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Abstract

The CE/SE scheme is a fast and accurate method for solving flow problems. The current version

of the scheme depends on the perfect gas law, which works fine for atmospheric pressures, but

breaks down at higher pressures. The aim of this thesis was to change the CE/SE scheme such

that it depends on the Van der Waals equation of state instead. This new algorithm should be

able to simulate dense gas flows with higher precision. Next, this was going to be used to simu-

late flows around a wing profile and to explore the differences between the perfect gas law and

the Van der Waals gas law. In this thesis, the NACA-0012 wing profile is used, because a lot of

experimental data is available for this airfoil and it is widely used in throughout literature to test

the precision of new algorithms.

For 1D, the results were promising and the CE/SE method was able to calculate the Sod Shock

tube with much higher accuracy compared to the original CE/SE scheme.

For the 2D case, two different algorithms have been written, one using a structured mesh and

one using an unstructured mesh. The structured mesh has been validated using Brown and Ar-

grow (1998) and matched visually very well. The unstructured mesh also gave visually correct

results for a wave on a 30 degree wedge, but failed to calculate the flow around the wing profile

properly. Possible causes have been listed, which can be used in further research on this topic.

This thesis presents the theoretical background and a 1D and 2D implementation of the Van der

Waals CE/SE scheme for structured grids.
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1. Introduction

1.1 Background

For ages, there has been a clear way of doing science: first, a certain phenomenon was being ob-

served. Based on the observations, someone creates a model and tests if the predictions of the

model are correct. Based on these tests, the model is adapted to give more accurate results. This

goes on until a model explains the observed phenomenon well enough. Very quickly, however,

models became too complex to calculate by hand. Only very simple cases could be addressed

using these models. For complex cases, a more simple model would be applied for analysis. The

rise of computers changed this drastically. It became possible to do larger computations than

ever before. New algorithms were designed for solving complex equations, and an entirely new

branch of physics came into existence: computational physics.

The above story has been particularly true for fluid physics. In the 19th century, the Navier-

Stokes equation and the Euler equation were derived, which describe the motion of viscous and

non-viscous fluids. Only for a few simple cases, these equations can be solved analytically. For

more complex geometries, it has to be solved be solved numerically. The field of physics con-

cerned with numerically analyzing the physics of fluids is called computational fluid dynamics

(CFD).

In 1995, a new method for numerically solving the Navier-Stokes and Euler equation in 1 di-

mension was proposed by Sin-Chung Chang in Chang (1995). This new algorithm was called

Conservation Element Solution Element (CE/SE). The algorithm was extended to 2 dimensions

a few years later in Chang et al. (1999) and it has proven to be a useful method for simulat-

ing fluid flows. Initially, the solver has been implemented using a perfect gas. In this research

project, the perfect gas in the CE/SE scheme will be replaced by a gas that obeys the Van der

Waals equation of state in one dimension and two dimensions. The goal is to explore whether

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: One of the applications of fluid dynamics is finding optimal wing profiles

using a more complex model results in higher accuracy than using the simple, perfect gas equa-

tion. Special attention will be paid to detecting non-classical gas phenomena. The inviscid flow

over a NACA-0012 airfoil, a backward step and a 30-degree wedge will be used as test cases for

this. These test cases have been chosen, because validated and published results are available.

Specifically, the NACA-0012 wing profile is widely used throughout literature to validate and test

the precision of new algorithms.

1.2 Objectives

• Implement the Van der Waals equation of state in the one and two dimensional CE/SE

scheme for solving the Euler equations

• Explore the differences in the outcome of the CE/SE scheme for a perfect gas and a Van

der Waals gas in 1 dimension and two dimensions.

1.3 Structure of the Report

In the next chapter, the existing literature on the topic will be discussed. The rest of reports

starts with introducing and deriving the mathematical tools that are required in the rest of the

report. This includes derivations of several thermodynamic quantities as well as the nondimen-
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sionalization scheme. In the next chapters, the CE/SE scheme will be explained in 1D as well as

2D. For each dimension, the equations that are dependent of the EOS used are determined, and

the differences between the perfect gas and Van der Waals version are calculated. In chapter 6,

several test cases in 1D and 2D will be presented, and the differences in outcome between the

perfect gas and Van der Waals gas are explored. Chapter 7 summarizes the conclusions of this

comparison and makes recommendations for future work.



2. Literature Survey

Chang (1995) was the first to describe the Conservation Element Solution Element algorithm

in 1995. Since then, it has been extended to more dimensions and improved by using differ-

ent geometries, for example in Chang et al. (1999). A C++ implementation was described in

Shen et al. (2015). This implementation will be the starting point for the implementation of the

Van der Waals CE/SE scheme. Next, Chang et al. (1998) provides a more systematic and clear

explanation of the CE/SE method. This technical memorandum will be the main source for un-

derstanding the scheme in more depth.

Next, Arina (2004) and Aldo and Argrow (1995) are used for obtaining the required equations

regarding the Van der Waals equation of state and the nondimsionalization scheme.

After the Van der Waals model has been implemented, it must be validated to ensure the cor-

rectness of the data. For the one-dimensional case, this will be done by comparing it to a paper

written by Argrow (1996) in 1996. In this paper, dense gas shock tube flows have been analyzed,

using the Van der Waals model and the TVDM scheme for various initial states. As the results in

this paper also show non-classical phenomena, it is a great way for testing the implementation

of the Van der Waals CE/SE scheme in 1D.

In 2D, Brown and Argrow (1998) will be used for validating the code created in this project. The

set-up of the article is similar to Argrow (1996): the two-dimensional Euler equations are solved

using the Van der Waals model coupled with a scheme called PCTVD. It analyses perfect gas re-

sults and dense gas results, with a focus non-classical behavior. Favale and Gadda (2013) and

Cinnella and Congedo (2005) will be used to validate the flow around the NACA-0012 wing pro-

file.

4



3. Derivation of useful quantities

3.1 The nondimensionalization scheme

This project makes use dimensionless variables. There are two reasons for choosing this ap-

proach. First, the nondimensionalization scheme can be chosen in such a way that the equa-

tion of state is independent of the gas, which makes the algorithm more convenient to use and

understand. A second reason for using dimensionless numbers is to be consistent with other

literature on this topic, which all use this approach. Many ways exist to make variables dimen-

sionless, but to be able to validate the results, a scheme similar to the one used in Argrow (1996)

will be used. In this scheme, all variables are made dimensionless using only length of the shock

tube L̄, specific gas constant R̄, the critical pressure p̄c , critical density ρ̄c and critical tempera-

ture T̄c of the gas. The paper by Argrow (1996) contains a small error its definition of the dimen-

sionless time coordinate. It uses t = L̄ t̄p
R̄T̄c

, which results in t having a unit in seconds squared.

The scheme used in this project fixes this and can be found in table 3.1. Everywhere in the thesis,

dimensional variables will be denoted with a bar on top of the symbol.

Property Nondimensionalization Property Nondimensionalization

Pressure p = p̄
p̄c

Density ρ = ρ̄
ρ̄c

Temperature T = T̄
T̄c

Velocity u = ūp
R̄T̄c

Internal Energy e = ē
R̄T̄c

Heat capacity
constant volume

δ= R̄
c̄v

= γ−1

Van der Waals
covolume parameter

b = b̄ρ̄c
Van der Waals

force parameter
α= ᾱρ̄c

R̄T̄c

Space coordinate x = x̄
L̄x

Time coordinate t = t̄
p

R̄T̄c

L̄

Table 3.1:
The nondimensionalization scheme

5
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3.2 Perfect gas

A perfect gas is a gas that obeys the ideal gas law p̄ = ρ̄R̄T̄ . In this thesis, a perfect gas is a syn-

onym for a calorically perfect gas. This means that the heat capacity is assumed to be constant

and the internal energy per unit mass is given by ē = c̄v T̄ , with cv being the molar heat capacity

at constant volume. Next, the total energy per unit mass is defined as the internal energy plus

the kinetic energy: E = e + 1
2 u2. Combining these equations enables us to derive equations 3.1

to 3.4, which turn out to be useful later in the project.

eR̄T̄c = R̄

δ
T T̄c

⇒ e = T

δ
(3.1)

ER̄T̄c = R̄T̄c e + 1

2

(
u

√
R̄T̄c

)2

⇒ E = e + 1

2
u2 (3.2)

pp̄c = ρρ̄c R̄T T̄c

⇒ p = ρ̄R̄T̄c

p̄c
ρT = ρT (3.3)

= ρδ(E − 1

2
u2) (3.4)

In these equations, δ = R̄
c̄v

. From c̄p − c̄v = R̄, it follows immediately that δ = γ− 1. Lastly, the

speed of sound is given by the Newton-Laplace equation:

a =
√

Ks

ρ
=

√
γ

p

ρ
(3.5)
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3.3 Van der Waals gas

The same way as perfect gas is described by the ideal gas law, a Van der Waals gas is described by

the Van der Waals equation of state. This project uses the notation which is used in Arina (2004):

p̄ = R̄T̄ ρ̄

1− b̄ρ̄
− ᾱρ̄2 (3.6)

whereα and b are the so-called Van der Waals constants, which are dependent of the type of gas.

α is a factor to correct for the inter-molecular forces within a gas and the b corrects for the size

of the molecules r > 0. During the nondimensionalization process, both constants disappear

and the final equation is independent of the type of gas. Their dimensional values are given in

Arina (2004) by ᾱ= 27
64

R̄2
c T̄ 2

c
p̄c

and b̄ = R̄T̄c
8p̄c

. Also, this project assumes a constant heat capacity and

hence, ē = c̄v T̄ − ᾱρ̄. This equation differs slightly from the definition used in Argrow (1996),

which claims ē = c̄v T̄ − ᾱρ̄2. A quick dimensional analysis shows that this equation cannot be

correct. This is most likely a typographical error, as the derivatives of this equation in the paper

are correct.

For a Van der Waals gas, the total energy is the same as for a perfect gas: Ē = ē+ 1
2 ū2. Finally, one

last new quantity is introduced, namely the critical compressibility factor Zc = p̄c

ρ̄c R̄T̄c
. To derive

the value of this factor, its individual values must be expressed in terms of α and b first.

R̄T̄c =
R̄2T̄ 2

c

R̄T̄c
=

64
27 p̄cᾱ

8p̄c b̄
= 8ᾱ

27b̄

p̄c =
p̄2

c

p̄c
=

R2T̄ 2
c

64b̄2

27
64

R2T̄ 2
c

ᾱ

= ᾱ

27b̄2

So now:

ᾱ

27b̄2
=

8ᾱ
27b̄

ρ̄c

1− b̄ρ̄c
− ᾱρ̄2

c

⇒ ρ̄c = 1

3b̄
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Now, we can derive a value for the critical compressibility Zc :

Zc = p̄c

ρ̄c R̄T̄c
=

ᾱ

27b̄2

1
3b̄

8ᾱ
27b̄

= 3

8
(3.7)

It follows that

α
R̄T̄c

ρ̄c
= 27

64

R̄2T̄ 2
c

pc

⇒ α= 27

64

1

Zc
= 9

8
(3.8)

b

ρ̄c
= R̄T̄c

8p̄c

⇒ b = 1

8Zc
= 1

3
(3.9)

Hence, the Van der Waals counterparts for equations 3.1 to 3.4 are:

eR̄T̄c = R̄

δ
T T̄c −α R̄T̄c

ρ̄c
ρρ̄c

⇒ e = T

δ
−αρ (3.10)

ER̄T̄c = eR̄T̄c + 1

2

(
v
√

R̄T̄c
)2

⇒ E = e + 1

2
u2 (3.11)

pp̄c = ρρ̄c R̄T T̄c

1− 1
3ρ̄c

ρρ̄c
− 9

8

R̄T̄c

ρ̄c
(ρρ̄c )2

⇒ p = 3ρT

3−ρ
1

Zc
− 9

8

1

Zc
ρ2

= 8ρT

3−ρ −3ρ2 (3.12)
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Using equation 3.10 and 3.11

p = 8ρδ(e + 9
8ρ)

3−ρ −3ρ2

= ρδ(8E −4u2 +9ρ)

3−ρ −3ρ2 (3.13)

3.3.1 Speed of sound

Because Aldo and Argrow (1995) and Argrow (1996) disagree on the equation for the speed of

sound, it will be derived again in this section, to be sure that the correct equation is being used.

We start with the generic equation for the speed of sound, which is valid for any equation of

state (Arina (2004)):

ā =
√

p̄

ρ̄2

(∂p̄

∂ē

)
ρ̄
+

(∂p̄

∂ρ̄

)
ē

(3.14)

It should be noted that Arina (2004) uses p
ρ̄2 instead of p̄

ρ̄2 . This is most likely a typo, as using the

non-dimensionalized pressure does not lead to any reasonable equation for the speed of sound.

Also, this dimensionless value for the pressure is not mentioned anywhere else in the section.

Taking p̄ instead of p leads to the following equation of the speed of sound:

a =
√

4

9

[
(1+δ)

4T

3−ρ −ρ)
]

(3.15)

See appendix A for the derivation of this formula.

3.4 Euler equation

3.4.1 One-dimensional Euler equation

The motion of a gas can be derived from three conservation laws: the conservation of mass,

momentum and energy. Conservation of mass means that the mass inside a closed volume V

can only change by a flow of mass through the borders of the volume. The same applies for

momentum and energy. Mathematically, these conservation laws in 1 dimension are described
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by the Euler equation:
∂U

∂t
+ ∂F

∂x
= 0 (3.16)

U represents the property which is conserved (mass, momentum or energy) and F is the output

flux of this property along the border of the volume. Since a positive change in, for example,

mass is completely caused by a negative change in output flux, both quantities have to be equal.

Three Euler equations can be derived: one for the density ρ, one for the momentum ρv and

one for the energy E . This leads to the following set of equations, as derived in Dullemond and

Kuiper (2015).

∂

∂t̄


ρ̄

ρ̄ū

ρ̄Ē

+ ∂

∂x̄


ρ̄ū

ρ̄ū2 + p̄

(ρ̄Ē + p̄)ū

= 0 (3.17)

The dimensional Euler equation is independent of the equation of state, however, as will be

shown shortly, the dimensionless one is not. Each conserved property will be discussed individ-

ually below to obtain its dimensionless value.

Conservation of mass

∂ρ̄

∂t̄
+ ∂(ρ̄ū)

∂x̄
= 0

∂(ρρ̄c )

∂(t L̄p
R̄T̄c

)
+ ∂(ρρ̄c u

√
R̄T̄c )

∂(xL̄)
= 0

ρ̄c

√
R̄T̄c

L̄

[∂ρ
∂t

+ ∂(ρu)

∂x

]
= 0

∂ρ

∂t
+ ∂(ρu)

∂x
= 0 (3.18)
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Conservation of momentum

∂(ρ̄ū)

∂t̄
+ ∂

∂x̄
(ρ̄ū2 + p̄) = 0

∂(ρρ̄c u
√

R̄T̄c )

∂(t L̄p
R̄T̄c

)
+ ∂

∂(xL̄)
[ρρ̄c (u

√
R̄T̄c )2 +pp̄c ] = 0

ρ̄c R̄T̄c

L̄

[∂(ρu)

∂t
+ ∂

∂x
(ρu2 +p

pc

ρ̄c R̄T̄c
)
]
= 0

∂(ρu)

∂t
+ ∂

∂x
(ρu2 +Zc p) = 0 (3.19)

Conservation of energy

∂(ρ̄Ē)

∂t̄
+ ∂

∂x̄

[
(ρ̄Ē + p̄)ū

]= 0

∂(ρρ̄c ER̄s T̄c )

∂(t L̄p
R̄T̄c

)
+ ∂

∂(xL̄)

[
(ρρ̄c ER̄s T̄c +pp̄c )(u

√
R̄T̄c )

]= 0

ρ̄c (R̄s T̄c )
3
2

L̄

{∂(ρE)

∂t
+ ∂

∂x

[
(ρE +p

p̄c

ρ̄c R̄s T̄c
)u

]}= 0

∂(ρE)

∂t
+ ∂

∂x

[
(ρE +Zc p)u

]= 0 (3.20)

Combining these results into the nondimensional Euler equation gives:

∂

∂t


ρ

ρu

ρE

+ ∂

∂x


ρu

ρu2 +Zc p

(ρE +Zc p)u

= 0 (3.21)

This result can also be obtained more readily by noting that the output flux fm equals the con-

served property times the velocity, e.g. f1 = ρu = u1u. This is canceled out by the variables of

differentiation because a dimensional analysis shows that the unit of tu is equal to x. Therefore

the dimensionless Euler equation is equal to the dimensional one, except by the term Zc in front

of p. It should be noted that the term Zc depends on the equation of state (EOS) that is used.
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For a perfect gas Zc = 1 and for a Van der Waals gas Zc = 3
8 . Therefore, the dimensionless Euler

equation depends on the EOS it is applied to.

3.4.2 One-dimensional Jacobian matrix of the Euler equation

First, consider the Euler equation, rewritten in a more compact form:

∂um

∂t
+ ∂ fm

∂x
= 0, where m = 1,2,3 (3.22)

where u1,u2 and u3 are ρ,ρu and ρE respectively. Similarly, f1, f2 and f3 are ρu, (ρu2+Zc p) and

(ρE+Zc p)u. fm depends completely on um and therefore the Euler equation can be rewritten in

a form which consists of only the variables um , m = 1,2,3. Since the equation for expressing the

pressure in terms of um is different for a perfect gas than for a Van der Waals gas, two versions

of the equation appear. For a perfect gas, using equation 3.4, it becomes:

u1 = ρ u2 = ρu u3 = E (3.23)

f1 = u2 f2 = δu3 + (2−δ)(u2)2

2u1
f3 = (δ+1)

u2u3

u1
− δ(u2)3

2(u1)2
(3.24)

And for a Van der Waals gas:

u1 = ρ u2 = ρu u3 = E (3.25)

f1 = u2 f2 = (u2)2

u1
+Zc pvd w f3 = (u3 +Zc pvd w )

u2

u1
(3.26)

where

pvd w =
u1δ(8u3 −4

(
u2
u1

)2 +9u1)

3−u1
−3(u1)2 (3.27)

Now, we can define the 3x3 Jacobian matrix A, with the elements given by:

fm,k = ∂ fm

∂uk
, where m,k = 1,2,3 (3.28)

This Jacobian matrix is key in understanding the CE/SE scheme. Its derivation for a perfect gas

and a Van der Waals gas can be found in appendix A.



CHAPTER 3. DERIVATION OF USEFUL QUANTITIES 13

3.4.3 Multi-dimensional Euler equation

The Euler equation in multiple dimensions has been derived in Dullemond and Kuiper (2015)

and is given by the three conservation laws in tensor form, where i and k denote the N-dimensional

space component:

∂t̄ ρ̄+
∑

ī

∂ī (ρ̄ ¯(ui )) = 0

∂t̄ (ρ̄ ¯(ui ))+∑
k̄

∂k̄ (ρ̄ ¯(uk ) ¯(ui )+δī k̄ p̄) = 0

∂t̄ (ρ̄Ē)+∑
ī

∂ī

[
(ρ̄Ē + p̄) ¯(ui )

]= 0

In 2 dimensions, this results in the following equation:

∂

∂t̄



ρ̄

ρ̄ū

ρ̄v̄

ρ̄Ē

+ ∂

∂x̄



ρ̄ū

ρ̄ū2 + p̄

ρ̄ūv̄

(ρ̄Ē + p̄)ū

+ ∂

∂ȳ



ρ̄v̄

ρ̄v̄ ū

ρ̄v̄2 + p̄

(ρ̄Ē + p̄)v̄

= 0 (3.29)

Using table 3.1 to nondimensionalize the equations results in the following dimensionless con-

servation laws:

Conservation of mass

∂t̄ ρ̄+
∑

ī

∂ī (ρ̄ ¯(ui )) = 0

∂[
t L̄p

R̄T̄c

] (ρρ̄c )+∑
ī

∂[i L̄] (ρρ̄c (ui

√
R̄T̄c )) = 0

ρ̄c

√
R̄T̄c

L̄

[
∂t ρ̄+

∑
i
∂i (ρui )

]
= 0

∂t ρ+
∑

i
∂i (ρui ) = 0 (3.30)
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Conservation of momentum

∂t̄ (ρ̄ūi )+∑
k̄

∂k̄ (ρ̄ūk ūi +δi k p̄) = 0

∂[
t L̄p

R̄T̄c

] (ρρ̄c ui

√
R̄T̄c )+∑

k̄

∂[kL̄] (ρρ̄c uk ui

(√
R̄T̄c

)2 +δi k pp̄c ) = 0

ρ̄c R̄T̄c

L̄

[
∂t (ρui )+∑

k
∂k

(
ρuk ui +δi k p

p̄c

R̄T̄c ρ̄c

)]
= 0

∂t (ρui )+∑
k
∂k (ρuk ui +δi k Zc p) = 0 (3.31)

Along each axis i

Conservation of energy

∂t̄ (ρ̄Ē)+∑
ī

∂ī

[
(ρ̄Ē + p̄)ūi

]= 0

∂[
t L̄p

R̄T̄c

] (ρρ̄c ER̄T̄c )+∑
ī

∂[i L̄]

[
(ρρ̄c ER̄T̄c +pp̄c )ui

√
R̄T̄c

]= 0

(ρ̄c R̄T̄c )
3
2

L̄

[
∂t (ρE)+∑

i
∂i

[
(ρE +p

p̄c

ρ̄c R̄T̄c
)ui

]]= 0

∂t (ρE)+∑
i
∂i

[
(ρE +Zc p)ui

]= 0 (3.32)

And again, in 2 dimensions, this leads to

∂

∂t



ρ

ρu

ρv

ρE

+ ∂

∂x



ρu

ρu2 +Zc p

ρuv

(ρE +Zc p)u

+ ∂

∂y



ρv

ρvu

ρv2 +Zc p

(ρE +Zc p)v

= 0 (3.33)
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3.4.4 Multi-dimensional Jacobian matrices of the Euler equation

Now that the Euler equation has been extended to more dimensions, it is also possible to find

the multi-dimensional counterpart of the 1D Jacobian matrix, which has been defined in section

3.4.2. We first write the N-dimensional Euler equation in the same notation as in section 3.4.2:

∂um

∂t
+∑

i

∂ f i
m

∂x
= 0, m = 1,2,3,4 (3.34)

As before, the superscript i denotes the dimensional space component of the flux. Now, for an

N-dimensional system, N Jacobian matrices Ai of size (2+N )x(2+N ) can be defined, consisting

of the elements:

( fm,k )i = ∂ f i
m

∂uk
m,k = 1,2,3,4 (3.35)

So, for 2 dimensions, the two 4x4 matrices Ax and Ay , with dimensional space components x

and y , have the elements:

f x
m,k = ∂ f x

m

∂uk
f y

m,k = ∂ f y
m

∂uk
, m,k = 1,2,3,4 (3.36)

These matrices are explicitly given in appendix A



4. The one dimensional CE/SE scheme

4.1 The marching scheme

In the year 1995, S.C. Chang published a paper which described a new method for numerically

solving flow problems containing shocks, rarefaction waves and much more types of waves that

were hard to solve accurately using the existing techniques. The new method was called conser-

vation element solution element (CE/SE). The development of the technique was guided by the

belief that it should focus on the use of the original integral form of conservation laws, instead

of the differential form. The differential form is based on the assumption that the solution is

smooth, which makes it hard to capture a numerical solution in regions where this assumption

is not valid, such as in shocks. Two important design principles were that the method should en-

force local as well as global flux conservation in space and time and that space and time should

always be treated on equal footing. These principles will become clearer during the discussion

of the method in this section. More design principles and what drove the development of the

scheme can be found in Chang (1995).

This explanation will use the Euler equation in fluid dynamics to explain the working of the

CE/SE scheme. However, it can also be applied to the Navier-Stokes equations and other initial-

value problems with similar differential equations. Now, consider the generalized Euler equa-

tion in one dimension:

∂U

∂t
+ ∂F

x
= ∂

∂t


u1

u2

u3

+ ∂

∂x


f1

f2

f3

 = ∂um

∂t
+ ∂ fm

∂x
= 0, m = 1,2,3

16
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Figure 4.1: CE/SE mesh

where U is the conserved variables and F the flux in terms of um , m = 1,2,3. For the rest of

this section, m will always be taken to run from 1 to 3. This partial differential equation (PDE)

is a consequence of a more general conservation law and follows under the assumption that

the derivatives exists at all points. This general law is written as an integral over the conserved

region S(V ) (Chang et al. (1998)): ∮
S(V )

~hm ·d~s = 0 (4.1)

where~hm = 〈
fm ,um

〉
.

Also, consider a two dimensional space-time Euclidean space E2, with space on one axis and

time on the other. In this space, let letΩ denote all the mesh points ( j ,n), with (2n) ∈Z and ( j +
n+ 1

2 ) ∈Z, as shown in figure 4.1. j and n respresent the spatial and time coordinate respectively.

Each mesh point is surrounded by the solution element (SE), whose borders are shown in figure

4.1 by the dashed lines. For any (x, t ) ∈ SE( j ,n), u(x, t ) and f (x, t ) can be approximated by the

first-order Taylor expansion at position (x, y):

u∗
m(x, t ; j ,n) = (um)n

j + (umx)n
j (x −x j )+ (umt )n

j (t − t n) (4.2)

f ∗
m(x, t ; j ,n) = ( fm)n

j + ( fmx)n
j (x −x j )+ ( fmt )n

j (t − t n) (4.3)

In this equation, (um)n
j is the value of um at mesh position ( j ,n). (umx)n

j and (umt )n
j are the

spatial and time derivative of (um)n
j respectively. fm is given in equation 3.21 and ( fmx)n

j and

( fmt )n
j are its spatial and time derivatives. x j and t n are the spatial and time coordinate of ( j ,n)
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Figure 4.2: The conservation elements (Edited from figure 4 in Chang et al. (1998)

respectively. Similar toequation 4.1, we define:

~h∗
m = 〈

f ∗
m(x, t ; j ,n),u∗

m(x, t ; j ,n)
〉

(4.4)

Now, let E2 be divided into rectangles where two of the four corners are elements in Ω. These

rectangles are enclosed by the solid lines in figure 4.1. The rectangle that has element ( j ,n) as

the upper right vertex is called C E−( j ,n) and the one having ( j ,n) as the upper-left vertex is

called C E+( j ,n), as shown in figure 4.2. Together they are called the conservation element, CE.

Because equation 4.1 is true for any volume and equation 4.4 approximates the values of um and

fm at any point within the SE, it follows that

∮
S(C E±( j ,n))

~h∗
m ·d~s = 0 (4.5)

To solve this integral, it should be noted that each C E± consists of 4 sides, of which 2 lie in

SE( j ,n) and the other 2 in SE( j ± 1
2 ,n − 1

2 ). Therefore, we know the flux through the bottom

and the sides of the CE and we can combine equation 4.2, 4.3 with 4.1 to derive the value for

the mesh points at time t = n using the values of the mesh points at time t = n − 1
2 . Plugging



CHAPTER 4. THE ONE DIMENSIONAL CE/SE SCHEME 19

equation 4.2 and 4.3 into equation 4.5 results in: (Chang et al. (1998) section 2.3)

(um)n
j − (um)n−1/2

j±1/2 ± ∆x

4

[
(umx)

n− 1
2

j± 1
2

+ (umx)n
j )

]
± ∆t

∆x

[
( fm)

n− 1
2

j± 1
2

− ( fm)n
j

]
± (∆t )2

4∆x

[
( fmt )

n− 1
2

j± 1
2

+ ( fmt )n
j

]
= 0 (4.6)

In the same paper it is shown that this can be rewritten into matrix form:

[
(I∓A+)~u ± (I∓ (A+)2)

∆x

4
(~ux)

]n

j
=

[
(I∓A+)~u ∓ (I∓ (A+)2)

∆x

4
(~ux)

]n− 1
2

j± 1
2

(4.7)

Here I is the identity matrix, A+ = ∆t
∆x A, A is the Jacobian defined by 3.28 and ~un

j is the 3x1 matrix

formed by um with m = 1,2,3. Now we have two unknowns (~un
j and (~ux)n

j ) and the two equations

(one for + and one for − in equation 4.7). If we now define:

(~s±)
n− 1

2

j± 1
2

=
[
~u ∓ (I±A+)

∆x

4
(~ux)

]n− 1
2

j± 1
2

(4.8)

equation 4.7 can be solved for ~un
j and written as:

~un
j = 1

2

{[
(I−A+)~s+

]n− 1
2

j+ 1
2

+
[

(I+A+)~s−
]n− 1

2

j− 1
2

}
(4.9)

Equation 4.9 is the first part of the marching scheme in the CE/SE algorithm. If the scheme is

implemented in a computer program, it is often easier to use the non-matrix form:

(um)n
j =

1

2

[
(um)n−1/2

j−1/2 + (um)n−1/2
j+1/2 + (sm)n−1/2

j−1/2 + (sm)n−1/2
j+1/2

]
(4.10)

with

(sm)n
j =

∆x

4
(umx)n

j +
∆t

∆x
( fm)n

j +
(∆t )2

4∆x
( fmt )n

j , m = 1,2,3 (4.11)

and

( fm)n
j =

3∑
k=1

( fm,k )n
j (uk )n

j (4.12)

( fmt )n
j =−A(umt )n

j (4.13)
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If equation 4.7 is solved for (~ux)n
j , one obtains the second part in the marching scheme. We first

define

(~S±)n
j =

[
(I∓A+)n

j

]−1[
(I∓A+)~u ∓ (I∓ (A+)2)~ux

]n− 1
2

j± 1
2

(4.14)

and solving 4.7 for (~ux)n
j gives:

(~ux)n
j =

1

2
(~S+−~S−)n

j (4.15)

As the definition of ~S± involves a matrix inversion, we have to make sure that the inverse exists.

In Appendix A, section A.4, it is shown that it exists if the Courant number is smaller than 1.

Therefore ∆t should always be chosen in such a way that the CFL-condition (u+a)∆t
∆x ≤Cmax = 1

is satisfied. From a physical point of view, this inequality can be understood in the following

way: Imagine ∆x to be very small and ∆t to be very large. At time n, we measure a wave at spa-

tial position j . Because∆t is large, the wave will have passed multiple grid points at time n+∆t .

However, to calculate the wave at its new spatial position, we have only access to the data of its

neighbors at the previous time step. Since the wave was multiple grid points away in the pre-

vious time step, these neighbors do not contain any information about the wave at time n and

a calculation of the wave at time n +∆t is impossible. Therefore, ∆t should be chosen such,

that it the wave will pass one grid point away at maximum. That is, ∆t must be smaller than the

difference in distance between the grid points divided by the speed of information, ( ∆x
u+a ).

The equation for umx which is used in this paper is derived in Chang et al. (1998), section 2.7

and is a simplification of the a−ε−α−β scheme, which tries increase the precision of the calcu-

lations by adding several constants. To simplify these calculations, these constant can be chosen

in such a way such a way that the scheme reduces to just one parameter. This makes the scheme

more compatible with parallel computing, while it is still able to accurately capture shocks. To

understand the scheme, let us first define:

(~ux±)n
j =±1

2

(
~u

n− 1
2

j± 1
2

+ ∆t

2
(~ut )

n− 1
2

t± 1
2

−~un
j

)
(4.16)
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Simply taking the average of (~ux+)n
j and (~ux−)n

j would give valid results for (umx)n
j only if no

discontinuities occur. At a discontinuity, ( j − 1
2 ,n) and ( j + 1

2 ,n) lie at the opposite sides of the

boundary and hence, simply taking the average is not enough. Therefore, the result must be

smoothened by taking a biased average:

W0(x−, x+,α) = |x+|αx−+|x−|αx+
|x+|α+|x−|α

, with (|x+|α+|x−|α) > 0 (4.17)

~ux
n
j =W0((~ux+)n

j , (~ux−)n
j ,α) (4.18)

The outcome of equation 4.17 will be biased towards the lowest value between x− and x+, for

α > 0. In a smooth area, (~ux+)n
j and (~ux−)n

j will lie close together, and the outcome of W0 will

be close to the regular central average. However, at a discontinuity, the difference between the

input values of W0 will be large. Since the input consists of the derivatives of u, a low value of

(~ux±)n
j means a smooth area in u. Therefore, the average is biased towards the smooth region,

that is, the lowest value. This effect only occurs on the mesh points lying on the discontinuty

and does not effect the mesh points in a smooth area. This is one of the advantages of the CE/SE

scheme.

To conclude, the CE/SE marching scheme consists of two equations, one for advancing to (um)n
j

and another one for calculating (umx)n
j . Therefore, given (um)

n− 1
2

j± 1
2

and (umx)
n− 1

2

j± 1
2

, the next time

level can be calculated as follows:

(umt )n
j =−A(umx)n

j (4.19)

( fm)n
j =

3∑
k=1

( fm,k )n
j (uk )n

j (4.20)

( fmt )n
j = A(umt )n

j (4.21)

(sm)n
j =

∆x

4
(umx)n

j +
∆t

∆x
( fm)n

j +
(∆t )2

4∆x
( fmt )n

j , m = 1,2,3 (4.22)

(umx±)n
j =

2

∆x

(
(um)n

j − (um)
n− 1

2

j± 1
2

−∆t (umt )
n− 1

2

j± 1
2

)
(4.23)
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And the marching scheme is:

(um)n
j =

1

2

[
(um)n−1/2

j−1/2 + (um)n−1/2
j+1/2 + (sm)n−1/2

j−1/2 + (sm)n−1/2
j+1/2

]
(4.24)

(umx)n
j =W0((umx+)n

j , (umx−)n
j ,α) (4.25)

4.2 Perfect & Van der Waal gas differences

All existing implementations of the CE/SE algorithm, such as in Shen et al. (2015) and Chena

et al. (2011), make use of the perfect gas law, as described in section 3.2. If the perfect gas law is

replaced by the Van der Waals equation of state, the basic structure of the algorithm as described

in section 4.1 does not change, as no reference to any EOS has been made in this section. Equa-

tion 4.19 - 4.25 show that the only required input to advance from time step n − 1
2 to n, is the

Jacobian A. This matrix is based on the Euler equation as defined in equation 3.23 - 3.26, which

does depend on the definition of the pressure as a function of ρ, u and E and hence, on the

equation of state. Therefore, the first difference between the perfect gas and the Van der Waals

version of the CE/SE scheme is the Jacobian matrix. The definition of the matrix for both the

perfect and the Van der Waals gas can be found in Appendix A. In Appendix A, section A.4 it

shown that the condition for the inversion of (I∓A+)n
j does not change. Secondly, the CFL con-

dition depends on the speed of sound, which, as shown in chapter 3, does also depend on the

equation of state. Therefore, to ensure that the CFL condition is not violated, the equation for

the speed of sound must be updated according to the Van der Waals model.



5. The two dimensional CE/SE scheme

5.1 The marching scheme

The marching scheme in two dimensions shows a lot of similarities with the scheme in one

dimension. Therefore, this chapter will have the same structure as chapter 4.

As in chapter 4, we start by considering the Euler equation in differential and integral form:

∂U

∂t
+ ∂Fx

x
+ ∂Fy

y
= ∂

∂t



u1

u2

u3

u4

+ ∂

∂x



f x
1

f x
2

f x
3

f x
4

+ ∂

∂y



f y
1

f y
2

f y
3

f y
4

 = ∂um

∂t
+ ∂ f x

m

∂x
+ ∂ f y

m

∂y
= 0, m = 1,2,3,4

which can be derived from ∮
S(V )

~hm ·d~s = 0, m = 1,2,3,4 (5.1)

where~hm = 〈
f x

m , f y
m ,um

〉
, by using Gauss’s Divergence theorem. For the rest of this chapter, the

subscript m runs from 1 to 4, unless stated otherwise.

Now, let us define a uniform three dimensional space-time Euclidean space E3. The first ver-

sions of the CE/SE scheme were based on triangular meshes, but this was later extended to

quadrilateral meshes. The derivation for the CE/SE scheme using triangular meshes can be

found in Appendix B. This chapter will explain the CE/SE scheme using the less complex quadri-

lateral mesh, also because this mesh is used in Shen et al. (2015), which provides the base code

for the Van der Waals code. Figure 5.1a shows the layout of the mesh. The white circles represent

the mesh points at time step n ∈Z and the white triangles represent mesh points at time n + 1
2 .

A mesh point at spatial coordinate (i , j ) at time step n is denoted by P n
i , j . The SE of P n−1/2

i−1/2, j−1/2

is shown in figure 5.1b. The CE of a point P n
i , j consists of 4 cuboids, as shown in 5.1c. 5.1d shows

23
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Figure 5.1: The definition of the CE and SE in 2D1

a top view of the CE and names all the fluxes flowing in and out the of the CEs. It can be seen

that the boundary of the CE of P n
i , j is formed by subsets of SEs of the previous time step, namely,

P n−1/2
i−1/2, j−1/2, P n−1/

i+1/2, j−1/2, P n−1/2
i−1/2, j+1/2 and P n

i+1/2, j+1/2. This ensures that a mesh point at time step

n can be calculated based on the neighboring mesh points at time step n − 1
2 .

Using the same notation as in the previous chapters, the values of un
i , j and f n

i , j can be approxi-

mated by the first-order Taylor expansion around (i , j ):

u∗
m(x, y, t ; j ,k, t ) = (um)n

(i , j ) + (umx)n
(i , j )(x −x(i , j ))+ (umy )n

(i , j )(y − y(i , j ))+ (umt )n
(i , j )(t − t n) (5.2)

f x∗
m (x, y, t ; j ,k, t ) = ( f x

m)n
(i , j ) + ( f x

mx)n
(i , j )(x −x(i , j ))+ ( f x

my )n
(i ,i )(y − y(i , j ))+ ( f x

mt )n
(i , j )(t − t n) (5.3)

f y∗
m (x, y, t ; j ,k, t ) = ( f y

m)n
(i , j ) + ( f y

mx)n
(i , j )(x −x(i , j ))+ ( f y

my )n
(i , j )(y − y(i , j ))+ ( f y

mt )n
(i , j )(t − t n) (5.4)

1This image is an copy-edit based on figure 2 in Shen et al. (2015).
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Here f x
m and f y

m are the fluxes in the x- and y-direction. These equations are used to define

~h∗
m = 〈

f x∗
m , f y∗

m ,u∗
m

〉
, which enables us to approximate the solution for eq. 5.1. Solving this

integral, leads to the following four equations (Shen et al. (2015)):

(~ULD )n
i , j =

[
~u −~ux

∆x

4
−~uy

∆y

4

]n−1/2

i , j
=

[
~ULD + (~FLD −~FC D )

∆t

∆x
+ (~GDL − ~GC L)

∆t

∆y

]n−1/2

i , j
(5.5)

(~URD )n
i , j =

[
~u +~ux

∆x

4
−~uy

∆y

4

]n−1/2

i , j
=

[
~URD + (~FC D −~FRD )

∆t

∆x
+ (~GDR − ~GC R )

∆t

∆y

]n−1/2

i , j
(5.6)

(~URU )n
i , j =

[
~u +~ux

∆x

4
+~uy

∆y

4

]n−1/2

i , j
=

[
~URU + (~FCU −~FRU )

∆t

∆x
+ (~GC R − ~GU R )

∆t

∆y

]n−1/2

i , j
(5.7)

(~ULU )n
i , j =

[
~u −~ux

∆x

4
+~uy

∆y

4

]n−1/2

i , j
=

[
~ULU + (~FLU −~FCU )

∆t

∆x
+ (~GC L − ~GU L)

∆t

∆y

]n−1/2

i , j
(5.8)

The notation is consistent with figure 5.1. That is, ~ULD is the total value of um in C ELD , ~FLD is the

flux flowing into C ELD in the x-direction, etc. This formula can be understood intuitively in the

following way: The value of, for example, ULD equals the value of the previous time step, plus

the inflow minus outflow of the conserved property. As can be seen in figure B.1ad, the inflow in

the x-direction is ∆t
∆x
~FLD and the outflow ∆t

∆x
~FC D . In the y-direction, the inflow is ∆t

∆y
~GDL and the

outflow ∆t
∆y
~GC L . Adding this together leads to equation 5.5. The same applies for the other CEs.

Adding equation 5.5-5.8 , leads to a equation for un
i , j :

~un
i , j =

1

4

[
~ULD + ~URD + ~URU + ~ULU + ∆t

∆x

(
~FLD +~FLU −~FRD −~FRU

)+ ∆t

∆y

(
~GDL + ~GDR − ~GU L − ~GU R

)]n−1/2

i , j

(5.9)

For the spatial derivatives, one can derive multiple solutions, because the number of equations

in greater than the number of unknowns. For ~ux , this results in:

(
~uD

x

)n
i , j =

2

∆x

[
~URD − ~ULD + 2∆t

(∆x)2

(
2~FC D −~FLD −~FRD

)+ 2∆t

∆y∆x

(
~GDR − ~GC R − ~GDL + ~GC L

)]n−1/2

i , j

(5.10)(
~uU

x

)n
i , j =

2

∆x

[
~URU − ~ULU + 2∆t

(∆x)2

(
2~FCU −~FLU −~FRU

)+ ∆t

∆y∆x

(
~GC R − ~GU R − ~GC L + ~GU L

)]n−1/2

i , j

(5.11)
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and solving for ~uy leads to

(
~uL

y

)n
i , j =

2

∆y

[
~ULU − ~ULD + ∆2t

∆x∆y

(
~FLU −~FCU −~FLD +~FC D

)+ 2∆t

(∆y)2

(
2~GC L − ~GDL − ~GU L

)]n−1/2

i , j

(5.12)(
~uR

y

)n
i , j =

2

∆y

[
~URU − ~URD + ∆2t

∆x∆y

(
~FCU −~FRU −~FC D +~FRD

)+ 2∆t

(∆y)2

(
2~GC R − ~GDR − ~GU R

)]n−1/2

i , j

(5.13)

In this derivation, it is assumed that the CFL condition is satisfied, which, in 2D is given by:

ux∆t

∆x
+ uy∆t

∆y
≤Cmax = 1 (5.14)

All that is left is finding an equation for calculating the fluxes in the x- and y-direction. These

equations are similar to the ones for calculating U : the flux is equal to the flux in the previous

time step plus the incoming flux, plus the incoming flux in the orthogonal direction plus the

flux that was created over time. This leads to the following equation (only one equation for each

direction is given, the others can easily be derived using figure 5.1d)

FLD =
(
~f x −~f x

y
∆y

4
−~f x

t
∆t

4

)
(5.15)

GDL =
(
~f y −~f y

x
∆y

4
−~f y

t
∆t

4

)
(5.16)

where f x and f y denote the total flux in the x- and y-direction respectively. f x and f y are calcu-

lated in the same way as in the 1D case, using the Jacobian A. Only now we need two Jacboians:

one for x-direction, Ax = ∂ f x
m

∂uk
, and one for the y-direction Ay = ∂ f

y
m

∂uk
. Hence

~f x
x = Ax~ux

~f y
x = Ay~ux

~f x
y = Ax~uy

~f y
y = Ay~uy (5.17)

Just as in the previous section, we can take the arithmetic average of the two solutions for the

spatial derivatives, but this will give incorrect results at discontinuities. Therefore we define

(umx)n
i , j =W0

([(
uL

mx

)n
i , j ,

(
uU

mx

)n
i , j ,α

)
and (~uy )n

i , j =W0

((
uL

mx

)n
i , j ,

(
uR

mx

)n
i , j ,α

)
(5.18)
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Now we have derived all the equations to advance to time step t + 1
2 .

5.2 Perfect & Van der Waal gas differences

Just as in the 1D case, no explicit reference to any equation has been made in the previous sec-

tion. The only two variables depending on the EOS are the Jacobian A and the speed of sound a,

which is required for satisfying the CFL-condition. Therefore the updates to convert the scheme

to use the Van der Waals model are similar to the ones in the 1D case.



6. Comparison of the two EOS

This chapter will explore the real gas effects in various 1D and 2D test cases. The CE/SE scheme

in combination with the perfect gas law has already been implemented in Shen et al. (2015)

and the Van der Waals version of the scheme was implemented for this thesis. To decrease the

probability of having bugs in the new code, it will be tested against known solutions. Once the

validation is completed, new test cases will be run to see the difference in outcome between

perfect gas and Van der Waals gases.

6.1 The one-dimensional case

6.1.1 Validation

Argrow (1996) will be used to validate the 1D Van der Waals CE/SE scheme. This paper states the

result of 3 dense shock tube test cases, which are listed in table 6.1. The results of the new VdW

CE/SE solver have been plotted next in the same graph as the results obtained by Argrow (1996).

These graphs are shown in figure 6.1. As can be seen, the results match visually very well, which

make it likely that the Van der Waals model has been implemented correctly. It should be noted

Case δ CFL tend Gases

1D1 0.0125 0.8 0.1807 (ρ, v, p) =
{

(1.818, 0 ,3.0) 0 ≤ x ≤ 0.5

(0.275, 0 ,0.575) 0.5 < x ≤ 1

1D2 0.0125 0.8 0.4801 (ρ, v, p) =
{

(0.879, 0 ,1.090) 0 ≤ x ≤ 0.5

(0.562, 0 ,0.885) 0.5 < x ≤ 1

1D3 0.0125 0.8 0.2917 (ρ, v, p) =
{

(0.879, 0 ,1.090) 0 ≤ x ≤ 0.5

(0.275, 0 ,0.575) 0.5 < x ≤ 1

Table 6.1: The intial conditions for the four test cases
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however, that the graphs of Argrow (1996) have been extracted using third-party software. Since

the paper was old, it was hard to reconstruct the numerical data from the paper. This explains

the low amount of data points. Therefore a more precise validation is impossible.

Figure 6.1: Validation of the 1D Van der Waals CE/SE scheme
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6.1.2 Analysis of results

Let us recall perfect gas law and the Van der Waals equation of state:

Perfect gas law: p̄ = ρ̄R̄T̄ (6.1)

Van der Waals EOS: p̄ = R̄T̄ ρ̄

1− b̄ρ̄
− ᾱρ2 (6.2)

It can be seen that the Van der Waals models approaches the perfect gas model as ρ approaches

zero. Therefore, 3 test cases will be examined, which all have a different pressure and density,

to see the influence of these variables on both models. The details of the three test cases are

shown in table 6.2. The initial kinetic energy is zero in all test cases. In the first test case, the

gas has a very low density. As can be seen, both models are in agreement, which is in agreement

with the theory. Also, four different levels are visible in the graphs. Let the levels be numbered

from one to four, starting on the right. The lowest level is level 1, the second lowest is level 2 etc.

According to the analytical solution, the ratio of the pressures at level 1 and level 2, p1
p2

= 3.031.

The new CE/SE Van der Waals implementation has p1
p2

= 3.030 in case 1P2, which is a significant

improvement over the results obtained in Argrow (1996), which is 3.002. Using the perfect gas

law, the ratio is 2.12, so the Van der Waals model is a great improvement for dense gases. Also

in case 1P3, the CE/SE scheme results in p1
p2

= 3.0293, which is a slight improvement over 3.028,

which is found in Argrow (1996). Also, as expected, the bigger ρ is, the larger is the difference

between the perfect gas model and the Van der Waals model, as can be seen in figure 6.2.. Two

observations can be made, based on these graphs. First of all, the shock in the Van der Waals gas

Case δ CFL tend Gases

1P 1 0.4 0.8 0.2 (ρ, v, p) =
{

(1, 0 ,1) 0 ≤ x ≤ 0.5

(0.125, 0 ,0.1) 0.5 < x ≤ 1

1P 2 0.4 0.8 0.02 (ρ, v, p) =
{

(0.125, 0 ,10) 0 ≤ x ≤ 0.5

(0.0156, 0 ,1) 0.5 < x ≤ 1

1P 3 0.4 0.8 0.002 (ρ, v, p) =
{

(0.0125, 0 ,100) 0 ≤ x ≤ 0.5

(0.00156, 0 ,10) 0.5 < x ≤ 1

Table 6.2: The intial conditions for the three cases with different densities
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moves slower than the one in the perfect gas. This is due to the lower pressure, compared to the

perfect gas law. Secondly, as can be seen in case 1P1, the levels are also not exactly the same.

Since the 1D is an intermediate step towards the 2D case, the Sod Shock tube is the only case

considered in the comparison between the perfect gas law and the Van der Waals model.

6.2 The two-dimensional case

6.2.1 Validation

For the 2D scheme, two different implementations have been made. The first one uses a struc-

tured grid and can be used only for grids with straight borders. The second version is able of

capable handling unstructured grids, which opens the door to analyzing much more interesting

types of grids. The former is easier to understand and has been implemented as an intermediate

step on the way to implementing the latter version. The structured mesh is only used for ana-

lyzing the backward step; all the other test cases are implemented using an unstructured mesh.

To validate the code, several test cases will be run, namely a backward step, a 30-degree wedge

and the NACA-0012 airfoil with 0 and 1-degree angle of attack. A reference solution for the first

two test cases can be found in Brown and Argrow (1998) and reference solutions for the last two

can be found in Congedo and Cinnella (2007) and Favale and Gadda (2013). The first two make

use of the TVD scheme to simulate the flow, and the third one uses the finite volume method.

Backward step

Figure 6.3 shows the plot for three different input conditions. Every time, the left image

is the reference solution from Brown and Argrow (1998) and the right one is the plot created

by the Van der Waals CE/SE scheme. The ranges of the scales are identical. Since we do not

have the numerical data that was used to produce these values, there is no way to do a more

precise comparison between the two images. One important observation is that the shock for

TD2 in the CE/SE simulation is not perfect, while the shock is perfect in the reference solution.

This is most likely due to a lower accuracy of the scheme used to create the reference solution.

The initial condition may not be completely accurate, and the CE/SE scheme can capture this

imperfection. Besides, the plots seem to visually match very well, which strengthens the belief
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Figure 6.2: The outcome for the perfect gas and the Van der Waals gas for the three different
initial states in table 6.2



CHAPTER 6. COMPARISON OF THE TWO EOS 33

Case Inflow Initial
ρ ux uy p ρ ux uy p

2D1 0.80 0.14 0.00 0.98 0.56 0.00 0.00 0.89
2D2 0.62 -0.14 0.00 0.98 0.88 0.00 0.00 1.09
2D3 0.85 0.64 0.00 1.01 0.28 0.00 0.00 0.58

Table 6.3: Three initial states for dense gases

that the CE/SE scheme was implemented correctly. The initial states are listed in table 6.3.

30 degree wedge

The second test case is a shock moving against a wedge with an angle of 30 degrees. The

results are shown in figure 6.4, in the same order as before. In general, the results seem to match

well, however, just as for the backward step, a more precise validation is not possible and there-

fore, some reservation about the correctness should be called for.

In test case 2D2, for which the results are shown in 6.4a-b, a difference can be observed in the

shock. In the reference solution, a single wave front is shown, while in the outcome of the CE/SE

scheme, a second discontinuity appears. Most likely, the test case presented in Brown and Ar-

grow (1998) does not result in a perfect shock. The paper was written in 1999, so most likely the

computations were not fine enough to observe this difference. To confirm this, the same inflow

condition has been set in the 1D code. It is the same test case which also produced a second

wavefront in the backward step.

Also at the corner of the edge and the right side of the mesh, some instability occurs. This has to

do with the boundary condition, which is known to be not perfect. This can cause inaccuracies

at the boundary.

NACA-0012 airfoil, 0 degrees angle of attack

The NACA airfoils are a series of airfoils, in which each airfoil is identified by four numbers.

The first number is maximum camber, the second number the position on the wing where the

camber is maximum, and the last two digits define the maximum thickness as a percentage of

the chord length. The airfoil used in for validation is the NACA-00012 profile, which means that

it has no camber and its thickness it 0.12 times its chord length. To create a grid around this

airfoil, a C-grid structure is used, as shown in figure 6.5. A reference solution for the NACA-0012

with 0-degree angle of attack can be found in Cinnella and Congedo (2005). The validation will
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Figure 6.3: Comparison of the data obtained in Brown and Argrow (1998) (left) and obtained by
the CE/SE implementation (right) for test case 2D3 and 2D2 respectively
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Figure 6.4: Comparison of the data obtained in Brown and Argrow (1998) (left) and obtained by
the CE/SE implementation (right) for test case 2D1 and 2D2 respectively

consist of comparing the pressure coefficient, Cp , around the wing profile. Because the wing

NACA-0012 wing profile is completely symmetric, the Cp above and below the wing should be

equal if the angle is zero degrees. This is true in both the reference solution and the CE/SE

implementation, so therefore only one line will be shown in the graph. The result can be found

in 6.6. In Favale and Gadda (2013), the initial condition is given by the density, pressure and

Mach number. To convert to Mach number to the non-dimensionalized velocity, we have to
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Figure 6.5: The structure of the mesh (a) and zoomed in to show how the mesh is structured
around the wing (b)

make use of the definition of the Mach number:

M =
√

u2
x +u2

y

a
=

√
(cos(α)utot )2 + (sin(α)utot )2

a
= utot

a
(6.3)

where a is given by equation 3.14, utot is the total velocity and α is the angle of attack. The flow

around the wing profile is shown in figure 6.6b-c and the plot of Cp is given in figure 6.6-a. It

can be seen that the Cp profiles do not match. If γ = 1.0125 is used for the CE/SE scheme, the

results do not match the reference solution. However, if γ = 1.4, the shape of the plot matches

the reference solution much better. According to the paper, γ= 1.0125 in the reference solution.

A lot of effort has been put in finding the source of this discrepancy, but no clear explanation

has been found. Three differences between the CE/SE Van der Waals implementation and the

reference solution have been identified:

• Equation of state Congedo and Cinnella (2007) makes use of the MAH equation of state,

an EOS for describing dense gasses, which is based on the Van der Waals EOS. This EOS is

more precise than the Van der Waals EOS, which might explain why there is a difference

between the results in the paper and the Van der Waals CE/SE scheme

• Boundary condition As observed in 6.2.1, the boundary condition is not perfect, and
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Figure 6.6: The pressure coefficient for test case (ρ = 0.92, M = 0.85, p = 1.07)

some unwanted effects may appear near the walls. Therefore, the results around the wing

may not be completely correct.

• γ−δ relation Most likely, the difference can be explained with investigating the relation

between γ and δ. Throughout this thesis, it was used that δ = γ− 1. However, a more

precise relation, which is based on the Van der Waals model can be used. This relation is

derived in Berberan-Santos et al. (2008) and given by:

δ= (γ−1)(1− 9

4T V
) (6.4)

where V is the volume, which is non-dimensionalized with respect to the critical volume.

It can be seen that if T V is very high, this reduces to δ= γ−1. It could be possible that in all

the previous test cases T and V were sufficiently high, so that the extra term had almost no

influence. Probably, the temperature or the volume decreased so much in the NACA-0012

test case, that the extra term cannot be neglected and might cause the incorrect results.

This could explain why the results are completely different for different values for γ and δ.

To test this hypothesis, one should compare the minimum temperatures and volumes for

the different test cases. Another way to test the theory is replacing δ= γ−1 by equation 6.4
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in the implementation. This would require a restructuring of the program, since eq. 6.4

depends on the temperature, which in turn depends on δ. Also, δ must be calculated for

each spatial position at every time step. This provides opportunities for further research.

NACA-0012 airfoil, 1-degree angle of attack

Now the inflow is rotated by 1 degree, to generate lift around the wing profile. This results in

a lower pressure above than below the wing, which in turn results in a difference between the

Cp above the wing and below the wing. The test case that has been examined is equal to the one

described in the previous section: ρ = 0.92, M = 0.85, p = 1.07. The results are shown in figure

6.7. Just as in the 0-degree case, the Cp profile of the CE/SE implementation does not match the

reference solution. However, the difference between γ= 1.4 and γ= 1.0125 is more clear in this

case. As can be seen, γ= 1.4 is much more similar to the reference solution than the γ= 1.0125

case, even though the reference solution uses γ = 1.0125. Possible causes have been discussed

in the 0-degree angle section. The added value of this 1-degree case, is that difference between

the values for γ is much more clear.

6.2.2 Analysis of the results

Because the NACA-0012 airfoil simulation did not give good results, this section is limited to the

only test case given in Brown and Argrow (1998) for perfect gasses on a backward step. Because

of this, this section will be shorter than could be expected.

The available test case consists of a volume filled with a gas with ρ = 1 and p = 1 and an inflow

gas with ρ = 1.34, ux = 0.4 and p = 1.64. After 0.6 seconds, the situation is as depicted in figure

6.8. The first observation is that the perfect gas moves faster than the Van der Waals gas, just as

in the 1D case. Second, the shock behaves differently for a Van der Waals gas and a perfect gas.

This is most clearly visible in the plots in figure 6.9. These plots show the density of both the

perfect gas and Van der Waals gas at y=0.5. It can be seen that the perfect gas is has a wave with

higher density than the influx, while the Van der Waals gas results in a wave with lower density.
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Figure 6.7: Pressure coefficient around the wing for 1 degree angle of attack



CHAPTER 6. COMPARISON OF THE TWO EOS 40

Figure 6.8: The backward step after 0.6 seconds for a perfect gas (left) and a Van der Waals gas
(right)

Figure 6.9: The density at y=0.5 for a perfect gas (left) and a Van der Waals gas (right)



7. Summary and Recommendations

7.1 Summary and Conclusions

In the first chapter of this thesis, two objectives were formulated. First, to adapt the CE/SE

scheme to use the Van der Waals model instead of the perfect gas law. The second goal was to

implement this on a computer and explore the differences between the two models by running

simulations. The first objective has been accomplished, and the results are described in chapter

4 and chapter 5. The explanations of the CE/SE scheme heavily depends on the thermodynamic

equations, which were derived in chapter 3.

The second goal has partially been achieved. The 1D implementation has been validated, and

the differences between the perfect gas model and the Van der Waals model are clearly visible.

For dense gases, the Van der Waals CE/SE implementation results in p1
p2

= 3.030, the perfect gas

CE/SE scheme results in p1
p2

= 2.212 and Argrow (1996) found p1
p2

= 3.002. According to theory, it

the ratio should be 3.031, so the CE/SE scheme is a significant improvement over the method

used by Argrow (1996), especially for dense gasses.

The 2D implementation has been successful for structured grids. For unstructured meshes, the

outcome of the VdW CE/SE scheme for a wave on the 30-degree wedge matches visually very

well with the reference solution. Only, if the same algorithm is used to analyze flow around the

wing, it does not produce the right results. A reason for this has not been found. Most likely there

is an error somewhere in the code. Probably, the outcome of the test case using the 30-degree

wedge is also incorrect, but this could not be observed visually. To detect this possible error, a

validated program for simulating Van der Waals flows around simple geometries is needed. This

program can be used to produce the numerical data instead of just the images. This validated

numerical data can compared to the numerical data produced using the CE/SE Van der Waals

implementation to check if the implementation in this thesis is correct.
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Therefore, most objectives have been met, only the unstructured mesh around the NACA-0012

profile gives visually invalid results.

7.2 Discussion

The project can roughly be divided into two sections. First of all, the stage where the theory

of the Van der Waals CE/SE scheme is derived. All the formulas have been derived by hand

and on a computer to minimize the probability of errors. Also, the Van der Waals equations

approximate the perfect Gas formulas if the pressure is low, which is to be expected. Therefore,

the chances of having errors in this section are relatively low, even more since the 1D version

has been validated using computer simulations.

The second stage is the implementation in C(++). During the implementation, two types of

errors can occur. First, a typo in a formula or a misplacement of brackets can result in incorrect

results and may be hard to detect. Secondly, errors may occur in rounding at the device. The

latter is often neglectable, except when extremely high precision is required. The former has a

high probability of occurring and a lot of time has been spent searching for bugs. A typo might

also be the reason the invalid results of the flow around the NACA-profile. This would imply that

the results for the wedge are also invalid, but that the difference is not observable by eye. A final

possibility is that the code provided as a starting point contained some error, which had not

been observed before. For example, it is known that the boundary condition in the algorithm is

not very precise, which may cause incorrect results at a boundary.

7.3 Recommendations for Further Work

Further research should focus on troubleshooting the invalid results of the flow around the

NACA-0012 profile. This would mainly consist of debugging the code, implementing the new

γ−δ relation and checking the precision of the boundary condition. Once valid results have

been obtained, the algorithm can be used to simulate flow around different wing profiles and

other angles of attack.

Another way to extend the research of this paper would be to replace the CE/SE Euler solver by
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a CE/SE Navier-Stokes solver. Incorporating viscous effects would greatly increase the precision

for higher angles of attack. Finally, the Van der Waals model can be replaced by more advanced

equation of states, such as the Peng-Robinson EOS. This would increase precision, especially

around the critical point, where the Van der Waals model fails to produce good results.



A. Appendix A

A.1 Derivation of a formula for the speed of sound

As described in section 3.3, the speed of sound is given by

ā2 = p̄

ρ̄2

(∂p̄

∂ē

)
ρ̄
+

(∂p̄

∂ρ̄

)
ē

(A.1)

and the Van der Waals equation of state can be written as:

p̄ = R̄T̄ ρ̄

1− b̄ρ̄
− ᾱρ̄2 (A.2)

Plugging A.2 into A.1, gives

p̄

ρ̄2
=

ρ̄R̄T̄
1−b̄ρ̄

− ᾱρ̄2

ρ̄2
= R̄T̄

ρ̄(1− b̄ρ̄)
− ᾱ

(∂p̄

∂ē

)
ρ̄
= δρ̄

(1− b̄ρ̄)
(A.3)

(∂p̄

∂ρ̄

)
ē
= (δē +2δᾱρ̄)(1− b̄ρ̄)+b(ρ̄δē +δᾱρ̄2)

(1− b̄ρ̄)2
−2ᾱρ̄

= b̄ρ̄δ(c̄v T̄ − ᾱρ̄)+ b̄δᾱρ̄2 +δ(c̄v T̄ − ᾱρ̄)+2δᾱρ̄− b̄ρ̄δ(c̄v T̄ − ᾱρ̄)−2b̄δᾱρ̄2

(1− b̄ρ̄)2
−2ᾱρ̄

= R̄T̄ +δᾱρ̄−bδᾱρ̄2

(1− b̄ρ̄)2
−2ᾱρ̄

= R̄T̄

(1− b̄ρ̄)2
+ δᾱρ̄

(1− b̄ρ̄)
(A.4)

44
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This leads to the following dimensional equation for the speed of sound:

ā2 = (
R̄T̄

ρ̄(1− b̄ρ̄)
− ᾱ)

δρ̄

(1− b̄ρ̄)
+ R̄T̄

(1− b̄ρ̄)2
+ δᾱρ̄

(1− b̄ρ̄)
−2ᾱρ̄

= δR̄T̄ + R̄T̄

(1− b̄ρ̄)2
+ δᾱρ̄−δᾱρ̄

(1− b̄ρ̄)
−2ᾱρ̄

= (1+δ)R̄T̄
( 1

1− b̄ρ̄

)2 −2ᾱρ̄ (A.5)

And in non-dimensional form:

a2R̄T̄c = (1+δ)
9R̄T̄c T

(3−ρ)2
−2α

R̄T̄c

ρ̄c
ρρ̄c

a2 = (1+δ)
9T

(3−ρ)2
−2 · 9

8
ρ

= 9

4

[
(1+δ)

4T

(3−ρ)2
−ρ)

]
(A.6)

A.2 The 1D Jacobian matrix for the Euler equation

This section is devoted to deriving the Jacobian matrix A = ∂ fm
∂uk

, where m and k are 1,2 and 3

respectively and

u1 = ρ u2 = ρv u3 = ρE

f1 = ρv f2 = ρv2 +Zc p f3 = (ρE +Zc p)v

Because the equation for p is different for a Van der Waals gas and a perfect gas, both Jacobians

will be different and are calculated differently. The matrix for each EOS is given in the next to

subsection.
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A.2.1 Perfect gas

For a perfect gas, the Jacobian has already been calculated and is given in Chang (1993):

A =



0 1 0

−3−γ
2

(
u2
u1

)2
(3−γ) u2

u1
γ−1

(γ−1)
(

u2
u1

)3 −γu2u3
(u1)2 γu3

u1
− 3(γ−1)

2

(
u2
u1

)2
γ
(

u2
u1

)


(A.7)

As normal, γ is the constant specific heat ratio
c̄p

c̄v
.

A.2.2 Van der Waals gas

The Jacobian for the Van der Waals gas had to be derived explicitly for this project. In order to

keep the equations readable, they will refer to the derivative of the pressure and the velocity.

These derivatives will be derived first. The pressure is defined by equation 3.13:

p = ρδ(8E −4u2 +9ρ)

3−ρ −3ρ2

=
u1δ(8 u3

u1
−4

(u2
u1

)2 +9u1)

3−u1
−3(u1)2

=
δ(8u3 −4 (u2)2

u1
+9(u1)2)

3−u1
−3(u1)2 (A.8)

Therefore,

∂p

∂u1
=
δ
[

4
(u2

u1

)2 +18u1

]
(3−u1)

+
δ
[

8u3 −4 (u2)2

u1
+9(u1)2

]
(3−u1)2

−6u1

∂p

∂u2
=

[
−8δu2

u1

]
(3−u1)

(3−u1)2
=−

8δu2
u1

(3−u1)

∂p

∂u2
=

[
8δ

]
(3−u1)

(3−u1)2
= 8δ

(3−u1)
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Using the equations above, we obtain the following values for the Jacobian:

∂ f1

∂u1
= ∂u2

u1
= 0

∂ f1

∂u2
= ∂u2

u2
= 1

∂ f1

∂u3
= ∂u2

u3
= 0 (A.9)

∂ f2

∂u1
= ∂(Zc p +ρv2)

∂u1
= Zc

∂p

∂u1
−

(u2

u1

)2
(A.10)

∂ f2

∂u2
= ∂(Zc p +ρv2)

∂u2
= Zc

∂p

∂u2
+2

u2

u1
(A.11)

∂ f2

∂u3
= ∂(Zc p +ρv2)

∂u3
= Zc

∂p

∂u3
(A.12)

∂ f3

∂u1
= ∂

[
(ρE +Zc p)v

]
∂u1

=−u3u2

(u1)2
+Zc

[ ∂p

∂u1

u2

u1
−p

u2

(u1)2

]
(A.13)

∂ f3

∂u2
= ∂

[
(ρE +Zc p)v

]
∂u2

= u3 +Zc

[ ∂p

∂u2

u2

u1
+p

1

u1

]
(A.14)

∂ f3

∂u3
= ∂

[
(ρE +Zc p)v

]
∂u3

= u2

u1
+Zc

∂p

∂u3

u2

u1
(A.15)

The equations A.9 to A.15 form the Jacobian matrix A for the Van der Waals Euler equation.

A.3 The 2D Jacobian matrix for the Euler equation

A.3.1 Van der Waals gas

The Jacobians for the Van der Waals Euler equation are given by:

Ax =



0 1 0 0

−u2
x +Zc pu1 2ux +Zc pu2 Zc pu3 Zc pu4

−uxuy uy ux 0

Zc pu1ux − (ρE+Zc p)ux
ρ Zc pu2ux − (ρE+Zc p)

ρ (Zc pu3ux (1+Zc pu4)ux


(A.16)
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Ay =



0 0 1 0

−uxuy uy ux 0

−u2
y +Zc pu1 Zc pu2 2uy Zc pu3 Zc pu4

Zc pu1uy − (ρE+Zc p)uy

ρ
Zc pu2uy − (ρE+Zc p)

ρ
(Zc pu3uy (1+Zc pu4)uy


(A.17)

where

pu1 =
δ(4(u2

x +u2
y )+18ρ) · (3−ρ)+ (ρδ(8E −4(u2

x +u2
y )+9ρ))

(3−ρ)2
−6ρ (A.18)

pu2 =
(−8δ∗uy )(3−ρ)

(3−ρ)2
(A.19)

pu3 = (−8δ∗ux)(3−ρ)

(3−ρ)2
(A.20)

pu4 = 8δ(3−ρ)

(3−ρ)2
(A.21)

A.4 Derivation of condition for invertible Jacobian

A.4.1 Perfect gas

From linear algebra, we known that the inverse of a matrix exists if and only if all its eigenval-

ues are non-zero. Maple (Monagan et al. (2017)) has been used to find the eigenvalues of the

Jacobian matrix, as given in A.7. The eigenvalues are:


u

u +
p

4δ2ρE+4δρ2E−2δ(ρu)2−2(δρu)2

2ρ

u −
p

4δ2ρE+4δρ2E−2δ(ρu)2−2(δρu)2

2ρ

=


u

u +ν
u −ν

 (A.22)
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where

ν=
√

4δ2ρE +4δρ2E −2δ(ρu)2 −2(δρu)2

2ρ

=
√
δ(δ+1)(4ρ2E −2(ρu)2)

2ρ

=
√
δ(δ+1)

(
E − 1

2
u2

)
= a (A.23)

Hence, the eigenvalues of A are u, u +a and u −a, from which is follows that the eigenvalues of

[I− (A+)2] are: 
1−

(
∆t
∆x u

)2

1−
(
∆t
∆x (u +a)

)2

1−
(
∆t
∆x (u −a)

)2

 (A.24)

Defining the Courant number C by C = u∆t
∆x ≤ Cmax (Courant et al. (1967)), all eigenvalues are

non-zero iff:

C 6= 1 ∧ C ± ∆t

∆x
a 6= 1

For most explicit solvers, such as the CE/SE scheme, Cmax = 1, so then the condition reduces

simply to:

C + ∆t

∆x
a ≤ 1 (A.25)

A.4.2 Van der Waals gas

Following the same strategy as above, we calculate the eigenvalues, using Maple:


u

u +ν
u −ν

 (A.26)
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with

ν2 = 9

16

−4(u1)5 +24(u1)4 +18δ2(u1)3 +18δ(u1)3 −36(u1)3 +16δu3u1 +16δ2u3u1 −8δ2(u2)2 −8δ(u2)2

(−3+u1)2(u1)2

= 9

8

−2(u1)3 +12(u1)2 −18(u1)+δ(δ+1)
(
9u1 +8 u3

u1
−4( u2

u1
)2

)
(−3+u1)2

= 9

8

−2ρ(−3+ρ)2 +δ(δ+1)
(
8 E
ρ −4u2 +9ρ

)
(−3+ρ)2

= 9

4

[
δ(δ+1)

4T

(−3+ρ)2
−ρ

]
= a2 (A.27)

This is the same result as for the perfect gas, so the rest of the derivation is equal to that for a

perfect gas. Therefore we can conclude that [I−A+2] is invertible if:

C + ∆t

∆x
a ≤ 1 (A.28)



B. Appendix B

B.1 Explanation CE/SE using triangular mesh

This appendix is an continuation of chapter 5, showing the derivation of the CE/SE scheme

using triangular meshes. For this purpose, let us define a uniform three dimensional space-time

Euclidean space E3. This space is divided into congruent triangles, with in the center a hollow

or a solid dot. The hollow and solid dots are arranged in such a way that a if a dot is hollow, all its

neighbors are solid and vice versa, as depicted in figure B.1a and B.1b. The hollow dots represent

the mesh point at time step n = 0 and the solid dots are mesh points at time step n = 1
2 . In the

same way as conservation elements and solution elements were defined in chapter 4, they will

be defined in the 2D case. However, the geometry behind this is more complex and requires an

extensive explanation to be understandable for the reader. Since the exact dimensions of these

elements are not crucial in answering the main question of this thesis, it will not be discussed

here. A full description and proof of the geometrical properties of the conservation and solution

elements can be found in Chang et al. (1998), chapter 3 and 4. The most important conclusion

is that, just as in the 1D case, the boundary of a CE is formed by subsets of two neighboring SEs

on the previous time step. This ensures that a mesh point at time step n can be calculated based

on its neighboring mesh points at time step n − 1
2 .

Just as before, the function um(x, y, t ) can be approximated within the SE of mesh point ( j ,k) at

time t by its first-order Taylor expansion, which will be denoted by u∗
m(x, y, t ; j ,k, t ):

u∗
m(x, y, t ; j ,k, t ) = (um)n

( j ,k) + (umx)n
( j ,k)(x −x( j ,k))+ (umy )n

( j ,k)(y − y( j ,k))+ (umt )n
( j ,k)(t − t n) (B.1)

where (um)n
( j ,k) is the value of um at mesh point ( j ,k) at time t . (umx)n

( j ,k) and (umx)n
( j ,k) are the

spatial derivatives in the x- and y-direction of um at this mesh point. Also, x( j ,k), y( j ,k) ant t n are

51
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(a) The 2D mesh

(b) The coordinates of the mesh points at time step
n =±1

2 ,±3
2 ,±5

2 ...

respectively the x-, y- and time coordinate of ( j ,k). Using the same notation, can approximate

the flux in the x- and y-direction at every point within SE of mesh point ( j ,k):

f x∗
m (x, y, t ; j ,k, t ) = ( f x

m)n
( j ,k) + ( f x

mx)n
( j ,k)(x −x( j ,k))+ ( f x

my )n
( j ,k)(y − y( j ,k))+ ( f x

mt )n
( j ,k)(t − t n) (B.2)

f y∗
m (x, y, t ; j ,k, t ) = ( f y

m)n
( j ,k) + ( f y

mx)n
( j ,k)(x −x( j ,k))+ ( f y

my )n
( j ,k)(y − y( j ,k))+ ( f y

mt )n
( j ,k)(t − t n) (B.3)

Here, ( f i
m)n

( j ,k), ( f i
mx)n

( j ,k), ( f i
my )n

( j ,k), ( f i
mt )n

( j ,k) are the flux, spatial derivative of the flux in the x-

and y-direction and the time derivative, all along the i axis, where i = x, y . Hence, we can define

~h∗
m = 〈

f x∗
m , f y∗

m ,u∗
m

〉
, such that equation 5.1 can be rewritten to:

∮
S(V )

~h∗
m ·d~s = 0, m = 1,2,3,4 (B.4)

Before evaluating this equation, a new coordinate system will be defined, to recast the results in

more convenient forms. As can be seen in figure B.1b, the x-y coordinate system is not the most

easy way to describe the mesh points. The new coordinate system consists of two axes ζ and η,

such that the coordinates (ζ,η) of any mesh point ( j ,k,n) are given by

ζ= j ·∆ζ and η= k ·∆η (B.5)
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where ∆ζ and ∆η are the mesh intervals in the ζ- and η-directions, respectively. It is shown in

Chang et al. (1998) that a transformation matrix T and its inverse T −1 exist, such that:

x

y

 = T

ζ
η

 and

ζ
η

 = T −1

x

y

 (B.6)

Now, recall the definition of the Jacobian matrix at a mesh point ( j ,k,n):

(
Ai )n

j ,k =
(∂ f i

m

∂ul

)n

j ,k
where , m, l = 1,2,3,4 (B.7)

where i is the dimensional space component. Combining equation B.6 and equation B.7 gives:

(Aζ)n
j ,k

(Aη)n
j ,k

 = T −1

(Ax)n
j ,k

(Ay )n
j ,k

 and

(umζ)n
j ,k

(umη)n
j ,k

 = T

(umx)n
j ,k

(umy )n
j ,k

 (B.8)

Also, to increase readability, all variables that are associated with the same mesh point, will be

stripped from its indices j ,k, and n.

Now the integral in equation B.4 can be evaluated. This leads to the following equation, as de-

rived in Appendix C in Chang et al. (1998):

[
Σ

(q)+
r 1 ~u +Σ(q)+

r 2

∆ζ

6
~uζ+Σ(q)+

r 3

∆η

6
~uη

]n

( j ,k)
=

[
Σ

(q)−
r 1 ~u +Σ(q)−

r 2

∆ζ

6
~uζ+Σ(q)−

r 3

∆η

6
~uη

]n− 1
2

( j ,k)
(B.9)

with q = 1,2; r = 1,2,3; m = 1,2,3,4

which, by summing over q and r , leads to:

~un
( j ,k) =

1

3

3∑
r=1

[
Σ±

r 1~u +Σ±
r 2
∆ζ

6
~uζ+Σ±

r 3
∆η

6
~uη

]n− 1
2

( j ,k;r ) , r = 1,2,3 (B.10)

In these equations:

• ~u,~uζ and ~uη are 4x1 column vectors, formed by um ,umζ and umη respectively with m =
1,2,3,4.
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• Σ±
r q with r, q = 1,2,3, are the elements of the so-called coefficient matrix:


I±Aζ+±Aη+ ±(I±Aζ+±Aη+)(I∓Aζ+) ±(I±Aζ+±Aη+)(I∓Aη+)

I∓Aζ+ ∓(I∓Aζ+)(2I±Aζ+) ±(I∓Aζ+)(I∓Aη+)

I∓Aη+ ±(I∓Aη+)(I∓Aζ+) ∓(I∓Aη+)(2I±Aη+)

 (B.11)

• Aζ+ and Aη+ denote the normalized values of the matrix A, respectively 3∆t
2∆ζAζ and 3∆t

2∆ηAη

• Σ− is used to advance from time step n ∈ Z to time step n + 1
2 and Σ+ to to advance from

n + 1
2 to n +1. This means that the time every first time step is different from the second

time step, which is different from the 1D case, in which both are the same.

In order to find the marching step for uζ and uη, we have to introduce a new vector ~S±
r :

(
~S±

r

)n

j
=

[(
I(−) ◦Σ+

r 1

)n
( j ,k)

]−1 × [
Σ±

r 1~u +Σ±
r 2
∆ζ

6
~uζ+Σ±

r 3
∆η

6
~uη

]n− 1
2

( j ,k;r ), r = 1,2,3 (B.12)

where I(−) =


1 −1 −1

1 −1 −1

1 −1 −1


and the symbol ◦ denotes the Hadamard product. As shown in Appedix D.3 in Chang et al.

(1998), the inverse in B.12 is guaranteed to exist if the CFL number is lower than 2
3 , but numerical

studies suggest that it is generally safe to assume existence as long as the CFL number is smaller

than 1. Multiplying B.9 from the left with
[(

I(−) ◦Σ+
r 1

)n
( j ,k)

]−1
and rewriting leads to the final four

equations of our marching scheme, as shown in Chang et al. (1999). To advance from time step

n ∈Z to time step n + 1
2 :

(
~u+
ζ

)n
( j ,k) =

2

∆ζ

(
~S−

2 −~S−
1

)n
j (B.13)(

~u+
η

)n
( j ,k) =

2

∆η

(
~S−

3 −~S−
1

)n
j (B.14)
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And similarly, to advance from n + 1
2 with n ∈ Z to time step n +1, one has to use the following

equations:

(
~u+
ζ

)n
( j ,k) =

2

∆ζ

(
~S+

1 −~S+
2

)n
j (B.15)(

~u+
η

)n
( j ,k) =

2

∆η

(
~S+

1 −~S+
3

)n
j (B.16)

To conclude, the marching scheme is formed by the two marching steps described above. That

is, to advance from n ∈Z to n+ 1
2 one first applies equation B.10 usingΣ− and secondly equation

B.13 and B.14. Next, to advance from n + 1
2 to n + 1, one applies equation B.10 using Σ+ and

secondly, equation B.15 and B.16.

The basic idea is similar to the one-dimensional CE/SE scheme, but the geometry and algebra is

more complex. A more general and extensive explanation of the scheme can be found in Chang

et al. (1998), so if the reader needs more background information, he/she can best consult this

paper.
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