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Abstract
The goal of this research paper is to discuss and review several statistical methods
used for track finding in (high energy) physics. The method discussed is the Like-
lihood Method, along with two variations: using a Corridor and so-called Tukey
weights. The Likelihood Method has a problem with outliers, they have a large influ-
ence on the result. Using one of the mentioned variations reduces this influence, but
they use arbitrary parameters that influence the result or are prone to small changes
in the hypothesis. These problems will be discussed. Furthermore, two new meth-
ods will be offered (the Unlikelihood Method and the Ratio of Distances Method)
that may tackle the problems of the earlier methods. The Unlikelihood Method will
show to be a prospective method for track finding, the Ratio of Distances Method
will not.
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Introduction and Problem Sketch

Detectors in physics cannot detect particle trajectories, only locations (points in space)
at a certain time. When a particle passes through a detector plate, a "hit" is recorded,
consisting for instance of the location and time at which the particle interacted with
the detector. Many particles (meaning hundreds) passing through a detector plate
result in many detected hits in the detector. Many particles passing through many
detector plates will result in even more detected hits in the detector. In the last sit-
uation it is difficult to reconstruct the trajectory of each individual particle through
the detector (see figure 1). Track finding in physics concerns itself with reconstruct-
ing trajectories from these hits such that they match the original trajectories of the
particles. [A. Strandlie, 2009]

FIGURE 1: The figures show that it is difficult to reconstruct the original
particle’s trajectory from the detected hits if there are multiple particles

passing through the detector layers. In this illustration only eight
particles pass through the detector plates, in high energy physics this

number will be much larger. a) An illustration of multiple hits detected
in multiple detector layers. b) An illustration of the original trajectories

of the eight particles passing through the detector.



2 Contents

Track finding methods used nowadays are often based on competition between sev-
eral hypotheses, the result of the competition depends on the detected hits [A. Stran-
dlie, 2009, p.6]. The methods discussed in the next chapters also use hypothesis com-
petition to find the most likely trajectory of the particle. To find the best hypothesis,
a so-called quality parameter is assigned to each hypothesis [R. Frühwirth, 2000,
p.159-162]. Bayesian statistics is used in this paper to calculated a quality parameter.

Track finding is important in for example particle physics. In detectors such as
the LHC Detector in CERN, track finding is used to reconstruct the original trajecto-
ries of high-energy particles, which helps to find all the characteristics of the particles
passing through the detector (see Section 1.1). In the LHC Detector this has led to
the discovery of new particles such as the Higgs Boson [Cho, 2017].

This paper investigates the track finding method called the Likelihood Method,
which uses the statistical concept "likelihood" to check whether a proposed track
is close to the true trajectory of the particle through the detector. There are often
many trajectories in the detector, this method aims to reconstruct them all which is
difficult because there is no a priori knowledge about the number of trajectories (due
to particles reacting with each other in the detector for example). Because there is
no a priori knowledge about the number of trajectories, each hypothesis needs to
be measured separately against the whole data set, even though only a small part
of the data belongs to that hypothesis. This causes a problem for the Likelihood
Method, namely that the data that does not belong to the trajectory can influence the
result such that the true trajectory of a particle can appear as a bad hypothesis. The
datapoints that are not part of the trajectory can cause a hypothesis to appear as a
bad estimation of the truth even though it is a good fit of the datapoints that are part
of the trajectory. This will be explained in Section 2.1.

There are two variations on the Likelihood method that will be discussed, the
so-called Tukey weight and the Corridor. These variations solve the problem that
the Likelihood Method suffers from, but use arbitrary parameters which may bias
the result, which is a new problem. The difficulty is to design a method that can
find the one true hit belonging to the particle out of many other hits in each detector
layer. The research question for this paper is thus:

"Can we find a quality parameter that finds the true set of tracks and is robust
against outliers?"

A proposal for a new method was put forward in an unpublished draft by G. On-
derwater [“Retina Thoughts”]. This method was supposed to tackle the problems
described above. A method based on this proposal will be discussed in Section 3.1.

This paper is composed of four chapters, the Chapter 1 is an introduction to the
definitions used in this paper and into track finding. The tracking methods dis-
cussed here are possible in many detectors, but the LHCb VELO detector is taken
as a general example throughout this paper and will be shortly discussed in Section
1.1. Although the methods are discussed in light of the LHCb VELO detector, they
can be used more generally in physics. Chapter 2 provides an evaluation of current
methods (such as the Likelihood Method). In the Chapter 3 and Chapter 4 two new
methods are introduced and discussed. Chapter 3 is based on the unpublished draft
by Onderwater (the Unlikelihood Method). Chapter 4 is a completely new method,
based on the problems that the other methods run into (Ratio of Distances Method).
The new methods will show to have (dis)advantages once under investigation.
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Chapter 1

Introductory Remarks

This Chapter serves as an introduction into track finding methods and statistics.
More background on statistics can be found in Appendix A

1.1 Example Application: The LHCb Detector

An example of an experiment where track finding is important but difficult is the
Large Hadron Collider Beauty (LHCb) experiment, which is part of the Large Hadron
Collider (LHC) at CERN [The LHCb Detector]. Only the LHCb VELO detector is dis-
cussed as a general example because this is what a typical detector relevant to this
paper looks like. This section provides some background information on how such
a detector works.

FIGURE 1.1: This illustration shows the LHCb VErtex LOcator (VELO).
Many particles pass through the detector, it can be difficult to reconstruct
the trajectories shown in the figure from the detected hits. [The latest from

the LHC]

In the LHC beams of protons collide, producing many different particles. The LHCb
experiment records beauty and anti-beauty quarks that can be found in the decay of
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particles. The VELO part of the LHCb detector (shown in figure 1.1) has 84 silicon
sensors which have the shape of half moons. Theses silicon sensors are paired such
that the VELO part consists of 42 silicon detector plates in a row in the direction of
the beam [LHCb installs its precision silicon detector, the VELO]. Just after the collision
of the two proton beams the produced particles have straight trajectories that do
not deviate much from the original ẑ-direction of the incoming beam. Due to the
absence of magnets most trajectories will go in a straight line in the ẑ-direction (see
figure 1.1). The trajectories can be reconstructed using the detector plates set up
in a row. Connecting the hit of a particle in detector plate n with the hit of that
particle in detector plate n+ 1 will eventually tell what particle it was. This way the
production and decay of particles produced in the collision can be studied. Due to
the high energy of the particles in the LHCb detector, new particles and antiparticles
can be created randomly, so the VELO detector can also provide information about
new particles that come into existence. [The LHCb Detector], [LHCb installs its precision
silicon detector, the VELO]

Many particles (hundreds) pass through the small VELO detector, this makes it
extremely difficult to reconstruct the trajectories of the particles.

1.2 Track finding and Statistics Definitions

This section will discuss some definitions necessary to understand the later chapters.
Figure 1.2 shows the definitions listed below as well.

• Hit: an intersection between a particle trajectory and a predefined plane fixed
at some location in space, z. It is assumed that a single track will generate a
single hit in a plane.

• Track: a straight path connecting at least five consecutive hits.

• Detector inefficiencies: hits that are not detected by the detector when a parti-
cle passes through it.

• Data: is denoted as {x} and represents all hits detected by the detector. A
single hit is denoted xi.

• Hypothesis/proposed track: is denoted as µ and represents the proposed tra-
jectory which needs to be tested against the data.

• True track: the true trajectory of the particle through the detector, it is unknown
to the observer.

• Qualifier/quality parameter: is denoted asQ. It is a parameter assigned to the
hypothesis to decide how likely the hypothesis is.

• "good" track: A very likely hypothesis. The track is assigned a high likelihood
value for example.

• "bad" track: A very unlikely hypothesis. The track is assigned a low likelihood
value for example.

• Many Track Problem: the problem of there being a lot of tracks in the detector.
This makes it difficult to find a qualifier that reconstructs the individual tracks
based on the many hits in the detector layers.
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• Outlier: a hit that is not close to the hypothesis, for example a hit from another
track that lies a large distance from the proposed track.

• Outlier Problem: a problem in track finding where outliers have a large influ-
ence on finding the right track which causes inaccurate qualifiers.

• Arbitrary Parameter Problem: a problem in track finding where a method uses
parameters for which there is no preferred value. Thus the parameter gets
assigned an arbitrary value which may bias the result.

FIGURE 1.2: A visual representation of some important definitions listed
in Section 1.2. The symbols shown in this figure for the definitions will be

used in more figures in this paper.

For our discussion we will use the LHCb VELO detector. This is done for sim-
plicity, there is no loss of generality. In the VELO part of the LHCb detector the
trajectory through the detector is assumed to be straight due to the absence of mag-
nets, which can bend the trajectory of a charged particle [VELO]. Due to this the
trajectories of the particles in the VELO part have a small angle with respect to the
incoming proton beam along the ẑ-axis. The most likely trajectory of the particle
is found by proposing many possible tracks "µ" and doing the same calculation for
each possible track. Comparing the results gives the most likely track.

A short list summarizing the notation concerning probabilities, as used in this paper
[D. S. Sivia, 2006, p.3-13]:

• P (A | B) denotes the probability of getting A given that B is true.

• Prior probability: the uncertainty of the proposed track before the data and
given some parameters, P (µ | σ, I).

• I : the background information, describing any known or unknown parame-
ters.

• ¬ : the negation of something. For example: ¬x is the negation of x, it means
not x.

These notations and definition will be used throughout this paper.
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1.3 Track finding: a general understanding

To conclude this introduction into the track finding, this section will explain the way
in which a hypothetical track is created. There are many tracks going through the
detector (especially in high-energy physics detectors). To find the right set of tracks,
several sets are investigated. These sets consist of individual fits (lines fitted to match
the data). An example of two competing sets of proposed tracks is given in figure 1.3.
In the figure one can see that there are two hypotheses: the black set of tracks and
the red set of tracks. To decide which one is better, every track is assigned a quality
parameter. A good track finding method would assign a better quality parameter to
the black set of tracks than to the red set of tracks. The difficulty is finding such a
quality parameter. [A. Strandlie, 2009, p.16-17]

FIGURE 1.3: Two competing sets of tracks: the red set of tracks (µ1 and
µ2) and the black set of tracks (µ1 and µ2). These sets both take all

detected hits into account and tracks in the same set do not use the same
hits. The black set of tracks is better then the red set of tracks because it is

closer to the detected hits.

The situation in figure 1.3 is simplified, in reality there are many more tracks due
to the many particles going through detectors in high-energy physics. Therefore
there are many different hypotheses. These hypotheses can be created by taking
different starting points (hits) and varying the slope of the straight lines. The track
has a horizontal slope and a vertical slope so in reality it is not as simple as described
here. Using vector decomposition (see figure 1.4) this can also be done for three
dimensions. [F.M. Dekking, 2005, p.329-336]

The position of a particle at a time t is given by the initial position (x0, y0, z0)
and the distance it traveled calculated from the time (t) and its velocity (vx, vy, vz).
The particle’s trajectory has a small angle with respect to the proton beam along the
ẑ-axis. Therefore, instead of a time t, the distance z − z0 can be used to find the
particle’s location and the velocities can be substituted by slopes.xy

z

 =

x0y0
z0

+

vxvy
vz

 t =

x0y0
z0

+

uxuy
1

 (z − z0)
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ux and uy are the slopes of the trajectory in the x̂- and ŷ-direction and uz ≡ 1 such
that it is just the propagation in the ẑ-direction.

ux =
vx
vz
, uy =

vy
vz
, uz =

vz
vz

= 1.

Multiplying the slope ux with the distance traveled in the ẑ-direction gives the dis-
tance traveled in the x̂-direction, as one can see in figure 1.4. A detector plate at
z is typically placed at a fixed distance (z − z0) with respect to the starting point
(x0, y0, z0). The track is thus specified by five parameters: x0, y0, z0, ux and uy. Vary-
ing ux and uy in some way for each point (x0, y0, z0), gives many possible tracks.
These are continuous variables so there are infinitely many options, but this gives
all the possible tracks to some degree of preciseness.

FIGURE 1.4: Vector decomposition between detector layer n− 2 and
n− 1. The velocity is decomposed into a velocity in the x̂- ŷ -and

ẑ-direction, ~v = (vx, vy, vz). The slopes ux and uy are derived from this
vector decomposition. In layer n the definition of the distance, d(z)

defined in equation 1.1, is visualized.

The true track has some slope and some initial point and thus corresponds to a point
in this five-dimensional space with some value for each of the five parameters. A set
of tracks will correspond to a set of points. What values the parameters should have
and thus which points a set of tracks should correspond to can be extracted from the
data. How well the match between a proposed point in this five-parameter space
and the data is will be decided by the qualifier. The distance between a data point
and the proposed track in the same plane as defined in equation 1.1 is often used as
a qualifier. [A. Strandlie, 2009, p.16-17]

d(z) ≡
√

(x(z)− x̄(z))2 + (y(z)− ȳ(z))2 (1.1)

Here x(z) and y(z) give the measured position of the particle and x̄(z) and ȳ(z)
give the proposed position of the particle in layer z. This definition is illustrated in
figure 1.4. Equation 1.1 above can be linked to the expression of χ2 as discussed in
Appendix A.5.

The distance shows how close the hypothetical and measured positions are. If
they are close, then the hypothesis is close to the truth, but if they are not close then
the hypothesis is not close to the truth. The distance d(z) is often used to find a
qualifier. The methods discussed in later chapters have a probability density func-
tion that also uses this distance as a measure of how likely the proposed track is.
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When working with these probability distributions, only the two dimensional case
is discussed for simplicity.
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Chapter 2

Overview of Track-finding
Methods

To reconstruct the trajectory of a particle trough the detector, we will use hypothesis
testing. A track (some point in the five parameter space) is proposed and investi-
gated, this is done for many tracks resulting in the most likely track. The "inves-
tigation" of the proposed tracks can be done with several methods, among which
is the Likelihood Method. This method uses the concept of likelihood to find the
most likely track. It has a disadvantage, namely that it is heavily influenced by out-
liers. Two variations have therefore been proposed, the Corridor Method and Tukey
weights, that try and tackle this Outlier Problem. Disadvantages of these methods
are that they use arbitrary parameters that influence the outcome.

2.1 Likelihood Method

In this section I assume a basic knowledge of Bayesian statistics, likelihood and prob-
ability density functions. Background information about this can be found in Ap-
pendix A.

Once the hypotheses have been constructed, they need to be tested. A decision
criterion is needed to decide whether a hypothesis is correct or not, therefore a qual-
ifier is assigned to each hypothesis, which is based on the hypothesis and the data.
For the Likelihood Method this qualifier is the likelihood (L). The likelihood is cal-
culated using Bayes theorem (see Appendix A)

L ≡ P (µ | {x}, σ, I)

= P ({x} | µ, σ, I)P (µ | σ, I)

The probability, P (µ | {x}, σ, I), for the proposed track µ to be a "good" track given
the data {x} can be calculated with the formula above. The likelihood is calculated
with the probability that each detected hit xi is a part of the proposed track. Meaning
that and for the first, and for the second, ..., and for the nth hit the data supports or
does not support the proposed track:

L = P (x1 | µ, σ, I)P (x2 | µ, σ, I) · · ·P (xn | µ, σ, I)P (µ | σ, I) (2.1)

The qualifier is the value of the likelihood. For the calculation of the likelihood
we need to know whether the data supports the idea that the hits are caused by the
proposed track, parametrized by µ. Formulated differently, for each hit we ask the
question: "is this hit part of the proposed track?" The answer to this question is a
probability: the probability of getting the detected hit given the proposed track, the
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width of the Gaussian distribution and some background information, of which the
limits are shown here:

P (xi | µ, σ, I) =

{
1 yes, xi is certainly part of the proposed track
0 no, xi is certainly not part of the proposed track

the probability P (xi | µ, σ, I) is calculated by assuming a Gaussian distribution for
xi (the location of the proposed track provides the value of µ in this distribution) as
can be seen in figure 2.1.

FIGURE 2.1: Each track is assigned a qualifier, the likelihood in this case.
The likelihood is calculated by finding the probabilities

P (xi | µ, σ, I) = εfµ,σ(xi). Which are calculated with a Gaussian
distribution (fµ,σ) as shown in the figure.

Since a Gaussian distribution is continuous, the probability for exactly some value
is always zero. Therefore the probability over an infinitesimal area is calculated, for
which the Gaussian probability density function (fµ,σ(xi), see equation 2.2) for each
hit is needed.

fµ,σ(xi) =
1√
2πσ

e−
1
2
(
xi−µ
σ

)2 (2.2)

Since the probability of exactly one value cannot be calculated, the probability is
instead given by: (see equation A.2)

P (x1 ∈ [x̃1±ε], x2 ∈ [x̃2±ε], . . . , xn ∈ [x̃n±ε] | µ, σ, I) ≈ fµ,σ(x̃1)fµ,σ(x̃2) · · · fµ,σ(x̃n)(2ε)n

(2.3)
where ε > 0 and ε is constant. By finding a value for ε and σ (with the constraint

σ > 0), the proposed tracks can be tested. Filling these parameters in in formula 2.3
gives the probability that the data matches the hypothesis given that the hypothesis
is true. Multiplying this with the probability of the hypothesis (the prior) gives the
likelihood. The "best" set of hypotheses is the set with the highest likelihood values
since "best" is defined as the maximum likelihood [D. S. Sivia, 2006, p.61-67]. [R.
Frühwirth, 2000, p.159].

Lmax = P (µmost likely track | σ, I)
n∏
i=1

P (xi | µmost likely track, σ, I)

The background to all these formulae can be found in appendix A
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There are two disadvantages to this method: outliers have a large influence on
the final result and arbitrary parameters bias the outcome. First we discuss the out-
lier problem. The assigned probability is between zero and one. Detected hits that lie
far away from the proposed track get a very low probability (≈ 0) while hits that are
close to the proposed track get a very high probability (≈ 1). As seen in equation 2.1
the product over the probabilities of every detected hit and the prior calculates the
total likelihood. Outliers therefore have a big influence on the value of this product.

An example: Imagine a hypothesis that is close to the true track with 11 data
points assigned a probability of approximately one, but one hit (an outlier) assigned
a probability of approximately zero (see figure 2.2). Then the total product is still
approximately zero, even though only one hit does not support the proposed track.
The outlier causes the very "good" track to have a very low likelihood (a "bad" qual-
ifier). This is unwanted because this track would have been close to the true track,
but this did not show in the calculation because the outlier was included. The calcu-
lation of the situation in figure 2.2 would be as follows:

L =

12∏
i=1

P (xi | µ, σ, I)P (µ | σ, I)

≈ (1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 0)P (µ | σ, I)

≈ 0

So the proposed track gets a low qualifier which is not an adequate representation
of all data.

FIGURE 2.2: Situation in which outliers have a big influence when using
the Likelihood Method. Even though the proposed track seems like it

matches the data very well, it gets assigned a bad qualifier. According to
the Likelihood Method this would be a "bad" trajectory.

Another disadvantage is that the assignment of a value to σ and ε is arbitrary. For ε
this does not matter because it attributes the same factor to each likelihood, and this
factor can be divided away (see Appendix B.1). But the assignment of σ influences
the result. The standard deviation is a measure for the width of the Gaussian dis-
tribution. A larger width would mean that values are not as fast assigned a value
of zero while a smaller width means more zero-valued probabilities (see Appendix
A.3). This matters because a different value of σ influences each hit differently. The
probability is not proportional to the distance but to the distance squared [G. Casella,
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2002, p.316], so a change is the probability assignment is equivalent to a change in
the distance squared. It can be seen in figure 2.3 that a distribution with twice the
width has a very different ratio between probabilities ( 0.309

0.0.067 ≈ 4600) then the other
distribution (0.1590.001 = 159). So the width of the distribution influences how probabil-
ities relate to each other. Thus it influences the outcome of the total likelihood (see
figure 2.3).

−10 −5 0 5 10
0

0.1

0.2

0.3

x

f
(x

)
σ = 1, µ = 0
σ = 2, µ = 0

FIGURE 2.3: Illustration of how the width of the distribution influences
probability. The ratio in which probabilities relate to each other changes

when choosing a different value of σ.
For the black graph: P (x > 1) = 0.159 and P (x > 3) = 0.001.
For the red graph: P (x > 1) = 0.309 and P (x > 3) = 0.067.

The way in which the Likelihood Method works is that it constructs a hypothesis:
the proposed track is the true track, and then it asks for every detected hit whether
the proposed statement is true. Even if this question can be answered yes with almost
certainty (P ≈ 1), one cannot draw a solid conclusion from this. A theory is true until
proven otherwise as is the rule in science. In the Likelihood Method the hypothesis is
assumed to be true and for every hit this is investigated (the statement was assumed
to be true, and it is proven that it is), this makes the statement only more likely,
not necessarily true. The proposed statement can only be falsified (which can be
undesirable when outliers are involved in the calculation of a "good" track). The
only result that comes from the Likelihood Method is that the proposed track is
not the true track, by falsification of the hypothesis. In Chapter 3 a method will be
discussed that does not have this problem.

Some of the problems mentioned above can be made to have a smaller impact
with so-called Tukey weights or a Corridor, which will be discussed now.

2.2 Using a Corridor

The source of the problem with outliers that the Likelihood Method has is that it
takes into account all data, instead of just the hits that concern the proposed track.
To reduce the influence of outliers one can install a "corridor" around the proposed
track. A corridor is a region, for example a circle with radius r, around the proposed
track. Points outside of this region are not a part of the calculation for the likelihood,
while points inside this region are (see figure 2.4) [Steinle, 2012, p.39]. This way,
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there are few points attributed an excessively small probability and the total proba-
bility cannot drop to zero by adding a single data point. So outliers do not have a
huge influence, because they are mostly left out of the calculation. If the distances
between multiple tracks are sufficiently large such that outliers will be excluded, this
approach can be used to solve the Outlier Problem.

FIGURE 2.4: Schematic representation of the Corridor Method. A
corridor of radius r is drawn in the figure, this corridor excludes outliers

from the calculation in layer n.

This Corridor Method only enhances the Arbitrary Parameters Problem since
there is no argumentation for choosing a specific corridor. It can be argued that a
circle is preferable over any other figure because the distance from any point on the
circle to the center is the same. For the corridor this would mean that no direction
is preferred over another. Still, other figures such as a square or triangle could in
principle be used as well. Although the shape is thus not completely arbitrary, the
size of the corridor is. That would not matter if the corridor would not influence
the result, which it does (see figure 2.5). Hits at the edge of the corridor are added
or deleted from the calculation of the likelihood for different radii. This biases the
resulting value of the likelihood since these points will or will not be included in
the total product calculation dependent on where the boundary of the corridor is
installed. The whole reason why the corridor was imposed, was to alter the result
such that outliers became less influential. But when is an outlier an outlier and when
is it a point that could be on the proposed track? This distinction is not always clear,
the width of the corridor cannot be argued to have a specific value.

Not only the width of the corridor causes problems. When slightly adjusting the
hypothesis, the new hypothesis may be measured against a different dataset (see
figure 2.6). As can be seen in the figure, the hypotheses fit the data equally well,
but the red track will be attributed a worse qualifier. Data points at the edge of the
corridor slip in and out when slightly adjusting the hypothesis. In for example the
LCHb VELO detector this problem will be amplified because there will be many hits
in a small area. A slightly different hypothesis could include many more hits.

There is another more philosophical argument against using the Corridor Method.
When installing a corridor, you leave out a part of the data. More specifically, you
leave out "bad" data and focus only on "good" data. If every experiment would just
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FIGURE 2.5: Illustration of how the width of the Corridor influences the
result. A Corridor with a slightly larger radius contains four additional

hits (labeled x1, x2, x3 and x4) that change the value of the qualifier.

FIGURE 2.6: Illustration of how the result changes drastically with a
slightly different hypothesis. The red hypothesis will be assigned a

worse qualifier than the black hypothesis because its Corridor contains
more "bad" hits even though the black and red hypothesis differ very

little. The red track is slightly different but contains the additional hits
labeled x1, x2 and x3 with respect to the black track.

leave out the data that deviates from the proposed result, all data would be biased.

Although the Corridor solves the Outlier Problem, it biases the data and hits slip
in and out of the Corridor when the hypothesis is changed slightly. There has been
research concerning the width and shape of the corridor (e.g. [Steinle, 2012, p.39]),
but the other problem remains, especially in high energy physics where there are
many particles.

2.3 Using Tukey Weights

A second variation on the Likelihood Method that reduces its disadvantages as well
as those of the Corridor Method is using so-called Tukey weights. Using Tukey
weights means that every point is assigned a weight, which increases or decreases
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its influence on the total product, so it can decrease the influence of outliers [A.
Strandlie, 2009]. The function

w = max(1− x2, 0), (2.4)

gives a hit the weight 1 − x2 or 0, where x represents the position of the particle on
the detector plane in relation to the proposed track [E. Etzion, 2006].

FIGURE 2.7: Schematic representation of Tukey weights. The hits labeled
x2 and x3 are attributed a weight 1− x2 dependent on their position with

respect to the proposed track. The hit labeled x1 gets attributed zero
weight.

Points far away from the proposed track do not contribute to the total likelihood
product (since they are assigned zero weight) and points closer to the proposed track
have a larger influence on the product since they are assigned a larger weight (see
figure 2.7). Tukey weights reduce the influence of outliers by assigning them zero
weight [A. Strandlie, 2009]. They are also more efficient than methods such as the
Corridor, which have a "hard border" [Hampel, 2001]. With Tukey weight, a slightly
different hypothesis does not suddenly contain more hits with a big influence, be-
cause it does not have a sudden cut-off like the corridor. Hits that do not have zero
weight in one hypothesis can have a weight in a slightly different hypothesis but
this weight will be very small.
A disadvantage with respect to the Corridor Method is that using Tukey weights
requires more calculations, because in addition to the likelihood, the weights have
to be calculated as well and these have to be combined to find the qualifier. So there
are more steps to the calculation of the qualifier.
Tukey Weights suffer the same Arbitrary Parameters Problem as the method de-
scribed before. The "width" of the function seems arbitrary. The function w =
max(1 − (2x)2, 0) makes a weighted corridor of half the width while the function
w = max(1 − (0.5x)2, 0) doubles the width of the weighted corridor (see figure 2.8.
There are no a priori arguments why the first would be better than the second, so the
width of the function is arbitrary while it influences the qualifier. This means that
the influence of outliers can become arbitrarily large or small. One could further-
more consider different weights such as a Gaussian distribution, but all will suffer
from the discussed problems.
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FIGURE 2.8: The plotted functions show the different weighing options.
The width differs per function, assigning different weights to the same

hits.

2.4 Overview

The Likelihood Method is a way of finding a qualifier that suffers from the Outlier
Problem (defined in Section 1.2). There are multiple ways to reduce the influence
of outliers: using Tukey weights or a corridor for example. The corridor imposes
a "hard cut-off" which excludes part of the data. This makes the product of the
likelihood very sensitive to small changes in the hypothesis. Also, the width of the
corridor is arbitrary. Tukey weights use a weighing function to assign weights to
all hits. This requires extensive calculation for the total likelihood, also the function
that assigns the weight is arbitrary.

Both variations solve the Outlier Problem but suffer from the Arbitary Parameter
Problem (along with having other disadvantages). The trick seems to be to find
a method that solves the outlier problem without needing an arbitrary cut-off or
weighing function.



17

Chapter 3

Unlikelihood Method

In this chapter and in Chapter 4, I propose two new methods for track finding. These
methods were designed to solve the Outlier -and Arbitrary Parameter Problem that
the methods in the previous chapter suffer from. However, they come with their
own problems. I will describe the initial idea, the (dis)advantages each method has
and the adjustments made to solve disadvantages.

An unattractive aspect of the Likelihood Method was its philosophical approach.
It assumes a hypothesis and then investigates whether the data supports the hypoth-
esis. A better way would be to try and falsify the hypothesis, because only then can
something really be known, namely that the hypothesis was false. This "better" way
of doing research can be implemented in track finding methods as well, and it has the
potential to fix the Outlier Problem. To show the contrast to the Likelihood method,
this method will be called the Unlikelihood Method. In the Unlikelihood Method
some hypothesis for the possible track is assumed. How do we test whether this
hypothesis is correct? By assuming that the hypothesis is not correct, so assuming
there is no track there, and falsifying this assumption. If it is false that the there is
no track there, the track is there, so we have proven the original hypothesis. In this
section I will define two ways in which to define the unlikelihood: L̃ and L̄. These
are defined differently but both are called the unlikelihood. If necessary it will be
specified which of the two is meant.

3.1 Option 1: The Unlikelihood L̃

The draft on which this research is based [“Retina Thoughts”], proposes a new way
of assigning a qualifier. This will be called the Unlikelihood Method, which uses the
unlikelihood as a qualifier. Based on this draft we defined the unlikelihood (L̃) as:

L̃ ≡ P (µ | ¬{x}, σ, I) (3.1)

As opposed to the Likelihood Method we want to know whether anything but
the data supports the idea that the not the data is caused by the proposed track.
Formulated differently, for each hit we ask the question: "is this hit not a part of
the expected track?" The unlikelihood gives the value of the qualifier, which decides
whether the hypothesis is close to the truth.

L̃ =

{
low if the proposed track is a good estimation given the data
high if the proposed track is a bad estimation given the data

(3.2)
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The unlikelihood would be high if there is a high probability that the proposed track
is true given that the data is not true. This means that the proposed track is sup-
ported by not the data. Formulated differently, this meas that the proposed track is
disproved by the data. So then the hypothesis is not close to the truth. The Unlikeli-
hood would be low if there is a low probability of getting the proposed track given
not the data. If not the proposed track is probable for not the data then the proposed
track is probable for the data, so the hypothesis is probable because the data would
give a high probability for the proposed track.

3.1.1 Problem: Bayes Theorem

Bayes Theorem will show that the Unlikelihood as defined in equation 3.1 is not
possible. Bayes theorem gives (see equation A.1):

P (µ | ¬{x}, σ, I) =
P (¬{x} | µ, σ, I)P (µ | σ, I)

P (¬{x})

In track finding the probability that the data is true is often taken to be unity:

P ({x}) = 1− P (¬{x}) = 1⇒ P (¬{x}) = 0

Meaning that P (¬{x}) = 0 which means that in calculating the unlikelihood one
divides by zero, which is not allowed. This might seem the end of the Unlikelihood
Method, but it could still provide useful, the mathematical definition just has to be
altered. Before going into an altered version of the unlikelihood, the unlikelihood as
defined above will be investigated further.

3.1.2 Solution

To solve the problem of division by zero, the probability that the data is not true
is taken to be very small. We are free in assigning this probability as long as it is
realistic (P ({x}) = 0 would not be realistic for example, but P ({x}) = 0.99 could
be). We are allowed to do this because no experiment is perfect, there will always be
a measurement error in the data. This error is the uncertainty in the data and can be
used to define this probability. This gives that:

L̃ =
P (µ | σ, I)

P (¬{x})
P (¬{x} | µ, σ, I)

=
P (µ | σ, I)

P (¬{x})

n∏
i=1

P (¬xi | µ, σ, I)

=
P (µ | σ, I)

P (¬{x})

n∏
i=1

[
1− P (xi | µ, σ, I)

]

The last equation above shows that this method solves the Outlier Problem. As
an example we will again discuss the situation illustrated in figure 2.2. In Section 2.1
a calculation showed the influence of outliers on the qualifier when the Likelihood
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Method was used. The calculation would now be as follows:

L̃ =
P (µ | σ, I)

P (¬{x})

n∏
i=1

(1− P (xi | µ, σ, I))

≈ P (µ | σ, I)

P (¬{x})
· (1− 1) · · · (1− 1) · (1− 0)

≈ P (µ | σ, I)

P (¬{x})
· 0 · · · 0 · 1

= 0

If the proposed track is not supported by the data, this will give P (xi | µ, σ, I) ≈ 0.
Because this is subtracted from one, the contribution to the product will be multiply-
ing by one, meaning that this outlier has no influence on the total product. However,
this expression is not yet very nice and can be rewritten in two ways using two dif-
ferent approximation.

3.1.3 First approximation: Product Estimation

Each particle has one true hit in each detector layer so out of the 100 hits in each
layer, only 1 will have a high probability. Since the values for P (xi | µ, σ, I) will be
small (≈ 0) about 99% of the time (since most hits are not part of a particular track),
the following approximation of the product can be made (this calculation is shown
more thoroughly in Appendix B.2):

L̃ = α

n∏
i=1

(
1− P (xi | µ, σ, I)

)
≈ α

(
1−

n∑
i=1

P (xi | µ, σ, I) + . . .
)

≈ α
(

1−
n∑
i=1

2ε(f(x̃i) + . . .)
)

≈ α
(

1− 2ε(f(x̃1) + f(x̃2) + ....+ f(x̃n))
)

where in the last line the higher order terms of the approximation are neglected, and
with

α =
P (µ | σ, I)

P (¬{x})
>> 1.

α >> 1 because the probability that the data is not true will likely be much smaller
than the prior probability. This formula with which the unlikelihood can be calcu-
lated solves the Outlier Problem without using any arbitrary parameters (only the
width of the distribution is still arbitrary). The value of ε is arbitrary, but the assign-
ing of this value can be anything larger than zero as long as that value of ε is the
same for each proposed track, because it attributes the same factor to each calcula-
tion of the unlikelihood (see Appendix B.2). Another constraint that can be placed
on the assignment of a value to ε is that it should be such that product of 2ε and the
sum of the values of the pdfs (f(x̃i)) should be between zero and one. This way, the
value of the unlikelihood is kept positive, which simplifies things. An example of
such a value is 2ε = 1

n , since the maximum value of f(xi) is one (in case of a delta
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function) and thus the maximum value of the sum is n. Multiplying this with 2ε = 1
n

would make sure that the value is within its limits (between zero and one). Because
of these constraints, the resulting unlikelihood is never below zero and the smallest
value represents the most likely proposed track (see equation 3.2).

A disadvantage of this approximation is that although the resulting formula is
simple, the approximation is not always valid. For about 1% of the data (the "good"
points), the value of P (xi | µ, σ, I) is not very small, and thus this approximation
does not hold for those points. There is another way to achieve similar results using
a different approximation.

3.1.4 Second approximation: Taylor Expansion

There will be only a small difference between different values of the unlikelihood at-
tributed to different hypotheses because the calculation of the unlikelihood consists
of a multiplication of many values between 0 and 1, which will result in a number
close to zero. Taking the logarithm of the unlikelihood defined in equation 3.1 makes
it numerically easier to compute and will make it easier to distinguish between the
qualifiers of different hypotheses. Taking the logunlikelihood (log(L̃)) and doing a
Taylor expansion leads to the following:

log(L̃) = log
(
α

n∏
i=1

P (¬xi | µ, σ, I)
)

= log(α) + log
( n∏
i=1

P (¬xi | µ, σ, I)
)

= α′ +
n∑
i=1

log
(
P (¬xi | µ, σ, I)

)
= α′ +

n∑
i=1

log
(

1− P (xi | µ, σ, I)
)

≈ α′ +
n∑
i=1

log(1− 2εf(x̃i))

≈ α′ − 2ε
n∑
i=1

(
f(x̃i) +

1

2
2εf(x̃i)

2 + . . .
)

with
α′ = log

(P (µ | σ, I)

P (¬{x})

)
>> 0

and log(α) = α′ >> 0 since α >> 1 and log(1) = 0.

The Taylor expansion of a logarithm is used to reach the last line of the calculation.
But log(1−y) ≈ y only holds if |y| << 1, so if |2εf(x̃i)| << 1. This places a constraint
on the value of ε. Again, the contribution of ε to the final value, is the same for
every expected track as long as the same value of ε is used, so it can be chosen
arbitrarily (see Appendix B.2). An example of a valid value of ε would be 2ε = 1

n2 .
The maximum value of f(x̃i) is one so the maximum value of the product of the pdf
and 2ε would be 1

n . Since n is very large in high energy detectors (many particles
are passing through the detector), the product will be a value much smaller than one
and the condition is thus satisfied.
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The value of the sum will likely be small compared to the value of the constant
α′. Using the logarithm helps to make the different values for the logunlikelihood
more distinguishable. The value of log(L̃) can be any real number, the lowest num-
ber again represents the most likely expected track (see equation 3.2).

The two methods above are not perfect, they solve the Outlier Problem without
using arbitrary parameters or running into other problems, but they use approxi-
mations to calculate the unlikelihood and for the first case this approximation is not
always valid. Also, it will be difficult to make the distinction between the values of
the unlikelihood because the constant will likely be a large number (due to the small
probability to not get the data) while the sum will be a small number. The probabil-
ity of the data is generally taken to be zero, but this caused a division by zero. So
instead of changing the method, I changed the probability to be small. We can also
try to change the method by introducing an altered definition of the unlikelihood:
L̄.

3.2 Option 2: The Unlikelihood L̄

The idea of the Unlikelihood method sprung from the philosophical approach to sci-
entific research: assuming a hypothesis and trying to falsify it. Therefore we should
find the probability that the hypothesis is false. Which leads to another definition of
the unlikelihood (L̄), which is somewhat altered with respect to the unlikelihood L̃.

L̄ = P (¬µ | {x}, σ, I) (3.3)

Here the unlikelihood would be high if there is a high probability of getting a track
anywhere but at the proposed track given the data. So if the data supports not the
proposed line (¬µ), then the proposed line was not a good estimation of the true
track. The unlikelihood would be low if the data disproves the idea that there is no
track at the proposed track, meaning that not the proposed track was a bad estimate
and thus the proposed track is a good estimate of the truth.

L̄ =

{
low if the proposed track is a "good" estimation given the data
high if the proposed track is a "bad" estimation given the data

(3.4)

Using Bayes theorem to find these probabilities can be done without running
into trouble now. Bayes theorem gives:

P (¬µ | {x}, σ, I) =
P ({x} | ¬µ, σ, I)P (¬µ | σ, I)

P ({x})

and since P ({x}) = 1,

L̄ = P ({x} | ¬µ, σ, I)P (¬µ | σ, I)

= P (¬µ | σ, I)
n∏
i=1

P (xi | ¬µ, σ, I).

The resulting formula does not look nice yet, the "¬µ" in the probability makes cal-
culations difficult. We will simplify the expression for the unlikelihood to make it
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easier to use. Equation 3.3 is taken as a starting point of the simplification.

L̄ = P (¬µ | {x}, σ, I)

= 1− P (µ | {x}, σ, I)

= 1− P ({x} | µ, σ, I)P (µ | σ, I)

= 1− P (µ | σ, I)
n∏
i=1

P (xi | µ, σ, I) (3.5)

This expression does not contain any negations or difficult expressions. It can be
checked even that the unlikelihood will always be between zero and one. The prod-
uct of probabilities and the prior will always be between zero and one and thus
subtracting this product from one will also be between zero and one. Equation 3.4
can thus be rewritten as:

L̄ =

{
1 if the expected track is a bad estimation given the data
0 if the expected track is a good estimation given the data

The unlikelihood L̄ can be related to the likelihood L. Filling in equation 2.1 (the
definition of the Likelihood) into equation 3.5 above gives:

L̄ = 1− L

Since the unlikelihood and likelihood are related as in the equation above, we can
already expect that it will suffer from the Outlier Problem as well. To show that
it does, we repeat the calculation of the situation in Section 2.1 as an example (see
figure 2.2).

L̄ = 1− P (µ | σ, I)
n∏
i=1

P (xi | µ, σ, I)

≈ 1− P (µ | σ, I)ε(1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 0)

≈ 1− P (µ | σ, I)ε · 0
≈ 0

The calculation shows that the proposed track is assigned a bad qualifier even though
the expected track fits the data very well, the outlier influences the result.

The unlikelihood (L̄) does not provide useful because the outlier problem occurs
as much here as it does in the Likelihood Method. This Unlikelihood Method has
a philosophically better approach, but there are no other arguments for using this
above the Likelihood Method.

This ends the discussion of the Unlikelihood Methods L̄ and L̃. We can already
see that the Unlikelihood Method L̄ has no prospects because it is influenced by out-
liers. The Unlikelihood Method L̃ is attractive because it is not influenced by outliers
and does not suffer the problems of the Corridor Method or Tukey weights either.
Making the approximations can be invalid in some situations. In the Unlikelihood
Methods the parameter σ is still arbitrary and influences the assigning of probabili-
ties (see section 2.1).
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Chapter 4

Ratio of Differences Method

Every method so far has had the same problem: how to assign a probability to a hit?
You can use a Gaussian distribution with a cut-off or a certain weight. But the width
of your distribution, the point of the cut-off and the assigning of the weight are
all arbitrary choices, influencing the result. Assigning probabilities does not seem
problematic at first sight since only the comparison of different qualifiers (L or L̃ or
L̄) leads to a conclusion which means only the ratio of the products should matter.
However the probability and distance do not scale one-to-one. The choice for the
width of the distribution influences the product of probabilities, see Section 2.1. The
problem is that there are no clearly preferable values of σ.

4.1 Initial Idea

Using distances instead of probability distributions derived from distances would
should solve the Arbitrary Parameter Problem described above. To solve the Outlier
Problem, these distances would have to be between zero and one, such that outliers
have no influence. If outliers are assigned the value one, then they have no influence
on the product. The Ratio of Distances (ROD) Method is based on this idea of using
distances instead of probabilities (see figure 4.1). The worst possible hits (such as
outliers) get value one and the best possible hits get value zero. Taking the product
again, and finding the track which gives the lowest value for the product should
give the most likely track.

The qualifier in this method is the "ROD"-value (defined in equation 4.2).

ROD2
i =

α2
i + γ2i
α2 + γ2

≤ 1 (4.1)

ROD2 =
n∏
i=1

ROD2
i

=

n∏
i=1

α2
i + γ2i
α2 + γ2

(4.2)

In equation 4.1 and 4.2 α and γ are the lengths of the detector plates in the x̂-direction
and ŷ-direction respectively. The sum of these values squared gives the length of the
diagonal of the detector plate squared, which is constant. Taking the root gives the
farthest distance possible between a hit and a proposed track. The value of αi and γi
are the distances from the proposed track to the detected hit xi in the x̂-direction and
ŷ-direction respectively. The sum of these values squared gives the distance from the
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proposed track to the detected hit squared. Thus, α2
i + γ2i ≤ α2 + γ2 and the ROD-

value of xi will always be between zero and one. These variables are illustrated in
figure 4.1.

FIGURE 4.1: Schematic representation of Ratio of Distances Method. The
variables and constants used in equation 4.2 and equation 4.3 to

calculated the Ratio of Distances are illustrated in layer n.

4.2 Taking the sum or the product?

The product in equation 4.2 goes to zero very fast because only a hit which is at the
complete other end of the detector plate gets anRODi-value of one, and this is a very
unlikely event. It will be difficult to distinguish between the ROD-values which are
all approximately zero, assuming many particle go through the detector, as is the
case in high energy physics (so n is very large). Taking the sum of the RODi-values
as a qualifier instead of the product would solve this numerical problem. This would
result in the following definition, where we took the sum over all hits instead of the
product of equation 4.1.

ROD2 =

n∑
i=1

(
1− α2

i + γ2i
α2 + γ2

)
, (4.3)

where the variables are as defined in figure 4.1 and where the "1−" is introduced to
make sure that the outliers contribute a value of zero, which has no influence on the
sum. So this method should solve the Outlier Problem.

Taking the sum solves the numerical problem described above. But has taking
the sum meaning? In the other methods which use probabilities, the rules for prob-
ability decide what to do (namely to take the product). With distance ratios, there
is no real meaning in taking a sum, except that then the sum of the ratios is known.
This sum cannot be transformed into probabilities, it can only be deduce that the
lowest sum is the most likely one because it has the most hits close to the proposed
track. With probability calculations the product is taken because it gives the proba-
bility for the first hit and the second hit and ... and the nth hit. The ROD method is not
bound by an AND/OR condition. As long as every hit is taken into account, either
the sum or the product can be taken. The sum being the more practical option here.

Taking the sum has another advantage, namely that outliers cannot influence the
outcome as much as when taking the product. Multiplying with 0 has a big effect on
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the product, but adding 1 is not quite as influential, because it still respects the other
values.

4.3 Can anything be deduced?

Is taking the sum of the distance ratios something on which a valid conclusion can
be based? A large sum of the distance ratios means that nearly all detected points
are far away from the proposed track. A small sum means that nearly all detected
points are close to the proposed track. The extremes of equation 4.3 are:

ROD2 =

{
0 if all hits are at the proposed track
n if all hits are at the maximum distance from the proposed track

where the value of n comes from adding the maximum value 1 for n hits. If there
are a lot of "good" points close to the proposed track, then it is more likely that it is
correct, but this is not necessarily true. Only one of the points in each layer is the hit
belonging to the true track. Having many "good" points makes it more likely that the
true point is there as well, but the true point could just as well be surrounded with
very few "good" points, resulting in a quite high value for the sum. Such a situation
is illustrated in figure 4.2.

FIGURE 4.2: This is an illustration of a situation in which the ROD
Method would result in the wrong track. In this situation where the red
line represents the true track, the Likelihood Method with a corridor or

Tukey weights or the Unlikelihood Method (L̃) would choose the red line
to be the "best" track. The Ratio of Distances Method would choose the

black line to be the "best" track, because most points are close to the black
track.

The result of the ROD Method in the situation described in figure 4.2 is not as
expected. The method seems to give the wrong result in some situations, can it
therefore be used? One could argue that the truth is not known beforehand and thus
the only thing that can be done to get closest to the truth is to find the most likely op-
tion. Which in this case means the option with the highest number of good options.
Many hits supporting the proposed track would indicate that it is more likely that
the proposed track is true. More likely, it is not said to be true, such a claim cannot be
made, we are always dealing with likelihoods and probabilities. The previous meth-
ods used a Gaussian distribution with an arbitrary width to determine how likely a
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track was. The ROD Method uses the number of "good" hits to determine how likely
a track is. So there will definitely be a few situations in which the truth is not the
most likely option, this is a problem that also occurs in the Likelihood Method due
to the influence of outliers.

However, the ROD Method takes this problem one step further. Due to the lin-
ear distribution of values, the track with the majority of points will always show the
smallest ROD-value, which suggests that it is the most likely track. A majority is
most likely in some situations, but not in track finding. For example in the LHCb
VELO Detector, where finding the true track using the ROD Method will always turn
out to be the track that goes trough the middle of the detector, where the majority of
hits will be. This is not true in reality. This deviation from the truth is caused by the
linear distribution of values (as opposed to for example an exponential distribution
of values which is the case in previous methods). Due to this, a lot of "bad" hits
trump a few perfect hits, which is not the intended outcome. Therefore, this method
gives an inaccurate representation of the most likely track. This could be solved by
imposing an arbitrary cut-off, but that is not desirable for reasons discussed previ-
ously.

The Ratio of Distances Method seemed too perfect, and it is. It does not use any
arbitrary parameters because there is no probability distribution. It also reduces the
influence of outliers because the sum is taken and therefore one outlier cannot turn
a good result into a bad result. But a whole new problem appears when examining
this method further. Conclusions based on this method are not reliable.
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Chapter 5

Conclusion & Discussion

In the past three chapters I have offered five methods of track finding that can be
applied to for example the LHCb VELO detector. The purpose of this research was
to identify the shortcomings of the old methods and to explore alternatives that solve
these shortcoming. I will now discuss the conclusions of each previously discussed
method, after which I will conclude on which method(s) could best be used for track
finding when there are many tracks. This will answer the question whether we can
find a quality parameter that finds the true track and is robust against outliers, which
is the research question proposed in the first section: "Introduction and Problem
Sketch"

5.1 Conclusion

The Likelihood Method is a method that suffers from the Outlier Problem. It does
not have any arbitrary parameters except for the width of the distribution, σ.

Adding a Corridor to the Likelihood Method reduces the influence of outliers,
but impose an arbitrary cut-off which can biases the result. Also, the value of the
qualifier may change much for slightly different hypotheses.

Using Tukey weights also reduces the influence of outliers. It does not impose
a hard cut-off as with the Corridor Method so using a slightly different hypothesis
does not give a very different qualifier, and it is efficient. But the weight function w
has an arbitrary "width" and the calculation of the qualifier can be extensive.

As an alternative we explored the unlikelihood. There are two definitions of the
unlikelihood. The Unlikelihood Method L̄ does not solve the outlier problem. The
Unlikelihood Method L̃ can result in a good track finding method when using the
logunlikelihood log(L̃), which can solve the outlier problem without using arbitrary
parameters that influence the result. A Taylor approximation is used to get a man-
ageable expression. This places a constraint on the value of ε. One could also use a
product approximation, but this is not always allowed and therefore a lesser option.
The chance that the data is true is not taken to be unity to avoid division by zero.

The ROD Method solves the Outlier Problem without using arbitrary parameters
but gives rise to a whole new problem: can a conclusion be based on ROD-values?
I would say that this is not always the case and thus it is never the case because you
do not know when the conclusion is close to the truth and when not.

To conclude, the logunlikelihood method (log(L̃)) discussed in Section 3.1.4 seems
to be the best track finding method. It solves the Outlier Problem without using an
arbitrary cut-off or weights that may biases the result. This method assigns a quali-
fier to hypotheses that is unbiased and not influenced by outliers. The only problem
that remains is the assignment of a width to the Gaussian distribution. In section 2.1
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it was said that this width (σ) is completely arbitrary, but that might not be entirely
true. The standard deviation could represent the measurement inaccuracy, since it
represents how sure we are that the data is measured to be exactly where it is [Cor-
nelissen, 2006, p.69] or the standard deviation could be chosen such that the qualifier
is optimized [D. S. Sivia, 2006, p.61-67]. So there are ways to find a value for σ. The
value of ε can still be chosen arbitrarily as long as |2εf(xi)| << 1. The probability of
the data can also be chosen arbitrarily as long as it is not unity and as long as it is
realistic.

To answer the research question, using the logunlikelihood method it is possible
to find a qualifier that does not suffer from the Outlier Problem and that gives a good
representation of the truth in every situation.

5.2 Discussion

From a review of the properties of the various methods it was concluded that the
logunlikelihood method is the most promising. This method should be tested using
controlled data sets, so that its validity can be established and its shortcomings can
be identified.

There are a few things that this paper did not pay attention to which I feel need
to be mentioned to get a complete picture.

First of all, measurement inefficiencies have not been discussed although they
occur in the detectors. This could turn out to pose an additional problem to the
discussed methods.

Furthermore, the assignment and role of the prior distribution has been left out
of the discussion. There is much debate concerning the role of the prior (e.g. [Lyons,
2008, p.889-891]).

It should also be mentioned that already much more elegant and efficient ad-
justments to the likelihood method have been offered (e.g. [A. Abba, 2014]). These
were not discussed here because understanding these methods would be a complete
research project on its own.
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Appendix A

Bayesian Statistics, Likelihood and
PDFs

Track finding in this research paper is based on conditional probabilities: what is
the chance of getting A given that we have B? The following formula calculates
that probability: P (A | B) = P (A∩B)

P (B) . Likewise there is a formula that calculates the

chance of getting B given that we have A: P (B | A) = P (A∩B)
P (A) [F.M. Dekking, 2005,

p.26]. These two formulae combined give rise to:

P (A | B) =
P (B | A)P (A)

P (B)
,

which is called Bayes Theorem.

A.1 Bayes Theorem in track finding

In track finding, the probability of finding a certain track µ given the data {x} is
needed. The calculation of this probability could show the most likely track. Using
Bayes theorem this can be calculated as follows:

P (µ | {x}, I) =
P ({x} | µ, I)P (µ | I)

P ({x})
(A.1)

or in words: [D. S. Sivia, 2006, p.6]

P (hypothesis | data, I) ∝ P (data | hypothesis, I)P (hypothesis | I)

In these formulae the probability P (µ | I) is called the prior. The distribution of
this probability gives the chance that the expected line is where it is thought to be.
I is used to show any background information (such as the value of σ when using
a Gaussian probability density function). In track finding, it is custom to take the
chance that the data is there to be unity (so P ({x}) = 1). [D. S. Sivia, 2006, p.15]

The distribution assigned to the prior differs. It could be an uniform prior, which
means that the proposed track can be anywhere. Or it could be a Gaussian distribu-
tion, which means the proposed track is most likely to be at some specified position,
and less likely to be at places farther away from this specified position. The prior
probability density function should describe what is known about the hypothesis
before the data was acquired. [D. S. Sivia, 2006, p.61]
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A.2 Probability Density Functions

The locations of the hit and the proposed track are a continuous variables, therefore
to calculate a probability in track finding we need a continuous distribution. There is
an important note to be made on the calculation of continuous distributions such as
the Gaussian distribution. For discrete probability distributions there is a probability
assigned to each possible value and the total of probability adds up to one. For con-
tinuous distributions there are infinitely many possible values, and the sum of the
probabilities assigned to all mutually exclusive and exhaustive set of probabilities
should be one. Therefore the value assigned to exactly xi is zero. The probability in
continuous distributions cannot be calculated by just filling in a number in the prob-
ability density function (pdf) as can be done for discrete distributions. Instead the
probability is by definition of the probability density function, the area beneath the
curve. The total area beneath a pdf is one. The probability can thus be calculated as
shown in equation A.2, which is also illustrated in figure A.1. [F.M. Dekking, 2005,
p.316-317]

P (xi − ε ≤ Xi ≤ xi + ε) =

∫ xi+ε

xi−ε
fµ,σ(Xi)dx ≈ 2εfµ,σ(xi) (A.2)

Integrating over a region of the pdf gives the probability that the value of x is within
the region that was integrated over. Which turns out to be some constant ε > 0
times the value of the pdf at that point, which is basically the width times the height
(which is the area).

FIGURE A.1: Calculating the probability using the pdf of a normal
distribution. The figure shows that εf(xi) calculates the area beneath the

curve, which is defined as the probability.

A.3 The Gaussian Distribution

The Gaussian or Normal Distribution is widely used in statistics. It plays an impor-
tant role in track finding as well. In this research the Gaussian distribution will be
used to characterize the probabilities.

A Gaussian distribution looks as shown in figure A.1, the width and the height
of the two-dimensional distribution is decided by choosing a value for σ, the stan-
dard deviation. The position of the distribution is decided by the value of µ, these
two parameters decide on the shape of a two-dimensional Gaussian distribution. A
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Gaussian distribution has the following probability density formula (which is plot-
ted in figure A.2): [F.M. Dekking, 2005, p.64] [F.M. Dekking, 2005, p.320]

fµ,σ(x) =
1√
2πσ

e−
1
2
(x−µ
σ

)2

In track finding the value of µ is the value of the location of the proposed track
and x is location of the hit that has been detected.
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x
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σ = 1, µ = 0
σ = 2, µ = 0
σ = 1, µ = 1

FIGURE A.2: Examples of Gaussian distributions with a varying
center and width.

A.4 Likelihood

The likelihood (L) in track finding originates from Bayes theorem. This section
shows that derivation. The likelihood is defined as in equation 2.1. The likelihood
can be calculated using Bayes theorem (equation A.1):

L(µ | {x}, I) =
n∏
i=1

P (µ | xi, I)

=
n∏
i=1

P (xi | µ, I)P (µ | I)

P (xi)

= P (µ | I)
n∏
i=1

P (xi | µ, I)

here the prior probability can be taken out of the product because it is independent
of the data and the probability of the data is assumed to be unity. [F.M. Dekking,
2005, p.316-321]
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A.5 χ2

This section explores the meaning of χ2 and its relation to the distance (equation 1.1)
and the likelihood (equation 2.1).

The definition of χ2 is given in equation A.3. The expression contains the dis-
tance between the proposed track and the measurement in the x̂-and ŷ-direction at a
fixed location in the ẑ-direction, denoted x(z)−x̄(z) and y(z)− ȳ(z) respectively. The
measurement uncertainty σ in the x̂-and ŷ-direction (σx(z) and σy(z) respectively)
are taken to be independent of each other for simplicity. [D. S. Sivia, 2006, p.61-67]

χ2(z) ≡ (x(z)− x̃(z))2

σ2x(z)
+

(y(z)− ỹ(z))2

σ2y(z)
(A.3)

The σ’s give the uncertainty in the measurement of the hit. A larger measurement
uncertainty results in a smaller value of χ2 while a larger difference between the ex-
pected value and the true value results in a larger value of χ2. The value of χ2 is a
measure for how likely it is that the found trajectory is due to chance. A large value
meaning that it is likely that the trajectory is not close to the truth, but due to chance.
A small value meaning that the track is probably close to the truth. [D. S. Sivia, 2006,
p.61-67]

The distance is defined in equation 1.1 as:

d(z) =
√

(x(z)− x̄(z))2 + (y(z)− ȳ(z))2

from which it can already be seen that it relates to the value of χ2. As discussed, the
value of χ2 is calculated using the distance between the proposed track and the hit.
We can express χ2 in terms of d(z) easily if we take the errors in the measurement in
the x̂- and ŷ-direction to be the same.

χ2(z) =
(x(z)− x̄(z))2

σ2x(z)
+

(y(z)− ȳ(z))2

σ2y(z)

=
(x(z)− x̄(z))2

σ2(z)
+

(y(z)− ȳ(z))2

σ2(z)

=
(x(z)− x̄(z))2 + (y(z)− ȳ(z))2

σ2(z)
=
d(z)2

σ2(z)

The likelihood can be linked to χ2 as well when taking the natural logarithm of
the likelihood, which is called the loglikelihood function (l) [F.M. Dekking, 2005,
p.316-321,p.335-336]. In this calculation we use equation 2.1 to define the likelihood,
equation A.2 to go from a probability to a probability density function and equation
2.2 to fill in the pdf. It is also assumed that the measurement error σ is constant for
each hit.
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l(µ | {x}, σ, I) = ln(L(µ | {x}, σ, I))

= ln
(
P (µ | I) · P ({x} | µ, I)

)
= ln

(
P (µ | I)

n∏
i=1

P (xi | µ, I)
)

= ln
(
P (µ | I)

)
+ ln

( n∏
i=1

P (xi | µ, I)
)

= ln
(
P (µ | I)

)
+

n∑
i=1

ln
(
P (xi | µ, I)

)
≈ ln

(
P (µ | I)

)
+

n∑
i=1

ln
(
P (xi ∈ [x̃i ± ε] | µ, I)

)
≈ ln

(
P (µ | I)

)
+

n∑
i=1

ln
(

2εfµ,σ(x̃i)
)

≈ ln
(
P (µ | I)

)
+

n∑
i=1

ln
(

2ε
1√
2πσ

e−
1
2
(
x̃i−µ
σ

)2
)

≈ ln
(
P (µ | I)

)
+

n∑
i=1

(
ln
( 2ε√

2πσ

)
+ ln

(
e−

1
2
(
x̃i−µ
σ

)2
))

≈ ln
(
P (µ | I)

)
+ ln

( 2ε√
2πσ

)
+

n∑
i=1

ln
(
e−

1
2
(
x̃i−µ
σ

)2
)

≈ ln
(
P (µ | I)

)
+ ln

( 2ε√
2πσ

)
−

n∑
i=1

1

2

( x̃i − µ
σ

)2
ln(e)

)
= C− 1

2

k∑
i=1

χ2
i

Here the prior is taken into the constant C together with the value of σ and ε, which
are all assumed to be constant. The definition of C is:

C = ln
(
P (µ | I)

)
+ ln

( 2ε√
2πσ

)
.

This calculation was done in one dimension, in which χ2 =
(
x̃−µ
σ

)2
and where µ

denotes the proposed location (which was denoted x̄ in the definition of the distance)
and where x̃ denotes the measured location (which was denoted x in the definition
of the distance). Thus the likelihood and the value of χ2 are easily related in the one
dimensional case. The negative of the logarithm of the likelihood is the sum over all
values of χ2 for the layers:

−l(µ | {x}, σ, I)) =
χ2

2
+ C′

Knowing how these two concepts relate to each other can give more insight into how
the likelihood is defined.
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Appendix B

Extra Calculations

This Appendix serves as an extra explanation of some statements made in previous
chapters. I hope this will clarify some statements made in this paper.

B.1 Calculation supporting Section 2.1

In Section 2.1 the Likelihood Method was discussed and it was claimed that the
value of ε could be chosen arbitrarily because it has not influence on the result. This
section will show the calculation that supports this claim.

In equation 2.1 the likelihood was defined, which is used as a starting point in
the following calculation. Take for example the situation in which there are two
competing hypotheses: µ1 and µ2. These need to be compared to find which one has
the highest likelihood (and which one is thus the "best" track). The calculation of the
likelihood value for µ1 would be as follows:

L1 = P (µ1 | {x}, σ, I)

= P ({x} | µ1, σ, I)P (µ1 | σ, I)

= P (µ1 | σ, I)

n∏
i=1

P (xi | µ1, σ, I)

≈ P (µ1 | σ, I)

n∏
i=1

P (xi ∈ [x̃i ± ε] | µ1, σ, I)

≈ P (µ1 | σ, I)

n∏
i=1

2εfµ1,σ,I(x̃i)

≈ (2ε)nP (µ1 | σ, I)

n∏
i=1

fµ1,σ,I(x̃i)

following a same calculation would result in a similar likelihood value for µ2.

L2 ≈ (2ε)nP (µ2 | σ, I)

n∏
i=1

fµ2,σ,I(x̃i)

To compare the two likelihood values one could for example take the ratio of the
two and see whether the result is larger or smaller than 1. Taking the ratio of the two
values also shows that the value of ε has no influence on the result since it can be
divided away.
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L1
L2
≈

(2ε)nP (µ1 | σ, I)
∏n
i=1 fµ1,σ,I(x̃i)

(2ε)nP (µ2 | σ, I)
∏n
i=1 fµ2,σ,I(x̃i)

=
P (µ1 | σ, I)

∏n
i=1 fµ1,σ,I(x̃i)

P (µ2 | σ, I)
∏n
i=1 fµ2,σ,I(x̃i)

As can be seen, the expression of the ratio of the two likelihood values does not
contain ε. The value of ε can therefore be anything larger than zero.

B.2 Calculation supporting Section 3.1

The calculations in Section 3.1 show how the two approximations can be used to
obtain an expression for the unlikelihood that should be easier to use. The calcula-
tion of the product approximation (done in Section 3.1.3) is repeated here in more
detail and in addition we will show that the assigning of a value to ε can be arbi-
trary (as long as the constraints discussed in the concerning section are respected).
This calculation will only be done for the product estimation, the calculation of the
logunlikelihood (discussed in Section 3.1.4) is very similar and will therefore not be
repeated as well.

Here we will do the calculation of the unlikelihood L̃ with respect to the two
competing hypotheses µ1 and µ2. In line with Section 3.1.3 we have that:

α1 =
P (µ1 | σ, I)

P (¬{x})
and α2 =

P (µ2 | σ, I)

P (¬{x})
.

The calculation of the unlikelihood of the proposed track µ1 is given as L̃1.

L̃1 = α1

n∏
i=1

(
1− P (xi | µ1, σ, I)

)
≈ α1

(
1−

n∑
i=1

P (xi | µ1, σ, I) + . . .
)

≈ α1

(
1−

n∑
i=1

P (xi ∈ [x̃i ± ε] | µ1, σ, I) + . . .
)

≈ α1

(
1−

n∑
i=1

2ε(fµ1,σ,I(x̃i) + . . .)
)

≈ α1

(
1− 2ε(fµ1,σ,I(x̃1) + fµ1,σ,I(x̃2) + ....+ fµ1,σ,I(x̃n) + . . .)

)
≈ α1

(
1− 2ε(fµ1,σ,I(x̃1) + fµ1,σ,I(x̃2) + ....+ fµ1,σ,I(x̃n))

)
Here the approximation of the product is used to get from the first to the second
line and to get from the third to the forth line the approximation of the probabil-
ity using the probability density function is used (equation A.2). To reach the last
line the higher order terms of the product approximation are neglected. The same
calculation for the proposed track µ2 will show a similar result:

L̃2 ≈ α2

(
1− 2ε(fµ2,σ,I(x̃1) + fµ2,σ,I(x̃2) + ....+ fµ2,σ,I(x̃n))

)
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To compare the two likelihoods one could for example take the formula L̃1 =
γL̃2, and look at the value of γ. If γ > 1 then L̃1 > L̃2 and if γ < 1 then L̃1 < L̃2.
Filling in the values of L̃1 and L̃2 as calculated above gives:

α1

(
1−

n∑
i=1

2εfµ1,σ,I(x̃i)
)

= γα2

(
1−

n∑
i=1

2εfµ2,σ,I(x̃i)
)

and filling in the values of α1 and α2,

P (µ1 | σ, I)

P (¬{x})

(
1−

n∑
i=1

2εfµ1,σ,I(x̃i)
)

= γ
P (µ2 | σ, I)

P (¬{x})

(
1−

n∑
i=1

2εfµ2,σ,I(x̃i)
)
.

In this expression there are two values that are the same for both proposed tracks: ε
and P (¬{x}). The assigning of these values has no influence on the final product. A
twice as large value for ε will give the same contribution on both sides and should
therefore have no influence on the value of γ. It can also be seen that the probability
of not the data (P (¬{x})) can be divided away. This value can therefore also be
assigned arbitrarily. However, the value of P (¬{x}) should be realistic and cannot
be zero for reasons mentioned in section 3.1.3. The value of ε should also respect
the constrained mentioned in that section. The calculation of the logunlikelihood
discussed in Section 3.1.4 would lead to the same conclusion.
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