υ is on the

order of the Planck mass (∼ 1019 GeV), which is inconsistent with the experimental value of
the electroweak VEV υ ≈ 246 GeV. Therefore, we cannot identify this conformally coupled
scalar with the Higgs field, but need to allow it as an extra field to the Standard Model and
Gravity.

39This model was actually proposed by e.g. Pawlowski and Raczka [63] because the Higgs boson at that
time was still not experimentally verified leading scientists to doubt its existence altogether. In the model of
Pawlowksi one gets the mass generation without the mechanism of spontaneous symmetry breaking and without
the remaining real dynamical Higgs field.
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A two scalar theory is:

S±CSMG =

∫
d4x
√
g
[
− 1

4g
µρgνσ

(
BµνBρσ +W i

µνW
i
ρσ +GaµνG

a
ρσ

)
(Yang-Mills sector)

+
(
ν̄L ēL

)
i /̂D
(
νL
eL

)
+ ν̄Ri /̂DνR + ēRi /̂DeR (lepton dynamical terms)

+
(
ūL d̄L

)
i /̂D
(
uL
dL

)
+ ūRi /̂DuR + d̄Ri /̂DdR (quark dynamical terms)

−
(
ν̄L ēL

)
HΓeeR −

(
ν̄L ēL

)
iσ2H∗ΓννR + h.c. (lepton mass terms)

−
(
ūL d̄L

)
HΓddR −

(
ūL d̄L

)
iσ2H∗ΓuuR + h.c. (quark mass terms)

± 1
2g
µν∂µχ∂νχ+ gµν(DµH)†DνH (scalar dynamical terms)

+ 1
12 (±χ2 + 2H†H)R− V (H, χ)

]
(scalar interactions)

(2.86)

where the different covariant derivatives are40:

Dµ = ∂µ + iηgW i
µT

i + iη′g′ηY Y Bµ

Dµ = Dµ − i
4 (ωµ)ab[γ

a, γb]

The above toy model is invariant under the gauge symmetry of SUc(3) × SUL(2) × UY (1) and
local Weyl rescalings in 4 spacetime dimensions:

gµν → Ω2(x)gµν , χ→ Ω−1χ, H → Ω−1H, ψ → Ω−
3
2ψ, Aµ → Ω0Aµ (2.87)

where ψ is a Dirac fermion field (either a lepton or a quark) and Aµ is a general gauge boson
(either the photon, gluon, W± or Z boson).

In case we choose the minus sign S−CSMG we have one scalar field which comes from the Confor-
mal Standard Model and the other is the unphysical dilaton from Conformal Dilaton Gravity
was for example considered by Bars [66]. The term 1

12R(χ2−2H†H) leads to Newton’s constant
and allows us to find General Relativity back. To allow for the possibility for it to be positive,
we must indeed have one scalar, namely the dilaton φ, to have the wrong sign kinetic term,
otherwise we would end up with a purely negative gravitational parameter. Furthermore, the
relative minus sign between the two scalars enables us to cover all patches of field space that
are required for geodesic completeness41 of all cosmological solutions for all times and any set
of initial conditions [66].

A proposal for the specific form of the potential V (H, χ) will follow in the next chapter. Possi-
ble gauge-fixing terms as well as the compensating Faddeev-Popov ghosts will not be explicitly
considered. We also, again, note that this toy model does not include a kinetic term for the
gravitational field. Recall from the discussion in Section 2.3.2 that the only possibility is the
Weyl tensor squared from the Conformal Gravity action (2.47). See e.g. Oda [57] for the toy
model including this term.

40It is possible that these gauge covariant derivatives also include the Weyl gauge field as e.g. proposed by
[64, 65].

41Geodesic completeness refers to two notions. Firstly, it means geodesic continuation through all singularities
separating patches of spacetime. Secondly it also means avoiding unnatural initial conditions by requiring infinite
action for geodesics that reach arbitrarily far in the past. Though inequivalent, both notions are satisfied for the
model which we are developing in this section [67].
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The dilaton in the above model S−CSMG (2.86) is an unphysical but otherwise regular scalar
field if we follow the interpretation of [49, 67]. On the other hand, we could also follow ’t Hooft
[11]. Then the metric displayed is actually a metatensor from which all scale dependences are
contained in the unphysical, ‘metascalar’ field ω, also called the dilaton. The metric’s behavior
under coordinate transformations thus differs depending on the method we consider. Taking into
account these differences, both methods lead to the same final toy model as long as the potential
V (ω̂,H) remains unspecified. However, to distinguish between the different interpretations, we

use the superscript ‘split’ (Ssplit
CSMG) to signal that we talk about the model in the interpretation

by ‘t Hooft.

Last but not least, we could also go for the plus sign in (2.86). The dilaton is then an ad-
ditional real scalar field, which in its simplest form would be a gauge singlet.



Chapter 3

Scales in a scaleless theory

In the previous chapter we established different toy models where the Standard Model, Gravity
and conformal invariance are combined. The two models differ in the meaning of the dilaton: in
CSMG- the dilaton is a ghost particle, whereas it is a real scalar field in CSMG+. This chapter
is devoted to investigating how scales can be generated in a theory which is classically without
scales. Some symmetry breaking mechanism needs to be responsible and the possibilities are
discussed in Section 3.1. In Section 3.2 and Section 3.3 symmetry breaking in the two different
toy models is discussed, where the former includes special attention to the interpretation of the
dilaton by ‘t Hooft. In the last section we will compare the two models.

3.1 Origin of mass

The Nambu and Jona-Lasinio (NJL) model describes how the mass of the nucleon, then as-
sumed to be an elementary particle, is generated dynamically from the vacuum through the
nucleon-antinucleon pair condensate. This idea is now used in the mass generation mechanism
of composite particles via the quark-antiquark condensate in QCD. The model thus accounts
for 99% of the mass of the visible world. The remaining 1% of the mass, the masses of the ele-
mentary particles themselves, are generated by the Higgs boson via the spontaneous symmetry
breaking of the SU(2)L × U(1)Y gauge symmetry as induced by the explicit mass term of the
Higgs boson. However, saying that the Higgs boson gives masses to all elementary particles in
the SM is incorrect because the source of its own mass as well as the (possibly different) source
of the neutrino masses in the Standard Model are still unclear.

The Higgs boson mass found at the Large Hadron Collider as well as subsequent experiments
are in agreement with the Brout-Englert-Higgs-mechanism of the Standard Model. This means
we could accept the Higgs field with is tachyonic mass in LSM as a fundamental field. How-
ever, while the Standard Model is not contradicting with the current data at the LHC within
the error, some extended Higgs sectors can also reproduce the data. Besides, if the standard
model is correct, the measured values e.g. the mass of the Higgs boson, imply the Universe is
metastable [68]. This again would imply that the Standard Model cannot be valid all the way to
the Planck scale, and that new particles and interactions must contribute to the scalar potential.

However, here we work under the assumption that both the Standard Model and Einstein Grav-
ity are not the final theories but rather effective theories arising from breaking of conformal
invariance of toy model. Such conformal symmetry breaking can arise in several ways. For ex-
ample it can be collateral damage of the spontaneous breaking of the GUT and/or electroweak
gauge symmetries, as the fermions and gauge bosons in the conformal theory acquire masses
and thereby spoil the conformal symmetry. The breaking mechanism could, on the contrary, be
preceding or even completely unrelated to the electroweak breaking.

52
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There are two types of breaking of a symmetry in general, namely

i. Explicit breaking at the classical level occurs when a term in the Lagrangian is not in-
variant. When the theory possess a symmetry when its dynamics is analyzed in terms
of unquantized, commuting variables, the symmetry may disappear when the dynamics
is quantized and analysis is performed in terms of non-commuting quantum variables. In
other words, quantization of the symmetric classical theory can lead to anomalies that
explicitly break the symmetry. This is called to anomalous symmetry breaking.

ii. Spontaneous symmetry breaking occurs when the classical Lagrangian is invariant but the
ground state is not. Specifically, we have to be in a situation in which the ground state is
such that the symmetry is still a property of the system when the fields are in an unstable
stationary point (saddle point) of the potential; because of the instability, the configuration
of fields will spontaneously tend to the stable stationary point of the potential, which is,
however, not invariant. The mechanism of spontaneous symmetry breaking is described by
the Goldstone mechanism and the Brout-Englert-Higgs mechanism in case of a global and
local symmetry breaking, respectively. It is also possible to have a symmetric classical La-
grangian but that quantization leads to radiative corrections that spontaneously break the
symmetry. This is for example achieved via the Coleman-Weinberg breaking mechanism.

Explicit breaking at the classical level would invalidate the conclusions based on the restrictions
from conformal invariance and will therefore not be considered. However, as is well known
(and further explained in the ??), quantization of a classically conformal lagrangian gives rise
to a trace anomaly which anomalously breaks the conformal symmetry. As there are ways of
restoring the conformal symmetry at quantum level, we are left with investigating how scales are
generated in a quantum conformal theory. The remainder of this section is therefore devoted to
explaining the Coleman-Weinberg mechanism in Section 3.1.1 and its extension to the multiple
scalar case, the Gildener-Weinberg formalism, in Section 3.1.2.

3.1.1 The Coleman-Weinberg mechanism

Sidney Coleman and Erick Weinberg [69] (for a review see also [70]) investigated symmetry
breaking in classical massless theories as to replace the BEH mechanism based on the rather
ugly tachyonic Higgs mass term. In their paper, they showed that for QED, even though the
minimum of the interaction potential is zero at the tree-level, the radiative corrections at the
one-loop level to the (effective) potential change the potential to a mexican-hat-type hence
inducing spontaneous symmetry breaking. Here we will demonstrate the general features of the
Coleman-Weinberg (CW) mechanism using the trivial φ4-theory from Section 1.3:

L = 1
2 (∂µφ)2 − 1

2m
2φ2 − 1

4!λφ
4 + 1

2∆φ(∂µφ)2 − 1
2∆mφ

2 − 1
4!∆φ4φ4 (3.1)

where ∆φ,∆m,∆λ are the counter-terms of the wave-function, mass and the coupling constant.
This Lagrangian is symmetric under the transformation φ → −φ and the vacuum shares that
symmetry for m2 > 0, but the symmetry is spontaneously broken for m2 < 0, as can be recalled
from our discussion of the Higgs mechanism. Here, we focus on the borderline case of a classically
massless theory, i.e. m2 = 0.

Classically, the positivity of the quartic term would be sufficient to guarantee a symmetric
vacuum. However, in a quantum field theory the vacuum energy includes the zero-point energies
of the various fields that enter the theory and these zero-point energies can potentially change
this situation. Thus, to investigate spontaneous symmetry breaking in flat spacetime we require
the quantum corrected potential, also known as the effective potential Veff, of the theory. The
minima of the effective potential give, without any approximation, the true vacuum states of the
theory.
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Recall the effective action (1.43):

Γ[Φcl] = W [J ]−
∫

d4xJ(x)Φcl(x) where Φcl =
δW [J ]

δJ(x)

which is the generating functional for all the 1-particle irreducible (1PI) correlation functions
Γ(r)(x1, . . . , xr) and consequently encodes the full quantum dynamics of the theory in a classical
language.

One of the leading procedures to determine the structure of the effective potential is the loop
expansion method in which one finds the contributions coming from each separate part of the
diagrams order by order (i.e., starting from tree-level to r-loops) and then sum them to find the
result with the desired precision.

Γ[Φcl] = i
∑
r

1

r!

∫
d4x1 . . . d

4xrΓ
(r)(x1, . . . , xr)Φcl(x1) . . .Φcl(xr) (3.2)

Alternatively, one can also express the effective action as a momentum (or derivative) expansion.
The general form of the effective action then consists of the standard two-derivative kinetic term
multiplied by some non-trivial wave-function factor, an effective potential without derivatives,
and in general also an infinite series of higher-derivative corrections:

Γ[Φcl] =

∫
d4x
(
Zeff[Φcl]∂µΦcl∂

µΦcl − Veff[Φcl] + . . .
)

(3.3)

In particular, if we study Φcl(x) = Φcl (constant), then only the first term contributes to the
effective action, which is called the effective potential and in the tree approximation it is just the
classical potential. By comparing the two expansions, it can be seen that the nth derivative of
Veff is the sum of all 1PIs diagrams with vanishing momentums of external legs. In other words,
the effective action and the effective potential contain all the effective vertices among the fields
Φcl which are induced by quantum fluctuations through loops, respectively at any momentum
and at zero-momentum.

The usual renormalization conditions of perturbation theory can be expressed in terms of the
functions that occur in the above equation. For example, we define the squared mass of the
meson as the value of the inverse propagator at zero momentum42, and the coupling constant
equals the four-point function at zero external momentum. However, massless theories suffer
from IR divergencies in the Green’s functions when Φcl → 0, thus requiring us to enforce the
renormalization conditions at an arbitrary scale µ:

m2 = 0 =
d2Veff

dΦ2
cl

∣∣∣∣
Φcl=µ

, λ =
d4Veff

dΦ4
cl

∣∣∣∣
Φcl=µ

, Zeff[Φcl = µ] = 1 (3.4)

With the general theory outlined, we turn back to our scalar theory. Specifically, the effective
action is just the classical action. Furthermore, we had determined the 1-loop effective action
(1.48) in Section 1.3.1:

Γ1[Φcl] =
i

2
Tr log

(
� +

λ

2
Φ2
cl

)
+ 1

2∆φ∂µΦcl∂
µΦcl − 1

2∆1
mΦ2

cl − 1
4!∆

1
λΦ4

cl (3.5)

where we need to keep the mass renormalization term, even though we are have a massless
theory, because the theory possesses no symmetry that would guarantee vanishing bare mass in
the limit of vanishing renormalized mass.

42If we were interested in higher order corrections this in general gauge-dependent definitions needs to be
replaced by the gauge-invariant definition of particle masses as the locations of poles in propagators. At the order
of our current interest, the two definitions coincide.



3. Scales in a scaleless theory 3.1. Origin of mass 55

The tree level effective potential is then the classical potential and the 1-loop effective potential
is computed by considering the 1-loop effective action for constant configurations for Φcl.

V 0
eff = 1

4!λΦ4
cl V 1

eff = − i
2 Tr′ log

(
� + 1

2λΦ2
cl

)
+ 1

2∆1
mΦ2

cl + 1
4!∆

1
λΦ4

cl (3.6)

where Tr′ denotes the trace over non-zero modes and can be evaluated by performing a Wick
rotation to Euclidean space (k0 = ik0

E) and using the standard integral (1.49)

− i
2 Tr′ log

(
� + 1

2λΦ2
cl

)
= 1

2

∫
ddkE
(2π)d

log
(
k2
E + 1

2λΦ2
cl

)
Now observe that the integral has a logarithmic singularity at Φcl = 0. The IR divergence
can be avoided by staying away from vanishing Φcl. Besides, the integral is also UV divergent,
which we handle by introducing a momentum cut-off (following [69]). The 1-loop effective action
becomes:

V 1
eff =

(
λΛ

64π2

)
Φ2
cl +

λ2Φ4
cl

256π2

(
log

(
λΦ2

cl

2Λ2

)
− 1

2

)
+ 1

2∆1
mΦ2

cl + 1
4!∆

1
λΦ4

cl

With this potential and the renormalization conditions (3.4), we can now determine the coun-
terterms:

0 =
d2Veff

dΦ2
cl

∣∣∣∣
Φcl=0

⇒ ∆m = − λΛ2

32π2

λ =
d4Veff

dΦ4
cl

∣∣∣∣
Φcl=µ

⇒ ∆λ = − 3λ2

32π2

(
log

(
λµ2

2Λ2

)
+

11

3

)
We could evaluate the first renormalization condition at Φcl = 0 whereas the second condition
should be evaluated at an arbitrary scale µ because the fourth derivative of Veff at the origin
does not exist.

Combining it all, gives the final expression for effective potential in the 1-loop approximation
for the massless scalar theory:

Veff =
1

4!
λΦ4

cl +
λ2Φ4

cl

256π2

(
log

(
Φ2
cl

µ2

)
− 25

6

)
(3.7)

The theory is renormalizable and, as expected, all dependence on the momentum cut-off Λ have
disappeared in the above expression. Finally, we ask ourselves the important question with which
we started this section: does this potential give rise to spontaneous symmetry breaking? Spon-
taneous symmetry breaking occurs if the quantum field develops a nonzero vacuum expectation
value, even when the source J(x) vanishes. This occurs if

δΓ

δΦcl
= 0 ⇒ dVeff

dΦcl
= 0

where we assumed that the vacuum expectation value is translationally invariant. Using (3.7)
seems to give a non-trivial VEV:

dVeff

dΦcl

∣∣∣∣
〈Φ〉

=
λ 〈Φ〉3

6
− 22λ2 〈Φ〉3

384π2
+
λ2 〈Φ〉3

64π2
log

(
〈Φ〉2

µ2

)
= 0 ⇒ λ log

(
〈Φ〉
µ

)
= −16π2

3
+O(λ)

However, choosing the arbitrary renormalization scale as µ2 = 〈Φ〉
2 , we see that λ(〈Φ〉) ∼ 50

which is far outside the expected range of validity of the one-loop approximation. In other
words, the minimum arises from balancing a term of O(λ) against a term of O

(
λ2 log(Φ/M)

)
which inevitably means that for small λ the minimum lies outside the domain of validity.
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The range of validity may be improved using the Renormalization Group. As we can see in
(3.7), the arbitrary renormalization mass is still there. Its only function is to define the coupling
constant and the field renormalization strength through (3.4) and that a small change in µ can
be compensated by appropriate changes in λ and Z. Recall from our discussion in Section 1.3.3
that this continuous relationship is constrained by the Callan-Symanzik equation (1.55). We
apply the Callan-Symanzik equation to the effective action (3.2) to resum all the 1-loop 1PI
diagrams in order to obtain the renormalization group improved Coleman-Weinberg potential in
which the independence of the renormalization mass is exact to every order. In the process, we
also obtain the β-function for λ without computing Feynman diagrams.

From [7, Chapter 13] we know that the irreducible n-point function is related to the corre-
sponding function of bare fields:

Γ(n) = Z(µ)n/2Γ
(n)
0

This relation is identical to the relation between renormalized and bare Green’s function (1.53)
except for the change of sign in the exponent. Following the same argumentation as Section 1.3.3
gives then the Callan-Symanzik equation n-point function(

µ
∂

∂µ
+ β

∂

∂λ
− nγ(λ)

)
Γ(n)({xi};µ, λ) = 0

This equation, integrated with n powers of Φcl and summed over n, is equivalent to(
µ
∂

∂µ
+ β

∂

∂λ
− γ(λ)

∫
dx

δ

δΦcl

)
Γ([Φcl];µ, λ) = 0

Assuming constant Φcl then gives the Callan-Symanzik equation for the effective potential:(
µ
∂

∂µ
+ β

∂

∂λ
+ δ

∂

∂α
− γ(λ)Φcl

∂

∂Φcl

)
Veff(Φcl, µ, λ) = 0, β = µ

∂g

∂µ
, γ =

µ

2Z

∂Z

∂µ
(3.8)

Using the Landau gauge, δ = 0 in the one-loop approximation such that the term for the gauge
parameter α disappears. Each term of the equation then is

µ
∂Veff

∂µ
= − 2λ2

256π2
Φ4
cl

βλ
∂Veff

∂λ
= βλ

(
1

4!
Φ4
cl + higher orders

)
γΦcl

∂Veff

∂Φcl
= γ

(
1

3!
λΦ4

cl + higher orders

)
To determine γ we note that we have not calculated the one-loop corrections to Z. However, the
one-loop propagator correction is completely cancelled by the mass counterterm and the first non-
trivial corrections is at O

(
λ2
)
. This means that at 1 loop we have Z(µ) = 1 +O

(
λ2
)
→ γ = 0.

Plugging this all into the Callan-Symanzik equation gives the one-loop beta function for the
coupling constant:

βλ =
3

16π2
λ2 +O

(
λ3
)

(3.9)

The next step is to find the solution to the Callan-Symanzik equation (which is a differential
equation). Introducing the dimensionless quantities V (4) and t, and a redefinition of β and γ
according to

V4 =
∂4Veff

∂Φ4
cl

, t = log

(
Φcl
µ

)
, β̄ =

β

1− γ
, γ̄ =

γ

1− γ
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changes (3.4) and (3.8) to(
− ∂

∂t
+ β̄

∂

∂λ
+ 4γ̄

)
V4(t, λ) = 0, where λ = V4(0, λ) and Z(0, λ) = 1

Assuming we know β̄ and γ̄ exactly, we can construct the general solution to this equation (see
e.g. [69] for details)

V4(t, λ) = λ̄(t, λ)e2
∫ t
0

dtγ̄(λ̄(t,λ)) (3.10)

where λ̄(t, λ) gives the running of the coupling and is defined as the solution of the ordinary
differential equation

dλ̄

dt
= β̄(λ′), λ′(0, λ) = λ (3.11)

Upon generalizing to a general massless theory, the above equation becomes a system of cou-
pled ordinary differential equations, one for each coupling constant. Unfortunately, there is one
problem with the above picture: we do not know β̄ and γ̄ exactly. Suppose we can construct an
approximation to λ̄ by using the one-loop result of β̄ in the above equation. We then expect that
the approximation is reliable in the range of t for which λ̄(t, λ) remains small and if we are lucky,
this is the case for a large range of t. It is exactly in this way that the renormalization group
gives us an ‘improved’ result because the domain of validity of the one-loop approximation is
determined not only by small coupling constant but also by the condition that the logarithmic
factor t not be too large.

Using the fact that γ = 0 and thus βλ = β̄λ, we get the following approximate differential
equation (3.11) and solution:

dλ̄

dt
=

3

16π2
λ2, ⇒ λ̄ =

λ

1− 3λt
16π2

= λ+

∞∑
n=1

3n
λn+1

(4π)2n
log

(
Φcl
µ

)n
(3.12)

The first term in this expansion is the scale-independent vertex, whereas the first simple loga-
rithm gives the momentum dependence coming from the 1-loop correction and so forth. Evi-
dently, the 1-loop approximation to the running coupling resums the leading logarithmic behavior
of all the loop diagrams. This idea can be extended such that when we use the k-loop expression
for the β function it resums not only the leading logarithm λn+1 log(Φ/µ)

n
arising at each loop

order n, but also the first k − 1 subleading logarithms λn+1 log(Φ/µ)
n−k+1

. However, here we
are satisfied with the one-loop improved results.

Because V4(t, λ) = λ̄(t, λ) we obtain the improved approximation for the effective potential:

Veff =
λΦ4

cl

4!
(
1− 3λt

16π2

) (3.13)

Plugging in the sum of (3.12), we see that this result agrees with the earlier found (3.7), but
in addition is also valid for negative t. We now see that the minimum of the classical potential
at the origin is indeed turned into a maximum due to the radiative corrections, a conclusion
which we now can make because of the extended range of validity of our approximation. Our
conclusion that the minimum we found earlier may be false is also verified by the above potential

where instead of a minimum we find a pole ΛUV = µ exp
(

16π2

3λ

)
, equally outside the range of

our approximation as earlier.

Elizalde and Odintsov [71] reported on the extension of the Coleman-Weinberg mechanism to
curved spacetimes. Using the RG equation for the effective potential in curved spacetime(

µ
∂

∂µ
+ β

∂

∂λ
+ δ

∂

∂α
+ βξ

∂

∂ξ
− γ(λ)Φcl

∂

∂Φcl

)
Veff(Φcl, µ, λ, ξ) = 0
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for φ4-theory in curved spacetime

V (0) = aλΦ4
cl − bξRΦ2

cl, where a, b > 0, ξ =
d− 2

4(d− 1)

He found the following RG improved effective action up to one loop using the Landau gauge

Veff =
λΦ4

cl

4!
(
1− 3λt

16π2

) − 1

2
R

[
1

6
+

(
ξ − 1

6

)(
1− 3λt

16π2

)−1/3
]

(3.14)

which in flat spacetime reduces to equation (3.13).

Although we need to reject the nontrivial minimum as an artifact of our approximation, there
are physical theories for which the above described Coleman-Weinberg mechanism does result
in spontaneous symmetry breaking. One such example is massless QED (see [69] for further
details). However, two comments are in place. Firstly, including higher-loop corrections will
change the above sketched picture only that they might turn the maximum at the origin back
into a minimum, but they cannot turn it into an absolute minimum, and the asymmetric vac-
uum we have found remains a local minimum definitely lower than that at the origin. Secondly,
using the CW mechanism on massless QED, one encounters a phenomenon called dimensional
transmutation: initially there are 2 free parameters (e, λ), but after the CW procedure we have
traded the dimensionless λ for the dimensional 〈Φ〉. This is a general feature of spontaneous
symmetry breaking in fully massless field theories.

Being able to explain spontaneous symmetry breaking without introducing (artificial) mass
terms in the theory, lead many to wonder whether the Coleman-Weinberg mechanism could
be responsible for the spontaneous symmetry breaking in the Standard Model. In an influential
paper, Sher [70] provided the one-loop effective potential for the Standard Model, which meant
extending the mechanism to include non-Abelian gauge fields and include the Higgs mass term in
the Renormalization Group equations. He established a lower bound on the Higgs mass:

m2
H ≥ m2

CW ≈ (10.4± 0.3GeV)2[1− 0.009(mtop/25GeV)]

Note that if the top quark is heavier than about 83 GeV, which it is according to current preci-
sion measurements, the mass becomes negative. Furthermore, the large top mass gives a large
negative contribution to effective potential, destabilizing the potential. Therefore, the Coleman-
Weinberg symmetry breaking is ruled out for the Standard Model with small Higgs coupling λ.

For example Steele and Wang [72] investigated whether CW breaking is possible if we allow
a much larger Higgs self-coupling λ. Already a Higgs mass upper bound of 165 GeV from the
five-loop effective potential was found. The authors of [72] used Padé approximation methods
in combination with subsequent averaging to estimate the contributions of higher-loop contribu-
tions to the potential, thus finding a nine-loop Higgs mass upper bound of 141 GeV. Therefore,
they concluded that the CW mechanism with higher Higgs coupling (λ = 0.23) could still be
consistent with the ATLAS and CMS mH = 125 GeV Higgs boson. However, a larger Higgs
self-coupling gives rise to concerns regarding possible nearby Landau poles and the validity of
the one-loop approximation (or even perturbation theory in general). Besides enhancing of
HH → HH scattering, they found that the Higgs decays to gauge bosons are unaltered but
that the scattering processes W+W+ → HH,ZZ → HH are also enhanced, providing signals
to distinguish conventional and radiative electroweak symmetry breaking mechanisms.

The other remaining possibility for the Coleman-Weinberg mechanism to be responsible for the
spontaneous breakdown of the electroweak symmetry is by extending the Standard Model. This
could either be done by increasing the scalar content of the model by adding e.g. a scalar singlet,
or by extending the gauge symmetry with e.g. an extra U(1) group. In our discussion we have
encountered examples of both extensions, but our toy model falls in the first category.
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3.1.2 Gildener-Weinberg formalism

The Coleman-Weinberg mechanism of spontaneous symmetry breaking by radiative corrections
was extended to theories with arbitrary numbers of scalar fields by Eldad Gildener and Steven
Weinberg [73] (for a review see also [70]). In order to discuss spontaneous symmetry breaking in
that case, the potential has to be minimalized. However, even for the minimal singlet extension
of the Standard Model

V (H, ω) =
λ1

4
(H†H)2 +

λ2

2
ω2(H†H) +

λ3

4
ω4 (3.15)

the one-loop effective potential (in the MS scheme) is quite cumbersome43

V
(1)
eff =

1

64π2

[
3

4

(
λ1H†H+ λ2ω

2
)2

log

(
λ1H†H+ λ2ω

2

µ2

)
+ F 2

+ log

(
F 2

+

µ2

)
+ F 2

− log

(
F 2
−
µ2

)]

− 6

32π2
g4
t (H†H)2 log

(
H†H
µ2

)
− 1

32π2
(Tr Γω)4ω4 log

(
ω2

µ2

)
with

4F± = (3λ1 + λ2)H†H+ (3λ3 + λ2)ω2 ±
√

[(3λ1 − λ2)H†H− (3λ3 − λ2)ω2]
2

+ 16λ2
2ω

2H†H

and cannot be minimalized analytically [74]. Rather than using numerical models, Gildener and
Weinberg use a analytical approximation method based on the Renormalization Group Equa-
tions (RGEs). Their formalism amounts to finding the minimum of classical potential on a unit
sphere and then use the RGEs to set potential to zero at this point. They found that then there
should exist a number of heavy Higgs bosons, with masses comparable to the intermediate vector

bosons, plus one light Higgs boson, which they called a “scalon”, with mass of order αG
−1/2
F .

This scalon is considered the pseudo-Goldstone boson (PGB) associated with scale invariance
and therefore also called the dilaton.

We will demonstrate the main results from the Gildener-Weinberg (GW) formalism using a
renormalizable field theory as before with a real, color-neutral scalar multiplet Φ containing
all scalar degrees of freedom of a given theory. The general tree-level scalar potential with a
weak but otherwise arbitrary quartic coupling constant fijkl ∼ g4 (where g � 1 a typical gauge
coupling constant) is

V (0)(Φ) =
1

4!
fijklΦiΦjΦkΦl

We choose the renormalization scale ΛGW such that the potential develops a nontrivial mini-
mum, which lies on a ray through the origin of the multi-dimensional field space called the flat
direction. This imposes certain conditions on the scalar coupling at µ = ΛGW . To be specific,
we parametrize Φi = Niφ where Ni is a unit vector and φ is the distance from the origin of field
space. Let the minimum value of V 0 on the unit sphere occur for Ni = ni with

∑
i n

2
i = 1 which

normalizes the VEVs such that the sum of squares lies on a unit sphere. The Gildener-Weinberg

43This result is calculated for the Standard Model in the presence of right-chiral neutrino’s and a minimally
enlarged scalar sector with O(4) × O(1) invariant quartic interactions (4 for the complex doublet and 1 due to
the real dilaton singlet). The computation of the fermionic contribution is done using the approximation that
the quark sector is dominated by the top quark. For the leptonic sector all terms involving Γe have been ignored
and the neutrino-Higgs Yukawa coupling Γν is assumed much smaller then the neutrino-dilaton yukawa coupling
Γω . Also, the terms from SU(2)L × U(1)Y gauge fields are not included because the respective gauge couplings
are small, nor from SU(3)c gauge fields because it is a two-loop effect. Lastly, note that the kinetic terms of the
scalars all have the right sign as opposed to our model where the additional scalar reflects the coupling between
the Standard Model and Einstein Gravity and has a wrong sign kinetic term.
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condition then reads that at the renormalization scale ΛGW the potential along the tree level
flat direction V (Nφ) should vanish:

min
NiNi=1

V (Nφ)

∣∣∣∣
N=n

= min
NiNi=1

fijkl(ΛGW )NiNjNkNlφ
4

∣∣∣∣
N=n

= 0 (3.16)

This is simply the statement that the potential restricted to the single degree of freedom φ, is
of the form 1

4λφφ
4 with the corresponding coupling constant vanishing at ΛGW . Furthermore,

the GW condition (3.16) defines a hypersurface in the space of couplings. It is essential to study
the RG flow (i.e. the beta functions) to see whether this hypersurface is reached and, if there
are multiple, which one is reached first.

Next, requiring that the flat direction is a stationary line gives

∂V (0)(Φ)

∂Φi

∣∣∣∣
N=n

= 0 ⇒ fijklnjnknl = 0 (3.17)

Lastly we require that V (0)(Nφ) not only vanishes and is stationary at N = n; we are also
demanding that it is a minimum there. This means that the matrix

Pij =
∂2V (0)(N)

∂Ni∂Nj

∣∣∣∣
N=n

= 1
2fijklnknl (3.18)

needs to have either positive or zero eigenvalues. Actually, all eigenvalues of P are positive
definite, except for the zero eigenvalues associated with eigen vectors n and nΘ, where Θ is a
generator of a continuous symmetry that the theory possesses.

The GW conditions (3.16)-(3.18) ensure that the tree-level potential achieves a minimum along
the flat direction independent of the value φ. Including higher-order terms (loop corrections) in
the potential gives a small curvature to the potential along the flat direction, such that a partic-
ular value 〈φ〉 is singled out as the true minimum. We can establish this minimum by writing the
effective potential in a form similar to the one in Coleman-Weinberg case along the flat direction
if the scalar couplings in all other directions in field space are sufficiently large.

Veff(nφ) = φ4F (t, g) = A(g)φ4 +B(g)φ4t+ C(g)φ4t2,+ . . . , t = log

(
φ2

Λ2
GW

)
(3.19)

where perturbation theory requires |g| � 1 and |gt| � 1 and A,B, . . . are functions of the
dimensionless coupling constants g. We are only interested in the one-loop effective potential
and thus focus on A(g) and B(g)

A(g) =
1

64π2 〈φ〉4
∑
i

(−1)2sidiM
4
i (n 〈φ〉)

(
log

(
M2
i (n 〈φ〉)
〈φ〉2

)
− ci

)
(3.20a)

B(g) =
1

64π2 〈φ〉4
∑
i

(−1)2sidiM
4
i (n 〈φ〉) (3.20b)

where the index i in the above sums runs over all particles in the given theory with di the number
of the particle’s real degrees of freedom and si its spin. Then, Mi(n 〈φ〉) is the field-dependent
tree-level mass evaluated along the flat direction for each particle. Lastly, the constant ci de-
pends on the renormalization scheme, i.e. for the MS scheme we have ci = 5

6 for gauge bosons
and ci = 3

2 for scalars and fermions.

Writing the scalar, fermion and vector contributions out explicitly, gives

A =
1

64π2

∑
s

M4
s

〈φ〉4
log

(
M2
s

〈φ〉2

)
− 4

∑
f

ζf
m4
f

〈φ〉4
log

(
M2
f

〈φ〉2

)
+ 3

∑
v

M4
v

〈φ〉4
log

(
m2
v

〈φ〉2

) (3.21a)
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B =
1

64π2

∑
s

M4
s

〈φ〉4
− 4

∑
f

ζf
M4
f

〈φ〉4
+ 3

∑
v

M4
v

〈φ〉4

 (3.21b)

where ζf = 1, 1
2 for Dirac and Majorana (or Weyl) fermions, respectively. These sums are dom-

inated by largest tree-level masses in the theory and the dependence on the coupling constant
is hidden in Mi, but will be shown explicitly below.

Through a straightforward calculation we can show that the GW potential (3.19) has an ex-
tremum along the flat direction at

log

(
〈φ〉

ΛGW

)
= −1

4
− A

2B
(3.22)

Note that if A is of the same order as B, 〈φ〉 is of the same order as ΛGW and perturbation
theory remains valid. Plugging this back into the GW potential gives

V
(1)
eff (nφ) = Bφ4

(
log

(
φ2

〈φ〉2

)
− 1

2

)
(3.23)

and we can evaluate the potential at the minimum to be V
(1)
eff (〈φ〉) = − 1

2B 〈φ〉
4
. This is a lower

minimum than the one at the origin if and only if B is positive. From (3.21b) we know that this
is definitely the case if there are no fermions in the theory. In the presence of fermions B can
be positive as long as the Yukawa couplings (which determine the fermion mass) are not too large.

Assuming B > 0, the squared masses of the scalar bosons in zeroth order are given by the
eigenvalues of the matrix

(M2
s )ij =

∂2V (0)(Φ)

∂Φi∂Φj

∣∣∣∣
Φ=n〈φ〉

= Pij 〈φ〉2

As explained, this matrix has a set of positive-definite eigenvalues leading to masses of a set
of Higgs bosons (of the order of typical intermediate vector boson masses), plus a set of zero
eigenvalues with eigenvectors (Θn)j corresponding to massless Goldstone bosons (which in a
realistic model need to be cancelled by the BEH mechanism). There is also one zero eigenvalue
with eigenvector n which leads to one light pseudo-goldstone boson also with vanishing zeroth-
order mass. Assuming that the only symmetry that is broken by the higher order corrections
is the scale invariance corresponding to the dilaton, the Goldstone bosons remain massless, but
the dilaton develops a mass from the loop corrections in the flat direction.

M2
PGB = ninj

∂2V
(1)
eff (Φ)

∂Φi∂Φj

∣∣∣∣∣
n〈φ〉

=
d2V

(1)
eff (nφ)

dφ2

∣∣∣∣∣
〈φ〉

= 8B 〈φ〉2 (3.24)

where B is given by (3.21b) and the sum over the scalars is the sum over the heavy Higgs
bosons of the theory. Gildener and Weinberg then assumed a model based on the gauge group
SU(2) × U(1) (like the Standard Model, but with an arbitrary number of scalars) such that

〈φ〉2 = υ = 2−1/2G−1
F = 247 GeV. They furthermore assumed that the fermion masses were

much lighter than the intermediate vector bosons and proceed to find a lower bound by drop-
ping the Higgs masses and using the weak mixing angle, which at that time was estimated at
35◦ (compare to the current value θW ≈ 28.57◦ from Table A.1) such that MPGB ≥ 7 GeV.

With the discovery of the top quark quark which is heavier that the intermediate vector bosons
of the Standard Model, we should include it explicitly in an estimation of the PGB mass (3.24).
Denoting (3.21b) for the Standard Model as BSM, we have

BSM =
1

64π2υ4

[
−12M4

t + 3M4
Z + 6M4

W

]
=

3

64π2υ4

[
3g4

1 + 2g2
1g

2
2 + g4

2

16
− g4

t

]
(3.25)
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B(g) = BSM +
1

64π2υ4

∑
s

M4
s − 4

∑
f ′

ζf ′M
4
f ′ + 3

∑
v′

M4
v′

 = BSM +Badd (3.26)

where in the second line we plugged in the expressions for the gauge boson and Higgs masses
(1.29) and Mt = gtυ√

2
. The sum over f ′ runs over additional fermions (for example right-handed

neutrino’s) and the sum over v′ accounts for additional vector bosons (for example due to in-
cluding an additional U(1) gauge symmetry). We immediately see that BSM < 0 and as there
are no additional scalars, we verify our earlier conclusion that spontaneous symmetry breaking
of the electroweak symmetry in the Standard Model due to radiative corrections is not possible.

Equation (3.24) then becomes

M2
PGB = 8Badd 〈φ〉2 −K, where K = −8BSM 〈φ〉2 > 0 (3.27)

These formulae will help analyzing the possibility of Coleman-Weinberg breaking in extended
Standard Models. As with the Coleman-Weinberg mechanism of the previous section, the results
then also need to be checked for the presence of Landau poles or instabilities (negative coupling
constants) below the Planck scale, and to confirm the validity of the one-loop approximation.
Ideally this requires calculating the full resummed and renormalization group invariant effective
action, but the usually one is content with investigating the 1PI based beta functions.

3.2 CSMG toy model: an unphysical dilaton

Having now established the relevant theory, we continue to investigate the breaking of conformal
symmetry in our Conformal Standard Model with Gravity toy model (2.86) with an unphysical
dilaton. In Section 3.2.1, we first consider the general CSMG model in curved spacetime with
gµν the metric in the usual sense and χ is a dilaton multiplet. There we establish that we
have insufficient information to investigate symmetry breaking classically in the flat spacetime
scenario. Therefore we will quantize the theory in Section 3.2.2 and discuss the appearance
of the conformal anomaly and how to handle it. The last subsection is devoted to ’t Hooft’s
interpretation of our toy model.

3.2.1 Symmetry breaking in curved CSMG

Recall the non-kinetic part of the scalar sector of our conformal toy model:

SCSMG =

∫
d4x
√
g
[
. . .− 1

12 (χ2 − 2H†H)R− V (H, χ) + . . .
]

From (??) we know that the potential will contain quartic self-interactions of both the Higgs
field and the dilaton field, and possibly a mixing term. Therefore, we propose the following
purely quartic renormalizable potential involving one scalar multiplet additional to the complex
Higgs doublet [67]

SCSMG =

∫
d4x
√
g
[
. . .− 1

12 (χ2 − 2H†H)R− λ1(H†H)2 − λ2χ
2(H†H)− λ3χ

4 (3.28)

This situation is analogous to the Higgs sector of the Standard Model, but now H†H is propor-
tional to the scalar curvature R, which is neither the Higgs mass nor a constant. However, if
we confine ourselves to the case of positive quartic scalar self-coupling, λ1 > 0, and constant
curvature R = bd(d− 1), where d is the dimension and b a constant signalling the type of space:
when b = 0 the spacetime is Minkowski space, b < 0 the spacetime is de-Sitter space, and for
b > 0 the spacetime is anti-de-Sitter (AdS) space (these identification depend on the convention
of the metric signature).
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To investigate the possibility for spontaneous symmetry breaking in this model, we calculate the
Hessian which allows us to see whether the vacuum is a saddle point or not. We use the unitary
gauge for the Higgs doublet, but do not expand around the minimum, and perform a SU(2)
gauge transformation to remove the Goldstone bosons such that 1

2φ
2 = H†H and φ0 = υ. If the

dilaton is a singlet, it is not affected by this transformation. Denoting all non-kinetic terms of
the scalar sector as depicted in (3.28) with −V , we have:

∂V

∂φ
= −ξRφ+ 4λ1φ

3 + 2λ2χ
2φ,

∂2V

∂φ2
= −ξR+ 12λ1φ

2 + 2λ2χ
2

∂V

∂χ
= ξRχ+ 4λ3χ

3 + 2λ2χφ
2,

∂2V

∂χ2
= ξR− 12λ3χ

2 + 2λ2φ
2,

∂2V

∂χ∂φ
= 4λ2χφ

such that the Hessian at the origin becomes:

H =
∂2V

∂φ2

∂2V

∂χ2
−
(
∂2V

∂χ∂φ

)2
∣∣∣∣∣
φ,χ=0

= −ξ2R = −d(d− 2)2b

4(d− 1)


< 0 if b > 0,

> 0 if b < 0,

= 0 if b = 0

(3.29)

From this we see that the ground state is a saddle point for b > 0, a local minimum for b < 0
and that we don’t have enough information yet to handle the flat space case. Having a saddle
point at the origin, implies there is a nontrivial minimum elsewhere, i.e. in AdS spacetimes we
have spontaneous symmetry breaking à la Higgs. During electroweak symmetry breaking the
Higgs acquires a VEV thus creating a massive theory which is also non-conformal invariant. It
is possible that the dilaton acquires a VEV at the same time or before the Higgs does.

Classically, CSMG reduces in the broken phase to Einstein Gravity and the Standard Model
by gauge-fixing the dilaton to a constant ω0 for all spacetime.

1
2κ
−2 = M2

p = 1
12 (χ2

0 − υ2), υ �Mp ⇒ χ0 ≈
√

12Mp

Using this so-called Einstein gauge, the usual Standard Model including a conformally coupled
Higgs boson is retrieved. The Higgs potential ensures the subsequent spontaneous symmetry
breaking of the electroweak gauge symmetry.

In flat spacetime and at low energies (e.g. at the LHC) there is no discernible difference be-
tween our toy model and the usual Standard Model. In a cosmological context the difference
between the regular Standard Model versus the conformal invariant model does become appar-
ent as the conformally coupled H plays an important role in the cosmological evolution of the
Universe. For this it is important to understand that cosmological inflation is thought to arise
from symmetry breaking due to a scalar field called the inflaton. The inflaton could be iden-
tified with the dilaton meaning inflation arises from conformal (or scale) invariance breaking.
On the other hand, Bezrukov and Shaposhnikov have proposed a model in which the Higgs
boson assumes this role, meaning that inflation is a result of electroweak spontaneous symmetry
breaking, which would have observational difference compared to the first option [67]. However,
we refrain from investigating the curved spacetime scenario any further as quantum field theory
is far from established there.

3.2.2 Going quantum: anomalous breaking

In flat spacetime (R = 0), there is no term that can substitute the role of the tachyonic mass
term in the Higgs potential. Therefore, we want to use the techniques of the previous section,
i.e. the Gildener-Weinberg formalism, to see whether spontaneous symmetry breaking occurs
at the quantum level. However, there are two concerns. Firstly, the equivalence between the
Conformal Dilaton Gravity and Einstein’s General Relativity might not survive at the quantum
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level due to quantum fluctuations and in particular to the FP ghosts associated with the Weyl
symmetry. Secondly, a theory with an additional symmetry is only physical if we can extend
the classical theory to the quantum level, i.e. no anomalies should arise. However, we will see
that quantizing our Conformal Standard Model with Gravity toy model leads to an anomaly:
conformal symmetry is anomalously broken.

Simply stated, the theory at the classical level is conformal invariant (S(Ω2gµν ,Ω
∆̃Φ) = S(gµν ,Φ),

with ∆̃ the Weyl dimension of the field) and as such contains no dimensionfull parameters. When
quantizing this theory some mass scale is always introduced during the regularization of the inte-
grals, e.g. a cutoff scale (Pauli-Villars regularization) or a mass to preserve the proper canonical
dimensions (dimensional regularization). Then, the effective action of theory carries some trace
of this mass scale, thus breaking the conformal invariance44. This violation of classical scale
invariance by quantum corrections can be described as a current conservation or trace anomaly
and was first put forward by Capper and Duff [75]. They also stress that simply avoiding the
mass from entering the effective action via some Weyl invariant regularization prescription is not
enough as any and all identities used in the calculation must also hold in all dimensions (and
not e.g. only in 4 spacetime dimensions).

To see this, recall from Section 2.2, that scale invariance (i.e. global Weyl invariance in flat space-
time) requires the trace of the energy-momentum tensor to be a total divergence: Tµµ = ∂µD

µ,
where Dµ is the dilatation current and the EMT is given by equation (2.20)

T (0)
µν = − 2

√
g

δ(
√
gLmat)

δgµν

∣∣∣∣
gµν=ηµν

with Lmat given by the CSMG model S±CSMG excluding the dilatonic kinetic terms. Conformal in-
variance (i.e. local Weyl invariance in flat spacetime) requires the trace of the energy-momentum
tensor to be a double divergence: Tµµ = ∂µ∂νD

µν . In both cases, current conservation implies
tracelessness of the EMT.

On a curved space-time manifold this result is supplemented by terms quadratic in the Rie-
mann tensor

gαβTαβ = b(F + 2
3�R) + b′G+ cH

where

F = RµνρσR
µνρσ − 2RµνR

µν + 1
3R

2 n=4
= C2

G = RµνρσR
µνρσ − 4RµνR

µν +R2 n=4
= E2

H = F aµνF
µνa

b =
1

16π2

1

120

(
(1 +N0) + 6N1/2 + 12N1

)
b′ = − 1

16π2

1

360

(
(1 +N0) + 11N1/2 + 62N1

)
with C2 the Weyl tensor squared, E2 the Euler density squared andH is included to account for
possible gauge fields and is called the internal gauge anomaly.

The trace anomaly of free matter vanishes in the limit of flat space, but this is not true for
interacting fields: the trace is then proportional to the beta functions.

g → g + wβ(g)

L → wβ(g)L

}
⇒

∫
d4xwTµµ = − δΓ[Φcl, w]

δw

∣∣∣∣
w=0, gµν=ηµν

=

∫
d4xwβ(g)Lint

44Capper et al. [? ] show that the non-invariance of the gauge-fixing and ghost terms compensate each other
in the effective action, so that the breaking of Weyl invariance is indeed only due to the presence of the scale µ.
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where the functional derivative is calculated with respect to infinitesimal local Weyl transfor-
mations and we put gµν(x) = ηµν at the end (recall that varying with respect to the metric
and taking the flat spacetime limit do not commute!). So for nonvanishing β(g) the EMT is no
longer traceless, hence the name ‘trace anomaly’.

In contrast to the work of Capper and Duff, Codello et al. [49] show that local Weyl sym-
metry remains a valid symmetry at the quantum level as already anticipated by Englert et al.
[76]. The contradiction between these conclusions can be traced back to the role of the dilaton.
The theory considered in [75] contains only dimensionless parameters. On the other hand, the
authors of [49], start with an arbitrary theory and promote a mass parameter to the status
of a field (the dilaton) such that the dimensionfull parameters can be written as dimensionless
quantities.

Due to the presence of the dilaton there exist two quantization procedures, which can be un-
derstood as different functional measures. The standard measure breaks Weyl invariance, but
replacing the fixed regularization mass µ with the dilaton ω one obtains a measure that maintains
it. This second measure can be obtained from the standard by applying the Stückelberg trick
after quantization (though the two commute). Then we find that the Weyl invariant effective
action is the ordinary effective action to which a Wess-Zumino term has been added, with the
effect of canceling the Weyl anomaly. Furthermore, the trace of the energy-momentum tensor
derived from the two actions are the same. We refrain from entering into detail and confine
ourselves to saying that the authors of [49] continue by generalizing these ideas for interacting
theories with a dynamical metric and dilaton, allowing them to find Weyl-invariant effective
action with a nontrivial potential for the dilaton and

δΓ[Φcl, w]

δw

∣∣∣∣
w=0, gµν=ηµν

= 0

Thus they conclude that the conformally invariant scalar-tensor gravity coupled to various mat-
ter fields is free of the Weyl anomaly when the Weyl symmetry is spontaneously broken by
radiative corrections.

It is important to stress that the above result should not be interpreted as vanishing trace
of the energy-momentum tensor because the EMT is independent of the chosen measure. This
has lead to great confusion in the past and can be clarified by noting that the trace of the matter
stress tensor is distinct from the generator of Weyl transformations that includes the additional
dilaton field. Put differently, the dilaton is part of the gravitational sector and thus not part of
Lmat which is used in the definition of the EMT.

Whether or not the conformal anomaly is cancelled, boils down to your point of view. Most
particle physicists view that true conformal invariance is only achieved at a fixed point of the
theory (β = 0) because even if the theory is classically conformal invariant, this is spoiled in the
quantum theory by the introduction of the renormalization/cut-off scale. On the other hand,
according to most relativists Weyl transformations can be seen as relating different local choices
of units. Since the choice of units is arbitrary and cannot affect the physics, it follows that
essentially any physical theory can be formulated in a Weyl-invariant way. Codello et al. then
showed that it is possible to also have a quantum Weyl-invariant theory.

3.2.3 ’t Hooft’s interpretation

Lastly, we revisit the ’t Hooft’s interpretation of our CSMG toy model again. We will show
how scales are generated in the CSMG model with a ghostlike dilaton metascalar field. We
start by considering again our toy model (2.86) where the potential is specified as the quartic
self-coupling of the Higgs field. First consider the Higgs and Yukawa sector in the unitary gauge,
i.e. (1.26) from Section 1.2.2:
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SHiggs =

∫
d4x
√
g
[

1
2g
µνDµHDνH + 3

2λυ
2H2 + λυH3 + 1

4λH
4 +

1

12
H2R

]
(3.30)

SYukawa = −
∫

d4x
√
g
[
ēLMeeR + ūLMuuR + d̄LMddR

+ ēLHΓeeR + ūLHΓuuR + d̄LHΓddR + h.c.
]

(3.31)

where Mf = υ√
2
Γf a 3 × 3 Yukawa coupling matrix in the fermion generation indices that can

be converted to the diagonal mass matrix using (1.34). The mass of the Higgs boson is thus
M2
H = 3λυ2.

Next, we proceed with the splitting of the metric gµν(x) = ω2(x)ĝµν , i.e. all dimensionfull
parameters receive appropriate powers of the dilaton depending on their scaling behavior

Ssplit
CSMG =

∫
d4x
√
ĝ
[
Lg + Lkin

mat + Lmass
mat + Lint

mat

]
where the gravity sector is the EH action after splitting of the metric (see Appendix E for
details)

Sg =
1

2κ2

∫
d4x
√
ĝ
(
R̂ω2 + 6ĝµν∂µω∂νω

)
(3.32)

The kinetic part consists of the Yang-Mills sector (2.82), and the kinetic terms of the fermions
(2.78) as well as the Higgs field. The masses of the Higgs boson and fermions (no neutrino
mass term) are part of mass part of the action. The interactions then include dilaton-Higgs
interactions, the quartic self-interaction of both the Higgs boson and the dilaton (which comes
from the cosmological constant term), and the Yukawa sector.

Lkin
mat = − 1

4 ĝ
µρĝνσ

(
BµνBρσ +W i

µνW
i
ρσ −GaµνGaρσ

)
+
(
ν̄L ēL

)
i /̂D
(
νL
eL

)
+ ν̄Ri /̂DνR + ēRi /̂DeR

+
(
ūL d̄L

)
i /̂D
(
uL
dL

)
+ ūRi /̂DuR + d̄Ri /̂DdR + 1

2 ĝ
µνDµHDνH − 1

12H
2R (3.33)

Lmass
mat = − 1

2M
2
Hω

2H2 − ēLωMeeR − ūLωMuuR − d̄LωMddR + h.c. (3.34)

Lint
mat = − Λ

κ2
ω4 − λυωH3 − λ

4
H4 − ēLH(x)ΓeeR − ūLH(x)ΓuuR − d̄LH(x)ΓddR + h.c. (3.35)

where the covariant derivative D̂ (2.79) is now associated with ĝµν .(Recall that fermions get a
nontrivial spinor covariant derivative besides the gauge covariant derivative.)

The next step is to rescale the dilaton field: ω = κ√
6
ω̂ = κ̂ω̂. This is equivalent to picking

a mass parameter of the theory (κ), and promoting it to a function45. The gravity part of the
action Sg thus becomes the Conformal Dilaton Gravity action in 4 dimensions

SCDG =

∫
ddx

√
ĝ
(

1
12 R̂ω̂

2 + 1
2 ĝ
µν∂µω̂∂ν ω̂

)
(3.36)

Remarkably, the mass terms then turn into conformally invariant quartic coupling terms between
matter fields and the ω̂ field, because κ̂ has the dimension of an inverse mass and exactly cancels
the mass dimension of Mf and MH . The same applies for the scalar 3-field interaction where
the mass dimension of υ is cancelled, and for the cosmological constant term:

45Instead of ω̂(x) one often encounters also eσ(x), as used in i.e. [49].
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λυωH3 → λ3ω̂H
3 with λ3 =

κ√
6
λυ

κ−2Λω4 → λ4ω̂
4 with λ4 =

κ2

36
Λ

where λ3, λ4 dimensionless coupling constants. The full toy model in flat spacetime according
to ‘t Hooft thus becomes:

Ssplit
CSMG =

∫
d4x
√
ĝ
[
− 1

4 ĝ
µρĝνσ

(
BµνBρσ +W i

µνW
i
ρσ −GaµνGaρσ

)
Yang-Mills sector

+
(
ν̄L ēL

)
i /̂D
(
νL
eL

)
+ ν̄Ri /̂DνR + ēRi /̂DeR Lepton kinetic terms

+
(
ūL d̄L

)
i /̂D
(
uL
dL

)
+ ūRi /̂DuR + d̄Ri /̂DdR Quark kinetic terms

+ 1
12 R̂(ω̂2 −H2)− 1

2 ĝ
µν(∂µω̂∂ν ω̂ +DµHDνH) Scalar kinetic terms (3.37)

− ēLκ̂ω̂MeeR − ūLκ̂ω̂MuuR − d̄Lκ̂ω̂MddR + h.c. Fermion mass terms

− 1
2M

2
H κ̂ω̂

2H2 − λ4ω̂
4 − λ3ω̂H

3 − 1

4
λH4 − 1

12
R̂(H2 − ω̂2) Scalar mass and interactions

− ēLH(x)ΓeeR − ūLH(x)ΓuuR − d̄LH(x)ΓddR + h.c.
]

Yukawa interactions

So, even though the gauge symmetry is spontaneously broken because we used the unitary gauge
for the Higgs doublet, conformal symmetry is still a property of the theory! This way we can
turn any theory into a conformal invariant theory.

Subsequently, ‘t Hooft proposed to rotate the dilaton to the complex plane ω̃(x) = iη(x) to
deal with the fact that the dilaton field ω̃ has an overall sign opposite to that of ordinary scalar
fields φ. This then leads to unconventional factors of −1 and i in the mass and interaction
terms.The path integral over the dilaton field can now be done.

To be explicit, ’t Hooft and Veltman [37] (strongly based on the work of [37]) considered a
scalar particle in an external gravitational field, i.e. a Lagrangian which is invariant under
general coordinate transformations

L =
√
−g
(
− 1

2∂µϕg
µν∂νϕ+ 1

2ϕMϕ
)

where M is symmetric function of external fields and does not depend on the bosons ϕ. The
counterterm lagrangian that eliminates all one-loop divergencies is then of the form46

∆L = −
√
−g

8π2(4− d)

(
1

120

(
RµνR

µν − 1
3R

2
)

+ 1
4

(
M + 1

6R
)2)

Note that this is equivalent to saying that the lagrangian L generates an effective action whose
divergent part is of the form Γdiv = −

∫
ddx∆L.

Comparing this with the rotated CSMG action, we see that M = − d−2
4(d−1) R̂ → −

1
6 R̂ in 4 di-

mensions. The ω path integral (in 4 dimensions) thus leads to an effective action which includes
only one divergent term, namely:

Γdiv
CDG = C

∫
ddx
√
−g
(
RµνR

µν − 1
3R

2
)
, with C =

1

8π2(4− d)

1

120
(3.38)

46Note that we have a sign switch in the definition of the Ricci curvature as compared to [37].
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which we recognize as the Weyl Gravity Lagrangian (2.48).

Adding other matter fields and ignoring interactions between them, one finds that these fields
contribute to the divergence in the counterterm action (3.38) as well. In fact, all these divergences
take the same form and they each just add to the overall coefficient:

C(d) =
1

16π2(4− d)

1

120

(
(1 +N0) + 6N1/2 + 12N1 −

7

2
N3/2 +

424

3
N2

)
(3.39)

in which the 1 is the effect of the metascalar component ω of gravity, N0 is the number of real
scalar fields, N1/2 complex Dirac fields (or 1

2N1/2 Majorana spinors47), N1 real vector fields,
N3/2 gravitinos and N2 spin-2 fields. The last two terms are not considered as they refer to
non-renormalizable fields.

’t Hooft shows that adding non-conformal matter does not affect the formal conformal invariance
of the effective action nor do the non-conformal parts, such as the mass term, have any effect on
the divergence of C. Having established that, he is hesitant to follow the ‘standard’ procedure
where, in some cases, the divergencies cancel out exactly by introducing a local counter term of
the same form as (3.38), but with opposite sign,

−∆L = C(d)ω
2(d−4)
d−2

√
−ĝĈαβµνĈαβµν

The d dependence in ω cannot be removed as it would break conformal invariance. However, if
we keep it, the theory has an essential singularity at ω = 0, which is not normally present in
field theories. On the other hand, it is the only conformal invariant possible kinetic term for
the ĝµν field. Nonetheless, it violates unitarity. As mentioned earlier, unitarity can be restored
by modifying the hermiticity condition in favor of PT symmetry, which effectively means that
the integration contours need to be rotated in the complex plane such that ĝµν becomes anti-
Hermitian. Instead of pursuing this counterterm strategy further, ‘t Hooft leaves the question
on the functional integration of ĝµν at that.

Without entering into details, which are actually provided by Codello et al., ‘t Hooft does point
out that during the above regularization and renormalization procedure the conformal anomaly
must somehow be avoided. This is the case when the beta functions of the theory in the presence
of the dilaton equal zero. For a renormalizable theory there are just as many beta functions as
adjustable parameters, thus allowing to completely determine the theory. It is not immediately
clear how the conformal anomaly was handled, it would be better to follow the procedure by
Codello [49] such that we ensure Weyl invariance at the quantum level.

3.3 CSMG toy model: a physical dilaton

This section is devoted to explaining the Conformal Standard Model with Gravity toy model
where the dilaton is a physical scalar field ϕ. That means we cannot reproduce Einstein’s theory
of General Relativity in the broken phase, but only have a coupling to Gravity via the nonmini-
mal coupling term ϕ2R. As a simplification, we consider the theory in flat spacetime, though it
would be more rigorous to take full model on curved spacetime, quantize it and then take flat
spacetime limit.

As was already discussed in the case of an unphysical dilaton, our toy model is plagued by
the conformal anomaly: when we quantize the theory, we find terms that explicitly break con-
formal invariance. However, demanding that conformal symmetry is a fundamental symmetry
of Nature, there should be a scale at which the trace anomaly vanishes. The anomaly is given by

47This is misprinted in main body of the original paper [11] and thus in subsequent papers of ‘t Hooft, though
it was correctly stated in its appendix.
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the weighted sum of the beta functions and from the Standard Model we know that the hyper-
charge gauge coupling will increase with energy. We can either imbed the Standard Model in a
non-Abelian gauge group or assume that Gravity somehow cancels the hypercharge contribution
to the trace anomaly. Pursuing this second possibility, means there shouldn’t be any intermedi-
ate scale between the EW and Planck scale. Furthermore, the running couplings should exhibit
neither Landau poles nor instabilities over this whole range of energies.

Following Helmboldt et al. [77]48, we want to find the effective potential of our Conformal
Standard Model with Gravity toy model (2.86) with the following scalar sector (R = 0)

S+
CSMG =

∫
d4x
√
g
[
. . .+ 1

2g
µν∂µϕ∂νϕ+gµνDµHDνH−

(
λ1(H†H)2 + λ2ϕ

2(H†H) + λ3ϕ
4
)
+. . .

]
(3.40)

where the dilaton is a colorless scalar SU(3)×SU(2)×U(1) multiplet with a given hypercharge.
For now we will focus on the real singlet case, though some other possibilities are briefly dis-
cussed at the end. Choosing a suitable parametrization, we minimize the above potential using
the Gildener-Weinberg conditions for the scalar couplings. If radiative corrections dynamically
generate a mass scale, this obviously breaks the conformal symmetry spontaneously. Accord-
ingly, we expect the theory’s low-energy phase to contain one pseudo-Goldstone boson (PGB)
which obtains its finite mass only at loop level. Having analyzed the masses of the fields in the
minimum, we need to test the stability of the system and see whether the minimum is attainable
by considering the beta functions.

In the following we use the unitary gauge for the Higgs doublet. Then the potential be-
comes

VCSMG+ =
λ1

4
H4 +

λ2

2
ξ2H2 + λ3ξ

4 (3.41)

Following the Gildener-Weinberg formalism, we parametrize the scalar fields in fields space in
terms of the angle α:

H = φ sinα, ξ = φ cosα

where φ is the distance from the origin in field space and α ∈ (−π4 ,
π
2 ). The Gildener-Weinberg

mechanism tells us that a non-zero vacuum expectation value will be generated in the flat
direction in scalar field space α = ᾱ,

〈H〉 = υH = 〈φ〉 sin ᾱ, 〈ξ〉 = υξ = 〈φ〉 cos ᾱ

which we can find from the Gildener-Weinberg conditions (3.16) and (3.17):

0 =
∂V (0)

∂ sinα

∣∣∣∣
α=ᾱ,φ=〈φ〉

0 =
∂V (0)

∂ cosα

∣∣∣∣
α=ᾱ,φ=〈φ〉

V (0)(φ, α)

∣∣∣∣
α=ᾱ,φ=〈φ〉

= 0


⇒

4λ1λ3 − λ2
2 = 0

tan2 ᾱ = −λ2

λ1
> 0

(3.42)

where the coupling constants are evaluated at the Gildener-Weinberg scale ΛGW . Assuming
λ1(ΛGW ) > 0, we thus require λ2(ΛGW ) < 0.

Next we find the tree-level masses by expanding the potential (3.41) around the vacuum:

48We follow the procedure and ideas of [77] (similar to [78]), but after carefully recalculating some results we

found that [77] mistakenly used tan2 α = − λ2
2λ1

instead of tan2 α = −λ2
λ1

which we use in this thesis. Therefore

some formulae used here do not match with Helmboldt et al.
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PGB MHiggs υH/υξ
α > 0 = ρ̃ξ m+ < 1
α < 0 = HLHC mPGB > 1

Table 3.1 – The results of the Gildener-Weinberg analysis on the minimally extended Conformal
Standard Model.

VCSM =
λ1

4
(υH + ρH)4 +

λ2

2
(υξ + ρξ)

2(υH + ρH)2 + λ3(υξ + ρξ)
4

where fields ρi are the fluctuations around the vacua υi and (3.42) ensures that the terms linear
in fluctuations vanish. Then we find

Vquadratic =
1

2
(ρH ρξ)M

2

(
ρH
ρξ

)
where M2 =

(
3λ1υ

2
H + λ2υ

2
ξ 2λ2υhυξ

2λ2υhυξ 12λ3υ
2
ξ + λ2υ

2
H

)
(3.43)

At tree level and at the Gildener-Weinberg scale, the potential is minimized and a massive and
massless scalar field can be distinguished. To identify the Goldstone boson of broken conformal
invariance we use the orthogonal matrix U to diagonalize the mass matrix and define the mass
eigenstates: (

ρ̄H
ρ̄ξ

)
= U

(
ρH
ρξ

)
=

(
cosα − sinα
sinα cosα

)(
ρH
ρξ

)
where ρ̄H is to be identified with the Higgs boson found at the LHC HLHCas we want it to mainly
consist out of the Standard Model doublet field. The masses of ρ̄i are given by the eigenvalues
of the mass matrix:

2m2
± = Tr

(
M2
)
±
√

[Tr(M2)]2 − 4 det(M2) ⇒ m2
+ = 2(λ1 − λ2)υ2

H , m2
− = 0 (3.44)

where we used (3.42) to write λ3 = λ2
2/4λ1 and υ2

ξ = −λ1υ
2
H

λ2
. As expected, the mass matrix

is only diagonalized if tan(2α) = tan(2ᾱ) and the spectrum in the broken phase contains one
scalar degree of freedom with vanishing tree-level mass.

To see which state corresponds to the PGB, we distinguish between α > 0 and α < 0. Start-
ing with the former, we see that the diagonalized mass matrix is diag(m2

+,m
2
−), meaning that

ρ̄H = HLHC has mass m+ and ρ̄ξ is to be identified with the PGB for broken conformal invari-
ance. Also

tan(2α) > 0→ tan(2ᾱ) > 0→ tan2(ᾱ) < 1→ υH < υξ

For α < 0 the opposite is true and the pseudo-Goldstone boson corresponds to the Higgs boson
found at the LHC. These results are summarized in Table 3.1.

The next step is take the radiative corrections into account, allowing us to establish the PGB
mass at 1-loop. In the flat direction the 1-loop effective potential is given by (3.19)

V
(1)
eff (nφ) = φ4F (t, g) = A(g)φ4 +B(g)φ4 log

(
φ2

Λ2
GW

)
where the coefficients are given by equation (3.20). This potential develops a nontrivial minimum
when B > 0 which we analyze in terms of the SM contributions and additional scalar contribu-
tions as in (3.26). If ρ̄ξ was the PGB, then its mass would be determined by BSM and the Higgs
mass. However, mHiggs is not large enough to overcome the large negative contribution of the
top quark and we would still end up with B < 0. Therefore, α > 0 is ruled out. Accordingly,
we should identify the Higgs boson as the PGB of broken conformal invariance, which as such
has vanishing tree-level mass at ΛGW and instead has the 1-loop mass (3.27)
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M2
Higgs = 8Badd 〈φ〉2 −K(ΛGW ), where K(ΛGW ) = −8BSM(ΛGW ) 〈φ〉2 > 0

The theory’s spectrum contains the additional scalar with mass m+:

Badd =
m4

+

64π2 〈φ〉4
=

(λ1(ΛGW )− λ2(ΛGW ))
2

16π2
sin4 ᾱ

Using the above and that we can generically write the electroweak VEV as 〈φ〉 = υ = υH + cυξ
with c ≤ 0, we find

(λ1(ΛGW )− λ2(ΛGW ))
2

sin2 ᾱ =
2π2(M2

Higgs +K)

υ2
H

>
2π2(M2

Higgs +K)

υ2
≡ r2 (3.45)

Recalling that λ2 < 0, we solve for λ1

0 < λ1(λ2) <
λ2

2 − r2

λ2
⇒ |λ2| < r (3.46)

Furthermore, from (3.42) we know that negative scalar mixing angle α implies λ1 ≤ −λ2. This
in turn means |λ2| > r√

2
. We can now make a best-case approximation for the constraint on the

scalar mixing λ2 if we ignore the Standard Model contributions to the Higgs mass as given by
K(ΛGW ) and plug in the numerical values for r:

3.6 ≤ |λ2| ≤ 5.1 (3.47)

This is a best-case approximation because K is positive and the exact value for λ2(ΛGW ) will
thus always be larger than the above constraints.

To complete the analysis we can use the Callan-Symanzik equation on the effective potential
and determine the beta functions. Solving the coupled set of differential equation would allow
to check for the emergence of Landau poles below the Planck scale. One can then furthermore
check whether there is a scale at which the Gildener-Weinberg conditions are met. Because of
the limited relevance to our toy model, we refrain from carrying put this analysis and only give
the conclusions.

The authors in [77] concluded that Landau pole is found below the Planck scale for the real
singlet case. Carrying out the same analysis for other multiplets49, they finally conclude that for
the theory to develop no Landau poles up till the Planck scale the conformal invariant Standard
Model needs to be extended with 2 real gauge singlet fields of which one needs to develop a
nonzero VEV. For the addition of only one multiplet they found in each instance that the scalar
mixing is too large, making the RG running highly unstable as gauge boson contributions cannot
decelerate the running enough. With two additional fields, the authors speculate that one could
be a viable Dark Matter candidate.

Before continuing, there is one important remark left to be made regarding the validity of the

49Experimental evidence for the scalar sector of the Standard Model is much weaker than that for the other
sectors. One of the experimental parameters for the scalar sector is ρ, which is a measure of the ratio of the
neutral current to charged current strength in the effective low-energy Lagrangian. In the standard GWS model,
at tree level ρ = 1. If one introduces N scalar multiplets Φi with vacuum expectation values σi which have isospin
Ii and hypercharges Yi then ρ for a general (charge-conserving) Higgs structure becomes [70]

ρ =

∑N
i=1[Ii(Ii + 1)− 1

4
Y 2
i ]σi∑N

i=1
1
2
Y 2
i σi

Experimentally, we have ρ = 1.00037±0.00023 [17]. The simplest method of satisfying the constraint is to choose
only representations such that I(I + 1) = 3

4
Y 2: SU(2)×U(1) singlets obey this restriction, as do SU(2) doublets

with Y = ±1. Although other representations exist, they are very large and will not be considered here. We
furthermore restrict ourselves to one additional multiplet to the Standard Model.
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results of Helmboldt et al. [77]. We know from Section 3.1.2 that this is the expected one-loop
form using MS regularization. However, in the previous section we already pointed out that reg-
ularization breaks the conformal invariance on a quantum level. Even under the assumption that
the anomaly is cancelled, it not necessarily mean that we retrieve the above effective potential.
Using a regularization prescription that is conformal invariant Ghilencea [79] found a (finite)
correction term to the one-loop scalar potential for φ and ϕ, beyond the Coleman-Weinberg
term. This would thus change the above picture quantitatively, but does not invalidate the
procedure itself.

3.4 Conclusion

The difference between the particle physicist’s and relativist’s approaches lies in the way the ad-
ditional scalar is introduced and how scales are generated. We started our discussion regarding
a conformal toy model with pointing out that no Higgs mass term is allowed and that a scalar
field requires a nonminimal extension in order for it to be conformally invariant. We also showed
that a conformal model actually requires an additional scalar besides the Higgs doublet. Due to
the gauge symmetry of Lmat = LSM, the only allowed Yukawa couplings of the dilaton are then
to the right handed neutrino’s for which it can become a source of mass, or potential dark matter
candidates. Because it cannot interact substantially with visible matter, the dilaton itself could
potentially be a dark matter particle candidate, though we will refrain from investigating this
line of thought further.

On the other hand, according to ’t Hooft’s the additional scalar field follows from the un-
conventional splitting of the metric. If we gauge fix the dilaton field we retrieve the known
theories and the wrong sign of the kinetic term for the dilaton does not spoil the unitarity of
theory as feared. However, some authors find this a questionable approach as we not only gauge
fix the field, but rob the scalar field of all its dynamics: the wrong sign problem is only solved
in the conformally broken phase. Furthermore, by setting the value of the scalar field equal
to a constant of dimension proportional to mass, any hope for renormalizability of the theory
is lost. For example Ohanian [65] therefore argues for an approach where an additional Weyl
gauge vector is introduced to deal with the wrong sign and provide an explicit dynamic mecha-
nism for conformal symmetry breaking. This mechanism is similar to the BEH mechanism, but
should also explain the transition from a Weyl to Riemannian geometry. Moreover, in Ohanian’s
model the dilaton is complexified which means introducing 2 additional real scalar fields into
the Standard Model as opposed to just one. The latter was also required for Renormalization
group stability, analyzed by Helmboldt et al. [77].

Yet, Codello et al. started with promoting a mass parameter to a field with no intent that
it should be a dynamical field. So gauge-fixing doesn’t seem so objectionable in that respect.
Furthermore, non-renormalizability is not a problem in the framework of [49]. ‘t Hooft goes even
one step further by saying that rotating the dilaton to the complex plane results in a renormal-
izable theory. Its β functions would then allow us to completely fix the adjustable parameters
of the theory and thus address the problem of arbitrariness.



Chapter 4

Strengths, challenges and
outlook

We started with refreshing our knowledge of the Standard Model. Having dealt with the problem
of infinities, in the end we still had to point out several unresolved issues, specifically the uni-
fication with gravity. As a way towards a Theory of Everything, we proposed to use conformal
invariance as additional symmetry. Let us briefly point out some of the arguments:

1. Conformal symmetry is a highly restraining symmetry allowing us to control for example
the number of counterterms that should be included in a quantum theory.

2. Besides the tachyonic mass term, the Standard Model is already conformally invariant.

3. The classical conformal action does not allow a cosmological constant though it will emerge
after gauge-fixing the theory.

4. The dilaton, the Goldstone boson of spontaneously broken conformal invariance, can couple
to right-handed neutrino’s and as such may provide a source for neutrino masses.

5. Similar to the Higgs giving mass to the elementary particles, the dilaton gives mass to the
Higgs boson via e.g. the Coleman-Weinberg (and Gildener-Weinberg) procedure.

6. Astronomical and accelerator evidence

a. ‘Another striking hint of scale symmetry occurs on cosmic scales: the (nearly) scale
invariant spectrum of primordial fluctuations, as measured by WMAP and the Planck
satellite.’ [67].

b. ‘Another motivation of the present study comes from a recent important observation
that the Standard Model seems to be valid all the way up to the Planck scale and
there is no new physics between the electroweak scale and the Planck one.’ [57].

c. In the particular case that the Coleman-Weinberg mechanism is indeed responsible for
the breaking of conformal invariance: ‘It has been shown that models with extended
Higgs sectors can avoid washing out any previous baryon number, as well as generate a
sufficient baryon asymmetry. In fact, generation of a baryon asymmetry also requires
a first order electroweak phase transition, and CW models always have a first order
transition. This leads to greater incentive for considering CW symmetry breaking in
extended Higgs models.’ [70].

If one requires an exact Weyl symmetry to be realized in gravitational theories at the classical
level, only two candidate theories are viable though flawed. The first theory we constructed was
based on the work of Mannheim and is called Conformal Weyl Gravity, for which the action is
described in terms of the square term of the conformal Weyl tensor. Despite the advantage of
renormalizability, the fact that it is not unitary swayed us to consider the other plausible model
that is also conformally invariant, namely Conformal Dilaton Gravity.
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In this theory, a (ghost-like) scalar field is introduced in such a way that it couples to the
scalar curvature in a conformally invariant manner. Even if this theory is a unitary theory
owing to the presence of only second-order derivative terms, it is nonrenormalizable. With the
great progress made in working with effective field theories, we do choose to develop a toy model
in this sense.

In developing our toy model we made various assumptions, each of which needs to be validated.
We have assumed (in no particular order)

1. 4 spacetime dimensions. Maybe there are more? Or should we work in less dimensions to
deal with the encountered problems?

2. flat spacetime (though not always explicitly). Maybe we should consider curved spacetime?

3. the minimal number of fermion generations. Maybe there are more?

4. the Higgs mechanism is responsible for breaking the electroweak sector and subsequent gen-
eration of mass. We assumed the breaking of conformal invariance leads to the electroweak
breaking.

5. a torsionfree connection. Maybe it should be included as well?

6. a conformal toy model that required one additional scalar. This is a real SUc(3)×SUL(2)×
UY (1) singlet. Maybe we need more scalars and/or maybe they are in a doublet represen-
tation? Or a whole other representation in case the Standard Model is embedded in e.g.
SU(5) as suggested in various GUT models?

7. our theory should be unitary. However, maybe PT symmetry is sufficient as Mannheim
suggests, making Conformal Weyl Gravity more appealing yet at the same time opening
up a whole can of possibilities.

8. our theory should be locally Weyl invariant (i.e. conformally invariant) such that Einstein
Gravity and the Standard Model emerge as effective theories. On the other hand, maybe
global Weyl invariance (scale invariance) or some other global symmetry is sufficient? Or
Einstein Gravity in the form of the EInstein-Hilbert action need not necessarily emerge as
an effective field theory?

9. our action should contain only local terms.

A wealth of different theories have emerged in the literature, each slightly different from the
other in one or more of the above aspects. Because the terms ‘conformal’ and ‘scale’ symmetry
are often abused, especially a lot has been developed in the field of global Weyl invariance.

Even though we are not able to fundamentally support each of the above assumptions, before
anything else we should check whether our toy model could reproduce the known phenomenol-
ogy. More importantly, we had to explain how our toy model could still account for scales. In
that discussion we distinguished between a physical and an unphysical dilaton field.

According to the first the conformal anomaly arises upon quantization of a conformal invari-
ant model. We demonstrated that under the bold assumption that there exist a scale above
which the conformal anomaly is cancelled, Coleman-Weinberg radiative symmetry breaking will
bring back a dimensionfull parameter in our theory which ensures subsequent electroweak sym-
metry breaking [77]. For such an analysis to be carried out for our full Conformal Standard
Model with Gravity toy model we need to take the nonminimal coupling to the Ricci curvature
into account and further investigate whether the used effective action indeed preserves local Weyl
invariance (i.e. research the topic of scale-invariant regularization schemes).

The theory with an unphysical dilaton resulted from a more geometrical approach, namely
Weyl gauging as explained by Codello et al. [49]. Because in that framework a conformal trans-
formation switches units, and the physics should not depend on the choice of unit, the conformal
anomaly should thus not arise in this geometric setting. Using one mass parameter to define the
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dilaton, all dimensionfull parameters can be expressed in terms of the dilaton. Codello et al.
showed that there is a renormalization method that ensures the conformal invariance is trans-
ferred to the quantum theory. Scales exist after gauge fixing the dilaton back to a constant.

Having established that conformal invariance can be transferred to a quantum theory and scales
can be generated, there is still an abundance of issues and questions that need to be addressed,
besides assessing the validity of the above assumptions. To name a few:

1. Besides the conformal anomaly, are there any other anomalies in our toy model?

2. Is our model truly conformally invariant? According to [91] theories whose action is Weyl
gauge invariant but which are associated with Riemannian spacetime manifolds cannot be
actually conformal invariant since the affine properties of the Riemann space are modified
by the conformal transformations.

3. How do we properly extend the framework of quantum field theory to curved spacetime
and nonzero temperature? Theories hoping to describe the very early universe ought to be
treated as quantum field theories in curved spacetime with finite temperature. Unfortu-
nately, at present we do not have a clear prescription how to combine quantum field theory
at non-zero temperature and quantum field theory in curved spacetime. In the separate
fields there also some problems. For example because generic curved spacetimes are not
time-translation invariant, no meaningful notion of a Hamilton operator or ‘energy’ exists,
and thus we have no means to select or define a vacuum state. Actually, the whole concept
of what a particle is, is rather meaningless.

4. In our discussion we have ignored surface terms. However, from the derivation of the
Einstein equation from the Einstein-Hilbert tensor that is not always trivial nor correct.

Finally, we also would like to point to [92] for a nice review on the foundational questions any
theory of Quantum Gravity should be able to address.
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Appendix A

Standard Model parameters

The Standard Model including including neutrino masses and mixing angles depends on 25
independent parameters. Namely, for example, 6 lepton masses, 6 quark masses, the coupling
constants g1 = g′, g2 = g, gs, 3 quark flavour mixing angles and 1 complex CP violating phase, 3
neutrino mixing angles and 1 CP violating phase (assuming neutrino’s are Dirac), the Higgs mass
MH and quartic coupling constant λ. Note that this set is not unique as we could have equally
well used e.g. the W±, Z gauge boson masses, the Weinberg mixing angle and the Higgs VEV υ
instead of g1, g2,MH and λ because they are related to each other (see Section 1.2.2).

MH =
√

2µ2, υ =

√
µ2

λ
, MW =

g1υ

2
, tan(θW ) =

g1

g2
, MZ =

MW

cos(θW )

The value of υ is fixed by the Fermi coupling GF = 1.1663787(6) · 10−5 GeV−2 according to
υ = (

√
2GF )−1/2 which is determined from muon decay measurements.

The values below are taken rom the Particle Data Group [17]. The figures in parentheses after the
values give the 1-standard-deviation uncertainties in the last digits, i.e.mH = 125.09(24)GeV/c2 =
25.09 ± 0.24GeV/c2. For the top quark mass 173.21(51)(71)GeV = 173.21 ± 0.51 ± 0.71GeV.
However, before giving the data, we need to make two comments.

Firstly, the mass of the neutrino’s is an ongoing subject of research. The mass eigenstates
νi, i = 1, 2, 3 are distinct from the flavour eigenstates νM , M = e, µ, τ . Currently we are only
able to give the mass differences

∆m2
ij = m2

i −m2
j

where we know that m2 > m1. The normal convention is m3 > m1,2 as opposed to the inverted
convention m3 < m1,2. Here we give the results for the former. For the mxing angle we will use
the same convention as Section 1.2.3: sij = sin θij .

The second comment concerns the quark mixing. Usually, the Cabibbo-Kobayashi-Maskawa
(CKM) matrix is given in terms of the Wolfenstein parametrization. Rather than specefying the
mixing angles and CP-violating phase, λ̃, η̄, A, ρ̄ are used50:

s12 = λ̃, s23 = Aλ̃2, s13e
iδ = Aλ̃3(ρ+ iη)

These defintions ensures that ρ̄+ iη̄ is phase convention independent.

50Actually, the PDG uses λ but to avoid confusion with the Higgs quartic coupling, we use λ̃ for the CKM
parameter.
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Parameters of the Standard Model

Symbol Description Renormalization point Value

me Electron mass 0.510 998 9461(31) MeV/c2

mµ Muon mass 105.658 3745(24) MeV/c2

mτ Tau mass 1776.86(12) MeV/c2

∆m2
21 Mass difference between ν1 and ν2 7.53(18) ·10−5eV2∣∣∆m2
32

∣∣ Mass difference between ν2 and ν3 2.44(6) ·10−3eV2

mu Up quark mass µMS = 2 GeV 2.2+0.6
−0.4 MeV/c2

md Down quark mass µMS = 2 GeV 4.7+0.5
−0.4 MeV/c2

ms Strange quark mass µMS = 2 GeV 96+8
−4 MeV

mc Charm quark mass µMS = mc 1.27(3) GeV

mb Bottom quark mass µMS = mb 4.18+0.04
−0.03 GeV

mt Top quark mass 173.21(51)(71) GeV

(s12)2 PMNS 12-mixing angle 0.304(14)

(s23)2 PMNS 23-mixing angle 0.51(5)

(s13)2 PMNS 13-mixing angle 0.0219(12)

δν PMNS CP-violating phase 1.35π

λ̃ CKM parameter 0.22496(48)

A CKM parameter 0.823(13)

ρ̄ CKM parameter 0.141(19)

η̄ CKM parameter 0.349(12)

αs =
g2
s

4π Strong coupling constant µMS = mZ 0.1182(12)

mH Higgs mass 125.09(24) GeV/c2

mW W± mass 80.385(15) GeV/c2

mZ Z0 mass 91.1876(21) GeV/c2

mγ Photon mass < 1 · 10−18 eV

sin2(θW ) Weak mixing angle µMS = mZ 0.231 29(5)

Table A.1 – The table contains the experimental values of the parameters that determine the
Standard Model of particle physics retrieved from the Particle Data Group [17].



Appendix B

Derivation of the Einstein
equations

In this appendix we will present the derivation of the Einstein equation via the principle of least
action. In order to do that we make use of the following results from [80, Chapter 16]:

δgµν = −gαµgβνδgαβ (B.1a)

δ
√
−g = 1

2

√
−ggµνδgµν (B.1b)

δΓασν = 1
2g
αβ [(δgβσ);ν + (δgβν);σ − (δgσν);β ] (B.1c)

δRανλσ = (δΓασν);λ − (δΓαλν);σ (B.1d)

δRµνλσ = δgµαR
α
νλσ + gµαδR

α
νλσ (B.1e)

δRµν = δRαµαν = (δΓαµν);α − (δΓααν);µ

= 1
2g
στ ((δgµν);σ;τ + (δgστ );µ;ν − (δgµσ);ν;τ − (δgντ );µ;σ) (B.1f)

δR = Rµνδg
µν + gµνδRµν = gµνδR

µν −Rµνδgµν
= gµνgστ ((δgµν);σ;τ − (δgµσ);ν;τ )−Rµνδgµν (B.1g)

Start by recalling the Einstein-Hilbert action (2.17)

SEH =
1

2κ2

∫
ddx
√
g (R− 2Λ) , with κ2 = 8πGN

Writing R = gµνRµν , we vary the action to get

δSEH =
1

2κ2

∫
ddx [δ

√
g (gµνRµν − 2Λ) +

√
g(δgµν)Rµν +

√
ggµνδRµν ]

=
1

2κ2

∫
ddx

[
− 1

2

√
−ggµνδgµν (gµνRµν − 2Λ) +

√
gRµνδg

µν
]

+
1

2κ2

∫
ddx
√
ggµνδRµν

=

√
g

2κ2

∫
ddx

[
− 1

2gµνR+ gµνΛ +Rµν
]
δgµν +

1

2κ2

∫
ddx
√
ggµνδRµν

(B.2)

In the first term we already recognize the vacuum Einstein equation:

Gµν = − 1
2gµνR+ gµνΛ +Rµν = 0

Now we just need to show that the second term in (B.2) is a boundary term and indeed vanishes.
Using (D.6f), we write
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gµνδRµν = gµν
[
(δΓλµν);λ − (δΓλλµ);ν

]
= gµν

[
δΓλµν − δλν δΓ

β
βµ

]
;λ

=
[
gµνδΓλµν − gλµδΓννµ

]
;λ

= ∇λ({})δwλ

where in the second line we used the fact that we are using the Levi-Cevita connection, meaning
that the nonmetricity gµν;α = 0 vanishes. To proof that this is indeed a divergence, we follow
[16] and start by recalling the Christoffel symbols (2.12), which, upon contracting λ and µ,
become

{µµν} = 1
2g
µρ (∂µgνρ + ∂νgρµ − ∂ρgµν)

= 1
2g
µρ∂νgρµ + 1

2g
µρ(∂µgρν − ∂ρgµν)

= 1
2g
µρ∂νgρµ

= 1
2 Tr

(
gλρ∂νgρµ

)
=

1
√
g
∂ν
√
g

(B.3)

where we used Tr[M−1∂νM ] = ∂ν ln detM in going from the almost last to the last line. With
the above result, we can write the divergence of a vector as

∇µXµ = ∂µX
µ + ΓµµνX

ν =
1
√
g
∂ν(
√
gXµ)

and thus

√
ggµνδRµν = ∇λ

(
gµνδΓλνµ − gµλδΓννµ

)
= ∇λ

(
(gµλgνσ − gµνgλσ)∇σδgµν

)
= ∂λ(

√
gδwλ)

where we plugged in the variation for the Chrstoffel symbols (D.6c) in line 2. Now, equation
(B.2) becomes

δSEH =

√
g

2κ2

∫
ddxGµνδg

µν +
1

2κ2

∫
ddx∂α(

√
gδwα) =

√
g

2κ2

∫
ddxGµνδg

µν +BEH

However, the boundary term does not drop out when integrated over all space because, as we
will show, it depends both on the variation of the metric on the boundary and on its normal
derivative, and it is not consistent to require both to be zero (i.e. to impose both Dirichlet and
Neumann boundary conditions).

Performing the integral over a space-time region V bounded by the hypersurface ∂V = Σ, the
boundary terms becomes, upon using thethe Gauss integral formula

BEH =
1

2κ2

∫
V

ddx
√
g∇λδwλ) = ε

∮
Σ

dny
√
hNλδw

λ

where Nα is the normal vector to the boundary Σ in V, y the coordinates on the boundary, and
hµν is the induced metric on the boundary: gµν = hµν + εNµNν with ε = NµN

µ = ±1 (+ when
the boundary is timelike and - when the boundary is spacelike). Then,

Nλδw
λ = Nλ(gµλgνσ − gµνgλσ)∇σδgµν = (Nµhνσ −Nσhµν)∇σδgµν

The first term is zero under Dirichlet boundary conditions δgµν
∣∣
Σ

= 0 on the metric at the
boundary Σ. However, the second term is normal derivative and nonzero at the boundary:

Nλδw
λ
∣∣∣
Σ

= −Nσhµν∇σδgµν
∣∣∣
Σ

= −hµνNσ∂σδgµν

∣∣∣
Σ
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Thus

BEH =
1

2κ2
ε

∮
Σ

dny
√
h(−hµνNσ∂σδgµν)

Therefore, we need to look for an action SGravity = SEH + SBoundary with SBoundary a surface
term such that

BEH + δSBoundary

∣∣∣
δg=0

= 0

which suggest we could add δSBoundary = −BEH to ensure proper behaviour of the Einstein-
Hilbert action under Dirichlet boundary conditions. However, the above condition does not fix
the surface term uniquely because BEH +δSBoundary may differ from zero away from Σ. We want
to make use of this freedom becausetThe current form is not very attractive, in particular as it
is non-covariant not only with respect to bulk coordinate transformations but also with respect
to boundary coordinate transformations. Accordingly, J. W. York, and by G. Gibbons and S.
Hawking, constructed the currently preferred, geometrically transparent, boundary term

SGHY =
1

2κ2
2ε

∮
Σ

dny
√
hK, with K = ∇αNα

K is the trace of the extrinsic curvature of the boundary Σ. We determine its variation to show
that it cancels BEH:

K = ∇αNα = hαβ∇αNβ = hαβ(∂αNβ − ΓσαβNσ)

δK = − 1
2h

αβgσρNσ [(δgρβ);α + (δgαρ);β − (δgαβ);ρ]

= + 1
2h

αβNρ∂ρδgαβ

where we have use the fact that the tangential derivatives of δgαβ vanish on Σ. We immediately
see that the variation of the Gibbs-Hawking-York boundary term indeed cancels the boundary
term which we get from the variation of the Einstein-Hilbert action (BEH). Thus, for Dirich-
let boundary conditions the variation of SGravity gives the gravitational part of the Einstein
equations:

δSGravity

δgµν
=
δSEH

δgµν
+
δSGHY

δgµν
=

√
g

2κ2

[
− 1

2g
µνR+ gµνΛ +Rµν

]
= 0

Including matter to the above gives

δSGR

δgµν
=
δSEH

δgµν
+
δSGHY

δgµν
+
δSmat

δgµν
= 0

But we defined the Hilbert energy-momentum tensor (2.20) exactly as

Tµν ≡ − 2
√
g

δ(
√
gLmat)

δgµν

meaning we indeed retrieve the Einstein equations (2.19):

Rµν − 1
2g
µνR+ gµνΛ = 8πGNTµν



Appendix C

Conformal invariance of Weyl
tensor

Here we show explicitly the invariance of the Weyl tensor (2.43):

Cµνρσ = Rµνρσ + 2
(n−2)(n−1)g

µ
[ρgσ]νR+ 2

n−2

(
gµ[σRρ]ν + gν[ρRσ]

µ
)

under the conformal transformation (2.28)

g̃µν = Ω2(x)gµν g̃µν = Ω−2(x)gµν

where the second equation follows from the orthogonality of the metric. For completeness we
note that the determinant transforms as

g̃ = det{g̃µν} = εµ...σ g̃0µ . . . g̃nσ = εµ...σΩ2(x)g0µ . . .Ω
2(x)gnσ = Ω2n(x)g

and that g̃µν is used to raise and lower tilded expressions, whereas gµν is used for the regular
expressions, e.g.

g̃νσR̃
µ
ρ = g̃νσ g̃

µλR̃λρ = gνσg
µλR̃λρ

The following derivation is based on [15, Appendix D] and uses the finite expressions for the
behaviour of tensors under a conformal transformation. Equivalently we could also have chosen
to do this derivation in terms of infinitesimal expressions. Note that the explicit x dependence
is dropped to minimize cluttering of the notation.

First we look at the metric-compatible and torsion-free Levi-Cevita connection

Γµνλ = {µνλ} = 1
2g
µρ (∂νgλρ + ∂λgνρ − ∂ρgλν)

which transforms under a conformal transformation according to

Γ̃µνλ = 1
2 g̃
µρ (∂ν g̃λρ + ∂λg̃νρ − ∂ρg̃λν)

= 1
2g
µρ (∂νgλρ + ∂λgνρ − ∂ρgλν) + Ω−1gµρ (gλρ∂νΩ + gνρ∂λΩ− gλν∂ρΩ)

= Γµνλ + 2δµ(ν∂λ) ln Ω− gνλgµσ∂σ ln Ω

(C.1)

where we denote the last two terms of the last line with Hµ
νλ. The covariant derivative with

respect to the affine connection thus transforms as

∇̃νXλ = ∇νXλ −Hµ
νλXµ (C.2)
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The Riemann curvature tensor (2.6) can then be written as51

R̃µνρσ = ∂ρΓ̃
µ
νσ − ∂σΓ̃µνρ + Γ̃λνσΓ̃µλρ − Γ̃λνρΓ̃

µ
λσ

= Rµνρσ + ∂ρH
µ
σν − ∂σHµ

ρν +Hλ
νσH

µ
λρ −H

λ
νρH

µ
λσ

= Rµνρσ + 2δµ[σ∂ρ]∂ν ln Ω− 2gν[σ∂ρ]g
µλ∂λ ln Ω + 2(∂[σ ln Ω)δµρ]∂ν ln Ω

− 2(∂[σ ln Ω)gρ]νg
µλ∂λ ln Ω− 2gν[σδ

µ
ρ]g

λκ(∂λ ln Ω)∂κ ln Ω

= Rµνρσ + 2δµ[σAρ]ν − 2gµλgν[σAρ]λ + 2(δµ[ρBσ]ν − 2gµλgν[ρBσ]λ − 2gν[σδ
µ
ρ]g

λκBλκ
(C.3)

It is understood that this is the curvature tensor is with respect to the Levi-Cevita connection
(the explicit reference to that fact is dropped). Furthermore,

Aµν = ∂µ∂ν ln Ω, Bµν = ∂µ ln Ω∂ν ln Ω

Contracting over µ and ρ gives the transformed Ricci tensor:

R̃νσ = R̃µνµσ = Rνσ − (n− 2)∂ν∂σ ln Ω− gνσgµλ∂µ∂λ ln Ω

+ (n− 2)(∂ν ln Ω)∂σ ln Ω− (n− 2)gνσg
µλ(∂µ ln Ω)∂λ ln Ω

= Rνσ − (n− 2)Aνσ − gνσgµλAµλ + (n− 2)Bνσ − (n− 2)gνσg
µλBµλ

(C.4)

The Ricci scalar is then retrieved after contracting the above expression with g̃σν = Ω−2gσν :

R̃ = g̃νσR̃νσ = Ω−2
[
R− 2(n− 1)gνσ∂ν∂σ ln Ω− (n− 2)(n− 1)gνσ(∂ν ln Ω)∂σ ln Ω

]
= Ω−2

[
R− 2(n− 1)gνσAνσ − (n− 2)(n− 1)gνσBνσ

] (C.5)

From this result it is immediately obvious that the Einstein-Hilbert action (2.17) is not invariant
under conformal transformations.

Next we plug the above formulae for the transformations of the Riemann and Ricci tensor
and Ricci scalar in the defintion of the Weyl tensor

C̃µνρσ = R̃µνρσ + 2
(n−2)(n−1)δ

µ
[ρg̃σ]νR̃+ 2

n−2

(
δµ[σR̃ρ]ν + gµλgν[ρR̃σ]λ

)
= Rµνρσ + 2δµ[σAρ]ν − 2gµλgν[σAρ]λ + 2(δµ[ρBσ]ν − 2gµλgν[ρBσ]λ − 2gν[σδ

µ
ρ]g

λκBλκ

+ 2
(n−2)(n−1)δ

µ
[ρgσ]ν

[
R− 2(n− 1)gνσAνσ − (n− 2)(n− 1)gνσBνσ

]
+ 2

n−2

[
δµ[σRρ]ν − (n− 2)δµ[σAρ]ν − δµ[σgρ]νg

κλAκλ + (n− 2)δµ[σBρ]ν

− (n− 2)δµ[σgρ]νg
κλBκλ + gµλgν[ρRσ]λ − (n− 2)gµλgν[ρAσλ − gµλgν[ρgσ]λg

µκAµκ

+(n− 2)gµλgν[ρBσ]λ − (n− 2)gµλgν[ρgσ]λg
µκBµκ

]
= Rµνρσ + 2

(n−2)(n−1)δ
µ

[ρgσ]νR+ 2
n−2

(
δµ[σRρ]ν + gν[ρRσ]

µ
)

= Cµνρσ (C.6)

One index needs to be raised for the conformal invariance to hold, because

51To compare equation D.7 from Wald [15] to Rµνρσ , we first note that we have defined the covariant derivative
with respect to the partial derivative: ∇µXν = ∂µΓλµνXλ unlike Wald, meaning that we need to substititute ∂µ

for ∇a in equation D.7. Furthermore, we note that Rabc
d = Rcdab = Rdcba. Relabeling indices as d → µ, c →

ν, b→ ρ, a→ σ then gives Rµνρσ .
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C̃λνρσ = g̃λµC̃
µ
νρσ = Ω2gλµC

µ
νρσ = Ω2Cλνρσ

The Conformal Weyl action (2.47) behaves under a conformal transformation like

SCWG = −αg
∫

dnx
√
−g̃ C̃µνρσC̃µνρσ

= −αg
∫

d4x
√
−g̃C̃αβµνC̃βαρσ g̃µρg̃νσ

== −αg
∫

d4x

sqrt−Ω2ng CαβµνC
β
αρσ Ω−2gµρ Ω−2gνσ

= −αg
∫

ddx
√
−gΩn−4 CµνρσC

µνρσ

which shows that the Conformal Weyl action is only invariant under conformal transformations
in n = 4 dimensional spacetime. As we have actually nowhere in the above used the constraint
from (2.29), we have actually established Weyl invariance (i.e. local scale invariance) of the Weyl
tensor, which is a stronger symmetry than conformal symmetry.

Some further notes on the Weyl tensor:

i. From the definition of the Weyl tensor it is obvious that it must be zero for n ≤ 2.

ii. By comparing the number of indepent components between the Riemann curvature tensor

(n
2(n2−1)

12 ) with those of the Weyl curvature tensor (n(n+1)
2 ) we can show that for n = 3

the Weyl tensor also vanishes identically.

iii. In dimensions n ≥ 4, the Cµνρσ is generally nonzero. If, however, the Weyl tensor vanishes,
the metric is locally conformally flat: there exists a local coordinate system in which the
metric tensor is proportional to a constant tensor.

iv. In GR, if matter is absent, the Ricci tensor vanishes. However, spacetime is not necessarily
flat in this case since the Weyl tensor contributes curvature to the Riemann curvature tensor
and so the gravitational field is not zero in the vaccum. The Weyl tensor allows gravity to
propagate in regions where there is no matter/energy source.

A tensor field f has conformal weight α if under a conformal transformation of (2.26) there is a
real number α such that f → f ′ = eασ(x)f . The metric thus has conformal weight 2, its inverse
−2 and det(g) has weight d. If ω = 0 then the tensor field is conformally invariant. Conformal
weights tell us how objects transform under rotations and scalings and are related to the spin
and scaling dimension of the object.



Appendix D

Derivation of the Bach equation
of motion

In this appendix we will derive the Bach equation starting from (??). Then we will give equiv-
alent expressions of (2.49) in terms of the Schouten tensor and in terms of the Ricci tensor and
scalar.

Recall the Weyl tensor (2.43) in 4 dimensions, i.e.

Cµανβ = Rµανβ + 1
2 (−gµνRαβ + gµβRαν + gανRαβ − gαβRµν) + 1

6 (gµνgαβ − gανgµβ)R (D.1)

which has the same symmetry properties as the Riemann curvature tensor Rµανβ :

Rµανβ = Rνβµα (D.2)

Rµανβ = −Rαµνβ = −Rµαβν (D.3)

Rµανβ +Rµβαν +Rµνβα = Rµ[ανβ] = 0 (D.4)

∇βRλµαν +∇νRλµβα +∇αRλµνβ = Rλµ[αν;β] = 0 (D.5)

where equation (D.4) and (D.5) are known as the first and second Bianchi identity, respec-
tively. The covariant derivatives are written using the semicolon convention ∇µv = v;µ and
∇µ∇νv = v;ν;µ.

For the derivation of the Bach equation we furthermore make use of the following results from
[80, Chapter 16]:

δgµν = −gαµgβνδgαβ (D.6a)

δ
√
−g = 1

2

√
−ggµνδgµν (D.6b)

δΓασν = 1
2g
αβ [(δgβσ);ν + (δgβν);σ − (δgσν);β ] (D.6c)

δRανλσ = (δΓασν);λ − (δΓαλν);σ (D.6d)

δRµνλσ = δgµαR
α
νλσ + gµαδR

α
νλσ (D.6e)

δRµν = δRαµαν

= 1
2g
στ ((δgµν);σ;τ + (δgστ );µ;ν − (δgµσ);ν;τ − (δgντ );µ;σ) (D.6f)

δR = gµνδRµν +Rµνδg
µν = gµνδR

µν −Rµνδgµν
= gµνgστ ((δgµν);σ;τ − (δgµσ);ν;τ )−Rµνδgµν (D.6g)

To derive the Bach equation, we rewrite the Conformal Weyl Gravity action (??) as

SCWG = −αg
∫

d4x
√
−gCαβµνCβαρσgµρgνσ (D.7)
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And vary to get

0 = δSCG

= −αg
∫

d4x
[
2CαβµνδC

β
αρσg

µρgνσ
√
−g + CαβµνC

β
αρσδ

(
gµρgνσ

√
−g
)]

= −αg
∫

d4x
√
−g
[
2CαβµνδC

β
αρσg

µρgνσ + CαβµνC
β
αρσ

(
2gµρδνλδ

σ
τ − 1

2g
µρgνσgλτ

)
δgλτ

]
In going from the second to the third line we have used (D.6a) and (D.6b).

Next we use equation 10a from [81] (which is only valid in 4 spacetime dimensions) and the
symmetries of the Weyl tensor to see that the second term of the last line equals zero:

CαβµνC
β
αρσ

(
2gµρδνλδ

σ
τ

1
2g
µρgνσgλτ

)
= 2CαβλνC

β
ατ
ν − 1

2C
α
β
ρσCβαρσgλτ

= 2Cαβλ
νCβατν + 1

2C
αβρσCβαρσgλτ

= −2
(
CαβνλCαβντ − 1

4C
αβρσCβαρσgλτ

)
= 0

For the remaining term in δS, we use the definition of the Weyl curvature to write:

δCβαρσ = δRβαρσ + 1
2

[
δgαρR

β
σ − δgασRβρ

]
+ 1

2

[
gαρδR

β
σ − gασδRβρ

]
− 1

2

[
δβρ δRασ − δβσδRαρ

]
− 1

6

[
δR(gαρδ

β
σ − gασδβρ ) + δβσRδgαρ − δβρRδgασ

]
Next we substitute (D.6f) and (D.6g) in the above equation. Contracting indices shows that the
last term on the righthandside vanishes. Using integration by parts and dropping surface terms
means that the third and fourth term on the righthandside also vanishe52. This means we are
left with:

0 = δSCG = −2αg

∫
d4xCαβµν

(
δRβαρσ + 1

2

[
δgαρR

β
σ − δgασRβρ

])
gµρgνσ

√
−g

Now we insert (D.6d) and integrate by parts (first line), use the symmetries of Weyl tensor
(second line) and substitute the variation of the connection (D.6c) (third line) and integrate by
parts (fourth line):

0 = −2αg

∫
d4x
√
−gCαβρσ

([
∇σδΓβαρ −∇ρδΓβασ

]
+ 1

2

[
δgαρR

β
σ − δgασRβρ

])
= 2αg

∫
d4x
√
−g
(
2∇σCαβρσδΓβαρ − δgαρRβσCαβρσ

)
= 2αg

∫
d4x
√
−g
(
∇σCαβρσgβµ [(δgµα);ρ + (δgµρ);α − (δgαρ);µ]− δgαρRβσCαβρσ

)
= 2αg

∫
d4x
√
−g
(
[−∇ρ∇σCαµρσδgµα −∇α∇σCαµρσδgµρ +∇µ∇σCαµρσδgαρ]− δgαρRβσCαβρσ

)
Because ∇ρ∇σCαµρσ = 0, this expression reduces to the Bach equation (2.49) (where we have
renamed the indices):

Bµν = ∇α∇βCµανβ − 1
2R

αβCµανβ = 0 (D.8)

We can express this in terms of the Ricci tensor and scalar if we know the covariant derivative
of the Weyl tensor in terms of R and Rµν . Therefore, we write the second Bianci identity (D.5)
in terms of the conformal Weyl tensor

0 = Rµα[νβ;λ] = Cµα[νβ;λ] + 1
d−3gµ[νCβλ]α

σ
;σ + 1

d−3gα[νCλβ]µ
σ

;σ

52Recall that the covariant derivative of the metric is identically zero because that is how we have chosen to
define the connection Γαµν
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Next we contract the second Bianchi identity twice53:

∇βCµανβ = d−3
d−2

(
−2∇[µRα]ν + 1

n−1gν[α∇µ]R
)

Taking the divergence of this expression54:

Cµανβ
:β;α = d−3

d−2Rµν
;α

;α − d−3
2(d−1)R;µ;ν + d(d−3)

(d−2)2RµαR
α
ν

− d−3
d−2R

αβCµανβ − d−3
(d−2)2 gµνRαβR

αβ − d(d−3)
(d−1)(d−2)2RRµν

− d−3
2(d−1)(d−2)gµνR

;α
;α + d−3

(d−1)(d−2)2 gµνR
2

Plugging this into the Bach equation (2.49)/(D.8) gives:

Bµν = ∇α∇βCµανβ − 1
2R

αβCµανβ

= 1
2Rµν

;α
;α − 1

6R;µ;ν +RµαR
α
ν − 1

4gµνRαβR
αβ

− 1
3RRµν −

1
12gµνR

;α
;α + 1

12gµνR
2 −RαβCµανβ

Next we note that

RαβCµανβ = RαβRµανβ + 1
6R

αβR (gµνgαβ − gµβgνα)

+ 1
2R

αβ (Rµβgαν +Rανgµβ −Rµνgαβ −Rαβgµν)

=
(
− 1

2R;µ;ν +Rµ
βRνβ +Rµβ;ν

;β
)

+ 1
6

(
gµνR

2 −RµνR
)

+ 1
2

(
Rν

βRµβ +RαµRαν −RRµν − gµνRαβRαβ
)

where we have plugged in the definition of the Weyl tensor and determined RαβRµανβ via the
Ricci identity:

(∇α∇µ −∇µ∇α)Tα1...αr
β1...βs = −Rα1

νµαT
να2...αr

β1...βs · · · −RαrνµαT να1...αr−1
β1...βs

+Rββ1µα
Tα1...αr

ββ2...βs · · ·+RββsµαT
α1...αr

β1...βs−1β

(D.9)

Thus, the Bach equation in terms of the Ricci tensor and scalar is

Bµν =
(

1
2gµνR

;β
;β +Rµν

;β
;β −Rµβ ;ν;β −Rνβ ;µ;β–2RµβRν

β + 1
2gµνRαβR

αβ
)

− 1
3

(
2gµνR

;β
;β − 2R;µ;ν–2RRµν + 1

2gµνR
2
)

= 0
(D.10)

where the structure of the Weyl Lagrangian (??) is made evident.

Another equivalent way of giving the Bach tensor is in terms of the Schouten tensor Sµν :

Bµν = ∇α∇µSνα −∇2Sµν + 1
2S

αβCµανβ = 0 (D.11)

with

Sµν = −1
d−2Rµν + 1

2(d−1)(d−2)Rgµν

53The idea is similar to that for the regular expression of the second Bianchi identity (D.5). You define a
tensor like Tµανβλ = Rµα[νβ;λ] = 0. Then contract T on the first and fourth indices: Uανλ = Tµανµλ =
Rαν;λ − Rαλ;ν + Rµαλν

;µ = 0. Then you contract U on the first two indices, which yields the familiar result:

Rαλ
;α − 1

2
R;λ = 0.

54Note that the gradient of the Ricci curvature is Rµν;µ = 1
2
R;ν . Thus it follows from this expression that

indeed ∇µ∇νCαβµν = 0
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To check the equivalence between (D.8) and (D.11), simply plug in the 4 dimensional Schouten
tensor

Bµν = ∇α∇µSνα −∇2Sµν + 1
2S

αβCµανβ

= −1
2 Rαν;µ

;α + 1
12R;µ

;αgαν + 1
2Rµν

;α
;α − 1

12R
;α

;αgµν

− 1
4R

αβCµανβ + 1
24Rg

αβCµανβ

(D.12)

Noting that gαβCµανβ = −Cβµνβ = 0 (the Weyl tensor is tracefree) and using the expression
for RαβCµανβ from above, we will indeed retrieve equation (D.8).



Appendix E

CDG Lagrangian derivation

We use the results from Appendix C to derive the conformal invariant CDG Lagrangian (2.55)
starting from the Einstein-Hilbert Lagrangian (2.17)

SEH =
1

2κ2

∫
dnx
√
g (R− 2Λ) , with

1

κ2
= Md−2

p =
1

16πGN

Next, following ‘t Hooft [11], we split the metric according to

gµν = ω
4

n−2 (x)ĝµν , gµν = ω
−4
n−2 (x)ĝµν , g = ω

4n
n−2 ĝ

which is similar to doing a conformal transformation (2.28) with Ω = ω
2

n−2 . Hence, we can
replace the Ricci scalar with the conformally transformed Ricci scalar (C.5)

R = gνσRνσ = ω−2
[
R̂− 2(n− 1)ĝνσ∂ν∂σ ln Ω− (n− 2)(n− 1)ĝνσ(∂ν ln Ω)∂σ ln Ω

]
where we have matched the different (tilde, hat or regular) expressions according to the notation
used in this section.

The integrand of the Einstein-Hilbert action becomes

√
g (R− 2Λ) =

√
ĝ
(

Ωn−2
[
R̂− 2(n− 1)ĝνσ∂ν∂σ ln Ω− (n− 2)(n− 1)ĝνσ(∂ν ln Ω)∂σ ln Ω

]
− 2
√
ĝΩnΛ

)
=
√
ĝ
([

Ωn−2R̂− 2(n− 1)Ωn−3ĝνσ∂ν∂σΩ− (n− 4)(n− 1)Ωn−4ĝνσ(∂νΩ)∂σΩ
]
− 2ΩnΛ

)
=
√
ĝ
([

Ωn−2R̂− [(n− 4)(n− 1)− 2(n− 1)(n− 3)]Ωn−4ĝνσ(∂νΩ)∂σΩ
]
− 2ΩnΛ

)
=
√
ĝ
([
ω2R̂+ (n− 1)(n− 2)Ω

2(n−4)
n−2 ĝνσ(∂νω

2
n−2 )∂σω

2
n−2
]
− 2ω

2n
n−2 Λ

)
=
√
ĝ

([
ω2R̂+ 4

(n− 1)

(n− 2)
ĝνσ(∂νω)∂σω

]
− 2ω

2n
n−2 Λ

)
(E.1)

where we performed a partial integration in the third line and inserted Ω = ω
2

n−2 in the fourth
line. Now we recognize the action:

S =
1

2κ2

∫
dnx

√
ĝ

(
R̂ω2 +

1

2

8(n− 1)

(n− 2)
ĝµν∂µω∂νω − 2Λω

2n
n−2

)
(E.2)
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Rescaling the field as

ω =
√
κ2ξω̂, with ξ =

(n− 2)

4(n− 1)
(E.3)

gives the Conformal Dilaton Gravity action (2.55)

SCDG =

∫
ddx

√
ĝ
(

1
2 ξR̂ω̂

2 + 1
2 ĝ
µν∂µω̂∂ν ω̂ + V (ω̂)

)
(E.4)

where V (ω̂) is such that it is minimized when ω̂ = υ. We demand that upon gauge-fixing this
action according to ω̂ = υ, we indeed receive back the EH action:

ξυ2 =
1

κ2
, V (υ) =

Λ

κ2
= λυ

2n
n−2

where λ is some self-interaction coupling constant.



Appendix F

Conformal covariance of the
non-minimal scalar action

A conformal invariant scalar action requires a nonminimal coupling term where ξ = d−2
4(d−1) in d

spacetime dimensions, i.e. in four spacetime dimensions

SScalar = 1
2

∫
d4x
√
g
(
gµν∇µφ∇νφ+ 1

6φ
2R
)

(F.1)

To see this consider the equation of motion of the nonminimal, massless scalar theory (2.80) as
given by the Euler-Lagrange equation (2.38)

0 =
1
√
g

(
∂(
√
gL)

∂φ
− ∂µ

∂(
√
gL)

∂∂µφ

)
=

1
√
g

(−√gξRφ− ∂µ (
√
ggµν∇νφ))

= −ξRφ− 1
√
g

(√
g
(
−{µαµ}gαν − {ναµ}gµα

)
∇νφ+

√
ggµν∂µ∇νφ+ gµν∇νφ(∂µ

√
g)
)

= −ξRφ−
(
gµν∂µ∇νφ− {ναµ}gµα∇νφ

)
= ξRφ− gµν∇µ∇νφ

where ∇µ = ∇µ({}) is the Levi-Cevita covariant derivative. We furthermore used ∇µgαβ = 0 in
the second line and the identity (B.3) as derived in the appendix in the fourth line. Using the
conformal transformation of the covariant derivative (C.2)

∇̃νXλ = ∇νXλ −Hµ
νλXµ

and Ricci scalar (C.5),

R̃ = g̃νσR̃νσ = Ω−2
[
R− 2(n− 1)gνσ∂ν∂σ ln Ω− (n− 2)(n− 1)gνσ(∂ν ln Ω)∂σ ln Ω

]
= Ω−2

[
R− 2(n− 1)gνσAνσ − (n− 2)(n− 1)gνσBνσ

]
it can be easily verified that the above Klein-Gordon equation transforms under a conformal
transformation gµν → g̃µν = Ω2(x)gµν as
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g̃µν∇̃µ∇̃ν φ̃− ξR̃φ̃ = gµν
[
Ω∆̃−3∇µΩ∇νφ

(
n+ 2∆̃− 2

)
+ Ω∆̃−3φ∇µ∇νΩ∆̃

+ Ω∆̃−4φ∇µΩ∇νΩ
(
∆̃(∆̃− 3 + n)

)
+ Ω∆̃−2∇µ∇νφ

]
− ξ
[
Ω∆̃−2R− gµνΩ∆̃−3∂µ∂νΩ

(
2n− 2

)
− gµνΩ∆̃−4(∂µΩ)∂νΩ

(
n2 − 5n+ 4

)]
φ

= gµνΩ∆̃−4φ∇µΩ∇νΩ

(
3n

2
− n2

4
− 2 + (n2 − 5n+ 4)ξ

)
+ gµνΩ∆̃−3φ∇µ∇νΩ

(
2− n

2
+ 2(n− 1)ξ

)
+ gµνΩ∆̃−2∇µ∇νφ− ξΩ∆̃−2Rφ

where we used the fact that the Weyl weight of a scalar field is ∆̃ = −n−2
2 to eliminate the first

term on the righthandside in the first line. Defining ξ = n−2
4(n−1) removes the extra terms and we

see that in n > 1 dimensions the equation of motion is conformally covariant.
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