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Abstract
We study the excited states of three metal-organic
complexes: porphine platinum (PtP), a platinum
cyanine (PtCY) and fac-tris(2-phenylpyridyl)irid-
ium(III) (Irppy3) to use in the Time-Resolved
Faraday Rotation (TRFR) experiment. This tech-
nique can be used to find potential new materi-
als for opto-electronic devices. The Frank-Con-
don factors for the lowest singlet→ triplet excit-
ations are calculated using unrestricted density
functional theory. The focus here lies on the 0-
0 line since a transition to the lowest vibronic
state involves the least amount of energy loss.
The excitation energies and oscillator strengths
are calculated with spin-orbit coupling in a per-
turbative way to see whether the triplet excita-
tion is possible. Unfortunately Irppy3 does not
seem to be a suitable candidate since its geo-
metry changes too much. However, we observed
promising Franck-Condon factors in PtP and
PtCY that tell us that the research into metal-
organic complexes for the TRFR experiment sho-
uld be continued by for example using heavier
metal centres.

Introduction
Research into opto-electronic devices has been lar-
gely focussed on inorganic crystals [1]. However,
organic molecules are also suitable candidates be-
cause of their low costs, ease of processing and
chemical tunability [2]. It is believed that organic
molecules will also have applications in the field
of spintronics [3], where a net electron spin is cre-
ated. Controlling and probing triplet spin states
is important in both opto-electronics and spintron-
ics [2]. In optical polarization a net electron spin is
created by absorption of circularly polarized light
[4]. It seems a good method to control and probe
triplet spin states. In materials with strong spin
orbit coupling (SOC) spin-up and spin-down elec-
trons couple to left- or right polarized light due to
optical selection rules that rely on SOC [5]. These
correlations between spin and optical polarization
can be analysed with the Time-Resolved Faraday

Rotation (TRFR) technique [2].
The aim of this research is to find suitable can-

didates to analyse with the TRFR experiment. In
this pump-probe technique the optical rotation angle
(polarization rotation) of a probe pulse is measured
upon transmission trough a sample. This angle is
a measure for the spin polarization induced by the
pump pulse. Spin precession is reflected by the os-
cillation of the polarization rotation as a function
of the time difference between pump and probe [2].

Candidate complexes are researched by calcu-
lating the Franck-Condon factors of the singlet→
triplet excitation. A suitable candidate for the TRFR
experiment will be a molecule with a strong 0-0
line, meaning a strong transition from the lowest
vibrational state of the ground state to the lowest
vibrational state of the first triplet excited state.
A large 0-0 line is caused by a minimal change
in geometry upon excitation. In a 0-0 transition
there is no Stokes shift, meaning there is no en-
ergy loss in absorption and emission [4]. This will
give the most efficient materials for opto-electronic
devices. Also, a minimal change in geometry de-
creases the chance of undesirable photochemical
processes upon excitation.

Metal-organic complexes containing a heavy
metal centre typically have large SOC. Therefore
in this research we will look at several of these
complexes. Phosphorescent iridium(III) complexes
have shown promising activities in organic light-
emitting diodes (OLEDs) [6]. Smith et al. found
large SOC in fac-tris(2-phenylpyridyl)iridium(III),
referred to as Irppy3. This means it is potent in
singlet→ triplet excitations, and interesting to in-
vestigate.

As mentioned before, a minimal change in geo-
metry upon excitation is of importance. Unsubsti-
tuted porphine platinum (PtP) has a rigid structure.
Therefore it is expected that it will undergo a min-
imal change in geometry upon excitation. Diaconu
et al. found interesting photoluminescence activ-
ity in the zero-phonon region [5], which makes it
interesting to investigate in this research.

Cyanine dyes have shown to have relatively
small stokes shifts [7]. This is an important fea-
ture of a possible candidate for TRFR. Therefore
we will investigate a metal complex of platinum
with two cyanine dye ligands, PtCY. These three
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Figure 1: Irppy, PtP and PtCY

complexes are shown in figure 1.

Theory
In this section, three theories are discussed that
are used in this research. These theories are: the
Franck-Condon principle which is used to calcu-
late Franck-Condon factors, the Hartree-Fock ap-
proach which is similar to the more complicated
Density Functional theory used to calculate geo-
metry optimizations and Spin-Orbit coupling which
is used to calculate excitation energies.

Franck-Condon Principle

The Franck-Condon principle [8] [9] states that an
electronic transition occurs within a stationary nuc-
lear framework. That means that nuclei preserve
their dynamical state during an electronic trans-
ition, hence the nuclear wavefunction stands un-
affected when a transition occurs. Therefore, a
transition from the lowest vibrational state of the
lowest electronic state goes to the most similar vi-
brational state of the upper electronic state, under-
going the least change in dynamical state of the
nuclei [10]. A visual representation of the Franck-
Condon principle is shown in figure 2.
In a molecule, the electric dipole moment operator

Figure 2: Franck-Condon Principle

is given as:

µ = −e
∑

ri + e
∑

ZIRI = µe + µN (1)

Where ri and−e are respectively the locations and
charges of the electrons, and RI and ZI the loca-
tions and charges of the nuclei.
The vibronic state |εν〉 of a molecule is described
by Ψe(r; R)Ψν(R) within the Born-Oppenheimer
approximation. r denotes the collective electronic
coordinates and R the collective nuclear coordin-
ates. The electric dipole transition moment is there-
fore:

〈ε′ν′|µ|εν〉 =

∫
Ψ ∗e′(r;R)Ψ ∗ν′

(2)

(R)(µe + µN )Ψε(r;R)Ψν(R)dτedτN =∫
Ψ ∗ν′(R)

(∫
Ψ ∗e′(r;R)µeΨε(r;R)dτe

)
Ψν(R)dτN

+

∫
Ψ ∗ν′(R)µN

(∫
Ψ ∗e′(r;R)Ψε(r;R)dτe

)
Ψνν(R)dτN
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For each selected value of R are the electronic states
orthogonal to one another. Consequently, the in-
tegral over the electronic coordinates in the final
term is zero. The remaining integral over the elec-
tronic coordinates is the electric dipole transition
moment for nuclear coordinates R. As long as the
locations of the nuclei are not largely displaced
from equilibrium the transition moment is inde-
pendent of these locations. So the integral is ap-
proximated to µε′ε:

〈ε′ν′|µ|εν〉 = µε′ε

∫
Ψ ∗ν′(R)Ψν(R)dτN (3)

= µε′εS(ν′, ν)

Here S(ν′, ν) is the overlap integral between the
vibronic states. The larger the overlap, the larger
the electric dipole transition moment. For most
transitions a significant overlap is found for mul-
tiple vibrational states ν′, so in the electronic spec-
trum, a series of vibrational transitions is observed.
The intensities of the corresponding lines are pro-
portional to the square of the overlap integral, called
the Franck-Condon factors, |S(ν′, ν)|2 [10].

Hartree Fock

In the Hartree-Fock approach, each electron is thought
to move in a potential due to the average of the po-
tential caused by the other electrons and the nuc-
lei. We will derive the Hartree-Fock equations by
looking at a trial Slater-determinant Φ0:

Φ0(1...n) =
1√
n!
|Ψ1(x1)Ψ2(x2)...Ψi(xi)...Ψn(xn)|

(4)
We want to determine the spinorbitals that make
Φ0(1, ..., n) the approximation for the exact ground
state wavefunction Ψ0(1, ..., n) with a minimal en-
ergy expectation value:

E =
〈Φ0|H|Φ0〉
〈Φ0|Φ0〉

(5)

with respect to any variation in Φ0.
We require:

δE = δ 〈Φ0|H|Φ0〉 =

〈δΦ0|H|Φ0〉+ 〈Φ0|H|δΦ0〉 = 0

and 〈δΦ0|Φ0〉+ 〈Φ0|δΦ0〉 = 0 (6)

This gives us two conditions:

〈Φ0|H|δΦ0〉 = 0

〈Φ0|δΦ0〉 = 0 (7)

The complete orthonormal set of spinorbitals in the
Slater-determinant are divided in a subset of unoc-
cupied spinorbitals Ψa, Ψb, ..., Ψh and a subset of
occupied spinorbitals Ψi, Ψj , ..., Ψn.
Φ0 is built from Ψi, thus variations in Φ0 can be
written as variations in Ψi. Only variations that
involve change in the spatial part of one of the
spinorbitals are considered:

δΦ0 =
1√
N !

∑
i

|Ψ1(x1)Ψ2(x2)...δΨi(xi)...Ψn(xn)|

(8)
Where

δΨi =
∑
j

Ψjc
j
i +

∑
a

Ψac
a
i (9)

Equation 7 leads to the demand that:

〈Ψk|δΨi〉 = 0 (10)

for all occupied spinorbitals Ψk and thus δΦi must
be a linear combinations of the unoccupied spinor-
bitals:

δΨi =
∑
a

Ψac
a
i (11)

in such a way that δΦ0 is a linear combination of
Slater-determinants, each having one occupied spinor-
bital replaced by an unoccupied spinorbital. Such
Slater-determinants are denoted as:

Φai =
1√
N !
|Ψ1(x1)Ψ2(x2)...Ψa(xi)...Ψn(xn)|

(12)
Therefore,

δΦ0 =
∑
i

∑
a

Φai c
a
i (13)

and 〈Φ0|δΦ0〉 =
∑
i

∑
a

〈Φ0|Φai 〉 cai = 0 (14)

Equations 13 and 7 give:

〈Φ0|H|Φ0〉 =
∑
i

∑
a

〈Φ0|H|Φai 〉 cai = 0 (15)
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Which has to hold for all cai so 〈Φ0|H|Φai 〉 = 0 for
all i and a. According to Brillouin’s theorem, we
choose the spinorbitals so that the Hamilton mat-
rix elements between Φ0 and all singly substituted
determinants Φai vanish. We then find:

〈Φ0|H|Φai 〉 = 〈Ψi(x1)|F (x1)|Ψa(x1)〉 = 0 (16)

Where the one-electron operator F (x1), the Fock
operator is given by:

F (x1) = T (x1)+V ext(x1)+G(x1) = h(x1)+G(x1)
(17)

and G(x1) is given by:

G(x1) =

occ∑
j

〈Ψj(x2)|(1− P12)

r12
|Ψj(x2)〉 (18)

Equation 16 implies that FΨi must be orthogonal
to all unoccupied spinorbitals Ψa. Thus, they can
be expanded as a linear combination of all occu-
pied spinorbitals:

FΨi =
occ∑
j

Ψjεji for i = 1...n (19)

The matrix ε is chosen to be a diagonal matrix
since a unitary transformation amongst the Ψi does
not change the Slater-determinant Φ0. The same is
done for the unoccupied spinorbitals which leads
to:

FΨi = εiΨi for i = 1..n (20)

Equation 20 gives the canonical Hartree-Fock equa-
tions.
The Hartree-Fock approach starts by choosing ap-
proximate starting spinorbitals. Solving the Hartree-
Fock equations gives a set of improved spinorbit-
als which are used again to calculate a new Fock-
operator. This ultimately leads to a cycle without
significant change, and a set of Molecular Orbitals
are given.
In Unrestricted Hartree-Fock the occupied orbitals
do not have to be doubly occupied, so that the or-
bital parts fo the spinorbitals with β spin can be
different from those with α spin. [11]
Density Functional theory (DFT) uses this Hartree-
Fock approach. In this research the hybrid func-
tional B3LYP is used. The implementation is de-
scribed by Stephens et al [12].

Spin-Orbit Coupling

According to the spin selection rule ∆S = 0, a
singlet→ triplet excitation is spin-forbidden. This
is true as long as the electronic wave function is
separated in a spin and orbital magnetic moment.
However, when this separation is broken down by
the so-called spin orbit coupling the singlet→ trans-
ition is allowed [13]. The orbital magnetic moment
is given by:

m = γel (21)

Where l is the orbital angular momentum and γe
the magnetogyric ratio − e

2me
.

And the spin magnetic moment is given by:

m = geγes (22)

Where s is the spin angular momentum and ge the
g-factor of the electron.
The spin-orbit coupling hamiltonian is:

Hso = − e

2m2
erc

2

dϕ

dr
l · s = ξ(r)l · s (23)

The state of the electron is defined as |nlmlms〉,
where n is the principal quantum number, l the or-
bital angular momentum quantum number, ml the
magnetic quantum number, and ms the electron
spin quantum number. The spin-orbit matrix ele-
ment 〈nlmlms|Hso|nlmlms〉 governs the effect of
the spin-orbit coupling on the state of the elec-
tron. At an angular momentum, l, of zero, the
matrix element vanishes. For all states l ≥ 1,
l·s |nlmlms〉 is proportional to h̄2. Thus, we write
the radial average of the state |nlmlms〉 in the fol-
lowing way:

hcζnl = 〈nlmlms|ξ(r)|nlmlms〉 h̄2 (24)

Where ζ is the spin-orbit coupling constant.
The radial wavefunction Rnl(r) is independent of
ml and gives the radial dependence of the state.
Thus, zeta is a wavenumber and hcζ an energy.
For an hydrogenic atom, the potential arising from
the nucleus of charge Ze is Coulombic and ϕ =
Ze/4πε0r. Therefore:

ξ(r) = − e

2m2
erc

2den

d

dr

(
Ze

4πε0r

)
=

Ze2

8πε0m2
er

3c2

(25)
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The expectation value of r−3 is given as:

〈nlmlms|r−3|nlmlms〉 =
Z3

n3a3
0l(l + 1

2)(l + 1)
(26)

From equation 24, 25 and 26 the spin-orbit coup-
ling constant is:

ζnl =
Z4e2h̄2

hc

8πε0m2
ec

2n3a3
0l(l + 1

2)(l + 1)

=
α2R∞Z

4

n3l(l + 1
2)(l + 1)

(27)

WhereR∞ is the Rydberg constant andα = e2

4πε0h̄c
,

the fine-structure constant.
The SOC constant ζnl is proportional to Z4, thus
SOC effects are much larger in heavy atoms than in
light atoms. So in heavy elements, as Platinum and
Iridium SOC is of dominating importance [10].
To calculate the SOC, perturbation theory is used
to limit the computational costs. In perturbation
theory, the Hamiltonian is split in a zeroth order
term and a small perturbation of strength λ(0 ≤
λ ≤ 1). For the zeroth order Hamiltonian we can
find all exact solutions.

Ĥ = Ĥ0 + λĤ1 (28)

The eigenvalues and eigenfunctions of H obey the
Schrödinger equation:

ĤΨi = EiΨi (29)

and are expanded as:

Ψi = Ψ
(0)
i + λΨ

(1)
i + λ2Ψ

(2)
i + λ3Ψ

(3)
i + ... (30)

Ei = E
(0)
i +λE

(1)
i +λ2E

(2)
i +λ3E

(3)
i + ... (31)

Here it is assumed that the i-th exact solution of the
zeroth order Schrödinger equation are the zeroth
order wavefunction Ψ (0)

i and energy E(0)
i . Equa-

tion 30 and 31 are inserted in the Schrödinger equa-
tion, demanded that the equation holds for 0 ≤
λ ≤ 1. All terms with the same power of λ up
to the second order are collected:

(Ĥ0 − E(0)
i )Ψ

(1)
i = (E

(1)
i − Ĥ1)Ψ

(0)
i

(32)

(Ĥ0 − E(0)
i )Ψ

(2)
i = (E

(1)
i − Ĥ1)Ψ

(1)
i + E

(2)
i Ψ

(0)
i

The eigenfunctions of Ĥ0 form a complete ortho-
gonal set, thus:

Ψ
(1)
i =

′∑
j

Ψ
(0)
j c

(1)
ji (33)

Where j = i is excluded, indicated by the prime.
This give us:

E
(1)
i = 〈Ψ (0)

i |Ĥ1|Ψ (0)
i 〉

E
(2)
i = 〈Ψ (0)

i |Ĥ1|Ψ (1)
i 〉 (34)

Thus, the coefficients, c(1)
ji are equal to:

c
(1)
ji =

〈Ψ (0)
j |Ĥ1|Ψ (0)

i 〉

E
(0)
j − E

(0)
i

(35)

From equations 35 and 34 we can conclude that
for the first order corrected wavefunction and the
second order corrected energy we only need the
zeroth order solutions and their matrix elements of
Ĥ1.
This theory of perturbation is implemented as de-
scribed by Wang and Ziegler [14].

Methods
In order to calculate Franck-Condon factors one
needs harmonic frequencies of two states, thus to
calculate the Franck-Condon factors of the sing-
let → triplet transition of the complexes first the
ground state geometry had to be optimized. Then
the harmonic frequencies of the ground state had
to be calculated and the lowest triplet excited state
had to be optimized. After the harmonic frequen-
cies of the triplet state had been calculated the Franck-
Condon factors could be calculated. All these cal-
culations were performed with the Amsterdam Dens-
ity Functinal 2017 (ADF) [15] using the B3LYP
functional [12]. For Platinum and Iridium a TZP
basis set [16] was used and for hydrogen, carbon
and nitrogen a DZP basis set [16]. The harmonic
frequencies were calculated numerically. Scalar
relativistic effects were taken into account using
the ZORA method [14]. The Franck-Condon factors
were calculated with the FCF programme of ADF
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[17]. The triplet excited frequencies were calcu-
lated using unrestricted density functional theory.

To determine the probabilities of triplet trans-
itions the 50 lowest singlet→ singlet and 50 low-
est singlet → triplet excitation energies were cal-
culated.
The ZORA/TZP basis set was used for the excita-
tion energies with spin-orbit coupling by perturba-
tion theory with the SOPERT programme of ADF
[14] where time dependent density functional the-
ory (TDDFT) [18] was used.

The B3LYP functional was chosen because of
its widespread use and good performance [19]. Due
to computational costs the DZP basis set was chosen
for H, C and N, further improvement of the calcu-
lations may be possible with the use of a TZP basis
set for all atoms. The ground state geometry op-
timizations and harmonic frequencies calculations
were performed on the Peregrine Falcon cluster at
the University of Groningen. The cluster is com-
posed of nodes of Intel Xeon E5 2680v3 CPUs
with 128 GB memory. The rest of the calculations
were performed on the Nieuwpoort cluster at the
University of Groningen.

Results and discussion

PtP

As mentioned in the introduction, a suitable mo-
lecule for the TRFR experiment has a strong 0-0
line and a high transition probability. The optim-
ised geometries of the ground state and the excited
state are shown in figures 3 and 4. For PtP we
found a minimal geometry change from the ground
state to the excited state.

We have calculated the Franck-Condon factors
of the excitation from the singlet ground state to
the first triplet excited state of PtP. The resulting
spectrum is shown in figure 5. There is a strong
0-0 line of an intensity of 0.2539. The sum of the
found Franck-Condon factors is 0.984. Thus, for
this molecule the first condition is met.

The triplet excitation energies are calculated
both with unrestricted DFT and TDDFT. These val-
ues can be found in table 1. The energies corres-
pond reasonably well.

Figure 3: Singlet ground state of PtP with bond lengths in pm. All
four angles surrounding platinum are 90.0◦.

Figure 4: Triplet excited state of PtP with bond lengths in pm. All
four angles surrounding platinum are 90.0◦.

0 1,000 2,000 3,000 4,000

0

0.1

0.2

0.05

0.15

0.25

Frequency (cm−1)

In
te

ns
ity

(n
or

m
al

is
ed

)

Figure 5: Franck-Condon factors PtP

UDFT (eV) TDDFT (eV)
2.0173 2.0439

Table 1: Lowest triplet excitation energy of PtP calculated by UDFT
and TDDFT
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The excitation to the first triplet excited state is
from two degenerate molecular orbitals comprised
of 2Py and 2Pz orbitals of both nitrogen and car-
bon to a molecular orbital which also comprises of
2Py and 2Pz orbitals and a little bit Pt 5Dxz . More
details can be found in table 2. It shows that the

Occu-
pied
MO
118a

Occu-
pied
MO
119a

Unoccu-
pied MO

120a

Unoccu-
pied MO

121a

C*
2Pz

44.38% 72.55% 57.64% 57.59%

C
2Py

13.74% 17.16% 14.66% 14.69%

N
2Pz

17.18% 9.58% 9.62 %

N
2Py

5.32%

Pt 1.70%
5Dxz

1.36%
5Dz2

Table 2: Orbitals involved in excitation of PtP. *This is the sum of all
contributions from different carbon atoms. The same accounts for the
other C and N orbitals.

metal is not very involved in the excitation. It is
basically the ligand that gets excited.
The 200 lowest excitation energies and their oscil-
lator strengths of PtP were calculated with spin-
orbit coupling. The 25 lowest are plotted in figure
6. The first excited state unfortunately has an os-
cillator strength of only 0.626 · 10−9. However,
the lowest two spin-orbit coupling states are both
a mix of the first and second non relativistic triplet
excited states. The third SOC state is purely made
of the first non-relativistic triplet excited state. Thus,
it seems that the Franck-Condon factors we cal-
culated are not from the SOC excited state with
the lowest energy, but with the third lowest en-
ergy. This state has a significant oscillator strength
of 0.609 · 10−5. A combination of these results
and the Franck-Condon factors means that a trans-
ition from the singlet ground state to the lowest vi-
bronic state of a SOC triplet excited state is pos-
sible. However, this triplet excited state is not the
lowest state and therefore the complex will most
likely quickly relax to the lower excited states and
the signal will die out very quickly.
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Figure 6: Excitation spectrum PtP

PtCY

For PtCY, the geometries of the ground state and
the excited state can be found in figures 7 and 8.
The bond lengths are in table 3. Again for this
molecule the geometry change is not very large.

Figure 7: Singlet ground state of PtP. The bond lengths corresponding
to the numbers 1-6 can be found in table 3.

Bond PtCY S0 (pm) PtCY T1 (pm)

1: Pt-N 206.0 205.6
2: Pt-N 208.3 207.8
3: Pt-N 206.0 205.6
4: Pt-N 208.4 207.7
5: Pt-C 213.1 211.7
6: Pt-C 213.0 211.7

Table 3: Selected bond lengths (in pm) of the optimised molecular
geometries of the ground state and first triplet excited state ot PtCY
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Figure 8: Triplet excited state of PtCY. The bond lengths correspond-
ing to the numbers 1-6 can be found in table 3.

The spectrum of Franck-Condon factors of PtCY
can be found in figure 9. Unfortunately the 0-0
line only has an intensity of 7.9 · 10−3. However,
a clear trend can be seen that after approximately
100cm−1 the intensity quickly decreases. The sum
of the found Franck-Condon factors is 0.426, so
not all factors are found. This is due to a low num-
ber of quanta used in the calculation. However, a
higher number of quanta would make it too com-
putationally expensive.

The excitation energies of PtCY calculated
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Figure 9: Franck-Condon factors PtCY

by unrestricted DFT and TDDFT can be found in
table 4. Again, these values correspond reasonably
well.

UDFT (eV) TDDFT (eV)
1.2948 1.2150

Table 4: Lowest triplet excitation energy of PtCY calculated by
UDFT and TDDFT

Occu-
pied
MO
178a

Occu-
pied
MO
179a

Unoccu-
pied MO

180a

Unoccu-
pied MO

181a

C*
2Px

9.35% 3.44% 12.35% 13.19%

C
2Py

56.24% 64.29% 50.28% 46.48%

C
2Pz

9.35% 7.36% 2.27% 2.67%

N
2Px

2.79% 3.35%

N
2Py

3.62% 2.89%

Table 5: Orbitals involved in excitation of PtCY. *This is the sum of
all contributions from different carbon atoms. The same accounts for
the other C and N orbitals.

As in PtP, the excitation to the first triplet ex-
cited state is from two degenerate molecular orbit-
als. These are made of 2Px, 2Py and 2Pz orbitals
from carbon. The excitation goes to two degener-
ate MO orbitals which are made of 2Px and 2Py
orbitals of carbon and nitrogen and 2Pz of carbon.
More details are in table 5.

Also for this molecule the first 200 excitation
energies and corresponding oscillator strengths were
calculated with spin-orbit coupling. The lowest 25
are plotted in figure 10. The three lowest SOC
excited states are degenerate, see table 6. Unfor-
tunately, the oscillator strengths are again rather
low. These three states are completely made of
the lowest non-relativistic triplet state, so it seems
that for PtCY the Franck-Condon factors are in-
deed calculated for the SOC excited state with the
lowest energy. A combination of these results and
the Franck-Condon factors means that a transition
from the singlet ground state to the lowest vibronic
state of the lowest triplet excited state is possible.
However, both the 0-0 line and the oscillator strength
of this state is rather low. Therefore it will be diffi-
cult to excite a significant amount of complexes to
this state.
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State Energy (eV) Oscillator Strength

1 1.21447 4.95 ·10−6

2 1.21447 2.81 ·10−6

3 1.21451 9.80 ·10−6

Table 6: Energies and oscillator strengths of the lowest SOC excita-
tions of PtCY
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Figure 10: Excitation spectrum PtCY

Irppy3

Figure 11 and 12 show the optimised geometries
of the ground state and first triplet excited state of
Irppy3. The bond lengths are given in table 7. As
can be seen in the table and figures, Irppy3 changes
more in geometry upon excitation than PtP and
PtCY.

Bond Irppy3 S0 (pm) Irppy3 T1 (pm)

1: Ir-N 208.1 206.5
2: Ir-N 206.3 208.0
3: Ir-N 220.2 231.1
4: Ir-C 209.4 206.1
5: Ir-C 201.5 198.6
6: Ir-C 211.0 211.0

Table 7: Selected bond lengths (in pm) of the optimised molecular
geometries of the ground state and first triplet excited state ot Irppy3

The Franck-Condon factors of Irppy3 are found
in figure 13. Unfortunately, no significant intensit-
ies were found between 0 and 10000 cm−1. This
is most likely due to a too large change in geo-
metry upon excitation, as can be observed in table

Figure 11: Singlet ground state of PtP. The bond lengths correspond-
ing to the numbers 1-6 can be found in table 3.

Figure 12: Triplet excited state of PtCY. The bond lengths corres-
ponding to the numbers 1-6 can be found in table 3.

7. The ligands probably have too much freedom to
change their angles, which causes a large geometry
change.

The energy of the triplet excitation of Irppy3 is
also calculated with UDFT and TDDFT, see table
8. For this complex too, the values correspond
reasonably well.

UDFT (eV) TDDFT (eV)
2.4013 2.5565

Table 8: Lowest triplet excitation energy of Irppy3 calculated by
UDFT and TDDFT

As with the previous complexes, the 200 low-
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Figure 13: Franck-Condon factors Irppy3

est spin-orbit coupling excitations have been calcu-
lated for Irppy3. The first 25 are plotted in figure
14. The lowest state has an oscillator strength of
0.379 · 10−4. This first SOC state is a mix of sev-
eral non-relativistic triplet states, but for 82% it is
the first non-relativistic triplet state. This is an ex-
citation from one molecular orbital to two degen-
erate molecular orbitals. Table 9 shows what these
orbitals are composed of. This shows that this ex-
citation is a charge transfer from the metal to the
ligand. This starts a relatively large disruption in
the ligand, which causes the earlier found geomet-
ric change. Therefore no Franck-Condon factors
can be found for this excitation.
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Figure 14: Excitation spectrum Irppy3

Occupied
MO 160a

Unoccupied
MO 161a

Unoccupied
MO 162a

C*
2Px

14.73% 9.88% 13.74%

C 2Py 11.09% 24.63% 32.87%
C 2Pz 14.76% 18.78% 18.62%
N 2Px 2.18% 4.67%
N 2Py 8.45% 7.52%
N 2Pz 3.40% 5.23%

Ir
3Dxy

13.63% 1.48%

Ir
3Dyz

21.03%

Ir
3Dxz

1.94%

Ir
3Dx2−y2

3.16% 1.58%

Table 9: Orbitals involved in excitation of Irppy3. *This is the sum
of all contributions from different carbon atoms. The same accounts
for the other C and N orbitals.

Conclusions and further research
We have searched for suitable metal-organic com-
plexes for the TRFR-experiment by calculating the
Franck-Condon factors and spin-orbit coupling ex-
citations of PtP, PtCY and Irppy3. It showed that
Irppy3 is not a good candidate because the excita-
tion is a charge transfer from the metal to the lig-
and which causes such a large geometrical change
that no 0-0 transition is possible. PtP shows prom-
ising Franck-Condon factors, but unfortunately it
seemed that they do not belong to the lowest spin-
orbit coupling excited state. An excitation to the
calculated state will relax to the lowest excited state
and the signal will die. Therefore, the Franck-
Condon factors of this lowest SOC state should be
calculated. For PtCY, the Franck-Condon factors
are promising, but the 0-0 line could probably be
strengthened by connecting the two ligands so that
they are more constrained. This should cause a
smaller change in geometry and thus a stronger 0-0
line. The oscillator strength for the lowest excited
state is promising, but this could probably be in-
creased by increasing the SOC. This can be done
by using a heavier metal, for example lead or bis-
muth, but also lanthanides such as samarium and

11



europium should be investigated.
To conclude, the search for suitable materials

for organic opto-electronic devices has given en-
couraging results and it seems that research into
the use of metal-organic complexes should be con-
tinued.
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