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Abstract

In this thesis we study multivariate models using twenty financial time
series. The models are obtained by combining copula functions with multi-
variate GARCH models. The advantage is that these models can account for
the volatile behaviour of the time series through the multivariate GARCH
specification, while allowing the copula functions to explicitly account for
the underlying dependence structure. The dependence structure of the time
series will be described by a rank correlation and tail-dependence coeffi-
cients. The main objective of this thesis is to identify adequate models for
fitting and forecasting of multivariate time series data and how these mod-
els describe the underlying dependence structure. We achieve this by eval-
uating the models using three different tests: one for model selection, one
for model validation and one for model ranking. For comparison, we also
evaluate traditional multivariate models. By combining the findings of the
three tests, we conclude that the DCC-ARMA-GJR model incorporated with
the t copula is the most appropriate. The main finding is that financial crises
do not necessarily affect the degree of correlation of pairs of stock indices.
The change in correlation can differ significantly per event and can be rela-
tively limited. Furthermore, many stock markets have little to no tendency
to crash or boost together, sometimes even in case of relatively high corre-
lation.

JEL classification. C22; C51; C52; C53; G17; G32.
Keywords. Copulas; Dependence structure; Model evaluation; Multivari-
ate GARCH models; Value-at-risk.
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1 Introduction

The Basel Committee on Banking Supervision (BCBS) concerns itself with the
health of financial institutions. The BCBS requires financial institutions to hold
a minimum amount of capital to cover potential losses. It is of interest of finan-
cial institutions to constantly review their investment strategies and risk profiles
to make sure that they still comply the regulations, but at the same time stay
competitive in the market.

The calculation of the minimum required amount of capital for the market risk
is currently based on the so-called Value-at-Risk (VaR) risk measure. The VaR is
widely considered in risk management and currently it is practised by the BCBS
in Basel III and by the European Union in Solvency II. The VaR is a quantile
of the return (or loss) distribution over a given time period. The regulators of
the BCBS and the European Union allow financial institutions to use their own
models to come up with estimates for the VaR and consequently the minimum
required amount of capital. However, they have to convince the regulators that
their model performs the estimation properly. Otherwise the regulators will
determine this amount, which could be relatively large. An overestimation of
the VaR implies that the financial institution has to hold a relatively large amount
of capital aside, which could lead to lower overall profits. On the other hand,
an underestimation implies that the financial institution has a larger exposure to
risks, which could lead to a default. Thus it is important for financial institutions
to use models that are able to accurately estimate the risk measure. Related
to this, it is important that these models are able to accurately forecast future
values.

The Vector Autoregressive (VAR) model is a traditional model that investigates
the linear interdependencies among multiple time series. In this model each
variable at a certain time t, such as the returns of an asset, is explained as a linear
combination of its own lags and the lags of other variables, such as the returns
of a different asset at time t − 1. A shortcoming of this model is that it does not
explicitly account for heteroskedasticity, also known as the time-varying variance
or volatility, and therefore lacks the ability to describe the volatile behaviour of
the time series.

As financial time series generally change quickly through time, it is important to
model the volatility accurately. Modelling the volatility of returns has attracted
a lot of attention ever since the introduction of the Autoregressive Conditional Het-
eroskedasticity (ARCH) and the Generalized ARCH (GARCH) model, respectively
developed by Engle (1982) and Bollerslev (1986), where the latter is currently the
most popular one. Both models have in common that they explicitly account for
the volatile behaviour of time series, thus providing a solution to the shortcom-
ing of the VAR model. As it is of great interest to understand the comovements
of financial returns, it is suggested to extend the consideration to Multivariate
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GARCH (MGARCH) models. Many different MGARCH models have been pro-
posed and can be found in the literature, see Bauwens et al. (2006) and Silven-
noinen & Terävirta (2008) for an overview. Empirically, many MGARCH models
have shown to be applicable for financial time series modelling (Billio & Caporin
2006, Cappiello et al. 2006, Engle 2002) and therefore are widely studied in fi-
nancial econometrics.

In recent years, a lot of attention has been paid to measuring the interdependence
of financial time series data. Many of these studies are based on the concept of
copulas. Copulas are very popular and useful tools for multivariate modelling
in many fields, such as actuarial science, finance, biomedical studies and engi-
neering (Yan 2007). Empirically, copulas have shown to be powerful tools for
modelling the dependence structure in financial risk management (Naifar 2016,
McNeil et al. 2015, Aloui et al. 2011, Ghorbel & Trabelsi 2009). An advantage of
copulas, which is particularly desirable for financial institutions, is that they can
be used to estimate the VaR risk measure. Another advantage is that they can
effectively be used in combination with time series models such as the GARCH
models. Furthermore, copulas have the nice property that they do not require
the multivariate joint distribution and the margins to be of the same type of dis-
tribution.

This thesis provides an thorough overview of the performance and features of
multivariate GARCH models. Moreover, this thesis can be used as a reference
in risk management for selecting adequate multivariate models.

Research question
The distribution of asset log losses are often assumed to be normally distributed
for simplicity. This is not in agreement with the stylized facts that these dis-
tributions are fat-tailed and leptokurtic (McNeil et al. 2015). As a result, the
models based on the assumption of normality tend to underestimate the risk.
Also, many multivariate time series models, such as the traditional MGARCH
models, use the conventional Pearson correlation coefficient as a basis for mea-
suring the overall dependence. As mentioned by Embrechts et al. (2001), this
has some serious drawbacks and could lead to a mismeasure of the dependence
structure. To overcome this, Embrechts et al. (2001) suggest to use rank corre-
lations instead. Additionally, we describe the extremal dependence of pairs of
time series by tail-dependence coefficients.

For most sets of time series data it is not directly clear which model is conve-
nient for describing certain stylized facts, such as the interdependence. In this
thesis we will therefore study a number of different MGARCH-type models. We
consider data of twenty different financial stock indices worldwide: seven from
Asia, seven from Europe, two from North-America and six from South-America.
Each of the MGARCH-type models is combined with a particular copula to try
to improve the estimation of the dependence structure. These models are also
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known as copula-MGARCH models. The copula allows us to effectively use dif-
ferent distributions for the log losses and besides can be used to estimate rank
correlations and tail-dependence coefficients. The fit of the copula-MGARCH
and traditional MGARCH (without copula modelling) models are evaluated by
in-sample fit and out-of-sample forecast tests and compared to each other. Using
the model with the overall optimal in-sample fit and out-of-sample forecast per-
formance, we try to describe the dependence structure of the time series as ac-
curately as possible by rank correlations and tail-dependence coefficients. These
results provide proxies for (not) taking on a position of a particular stock market
to hedge against other markets. Hence, the research questions are formulated
as follows.

According to the criteria of the test procedures, do copulas improve the fit and the fore-
cast of the traditional MGARCH models? Also, do the models that are based on non-
normality assumptions perform better than the models that are based on normality as-
sumptions? How does the optimal model describe the dependence structure of the finan-
cial time series data?

In order to answer the research questions, we formulate the following sub-questions:

1. How do we test the in-sample fit performance of the models?

2. How do we test the out-of-sample forecast performance of the models?

3. How do the copula-MGARCH models perform the fit and forecast of the
financial time series data relative to the traditional MGARCH models?

4. How do we obtain estimates of the rank correlations and tail-dependence
coefficients in order to describe the dependence structure?

This thesis contributes to the literature on multivariate modelling by incorporat-
ing copula theory into MGARCH models and additionally evaluating the per-
formance of these models using different in-sample and out-of-sample tests. The
remainder of the thesis is organized as follows. Section 2 introduces the basics
of time series analysis, the GARCH-type models of interest, copula theory and
lastly the model that is a combination of GARCH-type models and copulas. The
empirical data and descriptive statistics are presented in Section 3. The result
of our study is shown in Section 4. Section 6 concludes the thesis and Section 7
discusses our methodology and consequently provides suggestions for further
studies.

2 Theoretical background

In this section we will introduce the basic definitions in time series analysis as
well as the (M)GARCH models of interest and copula theory. In the end of this
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section we will propose hybrid models, that are constructed by combining the
concept of the MGARCH models and copulas. The proposed models enjoy the
advantages from the separate concepts and corrects for the disadvantages. The
theory in this section is adopted from McNeil et al. (2015), if not mentioned dif-
ferently.

2.1 Time series analysis

We start by introducing the main definitions and concepts in time series analysis
that are required for our study of the GARCH model.

A time series model for a risk factor, e.g. the daily (percentage) losses of a market
index, is a discrete-time process {Xt}t∈Z defined on a probability space (Ω,F ,P).
Time series models are generally used for forecasting future values.

Moment functions. Since time series processes are series of random variables,
we are dealing with moment functions. The mean function µ(t) and the autoco-
variance function γ(t, s) of a time series model {Xt}t∈Z are defined as

µ(t) = E[Xt], t ∈ Z,
γ(t, s) = E[(Xt − µ(t))(Xs − µ(s))], t, s ∈ Z,

provided that the functions exists. Similarly as for the case without time-dependence,
the autocovariance at two same time period is the variance, written as γ(t, t) =
var(Xt), t ∈ Z.

Stationarity. The time series models considered in this thesis deal with one of
the following two types of stationarity of the time series.

Definition 2.1. The time series {Xt}t∈Z is (strictly) stationary if, for all t1, . . . , tn, k ∈
Z and all n ∈ N,

(Xt1 , . . . ,Xtn)′
d
= (Xt1+k, . . . ,Xtn+k)′,

where d
=means that the two series have the same distribution.

In other words, a time series is (strictly) stationary if the distribution of the ob-
servations in any two equally-spaced time periods are the same. The next type
of stationarity is closely related to strictly stationarity.

Definition 2.2. The time series {Xt}t∈Z is covariance stationary if it satisfies the
following two properties

µ(t) = µ, t ∈ Z, (1)
γ(t, s) = γ(t + k, s + k), t, s, k ∈ Z, (2)
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provided that the first two moments, E[Xt] and E[X2
t ], exist.

The meaning of the first equation speaks for itself. The second equation implies
that the “movements” of the time series is similar in any two equally-spaced.
Generally speaking, both types of stationarities tell us that the time series behave
similarly in any two equally-spaced time periods. It can be shown that a strictly
stationary time series with finite variance is covariance stationary.

From (2) we have that the autocovariance function between Xt and Xs of a co-
variance stationary process only depends on the lag |t − s|, i.e.

γ(t − s, 0) = γ(t, s) = γ(s, t) = γ(s − t, 0).

Therefore, the autocovariance function of a covariance stationary process can be
written as a function of one variable:

γ(t) ≡ γ(t, 0), ∀t ∈ Z,

and so that γ(0) = var(Xt) for all t ∈ Z. Using this notation, we define the fol-
lowing function.

Definition 2.3. For a covariance stationary process {Xt}t∈Z , the autocorrelation
function (ACF) ρ(t), or the autocorrelation at lag t, is defined as

ρ(t) = ρ(Xt,X0) = γ(t)/γ(0), ∀t ∈ Z.

In other words, autocorrelation is the correlation of a time series with its own
past and future values. The ACF plays an important role in the construction of
the time series models.

In financial time series analysis the ACF is often considered. The ACF can be
used to detect whether or not the data is correlated, and if so, at which lags. Put
differently, it can be used to detect randomness in the data. For independent
data, the autocorrelations should be close to zero for any lags. Otherwise, for
dependent data, one or more of the autocorrelations should differ significantly
from zero. However, note that if the autocorrelations do not differ significantly
from zero, then the data can still have dependence. The result of the ACF is
just a sufficient test of independence. There are formal numerical tests to check
for independence, also known as portmanteau tests. This includes the Ljung–Box
test, see Appendix A

White noise processes. The white noise (WN) process is the building block of
a classical time series model, namely the ARMA models. A WN process is a
stationary process without autocorrelation, defined as follows.

Definition 2.4. The time series {Xt}t∈Z is a WN process if it is covariance station-
ary with autocorrelation function

ρ(h) =

{
1, h 6= 0,
0, h = 0.
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A WN process with mean µ and variance σ2 is denoted as WN(µ, σ2). An exam-
ple of a WN process is the so-called strict white noise (SWN) process, defined as
follows.

Definition 2.5. A discrete-time stochastic process {Zt}t∈Z is a SWN process if it
is a series of independent and identically-distributed (i.i.d.) and finite variance
random variables.

A SWN process with mean µ and variance σ2 is denoted as SWN(µ, σ2). The
SWN process serves as a building block for the GARCH models. It represents
the so-called innovations (or standardized residuals) of the GARCH models.

At last, we introduce the Autoregressive-Moving-Average (ARMA) model, which
is widely used in financial risk management. The main property of the ARMA
model is that it describes the autocorrelation in the time series. This model will
play an important role in our analysis: it will be used in combination with the
standard GARCH model.

Definition 2.6. Let {εt}t∈Z be WN(0, σ2
ε). The process {Xt}t∈Z is an ARMA(p, q)

process if it is covariance stationary and it satisfies the following difference equa-
tion.

Xt = µt + εt,

µt = µ +

p∑
i=1

φi(Xt−i − µ) +
q∑

j=1

λ jεt− j, ∀t ∈ Z.

In this model we have that the value of the demeaned process, i.e. Xt − µ, is
expressed as a function of its own lagged values and the lagged values of some
error terms. This parametrization allows us to explicitly describe the autocor-
relation of the time series, i.e. how the current value is related to the values in
past.

2.2 Risk measure

In risk management, the upper tail of the loss distribution is commonly consid-
ered to identify the potential extreme losses. This risk can be expressed numer-
ically by risk measures. One such risk measure is the VaR, which is currently
widely used in risk management. There are unconditional and conditional vari-
ants of the VaR. We first introduce the unconditional variant in order to get a
better understanding of the generally concept of the VaR.

Let {X} be a series representing the daily losses and denote its distribution func-
tion by FX(x) = P(X ≤ x).
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Definition 2.7. For a given confidence level (or quantile level) α ∈ (0, 1), the
unconditional VaR at the confidence level of α is defined as

VaRα = inf{x ∈ R | FX(x) ≥ α}. (3)

In risk management, α ≥ 0.95 is usually considered for losses time series. The
unconditional VaR, at a confidence level α = 0.95, is illustrated in Figure 1. From
the figure we can see that the unconditional VaR is actually the α-quantile of the
loss distribution function. So it answers the following question:

What value will our losses not exceed with a certain probability?

For example, the VaR for a one-day period at a confidence level of 95% is the
worst loss that would be expected to occur in a single day over the next 20 days,
under the assumption that the loss distribution is identical every day.

Figure 1: 95% unconditional VaR illustration (McNeil et al. 2015).

The unconditional VaR does not take into account the information at a specific
time period t. As it is likely that the value of the loss at time period t is influenced
by the value of the loss at time period t − 1 to a greater extend than the values
of the losses at time periods t − 2, t − 3, . . ., we would like to account for the
development of the time series through time. For this, we define the conditional
variant of the VaR.

Let {X} be a strictly stationary time series of daily losses and let us denote the
information that is available at time period t by Ft. Further, we denote the con-
ditional distribution function of the losses by FXt+1|Ft(x) = P(Xt+1 ≤ x | Ft).

13



Definition 2.8. For a given confidence level α ∈ (0, 1), the (conditional) VaR over
the next time period at the confidence level α is defined as

VaRt
α = {x ∈ R | FXt+1|Ft(x) ≥ α}. (4)

As the conditional variant of the VaR is of interest for our study, we will from
now on mean the conditional VaR if we talk about the VaR. 1

In risk management it is of interest to study the accuracy of the VaR estimation
of a model. The optimal estimated VaRs are the ones that are sufficiently high
so that in periods of high losses, the financial institution has enough capital/re-
serves to cover the losses. However, these estimated VaRs should not be too low
either, because the saved capital is costly in the sense that the financial institution
is not able to invest it. The evaluation of the estimated VaRs can be done by dif-
ferent backtests. In general, by backtesting we assess the out-of-sample forecast
performance of the model. Backtests are in fact used for model validation.

For the backtests of the VaR we are interested in the number of exceptions (or
violations), where an exception is said to occur if xt > VaRt−1

α . Thus the number
of exceptions over the time period T + 1, . . . ,T + n and for a given confidence
level α ∈ (0, 1) is equal to

In
α =

T+n∑
t=T+1

1
{xt>VaRt−1

α }
,

where 1
{xt>VaRt−1

α }
= 1 if xt > VaRt−1

α and 0 otherwise.

The following three VaR backtests are commonly employed.

1. Unconditional coverage backtest. This is a test to examine the accuracy of the
VaR estimation. The null hypothesis states that the observed number of
exceptions is equal to the expected number of exceptions.

2. Independence backtest. This is a test to examine the clustering of the excep-
tions. The null hypothesis states that the exceptions occur independently
throughout the backtesting period.

3. Conditional coverage backtest. This is a test to examine simultaneously the
accuracy of the VaR estimation and the clustering of the exceptions. The
null hypothesis states that the observed number of exceptions is equal to
the expected number of exceptions and that the exceptions occur indepen-
dently throughout the backtesting period.

1Some literature use the terminology of ‘conditional VaR (CVaR)’ for the definition of a dif-
ferent risk measure that is also known as the unconditional Expected Shortfall (ES). The conditional
VaR in this thesis defines the conditional variant of the VaR and it is by no means equal to the
CVaR or unconditional ES.
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See Appendix B for a detailed description of these backtests. As we can see in
this appendix, each backtests is a likelihood ratio test. Thus, the VaR estimation
performance of the models can be evaluated by p-values. In all cases we prefer
not to reject the null hypothesis, which corresponds to a p-value greater or equal
to 0.05.

The conditional coverage backtest is the most comprehensive among the three
as it is a compound of the other two backtests. To specify the VaR estimation we
will therefore focus more on the results for this test than the other two tests. For
a complete overview of the VaR estimation performance of the models, we will
also perform the other two backtests and compare the accuracy, independence
and joint performance.

2.3 GARCH models

In general it is more difficult to forecast a time series accurately if it is heteroskedas-
tic than if it is homoskedastic (i.e. constant volatility). Since most, if not all,
financial time series exhibit heteroskedasticity, it is essential for financial insti-
tutions to make use of models that can describe the heteroskedasticity. One such
model is the GARCH model.

Definition 2.9. Let {Zt}t∈Z be SWN(0,1). The process {Xt}t∈Z is a GARCH(p, q)
process if it is strictly stationary and if it satisfies, for all t ∈ Z and some strictly
positive-valued process {σt}, the following equations.

Xt = σtZt, (5)

σ2
t = α0 +

p∑
i=1

αiX2
t−i +

q∑
j=1

β jσ
2
t− j, (6)

where α0 > 0, αi ≥ 0, i = 1, . . . , p, and β j ≥ 0, j = 1, . . . , q.

In equation (6) we see that the volatility, σt, is expressed as a function of its
own lagged values and lagged values of the process. This parametrization al-
lows us to explicitly describe the process by its volatility. It can be shown that
the necessary and sufficient condition for covariance stationarity of the GARCH
model is

∑p
i=1 αi +

∑q
j=1 β j < 1. In that case the variance is finite and given by

α0/(1 −
∑p

i=1 αi −
∑q

j=1 β j).

An important aspect in GARCH modelling is the assumption that we make about
the distribution of the innovations {Zt}t∈Z. Moreover, the assumption is crucial
for the goodness-of-fit of the model. In this thesis we restrict ourselves to the
normal, t and skewed t distribution for the innovations distribution.
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2.3.1 Extensions of the GARCH model

In the literature there is a large number of extensions of the GARCH model,
see Teräsvirta (2009) for a thorough overview. Each GARCH-type model is con-
structed for a particular purpose, mainly with the idea to improve older GARCH-
type models. For our study, we consider two extensions of the GARCH model.
The first extension is a combination of the ARMA and GARCH model, defined
as follows.

Definition 2.10. Let {Zt}t∈Z be a SWN(0,1) process. The process {Xt}t∈Z is an
ARMA(p1, q1)-GARCH(p2, q2) process if it is covariance stationary and if it satis-
fies, for all t ∈ Z and some strictly positive-valued process {σt}t∈Z, the following
equations.

Xt = µt + εt, (7)

µt = µ +

p1∑
i=1

φi(Xt−i − µ) +
q1∑
j=1

λ jεt− j, (8)

σ2
t = α0 +

p2∑
i=1

αiε
2
t−i +

q2∑
j=1

β jσ
2
t− j, (9)

where εt = σtZt, α0 > 0, αi ≥ 0, i = 1, . . . , p2, β j ≥ 0, j = 1, . . . , q2 and
∑p2

i=1 αi +∑q2
j=1 β j < 1.

This model can be seen as an ARMA(p1, q1) process with GARCH(p2, q2) errors,
i.e. where {εt}t∈Z = {σtZt}t∈Z is a WN(0, σ2

ε) process. This implies that the GARCH
errors, {εt}t∈Z, should be covariance stationary, because WN processes are de-
fined as covariance stationary processes. Since the necessary and sufficient con-
dition for covariance stationarity of the GARCH model is

∑p2
i=1 αi +

∑q2
j=1 β j < 1,

we build this condition into the definition of the ARMA-GARCH model. Ob-
serve that for p1 = q1 = 0 we have the standard GARCH model as in Definition
2.9.

The ARMA-GARCH model has the advantage that it is able to describe two im-
portant stylized facts of financial time series, namely the autocorrelation and the
heteroskedasticity. In practice, low-order ARMA and GARCH models like the
ARMA(p1, q1) with p1, q1 ∈ {0, 1, 2}, and GARCH(1, 1) models are commonly used
owing to its parsimony and the interpretability of the variables, see for example
Tang et al. (2015), Weiß (2013), Ghorbel & Trabelsi (2009) and Huang et al. (2009).
For that reason we will consider the ARMA(p1, q1)-GARCH(1, 1) models, where
we choose the optimal values for p1, q1 ∈ {0, 1, 2}: the pair (p1, q1) that results the
lowest Akaike Information Criterion (AIC) value is considered optimal. 2

2AIC = 2k − 2 ln(L), where k is the number of parameters and L is the value of the likelihood
function of the fitted model.
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The GARCH(p, q) model is symmetric in the sense that negative and positive
shocks in the previous time periods t − 1, . . . , t − p have the same impact on the
volatility at time t. According to economic theory, negative shocks tend to af-
fect the volatility more than positive shocks, especially for stock returns. This
asymmetry is called the leverage effect. Glosten et al. (1993) proposed the Glosten-
Jagannathan-Runkle-GARCH (GJR) model that extends the GARCH model by in-
corporating the leverage effect. More precisely, the model allows the volatility
to respond differently to negative and positive innovations in the past. The GJR
model can be extended in the similar way as the GARCH model in the ARMA-
GARCH model. The second extension that we consider is a combination of the
ARMA and GJR model, defined as follows (Würtz et al. 2009).

Definition 2.11. Let {Zt}t∈Z be a SWN(0,1) process. The process {Xt}t∈Z is an
ARMA(p1, q1)-GJR(p2, q2) process if it is covariance stationary and if it satisfies,
for all t ∈ Z and some strictly positive-valued process {σt}t∈Z, the following equa-
tions.

Xt = µt + εt, (10)

µt = µ +

p1∑
i=1

φi(Xt−i − µ) +
q1∑
j=1

λ jεt− j, (11)

σ2
t = α0 +

p2∑
i=1

αi
(
|εt−i| − γiεt−i

)2
+

q2∑
j=1

β jσ
2
t− j, (12)

where εt = σtZt, α0 > 0, αi ≥ 0, γi ∈ [−1, 1] is the leverage term, i = 1, . . . , p2,
β j ≥ 0, j = 1, . . . , q2 and

∑p2
i=1 αiE[(|Z| + γiZ)2] +

∑q2
j=1 β j < 1.

For the same reason as for the ARMA-GARCH models, we will consider low-
ordered ARMA(p1, q1)-GJR(1, 1) models, where the optimal values for p1, q1 ∈

{0, 1, 2} are chosen based on the AIC values.

2.3.2 Parameter estimation

The parameters of the two extensions, namely the ARMA-GARCH and ARMA-
GJR model, can be estimated by the maximum likelihood (ML) estimation proce-
dure. Since for our study we consider dynamic models, we denote the informa-
tion that is available at observation (here: time period) t by Ft and recall that the
conditional distribution function of the observations is given by

FXt |Ft−1(xt) = P(Xt ≤ xt | Ft−1).

Now we show that the distribution of the observations is characterized by the
innovations distribution. For time series of the form

Xt = µt + σtZt,
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we have

FXt |Ft−1(xt) = P(µt + σtZt ≤ xt | Ft−1) (13)
= P(Zt ≤ (xt − µt)/σt | Ft−1) (14)
= FZ((xt − µt)/σt), (15)

where FZ is the distribution function of the innovations {Zt}t∈Z. So we can write
the conditional density function of the observations as

fXt |Ft−1(xt) =
∂
∂xt

FXt |Ft−1(xt)

=
∂
∂xt

FZ((xt − µt)/σt)

=
1
σt

fZ((xt − µt)/σt),

where fZ is the density function of the innovations. Thus, for a sample of T
observations and vector of parameters θ, the conditional likelihood function is

L f (θ) =
T∏

t=1

fXt |Ft−1(xt)

=

T∏
t=1

1
σt

fZ
(

Xt − µt

σt

)
,

where µt and σt are respectively given by the ARMA and GARCH specification
in equations (11) and (12). Yet we require some initial values for the conditional
mean, volatility and error term, µ0, σ0 and ε0, since they are unobserved. For
µ0 and σ0 we use the theoretical unconditional values. That is, we let µ0 be the
sample mean and let σ0 be the sample standard deviation. In like manner, we let
ε0 be the true mean value of {εt}, i.e. ε0 = 0.

We have just seen that the distribution of the innovations characterizes the un-
derlying structure of the model and thus can have a great impact on the fitting
and forecasting performance of the model. For our study we assume that the
innovations either follow a standard normal (N), standard Student’s t (t) or stan-
dard skewed Student’s t (Skt) distribution. 3 Using the corresponding densities,
the conditional log-likelihood function for the innovations are respectively given
as follows (Peters 2001).

�N(θ) = −1
2

T∑
t=1

[
ln(2π) + ln(σ2

t ) +
(Xt − µt)2

σ2
t

]
(16)

�t(θ) = T ln

[
Γ
(
ν+1

2

)
√
π(ν − 2)Γ

(
ν
2

)] − 1
2

T∑
t=1

[
ln σ2

t + (ν + 1) ln
(

1 +
(Xt − µt)2

σ2
t (ν − 2)

)]
(17)

3This is because of the fact that the R package rmgarch (v.1.3-0) by Ghalanos 2015a only sup-
ports these three type of margins for the estimation of copula-MGARCH-type models.
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�Skt(θ) = T ln

Γ
(
ν+1

2

)
ln
(

2s
ξ+ 1

ξ

)
√
π(ν − 2)Γ

(
ν
2

)
 − 1

2

T∑
t=1

[
ln σ2

t + (ν + 1) ln
(

1 +
s(Xt − µt) + σtm

σt(ν − 2) ξ−1t

)]
,

(18)

where ν is the degrees of freedom (df), Γ is the gamma function, ξ is the asym-
metry (or skew) parameter,

m =
Γ
(
ν+1

2

)√
ν − 2

√
πΓ
(
ν
2

) (
ξ −

1
ξ

)
,

s =

√(
ξ2 +

1
ξ2 − 1

)
−m2, and

1t =

{
1 if xt ≥ −

σtm
s + µt,

−1 if xt < −
σtm

s + µt.

Using equations (16) – (18), the conditional log-likelihood function can be writ-
ten as

� f (θ) = ln L f (θ) (19)

= −

T∑
t=1

ln(σt) +
T∑

t=1

ln
[

fZ
(

Xt − µt

σt

)]
(20)

= −

T∑
t=1

ln(σt) + � j(θ), (21)

where j = {N, t,Skt}. 4 The ML estimate θ̂ is obtained by maximizing the condi-
tional log-likelihood function subject to σt > 0 (and ν > 2 in case of t and skewed
t distributed innovations). The ML estimation procedure of GARCH-type mod-
els is implemented in the R package rugarch (v.1.3-1) by Ghalanos (2015b).

2.3.3 VaR estimation

From equations (13) – (15) we have

FXt+1|Ft(x) = FZ((x − µt+1)/σt+1),

and so

zα = F−1
Z (FXt+1|Ft(x)) = F−1

Z (FZ((x − µt+1)/σt+1)) = (x − µt+1)/σt+1,

4Notice that the vector of parameters θ is different for every other distributed innovations.
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where zα is the α-quantile of the innovations Zt. By the definition of the VaR, see
(4), we can solve this equation for x to obtain the following expression for VaRt

α:

VaRt
α = µt+1 + σt+1zα.

Consequently, this VaR is estimated by

VaR
∧t

α = µ̂t+1 + σ̂t+1zα, (22)

where µ̂t+1 and σ̂t+1 are ML estimates following respectively the ARMA and
GARCH (or GJR) specification.

If the innovations are assumed to follow a normal, t or skewed t distribution,
then the VaR estimate is obtained by (22) with zα respectively given by

zα =


Φ−1(α), normal
t−1
ν (α), t

Skt−1
ν,ξ(α), skewed t

where Φ is the standard normal distribution, tν is the standard t distribution
function with ν df and Sktν,ξ is the standard skewed t distribution function with
ν df and asymmetry parameter ξ.

2.4 MGARCH model

Multivariate time series models are useful for the understanding of the comove-
ments of multiple time series. The definitions for univariate time series analysis,
such as the mean function, covariance function, stationarities, autocorrelation
function and white noise processes, are straightforwardly extended to multi-
variate time series analysis using vectors and matrices.

For financial time series it is likely that the correlation between the time se-
ries varies over time. Therefore we consider the Dynamic Conditional Correla-
tion GARCH (DCC-GARCH) model, proposed by Engle (2002), that captures
the dynamic conditional correlation of the multivariate time series. The DCC-
GARCH-type model extends the univariate GARCH-type model of Section 2.3.1
to the multivariate GARCH-type model. Before defining these DCC-GARCH-
type models, we introduce the following operator on a (covariance) matrix Σ ∈
Rn×n of an n-dimensional random vector X = (X1, . . . ,Xn)′:

%(Σ) = diag(
√
σ11, . . . ,

√
σnn)−1

· Σ · diag(
√
σ11, . . . ,

√
σnn)−1,

where diag(√σ11, . . . ,
√
σnn) is the (n× n) diagonal matrix of standard deviations

of Xi, i = 1, . . . ,n. Observe that %(Σ) is actually the correlation matrix of X .
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Definition 2.12. Let {Zt}t∈Z be SWN(0, In). The process {Xt}t∈Z is a DCC(p, q)-
ARMA-GARCH process if it is covariance stationary and if it satisfies, for all
t ∈ Z, the equation

Xt = µt + Σ1/2
t Zt, (23)

where Σ1/2
t ∈ Rn×n is the factor of theFt−1-measurable conditional covariance ma-

trix Σt = ∆tPt∆t with the conditional correlation matrix Pt satisfying the equation

Pt = %

1 −
p∑

i=1

αi −

q∑
j=1

β j

Pc +

p∑
i=1

αiYt−iYT
t−i +

q∑
j=1

β jPt− j

 , (24)

where αi ≥ 0, i = 1, . . . , p, β j ≥ 0, j = 1, . . . , q,
∑p

i=1 αi +
∑q

j=1 β j < 1 and, for
k = 1, . . . ,n,

1. µt = (µ1,t, . . . , µn,t)′ is the mean vector with elements µk,t satisfying

µk,t = µk +

p1k∑
i=1

φki(Xk,t−i − µk) +
q1k∑
j=1

λk j(Xk,t− j − µk,t− j), (25)

2. ∆t = diag(σ1,t, . . . , σn,t) is the diagonal volatility matrix with elements σk,t
satisfying

σ2
k,t = αk0 +

p2k∑
i=1

αki(Xk,t−i − µk,t−i)2 +

q2k∑
j=1

βk jσ
2
k,t− j, (26)

where αk0 > 0, αki ≥ 0, i = 1, . . . , p2k, βk j ≥ 0, j = 1, . . . , q2k, and
∑p2k

i=1 αki +∑q2k
j=1 βk j < 1,

3. Pc is a constant positive-definite correlation matrix,

4. Yt = ∆−1
t (Xt − µt) is the devolatized process.

Similarly as for the univariate GARCH models, we should make an assumption
about the joint multivariate distribution function of the innovations {Zt}t∈Z.

Observe that the devolatized process, Yt, can be written as

Yt = ∆−1
t Σ1/2

t Zt = ∆−1
t (∆tP1/2

t )Zt = P1/2
t Zt,

which is a SWN(0,Pt) process.

The DCC-ARMA-GARCH model fits a univariate ARMA-GARCH model to each
time series. So the orders p1k, q1k, p2k and q2k in (25) and (26) correspond to the
orders of the univariate ARMA(p1k, q1k)-GARCH(p2k, q2k) model that is fitted to
the kth time series, k = 1, . . . ,n. In our case, we have p1k, q1k ∈ {0, 1, 2} and p2k =
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q2k = 1 for all k = 1, . . . ,n. Furthermore, observe that each element of the mean
vector µt and the diagonal volatility matrix ∆t respectively follow the ARMA
and GARCH specification of the univariate ARMA-GARCH model, see (8) and
(9). The DCC-ARMA-GJR model is defined likewise, where the mean vector µt
is defined with elements satisfying (25) and the diagonal volatility matrix ∆t is
instead defined with elements σk,t satisfying

σ2
k,t = αk0 +

p2k∑
i=1

αki
(
|(Σ1/2

t−iZt−i)k | − γki(Σ1/2
t−iZt−i)k

)2
+

q2k∑
j=1

βk jσ
2
k,t− j, k = 1, . . . ,n,

where γki ∈ [−1, 1], i = 1, . . . , p2k, and
∑p2k

i=1 αkiE[(|Z̃k,•| + γkiZ̃k,•)2] +
∑q2k

j=1 βk j < 1
with Z̃ = (Z1, . . . ,Zt), k = 1, . . . ,n.

It is common to use low-order DCC-GARCH-type models, also for the reason
of parsimony of the model and interpretability of the variables as in the uni-
variate case. Next to that, it can be computational expensive to estimate a DCC-
GARCH-type model for a large number of time series. Therefore we will con-
sider DCC(1, 1)-GARCH-type models, i.e. the DCC(1, 1)-ARMA(p1k, q1k)-GARCH(1, 1)
and DCC(1, 1)-ARMA(p1k, q1k)-GJR(1, 1) models, p1k, q1k ∈ {0, 1, 2}, k = 1, . . . ,n.
Again, the optimal values for p1k and q1k are chosen based on the AIC values.

2.4.1 Parameter estimation

The devolatized process is estimated by

Ŷt = ∆̂−1
t (Xt − µ̂t), (27)

where ∆̂t and µ̂t are obtained from the parameter (ML) estimates of the uni-
variate ARMA-GARCH or ARMA-GJR model. The constant, positive-definite
correlation matrix Pc is estimated by the sample correlation of the devolatized
process:

P̂c = cor(Ŷ). (28)

The remaining parameters of the DCC-GARCH-type model can also be esti-
mated by the ML estimation procedure. The construction of the conditional
log-likelihood function is analogous to the univariate case. Namely, for time
series of the form

Xt = µt + Σ1/2
t Zt

we have that the conditional distribution function of the observations can be
written as

FXt |Ft−1 = P(µt + Σ1/2
t Zt ≤ xt | Ft−1)

= P(Zt ≤ Σ−1/2
t (xt − µt) | Ft−1)

= FZ(Σ−1/2
t (xt − µt))
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where FZ is the multivariate distribution function of the innovations {Zt}t∈Z. As
a result, the corresponding conditional multivariate density function of the ob-
servations can be written as

fXt |Ft−1(xt) =
∂
∂xt

FXt |Ft−1(xt)

=
∂
∂xt

FZ(Σ−1/2
t (xt − µt))

= |Σt|
−1/2 fZ(Σ−1/2

t (xt − µt)),

where fZ is the multivariate density function of the innovations and | · | is the
determinant. For a sample of T observations and vector of parameters θ, the
conditional likelihood function is

L f (θ) =
T∏

t=1

fXt |Ft−1(xt) (29)

=

T∏
t=1

|Σt|
−1/2 fZ(Σ−1/2

t (xt − µt)). (30)

The conditional log-likelihood function is based on the conditional joint density
of X1, . . . ,XT , given initial values µ0, Σ0 and Z0. For µ0 and Σ0 we use the theo-
retical unconditional values. That is, let µ0 be the vector of the sample mean and
let Σ0 be the sample covariance matrix. For Z0 we use the true mean value of the
innovations, i.e. a vector of zeros Z0 = 0.

The ML estimates of the remaining parameters are obtained by maximizing the
conditional log-likelihood function subject to αi ≥ 0, i = 1, . . . , p, β j ≥ 0, j =
1, . . . , q, and

∑p
i=1 αi +

∑q
j=1 β j < 1. This estimation procedure of MGARCH-type

models is implemented in the R package rmgarch (v.1.3-0) by Ghalanos (2015a).

Observe that the variables Xt,µt,Σt,Zt and Pt are expressed by values from the
past. So we can simply plug their past estimates, up to some time t, into the
expression of the variables to forecast the values of the variables at time period
t + 1. 5 This method enables us to perform the out-of-sample forecast of these
type of models.

2.4.2 Rank correlations

The disadvantage of most, if not all, MGARCH models is that these models use
the Pearson’s linear correlation coefficient as a standard measure for describing the
dependence structure. This has a number of limitations, as described by Em-
brechts et al. (2001). Instead they suggest to use rank correlations for describing
the dependence structure.

5In fact, in this way we can also forecast future values of time period t + 2, t + 3, etc.
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The two main varieties of rank correlations are the Kendall’s tau and Spearman’s
rho. As Kendall & Gibbons (1990) argue, the confidence intervals for the Kendall’s
tau parameters are more reliable and more interpretable than the confidence in-
tervals for the Spearman’s rho parameters. For that reason we exclusively con-
sider the Kendall’s tau measure.

Two points in R2, say (x1, x2)′ and (y1, y2)′, are concordant if (x1 − y1)(x2 − y2) > 0
and discordant if (x1 − y1)(x2 − y2) < 0. The Kendall’s tau is a measure based on
the probability of concordance and discordance of bivariate random vectors. The
Kendall’s tau, ρτ ∈ [−1, 1], is defined as follows.

Definition 2.13. For a random vector (X1,X2)′, the Kendall’s tau is

ρτ(X1,X2) = P((X1 − Y1)(X2 − Y2) > 0) − P((X1 − Y1)(X2 − Y2) < 0),

where the random vector (Y1,Y2)′ is an independent copy of (X1,X2)′. 6

The Kendall’s tau can also be written as an expectation:

ρτ(X1,X2) = E
[
sign((X1 − Y1)(X2 − Y2))

]
,

where sign(x) = 1{x>0} − 1{x<0}. So, consequently, in the multivariate setting we
have that the Kendall’s tau matrix of a random vector X = (X1, . . . ,Xn)′ can be
written as

ρτ(X) = cov(sign(X − Y)),

where Y = (Y1, . . . ,Yn)′ is an independent copy of X . Notice that the elements
of the random vectors are componentwise connected, i.e. element (i, j) of the
Kendall’s tau matrix is the Kendall’s tau for the random vector (Xi,X j)′:

ρτ(X)i, j = ρτ(Xi,X j) = E
[
sign((Xi − Yi)(X j − Y j))

]
.

As we will see later, it is possible to obtain a dynamic conditional Kendall’s tau
matrix from a dynamic conditional correlation matrix, Pt. 7 In that manner the
Kendall’s tau measure can be used to describe the dependence structure of time
series.

2.5 Copulas

A copula is a function that connects univariate marginal distributions (or mar-
gins) to a multivariate distribution (Bouye et al. 2000). Copula theory gives prac-
titioners the possibility to decompose any multivariate joint distribution into

6The random vector (Y1,Y2)′ is an independent copy in the sense that it has the same distri-
bution as (X1,X2)′, but the two random vectors are independent.

7See Section 4.3.1.
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margins and a copula, and vice versa. Moreover, it gives us the possibility to
first specify the distribution of each marginal and then choose a copula func-
tion to describe the dependence structure between the time series (Aloui et al.
2011). Additionally it allows us to describe more complex multivariate depen-
dence structures, such as non-linear and tail-dependence (Hürlimann 2004).

For the understanding of copula theory, we are required to be familiar with some
basics of statistics and statistical operations, such as the probability and quantile
transformations. The basics are presented in the following proposition from Hult
et al. (2012), whereU(a, b) denotes the uniform distribution on the interval [a, b].

Proposition 2.1. Let F : R → [0, 1] be a distribution function and let F−1 be the
corresponding quantile function.

1. u ≤ F(x) if and only if F−1(u) ≤ x.

2. F(F−1(u)) = u, provided that F is continuous.

3. (Quantile transformation). If U ∼ U(0, 1), then P(F−1(U) ≤ x) = F(x).

4. (Probability transformation). If F is a continuous distribution function of
a random variable X, then F(X) ∼ U(0, 1).

Definition 2.14. (Ghorbel & Trabelsi 2009) An n-dimensional copula is a multi-
variate distribution function C : [0, 1]n

→ [0, 1] with standard uniform margins
u1, . . . ,un, satisfying the following properties:

1. C(u1, . . . ,un) = 0 if there exists ui = 0, i ∈ {1, . . . ,n}.

2. C(1, . . . , 1,ui, 1, . . . , 1) = ui for all i ∈ {1, . . . ,n}, ui ∈ [0, 1].

3. C is grounded and n-increasing.

Notice that a copula can only be used with margins that are transformed to stan-
dard uniform. There is no mathematical reason for this transformation, but it
may be convenient from a statistical point of view (Embrechts 2009). The third
condition ensures that for a random vector U = (U1, . . . ,Un)′ with distribution
function C, we have P(a1 ≤ U1 ≤ b1, . . . , an ≤ Un ≤ bn) ≥ 0, where ai, bi ∈ [0, 1],
ai ≤ bi for i = 1, . . . ,n (McNeil et al. 2015).

Copulas express the dependence on a quantile scale, which is in particular useful
for examining the interdependence of extreme values. This is one of the reason
that attracted risk managers to use copulas. The following theorem is due to the
seminal work of Sklar (1959).

Theorem 2.1. (Sklar 1959). For any n-dimensional distribution function F with
margins F1, . . . ,Fn, there exists an n-dimensional copula C such that

F(x1, . . . , xn) = C(F1(x1), . . . ,Fn(xn)), (31)
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for all x1, . . . , xn in R̄ ∈ [−∞,∞]. If F1, . . . ,Fn are continuous, then C is unique;
Otherwise it is uniquely determined on F1(R̄)×· · ·×Fn(R̄). Conversely, for any n-
dimensional copula C and univariate distribution functions F1, . . . ,Fn, the func-
tion F in (31) is an n-dimensional distribution function with margins F1, . . . ,Fn.

The first statement of Sklar’s Theorem tells us that we can decompose any multi-
variate distribution function with arbitrary margins into its margins and a cop-
ula, i.e.

F ⇒ C,F1, . . . ,Fn.

The second, converse statement tells us that copulas can be used in combination
with arbitrary univariate distribution functions to construct multivariate distri-
butions, i.e.

F ⇐ C,F1, . . . ,Fn.

In other words, the second statement tells us that we can construct a joint distri-
bution with arbitrary margins, using any copula. Both statements of the Sklar’s
Theorem are of main importance for our study. Namely, we consider the second
statement for the construction of the joint distribution. After obtaining the joint
distribution, we perform the in-sample fit test and consider the first statement
to estimate the VaR by performing Monte Carlo simulations.

The modelling of multivariate distributions using a copula can be done by a 2-
step approach:

1. Identify the margins. Choose the distribution for the margins that is most
appropriate.

2. Given the identification of the margins, construct a copula to describe the
dependence structure

A copula can be seen as a tool to join arbitrary margins to form a joint distribu-
tion. It has the consequence that the dependence structure is exclusively deter-
mined by the copula, while the structure of the joint distribution is exclusively
determined by the margins. On top of that, a copula does also not restrict us to
assume that all the data comes from the same type of univariate distribution. A
copula may therefore be more suitable for capturing the dependence structure
than the traditional multivariate distributions.

2.5.1 Traditional copulas

In the literature we can find a number of different copulas. In this section we
introduce two traditional copulas, which perhaps are the most popular ones. 8

8The R package rmgarch (v.1.3-0) by Ghalanos (2015a) only supports these two copulas for
the estimation of copula-MGARCH-type model.
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Before we introduce these copulas, let us denote the realizations of the random
vectors X and U by respectively x = (x1, . . . , xn)′ and u = (u1, . . . ,un)′. For i =
1, . . . ,n, set Fi(Xi) = Ui (or equivalently Xi = F−1

i (Ui), where F−1
i is the quantile

function). Then, for a distribution function FUi of Ui we derive:

FUi(ui) = P(Ui ≤ ui)
= P(Fi(Xi) ≤ ui)
= P(Xi ≤ F−1

i (ui))
= Fi(F−1

i (ui))
= ui,

i.e. ui ∈ [0, 1] is from the standard uniform distribution. This is the so-called
the Probability-Integral Transformation (PIT) (Ghorbel & Trabelsi 2009). Also, the
density of the copula is defined as follows.

c(u) = ∂
nC(u)
∂u =

∂nC(u1, . . . ,un)
∂u1 . . . ∂un

.

Gaussian copula. (Bouye et al. 2000). Let Φ be the standard normal distribu-
tion function and let Φn

P be the n-dimensional standardized normal distribution
function with correlation matrix P (see Appendix C). 9 The Gaussian copula
and its density function are respectively given by

CGa(u; P) = Φn
P(Φ−1(u1), . . . ,Φ−1(un)) (32)

= P(X1 ≤ Φ−1(u1), . . . ,Xn ≤ Φ−1(un)), (33)

cGa(u; P) = |P|−1/2 exp
{
−

1
2 ũT(P−1

− In)ũ
}
, (34)

where ũ = (Φ−1(u1), . . . ,Φ−1(un))′ and In is the (n × n) identity matrix.

The Gaussian copula belongs to the family of elliptical copulas (Jondeau & Rockinger
2006). As we can see, the Gaussian copula is closely related to the multivariate
normal distribution. In fact, if each marginal is assumed to follow a univariate
standard normal distribution, then the Gaussian copula coupled with the nor-
mal margins is identical to the multivariate normal distribution.

Empirically the financial loss distribution show fatter tails than the normal dis-
tributions. To overcome this problem we also consider the following copula.

t copula (Bouye et al. 2000). Let tν be the standard t distribution function with
ν df and let tn

P,ν be the n-dimensional standardized t distribution function with
ν df and correlation matrix P (see Appendix C). The t copula and its density

9The element (i, j) of the correlation matrix P, say ρi, j ∈ [−1, 1], is the Pearson’s linear corre-
lation coefficient between the ith and jth time series, i, j ≤ n.
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function are respectively given by

Ct(u; P, ν) = tn
P,ν(t−1

ν (u1), . . . , t−1
ν (un)) (35)

= P(X1 ≤ t−1
ν (u1), . . . ,Xn ≤ t−1

ν (u1)), (36)

ct(u; P, ν) = |P|−1/2 Γ( ν+n
2 )Γ( ν2 )n

Γ( ν+1
2 )nΓ( ν2 )

·
(1 + 1

ν ũ
TP−1ũ)− ν+n

2∏n
i=1

(
1 + ũ2

i
ν

)− ν+1
2
, (37)

where ũ = (ũ1, . . . , ũn)′ = (t−1
ν (u1), . . . , t−1

ν (un))′.

Also the t copula belongs to the family of elliptical copulas (Jondeau & Rockinger
2006). As we can see, the t copula is closely related to the multivariate t distri-
bution. In fact, if each marginal is assumed to follow a univariate standard t
distribution with df ν (so all margins have the same df ν), then the t copula cou-
pled with the t margins is identical to the multivariate t distribution.

2.5.2 Meta-copula distributions

According to the second statement of Sklar’s Theorem, we can construct a joint
distribution with arbitrary margins and any copula. To see that the margins can
be arbitrary, observe from Section 2.5.1 that for the Gaussian copula we can write
ũ = (Φ−1(F1(x1), . . . ,Φ−1(Fn(xn)))′. This can be done in a similar manner for any
other copula, such as the t copula.

For a copula C and arbitrary margins F1, . . . ,Fn, the multivariate distribution
function F(x1, . . . , xn) = C(F1(x1), . . . ,Fn(xn)) is called a meta-copula distribution.
For example, the multivariate distribution function constructed from a 3-dimensional
Gaussian copula with arbitrary margins, such as the normal, t and skewed t
marginal distribution, is called a meta-Gaussian distribution. These type of dis-
tributions are of interest for our study. Let us illustrate the idea behind copulas
by the following example.

Example 2.1. In this example we will illustrate how any multivariate distribu-
tion function with arbitrary margins can be decomposed into its margins and a
copula. Furthermore, we will also see how copulas can be used in combination
with arbitrary univariate distribution functions to construct multivariate distri-
butions.

Let us denote a bivariate random vector by X = (X1,X2)′. Moreover, assume that
X1 and X2 are correlated, without loss of generality assume positively correlated.
Furthermore, assume that X1 ∼ F1, X2 ∼ F2 and that they are jointly normally
distributed.

The first step in copula modelling is to transform the realizations of X1 and X2
to uniform using the arbitrary (or rather: desired) distribution functions for the
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margins, F1 and F2:

u1 = F1(x1) and u2 = F2(x2).

After this transformation the uniform margins still hold the positive correlation
of X1 and X2. As a second step we perform another transformation, which is
required to model the joint distribution of X1 and X2. Since we assumed the
random variables to be jointly normally distributed, we use the standard normal
cumulative distribution function for this transformation:

ũ1 = Φ−1(u1) = Φ−1(F1(x1)) and ũ2 = Φ−1(u2) = Φ−1(F2(x2)).

By this step we obtained (transformed) realizations from a joint normal distribu-
tion with arbitrary margins. Performing the two transformations consecutively
has the consequence that the rank order of the variables is maintained. As a re-
sult, this complete procedure does not alter the original dependence structure.
Accordingly, these realizations can be fitted to the bivariate normal distribution.
This distribution is in fact the bivariate Gaussian copula, also known as the meta-
Gaussian distribution. This shows that any multivariate distribution function
with arbitrary margins can be decomposed into its margins and a copula.

By going the opposite direction of the procedure above, we can transform the re-
alizations ũ1 and ũ2 from the bivariate Gaussian copula to (transformed) realiza-
tions from a multivariate distribution, without altering the original dependence
structure. This is also done by using the standard normal cumulative distribu-
tion function and arbitrary distribution functions F1 and F2:

x1 = F−1
1 (Φ(ũ1)) and x2 = F−1

2 (Φ(ũ2)).

Accordingly, these realizations can be fitted to a multivariate distribution. This
shows that copulas can be used in combination with arbitrary univariate distri-
bution functions to construct multivariate distributions.

�

2.5.3 Parameter estimation

The parameters of the copulas can be estimated by the ML estimation proce-
dure. For observations x = (x1, . . . , xn)′, margins F1, . . . ,Fn and u = (u1, . . . ,un)′ =
(F1(x1), . . . ,Fn(xn))′, the log-likelihood function of the copula is given by

�c(φ,θ) = ln c(u), (38)

where φ and θ are the vectors of respectively the copula and marginal parame-
ters. In our case we have that c(u) is given by either c(u) = cGa(u; P) (see (34)) or
c(u) = ct(u; P, ν) (see (37)).
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In this thesis we make the assumption that the regularity conditions for asymp-
totic ML theory are satisfied for the multivariate model (i.e. copula) and its mar-
gins. Under these regularity conditions, the MLE exists and moreover it is con-
sistent and asymptotically efficient (Huang et al. 2009).

The estimation of the copula in this static setting is not of our most interest, al-
though it is useful to get an insight about the estimation of the copula at a certain
stage in time. The estimation of the copula that is of our interest is explained in
Section 2.6, where the dynamic setting is employed by the MGARCH specifica-
tion.

2.5.4 tail-dependence

Correlation coefficients do not focus on the tail-dependence, or extreme comove-
ments, between two univariate data sets. In order to describe this dependency,
we introduce tail-dependence coefficients. tail-dependence coefficients quantify the
dependence in the upper and lower tails of a bivariate distribution with contin-
uous margins. More explicitly, in terms of losses, the upper (respectively lower)
tail-dependence coefficient describes to what extent large drops (respectively
rises) of one time series is related to large drops (respectively rises) of another
time series. As a result it can be helpful in the financial market to measure the
tendency of markets to crash or boost together (Aloui et al. 2011). Conveniently,
copulas could be used to estimate these coefficients.

Mathematically, the upper tail-dependence coefficient is the probability that a
random variable X2 exceeds its q-quantile, given that X1 exceeds its q-quantile,
where q is considered as a limit going to one.
Definition 2.15. Let X1 ∼ F1 and X2 ∼ F2 be random variables. The upper tail-
dependence coefficient of X1 and X2 is given by

λu(X1,X2) = lim
q→1−

P(X2 > F−1
2 (q) | X1 > F−1

1 (q)),

provided that the limit exists.

If λu = 0, then X1 and X2 are said to be asymptotically independent in the upper
tail. If λu ∈ (0, 1], then X1 and X2 are said to exhibit upper tail-dependence. If
X1 and X2 represent the losses (instead of returns) of two different time series,
then the upper tail-dependence coefficient is used to measure the tendency of
the two time series to crash together. The higher the value of λu, the stronger
this extremal dependence.

In a similar way we can define the lower tail-dependence coefficient, where in
this case q is considered as a limit going to zero.

λl(X1,X2) = lim
q→0+

P(X2 ≤ F−1
2 (q) | X1 ≤ F−1

1 (q)),
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provided that the limit exists.

Likewise, if X1 and X2 represent the losses, then the lower tail-dependence co-
efficient is used to measure the tendency of two time series to boost together.

If the distribution functions of the random variables are continuous, we can
express the upper and lower tail-dependence coefficients in terms of copulas.
Before we derive these expressions, let us introduce survival copulas. For a ran-
dom vector X with multivariate survival function F̄, marginal survival functions
F̄i = 1 − Fi, i = 1, . . . ,n, we have

F̄(x1, . . . , xn) = C̄(F̄1(x1), . . . , F̄n(xn)), (39)

where C̄ is called the survival copula. Notice that this is in fact the Sklar’s The-
orem applied to survival functions.

Using (31) and (39), we derive

λu = lim
q→1−

P(X2 > F−1
2 (q) , X1 > F−1

1 (q))
P(X1 > F−1

1 (q))

= lim
q→1−

P(1 − X2 ≤ 1 − F−1
2 (q) , 1 − X1 ≤ 1 − F−1

1 (q))
P(1 − X1 ≤ 1 − F−1

1 (q))

= lim
q→1−

C̄(1 − q, 1 − q)
1 − q

, (40)

λl = lim
q→0+

P(X2 ≤ F−1
2 (q) , X1 ≤ F−1

1 (q))
P(X1 ≤ F−1

1 (q))

= lim
q→0+

C(q, q)
q

. (41)

McNeil et al. (2015) show that the Gaussian copula is asymptotically indepen-
dent in both tails (i.e. λu = λl = 0), while the t copula exhibit both upper and
lower tail-dependence. Put differently, the Gaussian copula does not exhibit tail-
dependence, while the t copula does. Due to radial symmetry of the t copula,
its dependence coefficients are equal (i.e. λu = λl ∈ (0, 1]). 10 Moreover, in
case of negative or no dependence, the two tail-dependence coefficients are (al-
most) zero. In case of positive dependence, the value of the tail-dependence
coefficients depends on the copula. In this thesis we let the tail index (TI) de-
note the value of the upper/lower tail-dependence coefficient, as these two tail-
dependence coefficients are always equal in our case.

10Let copula C be the distribution function of the n-dimensional random vector U and denote
1 = (1, . . . , 1)′ ∈ Rn. Then C is said to be radially symmetric if U d

= 1 −U .
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2.5.5 Exploratory analysis

Generally it is a major challenge to analyse a large amount of information. It
is convenient to provide visualizations of large datasets in order to study these
datasets. In this section we will shortly describe how we perform an exploratory
analysis in copula theory.

As an example we consider 2,000 simulated random values from bivariate Gaus-
sian and t copulas with different Pearson’s correlation coefficient ρ, and addi-
tionally in the case of t copula, different dfs. More explicitly, we consider ρ = 0.9
(positive dependence), −0.9 (negative dependence) and 0 (no dependence) and
df of 2 (fat-tailed) and 10 (thin-tailed).

To start with, we analyse a common visualization tool in copula theory (and
data analysis in general), namely the 2D scatter plot. A scatter plot displays
values for a pair of variables of a dataset. Such a plot can be useful for the study
of the dependence properties between the variables. The scatter plots of the
simulated random values from the copulas are shown in Figure 2, where the ρ
and df (if applicable) of the corresponding copula and TI are indicated on top of
each scatter plot. We identify the following from the scatter plot.

� For positive dependence we see the tendency of small (respectively large)
values of one variable to be related to small (respectively large) values of
the other variable. For negative dependence this relation is vice versa. For
no dependence the paired values lie independently in the unit square. This
is in accordance with the definition of the dependencies. However, the
simulated values from the two t copulas have some tendency to lie in the
corners of the unit square.

� The scatter plots of the t copula with the largest df, say the t10 copula, is
almost similar to the ones (with the same ρ) of the Gaussian copula. This is
in accordance with the fact that the t distribution approaches the Gaussian
distribution as the df increases.

� The dots in the scatter plots of the t copula with the lowest df have a greater
tendency to lie close to the corners of the unit square than the ones from
t10 copula (with the same ρ). This indicates that the simulated values from
the t2 copula have a stronger tail-dependence (i.e. larger TIs) than the ones
from the t10 copula. This is in accordance with the fact that the t distribu-
tion has fatter tails for lower df.
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(a) Scatter plots of simulations from the Gaussian copula with ρ = 0.9 (left), −0.9 (mid-
dle) and 0 (right).

(b) Scatter plots of simulations from the t copula with 2 df and ρ = 0.9 (left), −0.9 (mid-
dle) and 0 (right).

(c) Scatter plots of simulations from the t copula with 10 df and ρ = 0.9 (left), −0.9
(middle) and 0 (right).

Figure 2

It may be difficult to see from the scatter plots how many dots are (or how much
mass is) focussed around a certain area of the unit square, especially at dense ar-
eas such as the corners. By this way it can therefore be challenging to determine
the fatness of the tails of the distribution of the simulated values. Density and
contour plots provide a solution to this issue. The density and contour plots of
the simulated values from the copulas are shown in Figure 3. We identify the
following from these plots.

� The structure of the density and contour plots are conform to the struc-
ture of the corresponding scatter plots. For example, in the case of posi-
tive dependence, most mass covers the diagonal with positive slope in the
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(u1,u2)-plane. An analogous argument applies for the case of negative de-
pendence.

� The density of the simulated values from the Gaussian copula with ρ = 0
corresponds to that of the uniform distribution. This can be explained by
fact that the Gaussian distribution has thin tails and so in the case of no
dependence there is not tendency of the dots to be focussed in the tails.
On the other hand, the density of the simulated values from the t2 and t10
copulas with ρ = 0 show existence of tails. This can be explained by fact
that the t distribution has fatter tails.

� The tails of the density plots exhibit most mass for the simulated values
from the t2 copula, followed by the t10 copula and then the Gaussian cop-
ula (with the same ρ). 11 This is in accordance with the fact that the t
distribution has fatter tails for lower df.

(a) Density (above) and contour (below) plots of simulations from the Gaussian copula
with ρ = 0.9 (left), −0.9 (middle) and 0 (right).

2.6 Copula-MGARCH model

In this section we will propose the hybrid models, which are combinations of
MGARCH models and copulas. These copula-MGARCH models are defined

11Take note that the range of the density functions are different.
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(b) Density (above) and contour (below) plots of simulations from the t copula with 2
df and ρ = 0.9 (left), −0.9 (middle) and 0 (right).

(c) Density (above) and contour (below) plots of simulations from the t copula with 10
df and ρ = 0.9 (left), −0.9 (middle) and 0 (right).

Figure 3
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similarly as the (traditional) MGARCH models (see Definition 2.12), but where
the multivariate distribution function of the innovations is a copula function. By
doing so we allow for different types of univariate distributions for the marginal
innovations. Therefore we are able to propose a number of these models, each
with a different underlying structure.

The copula theory is defined in the static setting. By considering the GARCH-
type models, we have to deal with the dynamic setting. The copula theory in
Section 2.5 can be adjusted straightforwardly be changing the subscript ‘i′ into
‘i, t′ for the variables. That is, for time period t ∈ {1, . . . ,T}, denote the re-
alizations of the random vectors Xt and Ut by respectively xt = (x1,t, . . . , xn,t)′
and ut = (u1,t, . . . ,un,t)′. For i = 1, . . . ,n, set Fi(Xi,t) = Ui,t (or equivalently
Xi,t = F−1

i (Ui,t), where F−1
i is the quantile function) and so ui,t ∈ [0, 1] is from

the standard uniform distribution.

Patton (2006) defined the conditional copulas and introduced the conditional ex-
tension of the Sklar’s Theorem. This extension allows us to combine the copula
with the MGARCH model.

Theorem 2.2. (Patton 2006). Let Ft−1 be the information that is available at time
period t − 1. For any n-dimensional conditional distribution function F(·|Ft−1)
with conditional margins F1(·|Ft−1), . . . ,Fn(·|Ft−1), there exists an n-dimensional
conditional copula Ct(·|Ft−1) such that

Ft(x1,t, . . . , xn,t | Ft−1) = Ct(F1(x1,t | Ft−1), . . . ,Fn(xn,t | Ft−1) | Ft−1), (42)

for all x1,t, . . . , xn,t in R̄ ∈ [−∞,∞]. If F1(·|Ft−1), . . . ,Fn(·|Ft−1) are continuous, then
Ct(·|Ft−1) is unique; Otherwise it is uniquely determined on F1(R̄ | Ft−1) × · · · ×
Fn(R̄ | Ft−1). Conversely, at time period t, for any n-dimensional conditional
copula Ct(·|Ft−1) and conditional univariate distribution functions F1(·|Ft−1), . . . ,
Fn(·|Ft−1), the conditional function F(·|Ft−1) in (42) is an n-dimensional condi-
tional distribution function with conditional margins F1(·|Ft−1), . . . ,Fn(·|Ft−1).

2.6.1 Traditional conditional copulas

For the conditional copula we consider a time-varying correlation matrix Pt in-
stead of the constant correlation matrix P of the (unconditional) copula. For the
copula-DCC-GARCH models, Pt is the dynamic conditional correlation matrix
following the DCC-GARCH model specification (see (24)).

For the Gaussian copula we have that the conditional density function is given
by

cGa
t (ut|Pt) = |Pt|

−1/2 exp
{
−

1
2 ũt

T(P−1
t − In)ũt

}
, (43)
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where ũt = (Φ−1(u1,t), . . . ,Φ−1(un,t))′ with ui,t = Fi(xi,t | Ft−1), i = 1, . . . ,n, and In is
the (n × n) identity matrix.

For the t copula we have that the conditional density function is given by

ct
t(ut|Pt, ν) = |Pt|

−1/2 Γ( ν+n
2 )Γ( ν2 )n

Γ( ν+1
2 )nΓ( ν2 )

·
(1 + 1

ν ũt
TP−1

t ũt)−
ν+n

2∏n
i=1

(
1 + ũ2

i,t
ν

)− ν+1
2
, (44)

where ũt = (ũ1,t, . . . , ũn,t)′ = (t−1
ν (u1,t), . . . , t−1

ν (un,t))′ with ui,t = Fi(xi,t | Ft−1), i =
1, . . . ,n.

2.6.2 Parameter estimation

For convenience, we will from now on write the conditional joint distribution
function as Ft instead of Ft(·|Ft−1), and the conditional margins as Fi instead of
Fi(·|Ft−1), i = 1, . . . ,n.

For an n-times differentiable conditional joint distribution function F, the corre-
sponding conditional joint density function at time period t is given by

ft(x1,t, . . . , xn,t | Ft−1) =
∂nFt(x1,t, . . . , xn,t | Ft−1)

∂x1,t . . . ∂xn,t
. (45)

Using the conditional extension of Sklar’s Theorem we can write the conditional
joint density in (45) as

ft(x1,t, . . . , xn,t | Ft−1) = ft(F−1
1 (u1,t | Ft−1), . . . ,F−1

n (un,t | Ft−1) | Ft−1) (46)

=
∂nCt(u1,t, . . . ,un,t | Ft−1)

∂u1,t . . . ∂un,t
·

n∏
i=1

fi(F−1
i (ui,t | Ft−1) | Ft−1) (47)

= ct(u1,t, . . . ,un,t | Ft−1) ·
n∏

i=1

fi(F−1
i (ui,t | Ft−1) | Ft−1), (48)

where fi = ∂Fi(xi |Ft−1)
∂xi

is the conditional marginal density function of the ith sample.
Recall that for the conditional margins F1, . . . ,Fn we have Fi(xi,t | Ft−1) = ui,t,
i = 1, . . . ,n. In other words, for a normally distributed margin Fi we have ui,t =
Fi(xi,t | µi,t, σi,t), while for the (skewed) t distributed margin we additionally have
conditional on νi (and ξi). 12

Considering all observations, t = 1, . . . ,T, and by taking the natural logarithm
of both sides in equation (48), we obtain the conditional log-likelihood function

12Notice that µi,t, σi,t, νi, ξi ∈ Ft−1, because µi,t, σi,t, νi and ξi (for the (skewed) t distributed
margins) are obtained from the estimates of the data up until time period t − 1. For the same
reason, in the multivariate setting (e.g. joint distribution and copulas) we have Pt,Σt, ν ∈ Ft−1.
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of the conditional joint distribution:

�(φ,θ) =
T∑

t=1

ln ct(u1,t, . . . ,un,t | Ft−1) +
T∑

t=1

n∑
i=1

ln fi(F−1
i (ui,t | Ft−1) | Ft−1) (49)

13
=

T∑
t=1

�ct(φt,θ) +
n∑

i=1

T∑
t=1

� fi(θi,t), (50)

whereφ = (φ1, . . . ,φT)′ is the vector of the copula parameters andθ = (θ1, . . . ,θT)′
is the vector with elements of the marginal parameters θt = (θ1,t, . . . ,θn,t)′, t =
1, . . . ,T. The parameters that are included in θi,t depend on the assumption that
we make about the innovations distribution, e.g. θi,t includes νi for the t distri-
bution, while it includes νi and ξi for the skewed t distribution.

As we can see in equation (50), the conditional log-likelihood function of the
joint distribution can be decomposed into a margins part and a copula part. The
decomposition of the log-likelihood function allows us to perform the method of
inference function for margins (IFM) (Liu & Luger 2009). This is a 2-step estimation
method that proceeds as follows.

1. Maximize the conditional log-likelihood function of the ith margin at time
t,
∑T

i=1 � fi(θi,t), to obtain a ML estimate of the marginal parameters, θi, for
i = 1, . . . ,n. See equations (16) – (21).

2. Given the ML estimate θ̂ of the marginal parameters from Step 1, maxi-
mize the conditional log-likelihood function of the copula,

∑T
t=1 �ct(φ, θ̂),

to obtain a ML estimate of the copula parameters, φ. See equations (38),
(43) and (44).

As explained by Liu & Luger (2009), this 2-step procedure is less computational
intensive than the 1-step estimation procedure of estimating all parameters, φ
and θ, simultaneously. This makes the estimation also feasible for a large num-
ber of time series, such as twenty in our case. This method is implemented in
the R package rmgarch (v.1.3-0) by Ghalanos (2015a).

2.6.3 Methodology

So far we have combined the theory of GARCH models and copulas to formu-
late the theory of copula-MGARCH models. In this section we will provide a
more practical view of estimating these models. The estimation procedure of
the copula-DCC(1, 1)-ARMA-GARCH(1, 1) model is described by the following
steps.

13Since
∑T

t=1
∑n

i=1 |� fi (θi,t)| < ∞, we have
∑T

t=1
∑n

i=1 � fi (θi,t) =
∑n

i=1
∑T

t=1 � fi (θi,t).
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1. For the ith time series, i = 1, . . . ,n, estimate a univariate ARMA(pi, qi)-
GARCH(1, 1) model, where for the model we make the assumption that
the innovations either follow a normal, t or skewed t distribution. Optimal
values for pi, qi ∈ {0, 1, 2} and the most appropriate innovations distribu-
tion are chosen based on the AIC values: we choose the combination of
the pair (pi, qi) and the innovations distribution that yields the lowest AIC
value (and hence is assumed to provide the optimal fit of the ith time se-
ries). The most appropriate innovations distribution will be used for the
construction of the copula margins in Step 3. Recall that margins do not
all have to be of the same class.

2. Transform the innovations of the fitted univariate models from Step 1 to
uniform (0, 1) using PIT, i.e. Fi(innovations).

3. Fit the copula to the transformed innovations by IFM and consequently es-
timate the remaining parameters of the copula-DCC(1, 1)-ARMA-GARCH(1, 1)
model by ML (see (30)), where the joint distribution of the innovations fZ
follows a meta-Gaussian or meta-t distribution with the margins and trans-
formed innovations being obtained in Steps 1 and 2 respectively.

By this procedure we basically model the multivariate distribution function of
the innovations by a copula. A very similar description of the procedure applies
for the copula-DCC(1, 1)-ARMA-GJR(1, 1) model.

The models that we will consider and their abbreviations are given in Table 1.
Recall that the margins (or rather their innovations) of the copula-MGARCH-
type models will either each be assumed to follow a normal, t or skewed t dis-
tribution and also the margins do not necessarily have to be of the same class.
The distribution assumption for each margin will be determined in Section 4.

Table 1: All the models considered for the study.
Model Innovations distribution MGARCH-type Margins

Ga-GARCH meta-Gaussian DCC-ARMA-GARCH N, t and/or Skt
Ga-GJR meta-Gaussian DCC-ARMA-GJR N, t and/or Skt
t-GARCH meta-t DCC-ARMA-GARCH N, t and/or Skt
t-GJR meta-t DCC-ARMA-GJR N, t and/or Skt
GARCH-N Multivariate normal DCC-ARMA-GARCH N
GJR-N Multivariate normal DCC-ARMA-GJR N
GARCH-t Multivariate t DCC-ARMA-GARCH t
GJR-t Multivariate t DCC-ARMA-GJR t

The performance of each of the eight models is evaluated by the in-sample fit
test, that is based on four different information criteria, and the out-of-sample
forecast test, that is based on VaR estimates and statistical loss functions. The
models that are optimal, according to the in-sample and out-of-sample test cri-
teria, will be used to describe the dependence structure of the data. Observe
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from the table that we will also consider the traditional DCC-GARCH-type mod-
els, i.e. without copulas modelling. By considering these traditional MGARCH-
type models we can check how well the copula-MGARCH-type models perform
relative to these traditional models and, more importantly, whether or not the
copula modelling improves the fit and forecast (according to the criteria of the
test procedures).

3 Data description

We analyse the dependence structure of the daily losses of twenty different stock
index time series worldwide, where the daily losses of each stock index is calcu-
lated in terms of percentage differenced logarithmic value series as follows:

lt = − ln
(

Pt

Pt−1

)
· 100, (51)

with Pt denoting the daily adjusted closing price of a stock index at time t. 14

For every stock index, Yahoo! Finance has provided us with daily adjusted clos-
ing prices from January 1, 2000 to July 31, 2016. See Table 2 for the descriptive
statistics of the losses for each stock index. We observe that all loss distributions
are skewed and most exhibit excess kurtosis. 15 This indicates that the losses are
non-normally distributed.

In the remainder of this section we will perform visual and numerical tests on the
losses of each stock index. To illustrate the idea behind these tests, we will only
discuss the results of one stock index, namely the Euronext Amsterdam (AEX).
The analysis of the remaining stock indices apply in a similar manner.

3.1 Visual tests

We start by investigating the overall structure of the loss distribution of the AEX
using a histogram. A histogram namely represents the distribution of losses, by
plotting the frequency (or probability) against the losses.

The histogram of the AEX losses is depicted in Figure 4, where the red line in the
histogram refers to an estimate of the normal density. From the histogram we

14Log losses (or log returns), instead of raw losses lt = −Pt−Pt−1
Pt−1

(or raw returns), are commonly
used in quantitative finance. The reasons are that it is mathematical convenient (e.g. it allows
for time additivity) and it provides more meaningful and robust results.

15The excess kurtosis, κexc., is the difference between the sample kurtosis, κ, and the theoretical
kurtosis of the normal distribution, i.e. κexc. = κ − 3. A distribution is said to exhibit excess
kurtosis if κexc. > 0
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Figure 4: Daily closing price (left) and daily losses (right) of the AEX stock index from
January 1, 2000 to July 31, 2016.

observe that the distribution of the AEX losses has long and fat tails compared
to the estimated normal distribution. In addition there is more mass around the
center than the estimated normal distribution. This suggests that it is unlikely
that the losses of AEX follow a normal distribution. See Figure 16 in Appendix
E for the histogram of each stock index.

Next we investigate the presence of heteroskedasticity in the losses time series
using plots that show the changes in the time series. The time series of the AEX
stock index’ closing price Pt and the stock losses lt are plotted in Figure 5. From
the figure we observe for a long period of time relatively high volatility around
2002, 2008 and 2015, and relatively low volatility around the remaining time pe-
riods. That is to say that the losses time series exhibits volatility clustering, i.e.
large losses (either with positive or negative sign) tend to be followed by large
losses (either with positive or negative sign) for a long period of time, and also
for small losses (McNeil et al. 2015). The heteroskedasticity, and in particular
volatility clustering, suggest that a GARCH-type model is appropriate for mod-
elling the losses time series of the AEX. See Figure 17 in Appendix E for similar
plots of each stock index. From this figure we observe that most stock indices
show large volatility during the 2008 financial crisis (also known as the global fi-
nancial crisis). Many stock indices also show large volatility during the dot-com
bubble of 1995 − 2001 (also known as the tech bubble or Internet bubble) and
the Russian financial crisis of 2014.

Now we investigate the heavy-tailedness of the loss distribution using a quantile-
quantile (Q-Q) plot. A Q-Q plot is a graphical tool that compares the sample dis-
tribution with a certain reference distribution by plotting their quantiles against
each other. With this plot we try to visually assess whether or not the sample
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Figure 5: Daily closing price (left) and daily losses (right) of the AEX stock index from
January 1, 2000 to July 31, 2016.

Figure 6: Q-Q plot of the losses of the AEX stock index from January 1, 2000 to July 31,
2016. The red line refers to the normal distribution.

distribution comes from that reference distribution. In our case we compare the
quantiles of the loss distribution with that of the normal reference distribution.
Thus the observations in the Q-Q plot should lie on a straight line if the sample
distribution is the same as the normal distribution.

The Q-Q plot for the AEX losses is depicted in Figure 6, where the red line in the
Q-Q plot refers to the normal reference distribution. We observe that the low
and high quantiles of the losses greatly deviates from that of the normal distri-
bution. The inverted S-shaped curve of the observations suggests that the loss
distribution exhibit heavier tails than that of the normal distribution (McNeil
et al. 2015). See Figure 18 in Appendix E for the Q-Q plots of each stock index.

We end by investigating the presence of autocorrelation and volatility clustering
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in the losses time series using correlograms. A correlogram is a graphical tool that
plots the sample autocorrelation ρ(h) against the time lag h. The correlograms
up to a 12th lag length for the (raw) losses and absolute losses can be found in
Figure 7, where the blue dashed lines indicate the 95% confidence band. For
both raw and absolute losses we observe that more than 5% of the estimated
correlations lie outside the confidence band. Thus, the correlograms of the raw
and absolute losses respectively suggest that autocorrelation is present, which
supports the ARMA modelling, and again that volatility clustering is present.
See Figure 19 in Appendix E for the correlograms of each stock index.

Figure 7: Correlograms of the raw losses (left) and the absolute losses (right) of the AEX
stock index from January 1, 2000 to July 31, 2016.

3.2 Numerical tests

So far we investigated the data graphically. In order to approve the use of the
ARMA-GARCH-type (i.e. ARMA-GARCH and ARMA-GJR) models, we will
perform the following three different numerical tests to the losses time series of
the stock indices.

1. Jarque-Bera (J-B) test (for normality of the time series). The null hypothesis
states that the data follows a normal distribution. In case of non-normality,
the losses (and hence the innovations) distribution is heavy-tailed and/or
leptokurtic. This motivates a long-tailed loss distribution, e.g. the t or
skewed t distribution.

2. Ljung-Box Q(12)-test (for autocorrelation in the time series up to a 12th lag length).
The null hypothesis states that the data exhibits no autocorrelation, or sim-
ilarly that the data is independently distributed. Applying this test to raw
and absolute losses, we can examine whether or not the data exhibits au-
tocorrelation and volatility clustering. In other words, whether or not re-
spectively the ARMA and GARCH modelling are appropriate.
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3. Augmented Dickey-Fuller (ADF) unit root test (for non-stationarity of the time
series). The null hypothesis states that the data is non-stationary. The sta-
tionarity condition is required for the estimation of the ARMA-GARCH-
type models.

See Appendix B for a detailed description of these tests. The results of the formal
tests on the losses of the stock indices can be found in Table 2. Notice that the
estimation of a MGARCH-type model is only possible if every time series has an
equally number of observations. Therefore we only consider the time periods
for which a loss observation is available for every stock index, yielding a total
of 2,909 loss observations. The remaining loss observations are left out of the
analysis. The most recent period of time of the samples becomes July 27, 2016.
The results of the formal tests can be summarized as follows.

1. From the J-B test we always reject the null hypothesis of normality at the
5% significance level, which suggests for every stock index that the loss
distribution follows a non-normal distribution. In combination with the
excess kurtosis, which is the case for eighteen stock indices, we assert that
the loss distribution has heavy tails.

2. From the Ljung-Box Q(12) test for the raw losses we most often reject the
null hypothesis of no autocorrelation at the 1% or 5% significance level. In
the cases of rejecting the null hypothesis (at either significance levels) we
have evidence that the losses time series exhibits autocorrelation and so the
non-zero-ordered ARMA modelling is likely to be appropriate. Otherwise,
it is likely that the zero-ordered ARMA modelling is appropriate.

3. From the Ljung-Box Q(12) test for the absolute losses, referred by |Q(12)|,
we always reject the null hypothesis of no autocorrelation at the 1% sig-
nificance level, which implies for every stock index that the losses time
series exhibits volatility clustering. This result implies that the GARCH
modelling is appropriate.

4. From the ADF test we always reject the null hypothesis of unit root at the
1% significance level, which implies that the losses time series is stationary.
This allows the use of the ARMA-GARCH-type models for the losses time
series of every stock index.

These results (including from the visual tests) imply that the ARMA-GARCH-
type models are appropriate and that the corresponding assumptions are well
satisfied.
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Table 2: Descriptive and test statistics of the daily losses lt for the twenty stock indices (from January 1, 2000 to July 31, 2016)
Dataset Obs. Mean Median Max. Min. Variance Skewness Kurtosis J-B Q(12) |Q(12)| ADF

Asia
Hang Seng (Hong Kong) 2,909 0.0137 −0.0035 9.0513 −13.4068 2.0539 0.0506 6.0138 4,393.9* 19.2*** 1,399.1* −13.6*
KLSE (Malaysia) 2,909 −0.0108 −0.0290 9.9785 −4.5027 0.6980 1.0183 12.0808 18,223.2* 53.1* 1,007.4* −13.6*
Nikkei 225 (Japan) 2,909 0.0137 −0.0146 12.1110 −13.2346 2.3741 0.3677 6.1400 4,644.5* 37.8* 970.4* −14.2*
S&P/ASX (Australia) 2,909 −0.0061 −0.0349 7.3144 −5.6282 0.9737 0.4128 4.3643 2,396.7* 31.5* 1,605.2* −13.6*
BSE Sensex 30 (India) 2,909 −0.0219 −0.0864 11.8092 −15.9900 2.4300 0.1686 8.0871 7,955.9* 19.0*** 1,922.3* −13.9*
SSE (China) 2,909 −0.0106 −0.0188 9.2562 −9.4008 2.5980 0.1828 5.1693 3,262.2* 15.9 819.2* −13.2*
TSEC (Taiwan) 2,909 −0.0123 −0.0424 6.9123 −6.1721 1.8648 0.2117 2.6696 888.1* 34.3* 1,120.5* −14.5*

Europe
AEX (the Netherlands) 2,909 0.0507 −0.0025 9.5903 −9.5169 2.0725 0.2802 4.6227 2,634.1* 23.4** 2,647.9* −12.7*
BFX (Belgium) 2,909 0.0240 −0.0189 7.1179 −9.3340 1.6035 0.0737 5.4016 3,546.7* 31.8* 2,169.9* −12.6*
BIST 100 (Turkey) 2,909 −0.0344 −0.0521 19.9785 −17.7736 4.6755 0.0035 7.4847 6,803.2* 7.5 1,016.8* −15.0*
CAC 40 (France) 2,909 0.0433 −0.0028 9.4715 −9.2208 2.1640 0.2830 3.4156 1,456.5* 16.6 1,604.4* −13.0*
DAX (Germany) 2,909 0.0377 −0.0543 7.3355 −10.6851 2.3250 0.2025 3.0872 1,178.3* 8.5 2,217.2* −13.2*
IBEX (Spain) 2,909 0.0267 −0.0536 13.1852 −13.4836 2.3008 0.0887 5.6479 3,878.4* 18.4 1,308.3* −13.7*
SMI (Switzerland) 2,909 0.0190 −0.0291 6.3161 −6.4517 1.3704 0.2405 4.0186 1,990.2* 25.1** 2,229.0* −13.7*

North-America
Dow 30 (United States) 2,909 0.0117 −0.0363 8.2005 −10.3259 1.3659 0.1972 6.2332 4,737.7* 52.0* 2,833.7* −14.9*
S&P/TSX (Canada) 2,909 0.0125 −0.0353 9.7879 −9.3702 1.2629 0.3689 8.6730 9,200.4* 33.7* 2,414.3* −14.6*

South-America
Ibovespa (Brazil) 2,909 0.0126 0.0000 12.0961 −12.5982 3.2898 0.1183 2.9447 1,060.8* 22.8** 741.2* −15.0*
IPC (Mexico) 2,909 −0.0140 −0.0603 7.2661 −9.8126 1.7742 0.0700 3.8851 1,836.3* 29.8* 1,592.2* −14.6*
MERV (Argentina) 2,909 −0.0390 −0.0659 12.9516 −16.1165 4.6568 0.1857 4.3594 2,325.6* 6.4 818.6* −14.4*
S&P/BVL (Peru) 2,909 −0.0342 −0.0248 9.8764 −8.4271 1.8810 0.3977 7.3985 6,724.3* 79.0* 1,983.2* −12.4*

*Statistically significant at the 1% level. **Statistically significant at the 5% level. ***Significant at the 10% significance level.
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4 Empirical results

In our study we estimate the univariate GARCH-type and copula-MGARCH-
type models using respectively the R packages rugarch (Ghalanos 2015b) and
rmgarch (Ghalanos 2015a).

4.1 Margins selection

Before a copula can be incorporated in the modelling, we have to choose the
most appropriate specification for the univariate conditional heteroskedasticity
(Aloui et al. 2013). This is achieved by fitting the losses time series of every stock
index to the univariate ARMA(pi, qi)-GARCH(1, 1)-type model, with ARMA or-
ders pi, qi ∈ {0, 1, 2}, i = 1, . . . , 20, under the assumption of normal, t or skewed
t distributed innovations. For each stock index, the result of the AIC value and
the corresponding optimal orders (pi, qi) can be found in Table 3, where for both
the ARMA-GARCH and ARMA-GJR model we indicate the lowest AIC value
and the corresponding optimal order (pi, qi) by a bold.

Based on AIC, it is notable that the losses time series of most stock indices pro-
vide the optimal fit under the assumption of skewed t distributed innovations,
while under the assumption of normally distributed innovations they always fits
worse. Also, the ARMA-GJR model always fits better than the ARMA-GARCH
model (with identical innovations distribution). This result is in line with the
stylized fact of fat-tailed loss distribution and the existence of leverage effect, as
discussed in Section 2.3. The exhibition of fat-tails of the loss distributions is
also supported by the Q-Q plots (see Figure 18 in Appendix E).

Recall from Section 2.3 that the innovations should follow a SWN(0,1) process
and so they should behave like an i.i.d. sample (with finite variance). In other
words, the innovations should not exhibit autocorrelation. For the AEX index,
Figure 8 depicts the time series of the innovations (left) and the correlogram
(right) from the fitted univariate ARMA-GARCH model. See Figure 20 and 21
in Appendix F for similar plots for every stock index, where the innovations are
respectively from the ARMA-GARCH and ARMA-GJR model. From the inno-
vations plot it looks like the innovations are indeed independently distributed.
In fact, from the correlogram we can see that all of the estimated correlations
(with lag > 0) lie outside the 5% confidence band. These results suggest that the
innovations do not exhibit autocorrelation and thus are likely to be realizations
of a SWN process.
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Table 3: AIC values and the corresponding optimal orders (pi, qi) of the fitted univariate ARMA(pi, qi)-GARCH(1, 1)-type models.
Dataset GARCH-N (pi, qi) GARCH-t (pi, qi) GARCH-st (pi, qi) GJR-N (pi, qi) GJR-t (pi, qi) GJR-st (pi, qi)

Asia
Hang Seng 9,570.58 (0, 0) 9,470.37 (2, 2) 9,466.21 (2, 2) 9,531.66 (2, 2) 9,448.20 (2, 2) 9,443.23 (2, 2)
KLSE 6,327.87 (1, 0) 6,098.01 (1, 0) 6,096.79 (1, 0) 6,297.71 (1, 0) 6,089.35 (1, 0) 6,088.49 (1, 0)
Nikkei 225 10,238.26 (0, 1) 10,141.56 (0, 1) 10,129.74 (0, 1) 10,193.96 (2, 2) 10,116.10 (1, 2) 10,105.30 (0, 1)
S&P/ASX 7,362.04 (0, 0) 7,289.31 (2, 2) 7,278.41 (0, 0) 7,290.22 (0, 0) 7,240.05 (0, 0) 7,222.74 (0, 0)
BSE Sensex 30 9,930.83 (0, 1) 9,784.38 (0, 2) 9,775.57 (0, 2) 9,891.23 (0, 1) 9,738.36 (2, 2) 9,734.46 (0, 2)
SSE 10,364.87 (0, 0) 10,051.02 (2, 1) 10,045.41 (2, 1) 10,364.53 (0, 0) 10,050.86 (2, 1) 10,044.91 (2, 1)
TSEC 9,331.82 (0, 2) 9,217.68 (0, 2) 9,207.86 (0, 2) 9,304.21 (2, 2) 9,202.52 (0, 2) 9,191.00 (0, 2)

Europe
AEX 9,226.94 (2, 2) 9,177.76 (0, 0) 9,161.22 (0, 0) 9,140.22 (0, 0) 9,104.27 (0, 0) 9,072.20 (2, 2)
BFX 8,618.33 (0, 0) 8,504.68 (0, 0) 8,496.21 (0, 0) 8,535.96 (0, 1) 8,450.97 (0, 0) 8,443.20 (0, 0)
BIST 100 12,003.02 (0, 0) 11,808.09 (0, 0) 11,808.25 (0, 0) 11,982.90 (0, 0) 11,789.86 (0, 0) 11,789.45 (0, 0)
CAC 40 9,754.29 (1, 1) 9,695.57 (1, 1) 9,672.84 (1, 1) 9,705.22 (0, 0) 9,638.81 (1, 1) 9,619.22 (1, 1)
DAX 9,838.31 (0, 0) 9.792.91 (0, 0) 9,779.44 (1, 1) 9,783.81 (0, 0) 9,736.71 (0, 0) 9,722.46 (0, 0)
IBEX 9,972.03 (2, 1) 9,857.02 (0, 0) 9,841.98 (1, 1) 9,933.48 (0, 0) 9,806.08 (0, 0) 9,792.01 (0, 0)
SMI 8,258.48 (0, 2) 8,178.05 (0, 0) 8,164.15 (0, 2) 8,196.68 (0, 2) 8,120.92 (0, 0) 8,105.99 (2, 0)

North-America
Dow 30 8,068.70 (1, 1) 7,993.43 (1, 1) 7,979.49 (2, 2) 8,003.29 (2, 2) 7,933.70 (1, 1) 7,913.61 (1, 1)
S&P/TSX 7,722.67 (0, 0) 7,664.79 (2, 1) 7,632.23 (2, 1) 7,691.78 (0, 0) 7,641.51 (0, 0) 7,610.09 (0, 0)

South-America
Ibovespa 11,300.50 (2, 1) 11,275.68 (2, 1) 11,268.42 (2, 2) 11,256.83 (2, 2) 11,240.10 (0, 0) 11,235.17 (0, 0)
IPC 9,121.41 (2, 2) 9,043.79 (2, 2) 9,026.66 (2, 2) 9,061.15 (1, 0) 8,994.39 (2, 2) 8,982.11 (2, 2)
MERV 12,186.20 (1, 0) 11,972.98 (2, 2) 11,966.81 (2, 2) 12,141.62 (2, 0) 11,953.45 (2, 2) 11,945.47 (2, 2)
S&P/BVL 8,954.92 (2, 1) 8,736.65 (2, 1) 8,738.34 (2, 1) 8,931.12 (2, 1) 8,729.70 (2, 1) 8,731.39 (2, 1)

For the ARMA-GARCH and ARMA-GJR models, the lowest AIC value and the corresponding, optimal order are indicated by a bold.
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Figure 8: Innovations plot (left) and correlogram (right) from the fitted univariate
ARMA-GARCH for the AEX, from January 1, 2000 to July 31, 2016.

In addition we perform the Ljung-Box Q(12)-test to formally examine whether or
not the innovations of the margins exhibit autocorrelation. The result of this test
can be found in Table 4. From the table we see that for every marginal model
the null hypothesis of the Q(12)-test is not rejected at the 5% (and so also 1%)
significance level. In other words, we have evidence that the innovations of the
univariate ARMA-GARCH and ARMA-GJR models do not exhibit autocorrela-
tion. Thus, we have evidence that the innovations are i.i.d. and so indeed follow
a SWN process, as desired. This result is confirmed by the previous exploratory
analysis of the innovations.

4.2 Copula-MGARCH model adequacy

In Section 4.1 we determined the most appropriate univariate ARMA-GARCH
and ARMA-GJR model for each stock index. Further, we confirmed that the
innovations of each of these models indeed follow a SWN process. With this
knowledge we can now construct the multivariate copula-MGARCH models,
namely the copula-DCC-ARMA-GARCH (using the most appropriate ARMA-
GARCH model for each margin) and copula-DCC-ARMA-GJR model (using the
most appropriate ARMA-GJR model for each margin), where the copula in each
of the copula-MGARCH models is either a Gaussian or t copula. The models
are evaluated in terms of their in-sample fit and out-of-sample forecast perfor-
mance. For comparison we also perform these evaluations for the traditional
DCC-ARMA-GARCH and DCC-ARMA-GJR models, with univariate and mul-
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Table 4: Ljung-Box Q(12)-test result of the innovations from the most appropriate fitted
ARMA-GARCH (left) and ARMA-GJR (right) models.

Stock index (innovations dist.) Q(12) Stock index (innovations dist.) Q(12)

Hang Seng (st) 14.2 Hang Seng (st) 13.5
KLSE (st) 18.3 KLSE (st) 16.1
Nikkei 225 (st) 12.5 Nikkei 225 (st) 10.9
S&P/ASX (st) 14.1 S&P/ASX (st) 16.9
BSE Sensex 30 (st) 7.0 BSE Sensex 30 (st) 7.4
SSE (st) 10.8 SSE (st) 10.4
TSEC (st) 11.0 TSEC (st) 9.4
AEX (st) 6.5 AEX (st) 4.4
BFX (st) 14.0 BFX (st) 11.2
BIST 100 (t) 5.6 BIST 100 (st) 6.0
CAC 40 (st) 9.3 CAC 40 (st) 4.9
DAX (st) 9.0 DAX (st) 6.6
IBEX (st) 7.3 IBEX (st) 6.2
SMI (st) 6.8 SMI (st) 3.2
Dow 30 (st) 6.0 Dow 30 (st) 5.9
S&P/TSX (st) 14.3 S&P/TSX (st) 14.0
Ibovespa (st) 10.1 Ibovespa (st) 12.2
IPC (st) 15.0 IPC (st) 15.6
MERV (st) 8.9 MERV (st) 10.6
S&P/BVL (t) 20.1 S&P/BVL (t) 20.1
*Statistically significant at the 1% level. **Statistically significant at the 5% level.

tivariate normal or t distribution for the innovations. These evaluations are used
for model selection, model validation and model ranking.

4.2.1 How do we test the in-sample fit of the models?

In this section we will perform model selection by testing the in-sample fit of all
eight models. To test the in-sample fit, we start by fitting each model to the whole
sample and then compute the log-likelihood (ln(L)) value and the Akaike, cor-
rected Akaike (AICc), Bayesian (BIC), Shibata (SIC) and Hannan-Quinn (HQIC)
information criteria values. The last four information criteria are defined as

AICc = AIC − 2k(k + 1)
n − k − 1 ,

BIC = k ln(n) − 2 ln(L),

SIC = n ln
(

n + 2k
n

)
− 2 ln(L),

HQIC = 2k ln(ln(n)) − 2 ln(L),

where n is the number of observations, k is the number of parameters and L is
the value of the likelihood function of the fitted model (Akaike 1974, Ghalanos
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2015b). 16 These five information criteria enable model selection by penaliz-
ing the overfitting at different rates (Ghalanos (2015b)). In other words, they
deal with the trade-off between the goodness-of-fit of the model (see the log-
likelihood part) and the complexity of the model (see the remainder part).

The fit of a model is assumed to be better for higher values of the (log-)likelihood.
In a similar way as for the AIC, the fit of the model is assumed to be better for
lower values of the AICc, BIC, HQIC and SIC. The outcomes of the in-sample fit
test can be found in Table 5. The table reports the ln(L), AIC, AICc, BIC, SIC and
HQIC values for each of the eight fitted models, where the highest value of the
log-likelihood and the lowest value of each information criterion are indicated
by a bold.

Table 5: The ln(L), AIC, AICc BIC, SIC and HQIC values of the fitted copula-MGARCH
and traditional MGARCH models for the whole sample are given. The highest value of
the log-likelihood and the lowest value of each information criterion are indicated by a
bold.
Model ln(L) AIC AICc BIC SIC HQIC

Ga-GARCH −73327.26 146,980.13 147,077.95 147,954.65 146,962.68 147,322.12
t-GARCH −72965.02 146,258.70 146,357.11 147.239.04 146,241.25 146,610.69
GARCH-N −74571.74 149,746.59 149,816.33 151,544.36 149,691.32 150,392.39
GARCH-t −73431.18 147,524.12 147,609.40 149,502.24 147,460.12 148,236.82
Ga-GJR −73279.58 146,910.32 147,015.38 147,954.65 146,889.96 147,285.58
t-GJR −72943.39 146,238.34 146,344.02 147,291.40 146,217.98 146,616.51
GJR-N −74424.28 149,493.51 149,574.48 151,425.09 149,432.42 150,188.76
GJR-t −73406.99 147,503.75 147,596.90 149,566.24 147,433.94 148.245.55

The following conclusions are all drawn according to the log-likelihood and the
information criteria.

� The copula-based models provide better fits than non-copula-based mod-
els. To stress this, based on the log-likelihood and each information cri-
terion value, the four models with the lowest values are all copula-based
models.

� Considering the Gaussian-based models only, we notice that the ones fol-
lowing the GJR specification are fitting at least as well as the ones following
the standard GARCH specification.

� Considering the t-based models only, we notice that the ones following the
GJR specification do not necessarily fit at least as good as the ones follow-
ing the standard GARCH specification. This holds for both the copula-
based and non-copula-based models. Therefore we have evidence that the
t-based models perform generally well compared to the Gaussian-based

16The Bayesian information criterion is also known as the Schwarz information criterion and
hence is sometimes abbreviated by SIC. This should not be confused with the Shibata informa-
tion criterion.
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models and so in that case, the choice of the GARCH specification (either
GJR or standard GARCH) does not have a big impact. This highlights the
relatively strong performance of the t-based models.

� Most importantly, the t-GARCH and t-GJR models have the two highest
values of the log-likelihood and the two lowest values of each information
criterion. As we can see from the table, the t-GARCH model provides the
best fit according to the BIC and HQIC, whereas the t-GJR model provides
the best fit according to the ln(L), AIC, AICc and SIC.

That the t-GJR model performs the fitting relatively well could be expected from
what we have seen in Section 4.1. Namely the fact that the ARMA-GJR marginal
models provide better in-sample fits than the ARMA-GARCH marginal models
(with identical innovations distribution), according to the AIC values. In Section
4.1 we also found that the innovations distributions that exhibit fat-tails always
provide better fits than the ones with normal-tails. Concluding, the t-GJR model
has the best in-sample fit performance. 17

4.2.2 How do we test the out-of-sample forecast of the models?

In this section we will perform model validation and model ranking by testing
the out-of-sample forecast of all eight models. Thus in this thesis we perform
two different out-of-sample forecast evaluation procedures. Specifically we are
interested in the one-day-ahead risk and volatility forecast performance of the
models.

The procedure for model validation, which is a common method in risk man-
agement, is the VaR backtest to check how well the models estimate the VaR.
Before we describe this procedure, let us introduce portfolios. Let us denote the
weight and the loss at time t of the ith stock index respectively by wt

i ∈ [0, 1]
and lti = µi,t + σi,tzi,t, i = 1, . . . , 20. Then the portfolio loss at time t is given by
ltport = wt′lt, where lt = (lt1, . . . , lt20)′ and wt = (wt

1, . . . ,wt
20)′ with the restriction

that
∑20

i=1 wt
i = 1, ∀t. In this thesis we only consider the equally-weighted port-

folio, i.e. wt
i = 1/20 for i = 1, . . . , 20 and all t.

The VaR backtest procedure is based on a series of rolling windows, where each
window consists of 800 observations. The procedure for the copula-MGARCH
models is described by the following steps, inspired by Weiß (2013) and Ghorbel
& Trabelsi (2009).

17It should be mentioned that the t-GARCH model performs the fitting very much alike the
t-GJR model: the difference in the value of the log-likelihood and each information criterion
between the two models is relatively small.
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1. Let k = 1 and define

T1 =

{
2,109 if k = 423
1 + 5(k − 1) otherwise,

T2 =

{
2,908 if k = 423
800 + 5(k − 1) otherwise.

2. Consider the losses observations of each stock index for time periods T1, . . . ,T2:
Li = (li,T1 , li,T1+1 . . . , li,T2)′, i = 1, . . . , 20.

3. Fit the copula-MGARCH models, with the most appropriate margins, to
L = (L1, . . . ,L20), see Section 2.6.3.

4. Forecast µi,T2+1 and σi,T2+1 using the estimated variables up to time T2 and
denote them respectively by µ̂i,T2+1 and σ̂i,T2+1, i = 1, . . . , 20. Further, denote
µ̂T2+1 = (µ̂1,T2+1, . . . , µ̂20,T2+1)′ and ∆̂T2+1 = diag(σ̂1,T2+1, . . . , σ̂20,T2+1).

5. Perform Monte Carlo simulations: simulate M = 5,000 times from the (20-
dimensional) fitted copula in order to obtain (M × 1) vectors of simulated
marginal samples Ui,T2+1 = (u(1)

i,T2+1, . . . ,u
(M)
i,T2+1)′, i = 1, . . . , 20.

6. For i = 1, . . . , 20, m = 1, . . . ,M, transform the simulated marginal samples
Ui,T2+1 to the original innovations scale using the quantile function of the
corresponding distribution, i.e. F−1

i (u(m)
i,T2+1) = z(m)

i,T2+1. Denote the (20 × 1)
vectors of simulated innovations by Z(m)

T2+1 = (z(m)
1,T2+1, . . . , z

(m)
20,T2+1)′.

7. Forecast M one-day-ahead losses for every stock index by

l̂(m)
T2+1 = µ̂T2+1 + Σ̂1/2

T2+1Z
(m)
T2+1.

8. For quantile level α ∈ {0.90, 0.95, 0975, 0.99, 0.995}, estimate the portfolio
VaR by

VaR
∧α

port,T2
= quantileα{w

′l̂(m)
T2+1}

M
m=1

where w = (1/20, . . . , 1/20)′.

9. Repeat Steps 2 – 8 until k = d(2,909 − 800)/5e + 1 = 423.

10. Consider the exceptions {lt+1
port > VaR
∧α

port,t} to determine the value of the back-
test’s test statistic and obtain the p-value.

The series of rolling windows used in the VaR backtest procedure is depicted in
Figure 9.
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Figure 9: Series of rolling windows.

Thus the estimation process is repeated once in every five observations. This
is because of the high computational cost that comes from the re-estimation of
(20-dimensional) models with a large set of parameters. For a low number of
different time series, usually less than or equal to five, it is common to repeat
the process once in every observation.

Observe that we take T1 = 2,109 and T2 = 2,908 if k = 423 (as opposed to T1 =
2,110 and T2 = 2,909 in the in-sample fit evaluation procedure). The reason for
this is that the last losses, li,2909, are used to determine whether or not the excep-
tion {l2909

port > VaR
∧α

port,2908} occurred.

Concretely, for i = 1, . . . , 20, t = 1, . . . ,T2, we firstly model the marginal losses by
li,t = µi,t + σi,tzi,t, secondly transform the innovations to uniform by Fi(zi,t) = ui,t,
thirdly fit the copula to ui,t, fourthly simulate M times from the fitted copula to
obtain simulated marginal samples u(m)

i,T2+1, m = 1, . . . ,M, fifthly reintroduce the
forecast of the conditional variance-covariance matrix and mean vector to fore-
cast a set of losses at time T2+1 by l̂(m)

T2+1 = µ̂T2+1+Σ̂1/2
T2+1Z

(m)
T2+1 and lastly estimate the

portfolio VaR by the α-quantile of {w′l̂(m)
T2+1}

M
m=1. 18 The Monte Carlo simulation

is performed in order to obtain the quantile of the joint innovations distribution
indirectly. We compare the estimated portfolio VaRs with the observed next-day
portfolio loss to determine whether or not an exception occurred.

The above procedure only applies to the copula-MGARCH models. For the tra-
ditional MGARCH models there exists analytical methods to estimate the VaR.
To be explicit, under the assumption of multivariate normal or t distributed in-
novations, we can simply consider the quantile function of the standardized nor-
mal or t distribution. The VaR backtest procedure for the traditional MGARCH
models is described by the following steps, inspired by Huang et al. (2009).

18Recall from Section 2.4.1 that the past estimates of the variables, up to some time t, are used to
forecast the values of the variables at time period t+1. Therefore we use the estimated parameters
of the in-sample fitted models (see Section 4.2.1) to forecast the one-day out-of-sample values.
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1. Let k = 1 and define

T1 =

{
2,109 if k = 423
1 + 5(k − 1) otherwise,

T2 =

{
2,908 if k = 423
800 + 5(k − 1) otherwise.

2. Consider the losses observations of each stock index for time periods T1, . . . ,T2:
Li = (li,T1 , li,T1+1 . . . , li,T2)′, i = 1, . . . , 20.

3. Fit the traditional MGARCH models to L = (L1, . . . ,L20), see Section 2.4.1.

4. Forecast µi,T2+1 and σi,T2+1 using the estimated variables up to time T2 and
denote them respectively by µ̂i,T2+1 and σ̂i,T2+1, i = 1, . . . , 20. Further, denote
µ̂T2+1 = (µ̂1,T2+1, . . . , µ̂20,T2+1)′ and ∆̂T2+1 = diag(σ̂1,T2+1, . . . , σ̂20,T2+1).

5. Estimate Yt, t = 1, . . . ,T2, (see (27)) Pc (see (28)) and consequently PT2+1 (see
(24)). Estimate ΣT2+1 by ∆̂T2+1P̂T2+1∆̂T2+1.

6. For quantile level α ∈ {0.90, 0.95, 0975, 0.99, 0.995}, estimate the portfolio
VaR by

VaR
∧α

port,T2
= µ̂port,T2+1 + σ̂port,T2+1zα

where µ̂port,T2+1 = w′µ̂T2+1 and σ̂port,T2+1 =

√
w′Σ̂T2+1w, zα = Φ−1(α) under

the assumption of multivariate normal distribution and zα = t−1
ν (α) under

the assumption of multivariate t distribution.

7. Repeat Steps 2 – 6 until k = d(2,909 − 800)/5e + 1 = 423.

8. Consider the exceptions {lt+1
port > VaR
∧α

port,t} to determine the value of the back-
test’s test statistic and obtain the p-value.

For each model, the number of exceptions for each quantile α can be found in
Table 6 as well as the p-value of the test statistics, where a p-value less than or
equal to 0.05 is indicated by a bold.

From the p-value we can evaluate the significance of the test statistic of a back-
test. If the p-value is larger than the 5% significance level, then the test statistic
does not differ significantly from zero and consequently we do not reject the
corresponding null hypothesis. As the null hypotheses of the backtests indicate
that the VaRs are statistically well-estimated, we opt for the model that has the
largest number of p-values greater than 0.05.
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Table 6: VaR backtest result, where 423 windows are considered.
Expected Ga-GARCH t-GARCH GARCH-N GARCH-t Ga-GJR t-GJR GJR-N GJR-t

α = 0.90
Number of exceptions 42 49 49 46 44 49 50 38 39

LRuc 0.288 0.288 0.554 0.784 0.288 0.224 0.479 0.588
LRind 0.740 0.740 0.994 0.832 0.403 0.660 0.799 0.719
LRcc 0.538 0.538 0.839 0.942 0.401 0.433 0.753 0.810

α = 0.95
Number of exceptions 21 25 26 26 24 23 25 23 23

LRuc 0.403 0.295 0.295 0.533 0.684 0.403 0.684 0.684
LRind 0.665 0.746 0.746 0.729 0.512 0.665 0.512 0.512
LRcc 0.642 0.549 0.549 0.776 0.743 0.642 0.743 0.743

α = 0.975
Number of exceptions 11 15 15 16 16 14 14 13 13

LRuc 0.194 0.194 0.116 0.116 0.309 0.309 0.466 0.466
LRind 0.293 0.293 0.261 0.261 0.327 0.327 0.363 0.363
LRcc 0.248 0.248 0.155 0.155 0.369 0.369 0.507 0.507

α = 0.99
Number of exceptions 4 7 7 12 10 6 6 11 10

LRuc 0.216 0.216 0.002 0.017 0.416 0.416 0.006 0.017
LRind 0.627 0.627 0.402 0.486 0.677 0.677 0.443 0.486
LRcc 0.413 0.413 0.006 0.044 0.659 0.659 0.017 0.044

α = 0.995
Number of exceptions 2 3 4 8 6 3 4 8 8

LRuc 0.566 0.248 0.002 0.029 0.566 0.248 0.002 0.002
LRind 0.836 0.782 0.578 0.677 0.836 0.782 0.578 0.578
LRcc 0.830 0.493 0.007 0.084 0.830 0.493 0.007 0.007

A p-value less than or equal to 0.05 is indicated by a bold.

55



We make the following observations from the VaR backtest.

� The number of exceptions of the models is in all cases higher than the ex-
pected number of exceptions, except for the GJR-N and GJR-t model for
α = 0.90.

� The models following the GJR specification generally have equal or lower
number of exceptions than their counterparts following the standard GARCH
specification.

� For each of the three tests (LRuc, LRind and LRcc), every model has all VaR
estimates being statistically significant at the 5% level for quantile level
α ∈ {0.90, 0.95, 0.975}.

� For each of the three tests, the copula-MGARCH models have all VaR esti-
mates being statistically significant at the 5% level.

The first observation implies that the MGARCH models are generally optimistic:
higher number of exceptions is related to generally lower VaR estimates. Fur-
thermore in terms of number of exceptions, the copula-MGARCH models per-
form relatively well for higher quantile levels, while the traditional MGARCH
models perform relatively well for lower quantile levels. The second obser-
vation implies that the models following the GJR specification generally esti-
mate the volatility higher than their GARCH counterparts, and hence the for-
mer models are generally more pessimistic. From the third observation we have
evidence that each MGARCH-type model is adequate for VaR estimation for
α ∈ {0.90, 0.95, 0.975}. This indicates why MGARCH-type models are popular
in risk management, because α = 0.95 and 0.975 are commonly considered for
estimating risk measures. From the last observation we have evidence that the
copula-MGARCH models are adequate for VaR estimation for even any consid-
ered α. Concluding, the copula-MGARCH models are all optimal for the estima-
tion of the VaR. Moreover, these models outperform the traditional MGARCH
models.

Recall from Section 2.2 that the VaR backtest is only used for model validation,
but not for model selection or ranking. So from the first out-of-sample forecast
procedure, namely the VaR backtest, we only have evidence that every copula-
MGARCH-type model performs sufficiently well on estimating the VaR. We per-
form a second procedure, which is used to rank the models based on their out-
of-sample volatility forecast performance. Moreover, this procedure is based
on statistical loss functions, namely Mean Squared Error (MSE), Mean Abso-
lute Deviation (MAD), Logarithmic Loss (LL), Heteroskedasticity-Adjusted MSE
(HMSE) and a loss function implicit in the Gaussian quasi-maximum likelihood
function (GMLE) (Lopez 2001): 19

19The MAD is defined identically to the Mean Absolute Error (MAE). The latter description is
used by Lopez (2001).
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MSE = 1
Tn

n∑
i=1

T∑
t=1

(
σi,t+1|t − σ̂i,t+1|t

)2
, (52)

MAD = 1
Tn

n∑
i=1

T∑
t=1

|σi,t+1|t − σ̂i,t+1|t|, (53)

LL = 1
Tn

n∑
i=1

T∑
t=1

(
ln(σ2

i,t+1|t) − ln(σ̂2
i,t+1|t)

)
, (54)

HMSE = 1
Tn

n∑
i=1

T∑
t=1

(
σ2

i,t+1|t

σ̂2
i,t+1|t

− 1

)2

, (55)

GMLE = 1
Tn

n∑
i=1

T∑
t=1

(
ln(σ̂2

i,t+1|t) +
σ2

i,t+1|t

σ̂2
i,t+1|t

)2

, (56)

where σi,t+1|t is the latent volatility and σ̂i,t+1|t is the ith one-day-ahead volatil-
ity forecast at current time t. We use the squared non-standardized residuals,
ε̂2

i,t+1|t ≡ (li,t+1− µ̂i,t+1|t)2, as a proxy for the latent squared volatility, σ2
i,t+1|t, inspired

by Kosapattarapim et al. (2011). This is supported by the fact that

σ2
i,t+1|t = E[σ2

i,t+1|Ft] = E[ε2
i,t+1Z2

i,t+1|Ft] = E[ε2
i,t+1|Ft] = E[(li,t+1 − µi,t+1)2

|Ft].

Notice that this evaluation procedure particularly focusses on the volatility fore-
cast instead of the losses forecast as opposed to the VaR backtesting procedure.
Additionally, this procedure is used for model ranking, where the one-day-ahead
forecast of a model is assumed to be more accurate if it yields lower values for
the statistical loss functions.

The values of the statistical loss functions are determined from the estimated
and forecasted variables of the VaR backtesting procedure. Thus, again T = 423
is the total number of observations, n = 20 is the number of stock indices and
define τ = 800 + 5(t − 1) so that the subscript “t + 1|t” of the variables in (52) –
(56) becomes “τ + 1|τ”. The outcomes are reported in Table 7, where for each
statistical loss function the lowest value is indicated by a bold and the ranking
is given in parenthesis.

From the table it is noteworthy that there is no model that provides the optimal
value for each statistical loss function. In fact, the ranking of the models greatly
differs for each statistical loss function. It seems that the choice of the statistical
loss function affects the result of the volatility forecast evaluation. For instance,
it seems that MSE and MAD favor a given traditional MGARCH model over its
copula-MGARCH counterpart, whereas it seems that HMSE and GMLE favor a
given copula-MGARCH model over its traditional MGARCH counterpart. Fur-
ther, it also seems that LL, HMSE and GMLE favor the models following the GJR
specification over the models following the standard GARCH specification.
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This result is in accordance with previous studies on forecast evaluation. Kos-
apattarapim et al. (2011) and Shamiri & Isa (2009) empirically show that the best
fitted GARCH model, based on AIC, is not necessarily the model that provides
the best volatility forecast in terms of MSE and MAD. 20 An empirical example
by Lopez (2001) confirms that the choice of the statistical loss functions in (52)
− (56) directly affects the forecast evaluation results. According to Laurent et al.
(2013), the results of the forecast evaluation are also dependent on the choice of
the proxy for the latent squared volatility.

Kosapattarapim et al. (2011) suggest to evaluate the difference of the values of
the statistical loss functions between the best fitted model (here: t-GJR) and the
best performing model (i.e. the model with lowest statistical loss function value)
by the Percent Error (PE). The PE is defined as

PE = A − B
|A|

,

where A is the statistical loss function value of the best fitted model and B is the
lowest statistical loss function value (see bold values in Table 7). The PE values
are also reported in Table 7. All PE values are less than 0.05, which indicates
that the statistical loss function values of the t-GJR model are not statistically
different from the best forecast performing model. This suggests that the t-GJR
model is reliable for volatility forecasting, although it does not yield the optimal
value for each statistical loss function.

Table 7: Statistical loss functions.
MSE MAD LL HMSE GMLE

Ga-GARCH 0.9478051 (2) 0.7435966 (3) −1.556842 (7) 4.527939 (6) 1.299437 (6)
t-GARCH 0.9478312 (3) 0.7435934 (2) −1.556953 (6) 4.527936 (5) 1.299381 (5)
GARCH-N 0.9439955 (1) 0.7416926 (1) −1.551210 (8) 4.580340 (8) 1.300505 (7)
GARCH-t 0.9522066 (4) 0.7462446 (4) −1.567432 (4) 4.536987 (7) 1.301881 (8)
Ga-GJR 0.9935522 (7) 0.7549792 (7) −1.584870 (2) 4.226730 (2) 1.287352 (1)
t-GJR 0.9935280 (6) 0.7549756 (6) −1.584739 (3) 4.226617 (1) 1.287356 (2)
GJR-N 0.9773505 (5) 0.7512461 (5) −1.561576 (5) 4.370069 (4) 1.291647 (4)
GJR-t 0.9973043 (8) 0.7573616 (8) −1.598582 (1) 4.277152 (3) 1.290476 (3)

PE 0.0498551 0.0175939 0.0087352 0.0000000 0.0000031

4.3 Describing the dependence structure

By describing the dependence structure of the stock indices, we could identify
useful proxies for (not) taking on a position of a particular stock market to hedge
against other markets. Based on the conducted test criteria of the in-sample fit

20Like Lopez (2001), both Kosapattarapim et al. (2011) and Shamiri & Isa (2009) also use the
name MAE instead of MAD.
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test and the two out-of-sample forecast tests we conclude that the t-GJR model
is optimal. Because of this we expect that the t-GJR model is able to describe the
dependence structure of the stock indices most accurate out of the eight models
studied. Therefore we will exclusively consider this model in this section.

It should be mentioned that the tests also show that the t-GARCH model per-
forms the fit and forecast relatively well, in fact almost as well as the t-GJR model.
Namely, the difference in the value of the log-likelihood and each information
criterion between the two models is relatively small and all of their VaR esti-
mates are significant at the 5% level. We expect that the t-GARCH model would
yield similar results as the t-GJR model.

4.3.1 How do we obtain estimates of the rank correlations and tail-dependence
coefficients in order to describe the dependence structure?

In Section 2.4.2 we mentioned that we prefer to use the Kendall’s tau over the
Pearson’s correlation coefficient for the estimation of the correlation between
time series. For a Gaussian and t copula it can be shown that the Kendall’s tau
of a bivariate random vector (Xi,X j)′ can be written as:

ρτ(Xi,X j) =
2
π

arcsin(ρ(Xi,X j)), (57)

where ρ(Xi,X j) is the Pearson’s correlation coefficient for (Xi,X j)′ from the cop-
ula (Demarta & McNeil 2004). Thus the dynamic conditional Kendall’s tau ma-
trix, denoted by Pτ,t, is obtained by applying the transformation in (57) to every
Pearson’s correlation coefficient of the estimated dynamic conditional correla-
tion matrix P̂t.

A correlation matrix is required to be positive-definite. However, according to
McNeil et al. (2015) the transformation in (57) does not necessarily yield a ma-
trix that is positive-definite. If the dynamic conditional Kendall’s tau matrix is
not positive definite, we could perform Algorithm 7.57 (eigenvalue method) of
McNeil et al. (2015) in order to obtain a positive-definite matrix that is close to
the original non-positive-definite dynamic conditional Kendall’s tau matrix.

We can approve that the matrix is positive-definite using the following theorem
in Leon (2008):

Theorem 4.1. A symmetric matrix M is positive-definite if and only if all of its
eigenvalues are positive.

Next to estimating the correlation matrix for describing the dependence struc-
ture, we also estimate the TIs of every pair of stock indices. The estimates of the
TIs are obtained from fitted unconditional bivariate t copulas using equations
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(40) and (41). 21 These bivariate copulas are fitted on the M = 5, 000 simulated
innovations of each of two corresponding stock indices generated from the fitted
t-GJR model.

4.3.2 Using the t-GJR model to describe the dependence structure

Recall that we found the t-GJR model being the most appropriate model and
thus this model will be used to describe the dependence structure of the stock in-
dices. The estimated parameters of the margins in the t-GJR model are reported
in Table 8, where the asterisks indicate whether or not a parameter is statisti-
cally significant and if so, at which level. The t-statistic value of each estimated
parameter is left out due to the lack of space. The result can be summarized as
follows.

� For each stock index the variables αk1 and βk1 are statistically significant at
the 1% level, which implies that the conditional volatility of the losses are
significantly explained by lagged squared residual and lagged conditional
variance. The latter result indicates that the volatility is highly persistent,
i.e. large (respectively small) changes in the conditional variance are fol-
lowed by other large (respectively small) changes (Aloui et al. 2013).

� The use of the asymmetric specification of GJR is supported by the fact that
the leverage terms γk are all statistically significant at the 1% level, except
for KLSE (for which it is statistically significant at the 5% level) and SSE
(for which it is non-significant). This verifies the existence of asymmetric
response of volatility to market shocks (Aloui et al. 2013).

� The non-normality assumption for the loss distributions is supported by
the statistical significance at the 1% level of the skew (if applicable) and
shape parameters. The positive skewness and relatively low shape param-
eter of the margins indicate that the tail of the loss distribution on the right
side is longer and fatter than the left side. That is, positive extreme losses
are higher and they are more likely to occur than negative extreme losses.

� Finally, the DCC parameters, α1 = 0.005 and β1 = 0.988 (not given in Ta-
ble 8), are both statistically significant at the 1% level, which indicates that
the conditional correlation process between the stock indices is persistent.
Therefore the assumption of constant conditional correlation is not sup-
ported and so we have evidence that the DCC specification is more real-
istic for the sample portfolios than Bollerslev’s Constant Conditional Cor-
relation (CCC) specification, which assumes α1 = β1 = 0 in equation (24)
(McNeil et al. 2015). This is in agreement with previous studies in financial
stock markets, see for instance Isogai (2015) and Padhi & Lagesh (2012).

21In order to estimate the TIs we have to use unconditional copulas, instead of the conditional
copula from the fitted t-GJR model, due to the lack of time-dependence property of the TIs.
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Table 8: Estimated parameters of the margins in the t-GJR model.
k µk φk1 φk2 λk1 λk2 αk0 αk1 βk1 γk (leverage) ξk (skew) νk (shape)

HS 0.006 −0.710* −0.971* 0.711* 0.955* 0.019** 0.092* 0.931* −0.067* 1.068* 7.664*
KLSE −0.016 0.074* − − − 0.012** 0.151* 0.870* −0.067** 1.044* 5.352*
NIKKEI −0.003 − − −0.036** − 0.076* 0.149* 0.869* −0.107* 1.105* 9.674*
ASX −0.016 − − − − 0.011* 0.128* 0.918* −0.121* 1.124* 11.046*
BSE −0.039*** − − 0.031*** −0.042** 0.065* 0.190* 0.855* −0.149* 1.098* 7.049*
SSE 0.029 0.991* 0.005 −0.982* − 0.038* 0.081* 0.922* −0.026 1.066* 3.912*
TSEC −0.032*** − − 0.006 −0.050** 0.009* 0.074* 0.945* −0.052* 1.098* 7.620*
AEX 0.019 −0.570* −1.000* 0.568* 0.100* 0.027* 0.178* 0.885* −0.159* 1.113* 11.725*
BFX −0.018 − − − − 0.033* 0.203* 0.853* −0.159* 1.089* 9.014*
BIST −0.051 − − − − 0.115* 0.143* 0.876* −0.090* 1.041* 6.220*
CAC 0.011 0.632* − −0.672* − 0.036* 0.143* 0.899* −0.125* 1.136* 10.806*
DAX 0.005 − − − − 0.035* 0.155* 0.896* −0.139* 1.107* 11.741*
IBEX 0.011 − − − − 0.025* 0.161* 0.897* −0.132* 1.112* 9.423*
SMI −0.002 −0.011 −0.038*** − − 0.035* 0.200* 0.854* −0.168* 1.118* 9.712*
DOW −0.004 −0.817* − 0.789* − 0.025* 0.203* 0.873* −0.192* 1.126* 8.283*
TSX −0.006 − − − − 0.016* 0.136* 0.895* −0.100* 1.166* 11.130*
BVSP 0.070 − − − − 0.070* 0.112* 0.914* −0.104* 1.073* 15.332*
IPC −0.030 0.572* −0.987* −0.560* 0.985* 0.023* 0.136* 0.905* −0.112* 1.104* 9.080*
MERV −0.027 −0.008** −0.989* 0.006* 0.998* 0.194* 0.178* 0.844* −0.122* 1.082* 5.484*
BVL −0.043 1.099* −0.106* −0.983* − 0.058* 0.212* 0.806* −0.084* − 5.330*

*Statistically significant at the 1% level. **Statistically significant at the 5% level. ***Statistically significant at the 10% level.
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The estimated dynamic conditional Pearson’s correlation matrix P̂T and the cor-
responding dynamic conditional Kendall’s tau matrix, which is denoted by P̂τ,T ,
for the last period of time of the samples (i.e. July 27, 2016) can be found in Table
9 and 10 respectively. As the matrices are symmetric, we only show the correla-
tion coefficients in the upper triangular part of the matrix. Furthermore, on the
top of each tables indicate the stock indices by only their starting letter due to a
lack of space.

The minimum eigenvalue of P̂τ,T is λmin = 0.2158 > 0 and so by Theorem 4.1 we
deduce that the matrix in positive-definite, as required.

We make the following observations from the dynamic conditional Kendall’s
tau matrix P̂τ,T . 22

� All correlation coefficients are positive.

� For a given stock index from a certain continent (e.g. Europe), its correla-
tion with another stock index from the same continent is generally higher
than the correlation between it and a stock index from another continent
(e.g. Asia).

� The Hang Seng (HS, Asia) is relatively strong correlated with other Asian
stock indices, with a minimum correlation coefficient of 0.28.

� The correlations between SSE (Asia) and the other Asian stock indices are
relatively strong compared to those between SSE and the non-Asian stock
indices.

� Four Asian stock indices, namely Hang Seng, Nikkei 225 (NIKKEI), S&P/ASX
(ASX), BSE Sensex 30 (BSE), have correlation coefficients greater than 0.20
with the European stock indices in 26 out of 28 cases. On the other hand,
these four Asian stock indices have correlation coefficients lower than or
equal to 0.20 with the North-America and South-America stock indices for
22 out of 24 cases.

� Each Asian stock index has lowest correlation with a stock index from
North-America or South-America, except for SSE and SMI (Europe), where
the correlation is equally low as the correlation between SSE and Dow 30
(DOW, North-America).

� The BIST 100 (BIST, Turkey) stock index shows significantly less correla-
tion with the other European stock indices than the other European stock
indices with each other.

� The only two considered stock indices from North-America are seemingly
stronger correlated with each other than each of them with any other stock
index.

22Since the function arcsin(x) is strictly monotonically increasing in x ∈ [−1, 1], similar obser-
vations can be made when we consider the dynamic conditional correlation matrix P̂T . The only
difference would be the correlation values.
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Table 9: Estimated dynamic conditional correlation matrix P̂T of the t-GJR model, where T is the last period of time of the samples (T: July
27, 2016).

H K N A B S T A B B C D I S D T B I M B

HS 1.00 0.46 0.56 0.57 0.50 0.42 0.57 0.42 0.40 0.32 0.42 0.40 0.39 0.40 0.23 0.31 0.27 0.34 0.21 0.28
KLSE 1.00 0.43 0.40 0.31 0.19 0.44 0.23 0.22 0.26 0.22 0.21 0.22 0.23 0.14 0.18 0.21 0.27 0.13 0.19
NIKKEI 1.00 0.54 0.37 0.23 0.52 0.35 0.35 0.24 0.36 0.34 0.37 0.38 0.19 0.24 0.21 0.27 0.17 0.20
ASX 1.00 0.37 0.19 0.48 0.35 0.33 0.25 0.34 0.32 0.32 0.36 0.18 0.28 0.22 0.29 0.17 0.25
BSE 1.00 0.21 0.41 0.39 0.40 0.35 0.40 0.40 0.40 0.37 0.30 0.28 0.26 0.33 0.20 0.27
SSE 1.00 0.27 0.13 0.13 0.12 0.13 0.12 0.12 0.10 0.10 0.13 0.13 0.13 0.10 0.16
TSEC 1.00 0.31 0.29 0.28 0.31 0.30 0.30 0.29 0.20 0.25 0.23 0.29 0.21 0.26
AEX 1.00 0.88 0.40 0.93 0.90 0.85 0.82 0.59 0.54 0.39 0.55 0.36 0.37
BFX 1.00 0.38 0.88 0.85 0.83 0.79 0.55 0.50 0.35 0.53 0.32 0.34
BIST 1.00 0.40 0.39 0.40 0.34 0.28 0.26 0.31 0.30 0.25 0.31
CAC 1.00 0.93 0.89 0.82 0.58 0.52 0.37 0.54 0.35 0.36
DAX 1.00 0.84 0.81 0.59 0.51 0.36 0.54 0.34 0.36
IBEX 1.00 0.74 0.56 0.50 0.41 0.52 0.36 0.38
SMI 1.00 0.50 0.46 0.31 0.49 0.29 0.28
DOW 1.00 0.67 0.53 0.66 0.45 0.38
TSX 1.00 0.53 0.60 0.46 0.46
BVSP 1.00 0.57 0.54 0.43
IPC 1.00 0.44 0.40
MERV 1.00 0.37
BVL 1.00
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Table 10: Estimated dynamic conditional Kendall’s tau matrix P̂τ,T of the t-GJR model, where T is the last period of time of the samples (T:
July 27, 2016).

H K N A B S T A B B C D I S D T B I M B

HS 1.00 0.30 0.38 0.39 0.33 0.28 0.39 0.28 0.26 0.21 0.28 0.26 0.26 0.26 0.15 0.20 0.18 0.22 0.13 0.18
KLSE 1.00 0.28 0.26 0.20 0.12 0.29 0.15 0.14 0.17 0.14 0.13 0.14 0.15 0.09 0.12 0.14 0.17 0.09 0.12
NIKKEI 1.00 0.37 0.24 0.15 0.35 0.23 0.23 0.15 0.24 0.22 0.24 0.25 0.12 0.15 0.14 0.17 0.11 0.13
ASX 1.00 0.24 0.12 0.32 0.23 0.22 0.16 0.22 0.21 0.21 0.23 0.12 0.18 0.14 0.18 0.11 0.16
BSE 1.00 0.14 0.27 0.26 0.26 0.23 0.26 0.26 0.26 0.24 0.19 0.18 0.17 0.21 0.13 0.17
SSE 1.00 0.17 0.08 0.08 0.08 0.08 0.08 0.08 0.06 0.06 0.08 0.08 0.08 0.07 0.10
TSEC 1.00 0.20 0.19 0.18 0.20 0.19 0.20 0.19 0.13 0.16 0.15 0.18 0.13 0.17
AEX 1.00 0.68 0.26 0.77 0.71 0.65 0.62 0.40 0.37 0.26 0.37 0.23 0.24
BFX 1.00 0.25 0.68 0.65 0.62 0.58 0.37 0.33 0.23 0.35 0.21 0.22
BIST 1.00 0.26 0.25 0.26 0.22 0.18 0.17 0.20 0.19 0.16 0.20
CAC 1.00 0.76 0.69 0.62 0.39 0.35 0.24 0.37 0.23 0.24
DAX 1.00 0.64 0.60 0.40 0.34 0.24 0.36 0.22 0.23
IBEX 1.00 0.53 0.38 0.34 0.27 0.35 0.24 0.25
SMI 1.00 0.33 0.30 0.20 0.32 0.19 0.18
DOW 1.00 0.46 0.36 0.46 0.30 0.24
TSX 1.00 0.36 0.41 0.31 0.30
BVSP 1.00 0.39 0.36 0.28
IPC 1.00 0.29 0.26
MERV 1.00 0.24
BVL 1.00
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� Each non-Asian stock index has the lowest correlation with the SSE.

� The three highest correlations are between AEX −CAC (0.77), CAC −DAX
(0.76) and AEX − DAX (0.71).

� The three lowest correlations are between SSE − SMI (0.06), SSE − DOW
(0.06) and SSE −MERV (0.07).

Thus the dynamic volatilities in the losses of the stock indices show positive
interdependence. This effect is in particular strong between stock indices from
the same continent. The relatively low correlation between BIST and the other
European stock indices could be explained from a geographical and political
point of view (Kirisci 2005, Corke et al. 2014). 23 Namely, BIST is the only East-
European stock index considered in our study and on top of that, Turkey has a
relatively poor (political) relationship with the other (West-)European countries
for a period of time. 24

For the stock indices that correspond to at least one of the three highest corre-
lations (i.e. AEX, CAC and DAX), the multiplots of the losses and the relating
scatter, density and contour plots can be found in Figure 10 and Figure 11, re-
spectively. 25 The plots in Figure 11 are created from the innovations of the fit-
ted t-GJR model, after transforming to uniform. The strong correlation between
these three stock indices indicates that their losses time series have relatively
many correspondences. This can informally be confirmed by comparing their
losses time series. In Figure 10 we can see that their losses time series indeed
evolve similarly. From the plot in Figure 11 we can confirm that the losses time
series are closely related. Moreover, the plots also show the existence of strong
dependency in the tails. These results do not come as a complete surprise, be-
cause these stock indices are from West-European countries that together have
a relatively strong political relationship.

How do the correlations between these stock indices change over time? In Fig-
ure 12 we can see the time series of the estimated dynamic conditional Kendall’s
taus for AEX − CAC, CAC − DAX and AEX − DAX over the time period Jan-
uary 1, 2000 to July 31, 2016. In each of the three plots, we recognize abrupt
decreases and increases in correlation around the period of 2001. This is likely
to be the result of the dot-com bubble (1995 − 2001). During that period the
value of many stock markets from Internet-related sectors increased rapidly at
a certain time period, but these increases were shortly afterwards followed by
rapid decreases. In addition, there are some more than usual increases and de-
creases around the period of 2007 (except for CAC −DAX) and 2014, but overall
the degree of the correlations stays rather stable after the dot-com bubble. So
interestingly, there is no clear evidence that the Russian financial crisis (2014)

23BIST has also relatively low correlations with non-European stock indices.
24Actually, Turkey is a transcontinental country in Eurasia.
25See Figure 17 in Appendix E for single plots of the losses of the stock indices.
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Figure 10: Multiplots of the losses of the AEX, CAC and DAX.

and, in particular, the global financial crisis (2007 − 2008) have a large effect on
the degree of correlations between these stock indices.

With this result we may approve the general claim that the correlation between
stock indices increases (respectively decreases) after a rapid decrease (respec-
tively increase) of stock market values. However, the degree to which this effect
is the case differs per event and can even be relatively limited.

Diversification of a portfolio is a general investment strategy of composing a port-
folio of assets with little to no correlation (Hull 2015). Consider stock indices, in
this way a large decline in one stock index will most likely not be followed by
a (large) decline in one or more of the other stock indices in the portfolio. This
strategy has become a standard in investing as it often achieves the long-term
financial goals, while minimizing risk. Thus, by following the diversification
strategy, it is not recommended to invest in a number of highly correlated stock
indices (e.g. both AEX and CAC). Though it is interesting to notice that the cor-
relation between these stock indices may not be as extreme as is implicated by
the Pearson’s correlation coefficients, see Table 9. Hence, the Kendall’s tau in-
dicates that the degree of diversity between these stock indices is larger than is
expected when considering the Pearson’s correlation coefficient.

For the stock indices that correspond to at least one of the three lowest corre-
lations (i.e. SSE, SMI, DOW and MERV), the multiplots of the losses and the
relating scatter, density and contour plots can be found in Figure 13 and Fig-
ure 14, respectively. 26 The plots in Figure 14 are created from the innovations
of the fitted t-GJR model, after transforming to uniform. The low (and almost
zero) correlation coefficients for SSE with SMI (Europe), SSE with DOW (North-
America) and SSE with MERV (South-America) indicate that the losses time se-

26See Figure 17 in Appendix E for single plots of the losses of the stock indices.
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Figure 11: Scatter, density and contour plots of AEX − CAC, CAC − DAX and AEX −
DAX. The plots are created from the innovations of the fitted t-GJR model, after trans-
forming to uniform.

ries of these pairs of stock indices have nearly no correspondences. This can
informally be confirmed by comparing their losses time series, see Figure 13.
From the plots in Figure 14 we can confirm that the losses time series are poorly
related. Moreover, the plots also show that there is very little dependency in the
tails.

It is noteworthy that the SSE is involved in each of the three low correlations.
This is in line with earlier claims that the Chinese stock market is weakly cor-
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Figure 12: Estimated dynamic conditional Kendall’s taus for AEX − CAC, CAC − DAX
and AEX − DAX over the time period January 1, 2000 to July 31, 2016.

Figure 13: Multiplots of the losses of the SSE, SMI, DOW and MERV.

related with non-Chinese stock markets, see Valukonis (2013) and Labuszewski
(2014). According to Valukonis (2013), this could be explained by the fact that
the Chinese stock market was completely isolated from the global market for
a time period. Currently, the strict rules by the Chinese mainland authorities
causes the Chinese stock market to still bear with a low integrity into the global
market. Accordingly, by following the diversification strategy it is suggested to
invest in the Chinese stock market in order to hedge against other (non-Chinese)
markets (S.R. and C.C.W. 2014).

For the three strongest correlated stock indices (according to the estimated dy-
namic conditional Kendall’s tau as of July 31, 2016), namely AEX, CAC and DAX,
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Figure 14: Scatter, density and contour plots of SSE− SMI, SSE−DOW and SSE−MERV.
The plots are created from the innovations of the fitted t-GJR model, after transforming
to uniform.

we have seen that their correlation fluctuated heavily around the period of 2001.
After this period the correlations are rather stable until July 31, 2016, but with
some more than usual increases and decreases around 2007 and 2014. How does
the correlation between SSE − SMI, SSE − DOW and SSE −MERV change over
time? In Figure 15 we can see the time series of the estimated dynamic condi-
tional Kendall’s taus for these three pairs over the time period January 1, 2000
to July 31, 2016.
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Figure 15: Estimated dynamic conditional Kendall’s taus for SSE − SMI, SSE − DOW
and SSE −MERV over the time period January 1, 2000 to July 31, 2016.

For SSE − SMI there are no large changes in the correlation during the whole
time period, and so surprisingly also not during the dot-com bubble, global fi-
nancial crisis and Russian financial crisis. For SSE − DOW there are rapid de-
creases during the financial crises, in particular during the global financial crisis.
This is in line with the general claim that the correlation between financial as-
sets decreases during financial crises due to the decline in value of the assets.
Furthermore, it is noteworthy that SSE and DOW are negatively correlated in
the period of the financial crises. Lastly, for SSE − MERV we notice some very
large fluctuations in the correlation, but these only arise for a short period of
time. Moreover, these fluctuations in particular happen around the period of
the financial crises.

With these results we could infer that the change in correlation over time is dif-
ferent for strongly correlated stock indices and poorly correlated stock indices.
Actually, we even observe that the change in correlation can be significantly dif-
ferent for different pairs of stock indices. More explicitly, the change in correla-
tion of a pair of stock indices with a certain degree of correlation can be signif-
icantly different for another pair of stock indices with (almost) the same degree
of correlation. Moreover, there is no clear evidence that a financial crisis neces-
sarily affects the degree of correlation.

So far we only studied the dynamic conditional correlation coefficients for de-
scribing the dependence structure of the stock indices. Now, let us study the
extremal dependence of the stock indices by estimating the TIs (also known as
upper/lower tail-dependence coefficients) for every pair of stock indices. Recall
that a TI is a probability that a large drop (or large rise) of one time series is fol-
lowed by large drops (or large rise) of another time series. And therefore, this
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quantity is used to measure the tendency of markets to crash or boost together.
The estimated TIs can be found in Table 11. Not too surprisingly, there are some
correspondences with the estimated dynamic conditional matrices P̂T and P̂τ,T
in respectively Table 9 and 10. We make the following observations from the
table of estimated TIs.

� For a given stock index from a certain continent (e.g. Europe), its TI to-
gether with another stock index from the same continent is generally higher
than that with a stock index from another continent (e.g. Asia).

� The TIs of the SSE together with any other stock index is at most 0.03.

� The BIST 100 (BIST, Turkey) stock index has significantly lower TIs together
with the other European stock indices than the other European stock in-
dices with each other.

� The only two considered stock indices from North-America have a larger
TI together than each of them with any other stock index.

� Every non-Asian stock index has (almost) no tail-dependence with each
Asian stock index. The maximum TI between a European stock index and
an Asian stock index is 0.02, while the maximum TI between an (North
and South) American stock index and an Asian stock index is 0.03.

� The three highest TIs are between AEX − CAC (0.60), CAC − DAX (0.59)
and BFX − CAC (0.51).

The TIs of SSE together with the other stock indices (including the other Asian
stock indices) is at most 0.03. This highlights the very low integrity of the Chi-
nese stock market into the global market. The relatively low TIs of BIST with
the other European stock indices demonstrate the poor integration of the Turk-
ish stock market into the West-European stock market. 27 These results are in
line with the conclusion that we drawn from the estimated dynamic conditional
correlations. Most noticeable is the amount of TIs that are (close to) zero: 153
out of 190 TIs with two different stock indices are less than or equal to 0.05. This
shows that many markets have little to no tendency to crash or boost together.

It is important to remark that a TI does not explicitly take into consideration the
development through time, as opposed to the dynamic conditional correlations.
That is, it does not take into account the time periods when large drops (or large
rise) of one stock index is followed by a large drop (or large rise) by another
stock index, but rather the frequency of these events. Therefore it only measures
the tendency of these events happening on the same day, but not within the next
few days. So given two stock indices with a high TI, it may well be the case that
one of the two stock indices follows the other stock index perfectly in terms of
the extreme comovements, but with some time lag.

27BIST has also relatively low TIs with non-European stock indices.
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Table 11: Estimated tail indices using innovations from the t-GJR model.
H K N A B S T A B B C D I S D T B I M B

HS 1.00 0.03 0.02 0.11 0.02 0.01 0.12 0.02 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00
KLSE 1.00 0.05 0.01 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NIKKEI 1.00 0.16 0.01 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ASX 1.00 0.02 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
BSE 1.00 0.00 0.02 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.03
SSE 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
TSEC 1.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
AEX 1.00 0.50 0.05 0.60 0.50 0.39 0.40 0.12 0.02 0.05 0.00 0.08 0.01
BFX 1.00 0.04 0.51 0.43 0.37 0.37 0.07 0.06 0.03 0.01 0.04 0.02
BIST 1.00 0.05 0.04 0.02 0.03 0.01 0.01 0.01 0.02 0.00 0.00
CAC 1.00 0.59 0.47 0.45 0.13 0.02 0.04 0.02 0.05 0.01
DAX 1.00 0.39 0.36 0.15 0.03 0.04 0.00 0.04 0.01
IBEX 1.00 0.25 0.09 0.01 0.03 0.01 0.04 0.00
SMI 1.00 0.04 0.03 0.02 0.00 0.02 0.02
DOW 1.00 0.16 0.13 0.11 0.08 0.01
TSX 1.00 0.06 0.06 0.11 0.07
BVSP 1.00 0.12 0.14 0.02
IPC 1.00 0.08 0.05
MERV 1.00 0.06
BVL 1.00
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5 Extension

By modelling the joint distribution with copulas it is often of interest to choose
the copula function, among many other copula functions, that provides the best
fit to the given data. This can be achieved with the help of the so-called goodness-
of-fit (GOF) tests. With this argument we extend our study by performing GOF
tests in order to determine the joint distribution, in the form of a static copula,
that fits the losses of the stock indices best. In particular, we consider three differ-
ent GOF statistics. We additionally consider four Archimedean copulas, namely
the Clayton, Frank, Gumbel and Joe copula, next to the Gaussian and t copula.
Details about the Archimedean copulas can be found in Appendix D.

Let us motivate the general idea behind the extension. For this, let us briefly re-
call the methodology of fitting the copula-MGARCH model to the n-dimensional
dataset of stock index losses (see Section 2.6.3). In the first step we determine
for every stock index the most appropriate innovations distribution that will be
used for the construction of the copula margins. This is supported by the fact
that from equations (13)− (15) the loss distribution of the stock indices is charac-
terized by the corresponding innovations distribution. Then in the second step
we transform the innovations of the fitted univariate GARCH-type models to
standard uniform using PIT. Lastly, in the third step these transformed uniform
innovations, ui,t ∈ [0, 1], i = 1, . . . ,n, t = 1, . . . ,T, would then be used to estimate
the parameters of the copula-MGARCH model. Now for the GOF tests, instead
of doing this third step, we directly fit the transformed uniform innovations ob-
tained from Step 1 and 2 to an n-dimensional copula. For the given dataset, the
fit of this copula can be tested by the GOF tests for copulas.

We could use the information of the GOF tests to decide for the most appro-
priate joint distribution (or rather say copula) for the construction of the copula-
MGARCH model. Notice that to perform these GOF tests we do not need to take
into account the DCC specifications. Thus this extension can be considered as
an intermediate step in the fitting methodology of the copula-MGARCH model
in Section 2.6.3. It provides practitioners the option to choose for an appropri-
ate copula function before applying it in the full copula-MGARCH model. We
should make the remark that the GOF tests do not necessarily guarantee that the
appropriate copulas for fitting are also appropriate for forecasting.

5.1 Goodness-of-fit tests for copulas

The theory in this section is adopted from Genest et al. (2009), if not mentioned
differently.

For the GOF tests of copulas we are interested in testing the null hypothesis that
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an underlying copula C belongs to some class of copulas C0 = {Cθ : θ ∈ O}, for
some open subset O ⊆ Rp, p ∈ N:

H0 : C ∈ C0 vs. H1 : C /∈ C0. (58)

Recall from Section 2.6 that for i = 1, . . . ,n and t = 1, . . . ,T, the transformed
innovations are denoted by Ui,t = Fi(Xi,t), which follows a standard uniform dis-
tribution. A natural estimator of the underlying copula C is the empirical copula,
which is nonparametric and defined as:

CT(u) = 1
T

T∑
t=1

1(U1,t ≤ u1, . . . ,Un,t ≤ un) (59)

for all u = (u1, . . . ,un) ∈ [0, 1]n.

A well-known GOF test for copulas compares the distance between the empirical
copula CT , which is a non-parametric estimate of C, and an estimated parametric
copula Cθ̂ from an estimated parameter θ̂ of θ, obtained under H0 (Genest et al.
2013). More explicitly, the GOF test is based on

CT(u) =
√

T(CT(u) − Cθ̂(u)).

Furthermore, one of the three GOF statistics of our interest is based on the L2-
norm between CT and Cθ̂ (Genest et al. 2013):

ST =

∫
[0,1]n

CT(u)2dCT(u) (60)

= T
∫

[0,1]n

(
CT(u1, . . . ,un) − Cθ̂(u1, . . . ,un)

)
dCT(u1, . . . ,un)

=

T∑
t=1

(
CT(U1,t, . . . ,Un,t) − Cθ̂(U1,t, . . . ,Un,t)

)2
,

which is related to the Cramér-von Mises statistics.

For this GOF statistic we approximate the p-values by a parametric bootstrap
approach. The p-value can be used to test H0 in (58). For a given copula, the
parametric bootstrap approach proceeds as follows (see Appendix A in Genest
et al. (2009)):

1. Using Ut = (U1,t, . . . ,Un,t), t = 1, . . . ,T, estimate the copula parameter θ,
i.e. θ̂, and compute the empirical copula CT as of (59) and Cθ̂ (e.g. fitted
Gaussian copula).

2. Using the computed CT and Cθ̂, compute the GOF statistic ST as of (60).
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3. (Bootstrap) Choose some large integer M, which corresponds to the number
of bootstraps. For m = 1, . . . ,M, perform the following steps:

(a) Simulate samples U1,m, . . . ,UT,m from the n-dimensional fitted copula
Cθ̂.

(b) Using these simulated samples, estimate the copula parameter θ, say
θ̂(m), and compute the empirical copula CT as of (59) and Cθ̂. Denote
them respectively by CT,m and Cθ̂,m.

(c) Using the computed CT,m and Cθ̂,m, compute the GOF statistic ST as of
(60). Denote this by ST,m.

4. Approximate the p-value for testing H0 in (58) by 1
M
∑M

m=1 1(ST,m > ST).

Other GOF tests for copulas is based on a probability integral transformation by
Rosenblatt (1952). This probability integral transformation of a copula C (with
parameter θ) is the mapping Rθ : (0, 1)n

→ (0, 1)n for which

Rθ(u1, . . . ,un) = (e1, . . . , en),

where e1 = u1 and

ei =
∂i−1C(u1, . . . ,ui, 1, . . . , 1)

∂u1 · · · ∂ui−1

/
∂i−1C(u1, . . . ,ui−1, 1, . . . , 1)

∂u1 · · · ∂ui−1

for i = 2, . . . ,n. According to Genest et al. (2009), this mapping decomposes a
random vector with a certain distribution into mutually independent compo-
nents that are standard uniformly distributed. Furthermore, an important con-
sequence is that U = (U1, . . . ,UT)′ is distributed as a copula C if and only if
Rθ(U) follows the distribution of the n-dimensional independence copula, where
the independence copula is defined as

Cind(e1, . . . , en) = e1 × · · · × en (61)

for all e1, . . . , en ∈ [0, 1]. In other words:

U ∼ C ⇐⇒ Rθ(U) ∼ Cind.

As a result, the null hypothesis in (58) can be restated as

H0 : Rθ(U) ∼ Cind vs. H1 : Rθ(U) � Cind (62)

for some θ ∈ O. Therefore, given observations Ut = (U1,t, . . . ,Un,t), t = 1, . . . ,T,
under H0 we can assume that the pseudo-observations E1 = Rθ̂(U1), . . . ,ET =
Rθ̂(UT) are a sample from the independence copula Cind.
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Genest et al. (2009) introduced two GOF statistics that are constructed equiva-
lently as the GOF statistic ST before. Namely, a natural estimator of the indepen-
dence copula Cind is the empirical distribution function

DT(u) = 1
T

T∑
t=1

1(Et ≤ u) (63)

for all u = (u1, . . . ,un) ∈ [0, 1]n. Accordingly, the two GOF statistics for copulas
by Genest et al. (2009) compares the distance between the empirical distribution
function DT and the independence copula Cind:

S(B)
T = T

∫
[0,1]n

(DT(u) − Cind(u))2 du (64)

=
T
3n −

1
2n−1

T∑
t=1

n∏
k=1

(
1 − E2

k,t
)
+

1
n

T∑
t=1

T∑
s=1

n∏
k=1

(1 −max(Ek,t,Ek,s)) ,

S(C)
T = T

∫
[0,1]n

(DT(u) − Cind(u))2 dDT(u) (65)

=

T∑
t=1

(DT(Et) − Cind(Et))2 .

For these two GOF statistics we approximate the p-values also by a parametric
bootstrap approach. The p-value can be used to test H0 in (62). For a given
copula, the parametric bootstrap approach proceeds as follows (see Appendix
D in Genest et al. (2009)):

1. Using Ut = (U1,t, . . . ,Un,t), t = 1, . . . ,T, estimate the copula parameterθ, i.e.
θ̂, and compute the pseudo-observations Et = Rθ̂(Ut), the independence
copula Cind as of (61), the empirical distribution function DT as of (63) and
Cθ̂ (e.g. fitted Gaussian copula).

2. Using the computed Cind and DT , compute the GOF statistic S(B)
T as of (64)

(resp. S(C)
T as of (65)).

3. (Bootstrap) Choose some large integer M, which corresponds to the number
of bootstraps. For m = 1, . . . ,M, perform the following steps:

(a) Simulate samples U1,m, . . . ,UT,m from the n-dimensional fitted copula
Cθ̂.

(b) Using these simulated samples, estimate the copula parameter θ, say
θ̂(m), and compute the pseudo-observations Et,m = Rθ̂(m)(Ut,m), the in-
dependence copula Cind as of (61), the empirical distribution DT as of
(63) and Cθ̂. Denote them respectively by Cind,m, DT,m and Cθ̂,m.

(c) Using the computed Cind,m and DT,m, compute the GOF statistic S(B)
T as

of (64) (resp. S(C)
T as of (65)).
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4. Approximate the p-value for testing H0 in (62) by 1
M
∑M

m=1 1(S(B)
T,m > S(B)

T )
(resp. 1

M
∑M

m=1 1(S(C)
T,m > S(C)

T )).

5.2 Illustration

The proposed extension can be performed on any d-dimensional dataset, 2 ≤
d ≤ n, and so is not restricted to the complete n-dimensional dataset. This is
because the transformed innovations ui,t ∈ [0, 1] from the stock index loss li,t are
obtained from an univariate distribution function, i.e. because the extension is
performed before the multivariate modelling. In this section we illustrate the
extension by considering a 2-, 3- and 4-dimensional dataset instead of the 20-
dimensional dataset. More explicitely, we consider the transformed uniform
innovations of the lowest correlated pair of stock indices (i.e. SSE and DOW),
the three highest (positively) correlated stock indices (i.e. AEX, CAC and DAX,
see Section 4.3.2) and the four stock indices corresponding to the three lowest
correlations (i.e. DOW, MERV, SMI and SSE, see Section 4.3.2). Moreover, in the
parametric bootstrap approach of the GOF tests we perform M = 1, 000 boot-
straps. The reason that we do not perform the extension on the 20-dimensional
dataset is due to the extremely high computational costs. This is because the
number of parameters to be estimated for the Gaussian and t copula increases
quadratically with an increase in the dimension of the dataset. In combination
with the parametric bootstrap this leads to extremely high computational time.

In our main study we obtained transformed uniform innovations ui,t ∈ [0, 1]
from the stock index loss li,t using the corresponding most appropriate univari-
ate distribution function found in Section 4.1. The result of the GOF tests for
copulas using the transformed innovations from SSE and DOW can be found in
Table 12, from AEX, CAC and DAX in Table 13, and from DOW, MERV, SMI and
SSE in Table 14. For each of the six copulas, the values of the three computed
GOF statistics are given in the table as well as whether the result is significant or
not. The computed GOF statistics for which the p-value is greater than or equal
to 0.05 are indicated by a bold.

Table 12: Result of the GOF tests for copulas using transformed uniform innovations of
SSE and DOW.

GOF statistic Gaussian t Clayton Frank Gumbel Joe

ST 0.0455 0.0129 0.0173 0.0115 0.0140 0.0232
S(B)

T 0.0133 0.0135 0.0197 0.0127 0.0139 0.0216
S(C)

T 0.0141 0.0143 0.0192 0.0134 0.0153 0.0247
The GOF statistics for which the p-value is greater than or equal to 0.05 are indicated by a bold.

*Significant at the 1% significance level. **Significant at 5% significance level. ***Significant at 10% significance level.

In Section 4.3 we found that SSE and DOW are poorly correlated and have (al-
most) no tail-dependence. According to this result we would expect that each

77



of the six copulas are appropriate for fitting the joint loss distribution of these
stock indices, because these copulas can capture zero tail-dependence. 28 In-
deed, from Table 12 we see that each copula have all the GOF tests being not
statistical significant at the 5% level. Thus from the GOF test result we have
evidence that each of these copulas are appropriate for fitting the joint loss dis-
tribution of SSE and DOW.

Table 13: Result of the GOF tests for copulas using transformed uniform innovations of
AEX, CAC and DAX.

GOF statistic Gaussian t Clayton Frank Gumbel Joe

ST 0.0595 0.0451 6.4450* 0.4370*** 0.4957** 4.0932*
S(B)

T 0.2939* 0.0416 2.7129* 1.1635* 1.9635* 6.3440*
S(C)

T 0.3279* 0.0391 5.6033* 1.5573* 2.0564* 7.8088*
The GOF statistics for which the p-value is greater than or equal to 0.05 are indicated by a bold.

*Significant at the 1% significance level. **Significant at 5% significance level. ***Significant at 10% significance level.

Table 13 shows that only the t copula have all GOF tests being not statistical sig-
nificant at the 5% level. Hence we have evidence that the t copula is appropriate
for fitting the joint distribution of the stock index losses of AEX, CAC and DAX.
This result could be expected, because the t copula is able to capture high cor-
relation and both the upper and lower tail-dependence. It is noteworthy that
the result of ST indicates that also the Gaussian and Frank copula are appro-
priate for fitting the joint loss distribution of AEX, CAC and DAX. These three
copulas are in fact the only considered ones for which the upper and lower tail-
dependence coefficients are equal. Moreover, this could suggest that the joint
loss distribution is radially symmetric.

Table 14: Result of the GOF tests for copulas using transformed uniform innovations of
DOW, MERV, SMI and SSE.

GOF statistic Gaussian t Clayton Frank Gumbel Joe

ST 0.0382 0.0304 1.1067* 0.6374* 0.8301* 1.5421*
S(B)

T 0.0433 0.0335 0.8822* 0.6102* 0.7758* 1.4241*
S(C)

T 0.0479 0.0356 0.9545* 0.6049* 0.8146* 1.5741*
The GOF statistics for which the p-value is greater than or equal to 0.05 are indicated by a bold.

*Significant at the 1% significance level. **Significant at 5% significance level. ***Significant at 10% significance level.

Due to the low correlation between SSE− SMI, SSE−DOW and SSE−MERV we
would expect a relatively low upper and lower tail-dependence overall. Though,
any other pairwise combination of these four stock indices is also considered by
the copulas. From the GOF test result in Table 14 we have evidence that only the
Gaussian and t copula are appropriate for the fitting of the joint loss distribution
of these stock indices. Notice that for only SSE and DOW we found in Table 12
that each of the six copulas is appropriate for fitting the joint loss distribution.
However, for the 4-dimensional dataset, which includes SSE and DOW, only two

28The considered copulas, except the Gaussian copula, can capture positive tail-dependence.
However, these copulas can also capture zero tail-dependence.
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copulas are appropriate. The reason that not each of the copulas is appropriate
is, again, because any other pairwise combination of these four stock indices is
also taken into account for the copula fit.

Finally, we would like to make the remark that for some datasets it may happen
that all p-values are less than 0.05, i.e. the GOF tests are statistically significant
at the 5% level. In that case we do not know from the GOF tests which copula is
appropriate for fitting the joint distribution of the dataset. However this is not
an issue if we would use the copula mainly for forecasting, as the GOF tests are
only to test for the fitting of the copula. Else, we may choose the copula that is
capable to describe a certain effect of interest in the dataset, e.g. (only) upper
extremal dependence.

6 Conclusion

The aim of this thesis is to describe the dependence structure of twenty stock in-
dices worldwide. This is done with the help of comprehensive time series mod-
els. Empirically, MGARCH-type models and copula functions have respectively
shown to be suitable for modelling the dynamics and the dependence structure
of multivariate time series data. By combining a MGARCH-type model with
a copula function, we allow the margins of the univariate time series to model
the structure of the joint distribution, while allowing the copula to model the
dependence structure.

In this study we evaluated the performance of four different copula-MGARCH
models. For comparison, we also considered four traditional MGARCH models.
Firstly, from the in-sample fit test we found that the t-GJR model was optimal,
but closely followed by the t-GARCH model. This implied that the in-sample
fit of the models with t copula modelling are superior to the other models. Sec-
ondly, from the VaR backtest we found all copula-MGARCH models to perform
optimal. This is advantageous for financial risk management, where it is of im-
portance to estimate the conditional VaR as accurate as possible. Lastly, based
on the estimated statistical loss functions there was not a particular model out-
performing the other models. Interestingly, the ranking of the models could
be extremely different for different statistical loss functions. The ranking from
this test depends on the choice of statistical loss functions and the choice for
the volatility proxy. In fact the best fitting model, i.e. the t-GJR model, did not
perform statistically worse than any other model.

To answer our research question in particular, from the results of these three
tests we found that the copulas improve the fit and VaR estimation of the tradi-
tional MGARCH models. Also, the models that are based on the non-normality
assumption generally perform better than their counterparts that are based on
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the normality assumption. By combining the findings of the tests we concluded
that the t-GJR model is the most appropriate model. Therefore we used this
model to estimate the rank correlation and the tail-dependencies of the financial
time series data.

The Kendall’s taus show that the correlations between the stock indices are not
as extreme as implied by the Pearson’s correlation coefficients. Based on the time
series of the estimated dynamic conditional Kendall’s taus, we could infer that
a financial crisis does not necessarily affects the degree of correlation of a pair of
stock indices. Though large fluctuations in the correlation during financial crises
occur more often for highly correlated pairs of stock indices than for poorly cor-
related pairs of stock indices. In fact, the change in correlation differs per event
and can be relatively limited. Furthermore, the change in correlation of a pair
of stock indices with a certain degree of correlation can be significantly different
for another pair of stock indices with (almost) the same degree of correlation.

As the estimated correlation coefficients generally do not provide accurate mea-
surements for the tail-dependency, we consider tail-dependence coefficients. Ac-
cording to the estimated tail-dependence coefficients, many stock indices have
little to no tendency to crash or boost together, sometimes even if these stock in-
dices have relatively high correlation. Thus we infer that correlation coefficients
do actually not provide accurate measures for the tail-dependence.

Goodness-of-fit tests for copulas primary provide information about the under-
lying joint distribution of multivariate data. We proposed an extension of our
main study that incorporates goodness-of-fit tests for copulas before DCC mod-
elling. The extension provides the option to choose for an appropriate copula
function before applying it in the full copula-MGARCH model. We illustrated
the extension for the lowest correlated pair of stock indices (i.e. SSE and DOW),
the three highest positively correlated stock indices (i.e. AEX, CAC and DAX)
and the four stock indices corresponding to the three lowest correlations (i.e.
DOW, MERV, SMI and SSE). Among the Gaussian, t and four Archimedean cop-
ulas, we found that each of the six copulas is appropriate for fitting the joint loss
distribution of SSE and DOW. For the AEX, CAC and DAX this was only the case
for the t copula. Lastly, the Gaussian and t copula are appropriate for fitting the
joint loss distribution of DOW, MERV, SMI and SSE.

7 Discussion

Multivariate analysis with a large number of time series, where all these time
series are used simultaneously, results in a relatively low number of data. As
we have seen in this thesis, this is because we can only consider the data at time
periods for which every time series has an observation. Furthermore, a down-
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side of using a high-dimensional copula model is that its simulated values may
not be very reliable due to the large number of parameters in the model. Also,
the multivariate t copula uses a unique degrees of freedom parameter for the
high-dimensional data. A possible solution to these limitations is to perform
separate bivariate modellings. This does not only increase the number of time
periods, but it also increases the reliability of the simulations from the fitted cop-
ula. An alternative solution is to apply vine copulas, which are closely related to
performing separate bivariate copula modelling. Namely, a vine copula is a joint
distribution that is constructed from bivariate and conditional bivariate copulas.
The vine copula constructed from bivariate t copulas should allow for greater
modelling flexibility than the standard multivariate t copula.

Longin & Solnik (2001) suggest that financial data might well show significant
non-zero tail-dependence. This tail-dependence may be higher or lower in the
upper tail than in the lower tail of the loss distribution. So it is preferable to al-
low for the existence of asymmetric tail-dependence when specifying a copula
model. Unfortunately, neither the Gaussian copula nor the t copula have this
feature. Vine copulas, on the other hand, do allow for the flexibility of asym-
metric tail-dependence. Further, to our best knowledge there is no definition
of conditional tail-dependence coefficients, i.e. tail-dependence coefficient with
time-dependence. Such coefficients could explicitly take into account the time
periods of large or low fluctuations in the time series. Accordingly, these coeffi-
cients would be more reliable than the standard tail-dependence coefficients.

In the in-sample fit and out-of-sample forecast tests we performed the processes
once in every five observations due to the high computational cost of re-estimating
a model with many parameters. If the computational cost is not a big issue, we
suggest to perform the processes once in every observation so that as much as
possible data is used.

Future studies are highly encouraged to extend our approach by considering a
larger set of candidate distributions for the margins (such as the Generalized
Hyperbolic Distribution and the Generalized Hyperbolic Skew Student Distri-
bution) and different copulas (such as Archimedean, Extreme Value and vine
copulas). Additionally, the approach can be combined with Extreme Value The-
ory in which the tails of the margins are fitted to the Generalized Pareto Dis-
tribution. Also recall that we restricted our study to MGARCH orders of (1, 1).
Future studies could extend this by allowing for different orders, similar as we
have done for the ARMA specification of the margins. So the orders could for
example be chosen based on the AIC or any other information criterion. Finally,
it may be interesting to do the analysis (also) on time series of assets, such as the
price of gold and oil.
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A Formal tests

Jarque-Bera (J-B) test (Bera & Jarque 1981). This is a test for normality of a sam-
ple distribution. The null hypothesis for a given sample X = (X1, . . . ,XT)′ with
mean µ = E[X] and variance σ2 = var(X) is given by

H0 : X ∼ N(µ, σ2) vs. HA : X � N(µ, σ2).

The Jarque-Bera test simultaneously checks whether or not the skewness and kur-
tosis of the sample distribution is consistent with that of a normal distribution.
The theoretical kurtosis and skewness of a sample X are respectively defined as

β = E[(X − µ)3/σ3] and
κ = E[(X − µ)4/σ4].

The Jarque-Bera test statistic is given by

λJB =
1
6T
(
β2 +

1
4(κ − 3)2

)
a
∼ χ2(2),

i.e. the test statistic is asymptotically χ2(2)-distributed under H0.

The skewness and kurtosis of a normal distribution are equal to 0 and 3, re-
spectively. So if the skewness and/or the kurtosis differ greatly from 0 and 3,
respectively, then it is likely that the null hypothesis of normality of the sample
distribution will be rejected. In that case we have evidence that the sample dis-
tribution follows a fat- or thin-tailed and/or skewed distribution. The rejection
of the null hypothesis is based on the p-value: reject the null hypothesis if the
p-value is less than the chosen significance level. Otherwise, do not reject the
null hypothesis.

Ljung-Box Q(h)-test (Ljung & Box 1978). This is a portmanteau test for autocorre-
lation of a time series model. Consider a time series model {Xt}t∈Z with the first
h autocorrelations denoted by ρ(1), . . . , ρ(h). The null hypothesis is given by

H0 : ρ(1) = . . . = ρ(h) = 0 vs. HA : ρ( j) 6= 0 for some j ∈ {1, . . . , h},

i.e. the Ljung-Box Q(h) test simultaneously checks for autocorrelation at multi-
ple lags. The Ljung-Box test statistic is given by

QLB(h) = T(T + 2)
h∑

j=1

ρ̂( j)2

T − j
a
∼ χ2(h),

i.e. the test statistic is asymptotically χ2(h)-distributed under H0. Commonly the
value for h is chosen to be 12.

At a certain significance level, if we do not reject the null hypothesis, then we
have evidence that the time series is independently distributed. Otherwise we
have evidence that it is not independently distributed.
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Augmented Dickey-Fuller (ADF) test (Dickey & Fuller 1981). This is a unit root
test of a time series model {Xt}t∈Z. Consider the so-called augmented Dickey-Fuller
regression:

Xt = α + βt + ρXt−1 + φ1∆Xt−1 + φ2∆Xt−2 + . . . + φp−1∆Xt−p+1 + εt, (66)

where α is a constant, β is a time trend coefficient, p is the lag order and ∆ is the
difference operator, i.e. ∆Xt = Xt − Xt−1. The null hypothesis is given by

H0 : ρ = 1 vs. ρ < 1.

The ADF test statistic is a t statistic:

τADF =
ρ̂ − 1
s.e.(ρ̂) ,

where ρ̂ is estimated by ordinary least squares and s.e.(ρ̂) is the standard error
of the estimate.

At a certain significance level, if we do not reject the null hypothesis, then we
have evidence that the process {Xt}t∈Z has a unit root and so not stationary, but it
is difference stationary, i.e. {∆Xt}t∈Z is stationary. 29 Otherwise we have evidence
that {Xt}t∈Z has no unit root and so stationary.

29For ρ = 1, the regression in (66) can be written as an ARMA(p, 0) process of {∆Xt}t∈Z:

∆Xt = α + βt + φ1∆Xt−1 + φ2∆Xt−2 + . . . + φp−1∆Xt−p+1 + εt.

84



B Backtests

Unconditional coverage backtest.
This backtest is proposed by Kupeic (1995) and it is a likelihood ratio test to
examine whether or not the VaR estimation yields an accurate number of excep-
tions.

Recall that for a confidence level α ∈ (0, 1) we expect that the loss at time period
t does not exceed the estimated VaR at time period t − 1 with (1 − α)100%. In
other words, over a time period T + 1, . . . ,T + n we expect that the number of
exceptions, In

α, is equal to n(1 − α). The null hypothesis is stated as follows.

H0 : E[In
α] = n(1 − α) vs. HA : E[In

α] 6= n(1 − α).

The corresponding test statistic is given by

LRuc = 2 ln[(1 −m/n)n−m(m/n)m] − 2 ln[αn−m(1 − α)m] ∼ χ2(1),

where 1−α is the theoretical probability of exceptions and m = In
α is the observed

number of exceptions over n trading days.

Independence backtest
This backtest is proposed by Christoffersen (1998) and it is a likelihood ratio
test to examine whether or not the occurrence of exceptions are evenly spread
throughout the backtesting period.

For financial institutions it is important that their models estimate the VaRs so
that the exceptions occur independently (or non-clustered), as motivated by Hull
(2015). For example, if the n(1 − α) number of exceptions over a time period of
T+1, . . . ,T+n occur all in a row, then this has the consequence that the additional
losses will be accumulated and the financial institution is exposed to a high risk
of default. Clustering of the exceptions could be a result of poorly measured
heteroskedasticity. Let ni j denote the number of pairs (i, j) where i = 1

{lt>VaRt−1
α }

and j = 1{lt+1>VaRt
α}

, t = T + 1, . . . ,T + n, and

π01 =
n01

n00 + n01
,

π11 =
n11

n10 + n11
.

Observe that π11 (respectively π01) is the probability that an exception occurs
at time t + 1 given that (respectively no) exception occurred at time t. The null
hypothesis is stated as follows.

H0 : π01 = π11 vs. HA : π01 6= π11.

In other words, the null hypothesis states that the probability of an exception at
time t + 1 given that there was no exception at time t is equal to the probability
of an exception at time t + 1 given that there was an exception at time t.
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The corresponding test statistic is given by

LRind = 2 ln
[
(1 − π01)n00πn01

01 (1 − π11)n10πn11
11
]
− 2 ln [(1 − π)n00+n10πn01+n11] ∼ χ2(1),

where π = (n01 + n11)/(n00 + n01 + n10 + n11).

Conditional coverage backtest.
This backtest is proposed by Christoffersen (1998) and it is a combination of the
unconditional coverage and independence backtest. So it simultaneously tests
the null hypothesis of accurate number of exceptions and independent occur-
rence of exceptions. The corresponding likelihood ratio test statistic is given by

LRcc = LRuc + LRind ∼ χ
2(2).
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C Multivariate distribution functions

Multivariate normal distribution.
A random vector U = (U1, . . . ,Un)′ following an n-dimensional normal distri-
bution with mean vector µ = (µ1, . . . , µn)′ ∈ Rn and variance-covariance matrix
Σ ∈ Rn×n is denoted by U ∼ N(µ,Σ). The corresponding multivariate density
function is given by

f (u) = (2π)−n/2
|Σ|−1/2 exp

{
−

1
2(u − µ)′Σ−1(u − µ)

}
, (67)

where u = (u1, . . . ,un) ∈ Rn is the vector of realizations of U and Σ is a symmet-
ric positive-definite matrix (Hofert 2013). For n = 1, (67) becomes the density
function of the univariate normal distribution.

The multivariate density function can also be written as

f (u) = (2π)−n/2
|P|−1/2

(
n∏

i=1

σi

)−1

exp
{
−

1
2x′P−1x

}
,

where σi is the standard deviation of Ui, x = (x1, . . . , xn)′ ∈ Rn with elements xi =
ui−µi
σi

, i = 1, . . . ,n, and P ∈ Rn×n is the correlation matrix. This representation is
particularly useful for the construction of the Gaussian copula density function
(see (34)).

Multivariate t distribution.
A random vector U = (U1, . . . ,Un)′ following an n-dimensional t distribution
with mean vector µ = (µ1, . . . , µn)′ ∈ Rn, variance-covariance matrix Σ ∈ Rn×n

and ν df is denoted by U ∼ tν(µ,Σ). The corresponding multivariate density
function is given by

f (u) =
Γ
(
ν+n

2

)
(πν)n/2Γ

(
ν
2

) |Σ|−1/2
(

1 + 1
ν

(u − µ)′Σ−1(u − µ)
)− ν+n

2

, (68)

where u = (u1, . . . ,un) ∈ Rn is the vector of realizations of U and Σ is a symmet-
ric positive-definite matrix (Hofert 2013). For n = 1, (68) becomes the density
function of the univariate t distribution.

The multivariate density function can also be written as

f (u) =
Γ
(
ν+n

2

)
(πν)n/2Γ

(
ν
2

) |P|−1/2

(
n∏

i=1

σi

)−1(
1 + 1

ν
x′P−1x

)− ν+n
2

,

where σi is the standard deviation of Ui, x = (x1, . . . , xn)′ ∈ Rn with elements
xi =

ui−µi
σi

, i = 1, . . . ,n, and P ∈ Rn×n is the correlation matrix. This representation
is particularly useful for the construction of the t copula density function (see
(37)).
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D Archimedean copulas

The theory in this appendix is adopted from Hofert et al. (2012), if not mentioned
differently.

Archimedean copulas are a class of copulas. Archimedean copulas allow mod-
elling dependence in arbitrarily high dimensions with just one dependency pa-
rameter. Furthermore, the Kendall’s tau rank correlation coefficient and upper
and lower tail-dependence coefficients can be computed from explicit formulas
for each Archimedean copula.

An n-dimensional copula is called Archimedean if it is of the form
C(u1, . . . ,un|θ) = ψ(ψ−1(u1|θ) + · · · + ψ−1(un|θ)|θ), (69)

whereθ is the Archimedean copula parameter defined on some parameter space
Θ and ψ : [0,∞] × Θ → [0, 1] is the Archimedean generator with inverse ψ−1 :
[0, 1] ×Θ→ [0,∞]. Moreover, ψ is a continuous, decreasing function satisfying:

ψ(0|θ) = 1
ψ(∞|θ) = lim

t→∞
ψ(t|θ) = 0

ψ−1(0|θ) = inf{t : ψ(t|θ) = 0}
and which is strictly decreasing on [0, inf{t : ψ(t|θ) = 0}].

An Archimedean generator uniquely defines the structure of an Archimedean
copula. Among the most-applied Archimedean copulas are the Clayton, Frank,
Gumbel and Joe copula. Conveniently, many Archimedean copulas allow for
greater flexibility in measuring the tail-dependence than elliptical copulas like
the Gaussian and t copula. More explicitly, many Archimedean copulas can cap-
ture different upper and lower tail-dependence coefficient (i.e. λu 6= λl), contrary
to elliptical copulas where the upper and tail-dependence coefficient are equal.

The parameter space Θ, Archimedean generatorψ(t|θ) and the explicit formulas
for the upper and lower tail-dependence coefficient λu and λl of these copulas
are given in the following table.

Table 15: Archimedean copulas
Copula Θ ψ(t|θ) λu λl

Clayton (0,∞) (1 + t)−1
θ 0 2−1/θ

Frank (0,∞) −
1
θ ln(1 − (1 − e−θ)e−t) 0 0

Gumbel [1,∞) e−t
1
θ 2 − 21/θ 0

Joe [1,∞) 1 − (1 − e−t) 1
θ 2 − 21/θ 0

For a given Archimedean generator in Table 15 we can straightforwardly obtain
the mathematical expression of the corresponding Archimedean copula using
(69). These expressions are given below for convenience.
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The Clayton copula can be written as:

C(u1, . . . ,un|θ) =

(
n∑

i=1

u−θi − n + 1

)−1/θ

,

where θ ∈ (0,∞).

The Frank copula can be written as:

C(u1, . . . ,un|θ) = ln
(

1 +
∏p

i=1(θui − 1)
(θ − 1)n−1

)
,

where θ ∈ (0,∞).

The Gumbel copula can be written as:

C(u1, . . . ,un|θ) = exp

−( n∑
i=1

(− ln(ui))θ
) 1

θ

 ,
where θ ∈ [1,∞).

The Joe copula can be written as:

C(u1, . . . ,un|θ) = 1 −

(
1 −

n∏
i=1

(1 − (1 − ui)θ)

) 1
θ

,

where θ ∈ [1,∞).
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E Plots from the visual tests

Histograms.

Figure 16: Histogram of the losses of every stock index from January 1, 2000 to July 31,
2016. The red line refers to an estimate of the normal density.
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Plots of the daily closing price (left) and daily losses (right).
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Figure 17: Daily closing price (left) and daily losses (right) of every stock index from
January 1, 2000 to July 31, 2016.

92



Q-Q plots.

Figure 18: Q-Q plot of the losses of every stock index from January 1, 2000 to July 31,
2016. The red line refers to the normal distribution.

93



Correlograms of the raw losses (left) and absolute losses (right).
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Figure 19: Correlograms of the raw losses (left) and the absolute losses (right) of every
stock index from January 1, 2000 to July 31, 2016.
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F Plots from the empirical analysis

Innovations plot (left) and correlogram (right) of the ARMA-GARCH model.
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Figure 20: Innovations plot (left) and correlogram (right) of the ARMA-GARCH model
for every stock index, from January 1, 2000 to July 31, 2016.
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Innovations plot (left) and correlogram (right) of the ARMA-GJR model.
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Figure 21: Innovations plot (left) and correlogram (right) of the ARMA-GJR model for
every stock index, from January 1, 2000 to July 31, 2016.
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