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Preface

In this thesis, we detail the reasoning of a paper ([1]) by Barreto and Naehrig.
In this paper they describe an algorithm that generates without effort elliptic
curves that are of interest to cryptographers. In this paper we will look at
two quantities associated to these curves – the embedding degree 12 and the
CM-discriminant −3 – and describe how one obtains curves with these values
of these quantities, and how one can obtain curves with other embedding
degrees or CM-discriminants. Then we use Magma and Sage to find curves
with low embedding degree and CM-discriminant −11.

Before we start with Chapter 1, we give an informal introduction to elliptic
curves and how one can define a group structure on them.

In Chapter 1 we go into the general theory of elliptic curves. We define
concepts as the endomorphism ring and the j-invariant, and we mention
results for curves over the rationals (such as the Mordell-Weil theorem),
and the finite fields (here we discuss the Hasse bound and the trace of
the Frobenius morphism). We finish the chapter with a discussion of the
connection between lattices in C and elliptic curves, looking towards the
theory of complex multiplication.

In Chapter 2 we discuss the calculations Barreto and Naehrig made in [1].
We define the embedding degree of a curve, and we give an easy way to
determine it, given the size of a curve and the field it is defined over. Then we
see how they used this result and a theorem from [2] to find a parametrization
of the size of the curve and the size of the field. Finally we discuss their
algorithm to generate elliptic curves with those properties.

Chapter 3 focuses on complex multiplication. First we describe the gen-
eral theory, building further on Chapter 1. Then we describe a parame-
trization of sizes of curves and fields of elliptic curves with specific CM-
discriminants (namely those of the curve Barreto and Naehrig used, and the
CM-discriminant we want). We use this to find the j-invariant of the curves
with CM-discriminant −11.

Chapter 4 contains all the code we used to find elliptic curves with a small
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embedding degree and a small CM-discriminant. We list the code, the un-
derlying theory and the results we found with the code. The chapter is
concluded with a few remarks on the search efforts.

In Appendix A, at last, we give all the definitions from algebraic geometry
we need in this thesis. The reader not familiar with concepts as projective
varieties and rational maps is advised to read it (or skim it).

The last paragraph of this preface I’d like to use to thank a few people.
First of all, I want to thank my supervisor Jaap Top for his patience and
good advice, and for always finding some time to talk about the thesis. I
also want to thank Max Kronberg for his efforts as secondary supervisor.
I’m very grateful for all the support I received from my parents and my
grandmother, even when the completion of the thesis seemed centuries away.
I want to thank Ayla, Eline, Gerben, Joep and Matthijs for distracting me
from my thesis once in a while, and most of all Yne, for the hours we spent
writing and not writing.

Tysger Boelens,
11 juli 2017, Amstelveen



Conventions

In this thesis we will adopt the following conventions.

Z refers to the set of integers, Q to the set of rational numbers, R to the set
of real numbers, C to the set of complex numbers and Fq to the finite field
with q elements, q being a prime power (of p). Fp always refers to a prime
field.

K will always be a field, and K the1 algebraic closure of K.

Composition of functions will be denoted in the following way: g ◦ f is the
function that sends x to g(f(x)).

Furthermore, results on elliptic curves do often not hold over fields of char-
acteristic 2 or 3. Since this thesis is not concerned with curves over those
fields, we will mostly ignore this issue: that is, results in the text may not
be true over fields of characteristic 2 or 3! In [8], one can find all the details
for what happens in that case.

1 Actually, an algebraic closure of a field is not unique, but all algebraic closures of a given
field are isomorphic, so we will ignore this point from now on and speak of ‘the algebraic
closure’.
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An informal introduction

This chapter should be read as a very informal introduction to elliptic curves.
Quite a number of technical points are ignored, for instance the issue of the
multiplicity of intersection points. An interested reader can find all these
details in for example [10].

Points on a quadratic curve

The question

What are the rational solutions (x, y) of x2 + y2 = 1?

was asked and answered more than 2500 years ago: it appears as a Lemma
to Propostion X.29 in Euclid’s Elements.

Using more modern terms than Euclid had to his disposal, we can solve this
with a geometric argument: find one rational solution (x0, y0), draw a line
y = λx + c through (x0, y0) (so we set c = y0 − λx0), and find the other
intersection point of ` and the curve2 C : x2 + y2 = 1.

For this we use a trick: suppose we have a quadratic equation 0 = x2 +bx+c
with a solution α and we want to find the other solution, say β. We can do
this without using square roots, by noticing that the right hand side of the
equation can be factored as (x− α)(x− β), i.e. x2 − (α+ β)x+ αβ: we see
that β = −b− α.
For future reference, we will prove this in general:

Lemma 0.1 Let f(x) = xn + an−1x
n−1 + · · · + a0 be a polynomial defined

over a field K, and suppose we have n roots b1, . . . , bn of this polynomial,
where we list roots as often as their multiplicity. Then

an−1 = −(b1 + · · ·+ bn),

2 A curve is the set of all (x, y) in some field (in our case Q) that satisfy f(x, y) = 0 for
some polynomial f is two variables. A quadratic resp. cubic curve is a curve for which
the degree of f in 2 resp. 3.

ix
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and if b1, . . . , bn−1 ∈ K, then bn ∈ K too.
Proof:
Since b1, . . . , bn are all the roots of f , we can write

f(x) = (x− b1) · · · (x− bn).

If we work this out we get

f(x) = xn − (b1 + · · · bn)xn−1 + · · ·+ (−1)nb1b2 · · · bn.

We know that coefficient of xn−1 is an−1, so the desired equality holds.
Furthermore, we have

bn = an−1 + b1 + · · ·+ bn−1,

so bn is the sum of elements in K and therefore in K too. �

We return to our line ` and curve C. The x-coordinate of any intersection
point of those two needs to satisfy:

(λx+ (y0 − λx0))2 = y2 = 1− x2.

We can rewrite this to

(λ2 + 1)x2 + 2λ(y0 − λx0)x+ (y0 − λx0)2 − 1 = 0.

This has the same solutions as

x2 +
2λ(y0 − λx0)

λ2 + 1
x+

(y0 − λx0)2 − 1

λ2 + 1
= 0.

Using our trick, we see that from our solution x = x0 we can find the solution

x1 =
λx0 − y0

λ2 + 1
− x0,

which clearly is rational if λ is.

On the other hand, if (x1, y1) is a rational point (not equal to (x0, y0)), we
have that the slope λ of the line connecting them is y1−y0

x1−x0 : clearly a rational
number. So all rational solutions are parametrized by λ: every choice of
λ ∈ Q corresponds bijectively to a rational point on C.

Note that we ignore the case where λ = ∞, i.e. where the line is vertical.
This case can be covered using projective coordinates. They are discussed
in section A.2.

This example is characteristic: the rational points of all other quadratic
curves with rational coefficients can be described in a similar way. The
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natural next step would be to consider cubic curves. Clearly the method
we used above breaks down: a line can intersect a cubic curve as many as
three times: if we have one rational intersection point, we cannot just use
the trick with coefficients to obtain another rational intersection point. We
need to do something more complicated, namely use two rational points to
get a third.

The group structure on cubic curves

The set of rational points on a cubic curve turns out to have a lot of structure:
there is a natural way to make a group of it. We will now sketch how this
is done.

The first step is to notice that every irreducible3 smooth4 cubic curve with
a rational point on it , say

a1x
3 +a2x

2y+a3xy
2 +a4y

3 +a5x
2 +a6xy+a7y

2 +a8x+a9y+a10 = 0, (1)

is birationally equivalent to a smooth curve of the following form:

y′2 = x′3 + ax′2 + bx′ + c. (2)

This form is called the Weierstrass normal form. ‘Birationally equivalent’
means that there are invertible rational maps (as defined in Definition A.27)
that take almost every point of (1) to almost every point of (2). The excep-
tions are the points where the rational maps are not defined, i.e. the zeros
of the polynomial in the denominator, but these points are generally easy
to find.

We call a curve of the form (2) an elliptic curve if it is smooth. (We will
formally define it in Definition 1.1) This happens precisely when the right
hand side has no multiple roots, which is equivalent with the discriminant5

of the polynomial on the right hand side being non-zero. (This discriminant
is also referred to as the discriminant of the curve.) One can compute that
the discriminant of the curve y2 = x3 +ax2 +bx+c is −4a3c+a2b2 +18abc−
4b3 − 27c3.

We now adapt the method of the previous section. Suppose that we have
two rational points P and Q on a elliptic curve E. The line ` through these
points usually intersects the curve at a third point R. (The only exception

3 An irreducible curve is a curve f(x, y) = 0 such that there are no non-constant poly-
nomials g(x, y) and h(x, y) such that f(x, y) = g(x, y)h(x, y). 4 A smooth curve is a

curve f(x, y) = 0 with no points P on the curve such that df
dx

= df
dy

= 0 in P . 5 The

discriminant of a polynomial f(x) is defined as
∏

i 6=j(αi−αj)
2 where α1, α2, . . . , αn is the

list of roots of f counted with multiplicity. By definition, it vanishes exactly if two roots
are equal.
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is when ` is tangent to E in P or Q, or if ` is parallel to the y-axis.)
If two solutions of a monic cubic equation with rational coefficients are
rational, then the third solution is also rational. This is true because the
x2-coefficient is the sum of the three solutions, by Lemma 0.1. It follows
that the point R also has rational coordinates. We write P ∗Q for R. Clearly
P ∗Q = Q ∗ P .

We now consider the ‘exceptional cases’. In the case where P = Q, we take
` to be the tangent line (if it is not vertical) to E in P and proceed as above.
If P 6= Q, but ` is tangent to the curve in P , we define P ∗Q = P .
In the remaining case, where ` is parallel to the y-axis, we use the following
solution6: we define an extra point O that is not on the (x, y)-plane, but
that we assume to be on every vertical line, and on E. With this definition,
we have 3 intersection points of ` and E and we can define P ∗Q = O.

However, since we added a new point, we need to define how it works with
∗. We want to define P ∗O for points P in the plane and O∗O. There is an
obvious way to define P ∗O: we just draw the vertical line (since O lies per
definition on this line) through P and look for the other intersection point
with the curve E (or P itself, if the vertical line is a tangent line to E in
P ). Finally, we define O ∗ O = O for technical reasons.

We have one problem: ∗ is not a group operation. For instance, there is
no identity element. If there was a point I that is the identity element
with respect to ∗, then any line ` through I must be tangent to the curve
in the other intersection point of E and `, which is not true in general.
Fortunately, there is another way to define a group structure. We define,
for any two points P and Q:

P +Q = O ∗ (P ∗Q).

We now consider if the group axioms are satisfied.
Existence of the identity. This is easy: O is the identity element. By
definition we have

O + P = O ∗ (O ∗ P ).

If Q = O∗P is the third point that lies on both E and the line ` through P
and O, then R = O ∗Q is the third point that lies both on E and the line
m through O and Q. But both ` and m go through O and Q, so ` = m. So
R is the point on ` that is not O and not Q. So it has to be P . This proves
O + P = P . Likewise we have P +O = P .
Existence of the inverse. We claim −P = O ∗ P . By definition we have

−P + P = O ∗ (−P ∗ P ) = O ∗ ((O ∗ P ) ∗ P ).

6 In fact, this is a special case of using projective coordinates, which will be discussed in
appendix A.



Chapter 0. An informal introduction xiii

In a similar fashion as above, we see that O ∗ P , P and O lie on a line
and on E, so the point on that line not equal to O ∗ P and P is O. So
−P + P = O ∗ O = O, by definition. Similarly we have P +−P = O.
Associativity. This one is rather difficult to verify. It can be done directly if
one derives the formulas for the addition, but this is not very insightful. One
can also show it by a geometrical argument, however, this is quite involved.
This is described extensively in section 2.4 of [11].
Commutativity. Since ∗ is commutative, it follows that + is also commuta-
tive.

This makes the set of points on an elliptic curve with rational coordinates
into an abelian group. We will denote this group with E(Q). Since there is
no special property of Q we did use except that it is a field, we can use the
above to make a group out of the set of points with coordinates in any field
K. This group is denoted by E(K).

We will now start with a more formal approach to elliptic curves.
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Chapter 1

Elliptic curves: an
introduction

In the previous chapter we have given a informal definition of the elliptic
curve and its group operation. In this chapter, the focus lies on the
endomorphisms of these objects, and the properties elliptic curves have
over specific fields such as Q, C and the finite fields. It fungates as a basis
for the theory of complex multiplication which will be discussed in Chapter
3. We will mainly follow the exposition in [11].
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1.3 Elliptic curves over finite fields . . . . . . . . . . 15
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§1.1 General theory of elliptic curves

We assume that the reader know what a projective variety is. (It is defined
in Appendix A.) With that concept, we can define an elliptic curve formally.

Definition 1.1 An elliptic curve over a field K is a projective variety of
dimension 1 and genus1 1, with a designated point O on it.

If we write the curve in the Weierstrass form (as defined in equation (2) on
page xi), we can make sure that there lies precisely one point at infinity,
namely (0 : 1 : 0). We will take that point to be the designated point
O. Thinking projectively, we see that there is nothing ‘special’ about the
definition of the extra point O at page xii: it is just a point on the curve
like any other where the elliptic curve happens to intersect its tangent line
with multiplicity 3, so O ∗ O = O.

If one defines the group structure on elliptic curves more formally than we
did, the choice of the basepoint does matter. From now on however, we will
usually assume that the basepoint is the point at infinity on the curve, and
that curves are given in the Weierstrass normal form.

§1.1.1. Isogenies and endomorphisms. Since we have elliptic cur-
ves equipped with a group in the first section, our natural next goal is to
consider maps between elliptic curves that respect both the group structure
and the variety structure.

Definition 1.2 Suppose we have two elliptic curves, E1 and E2 defined over
a field K. An isogeny from E1 to E2 is a map that is both a morphism from
the variety E1 to the variety E2 and a group homomorphism from E1(K) to
E2(K).

If we assume the curves to be in Weierstrass normal form, it can be shown
(see page 51 of [11]) that we can write any isogeny in the form (x, y) 7→
(r1(x), r2(x)y), for some rational functions r1 and r2, for all points except
∞. Since an isogeny is a group homomorphism, it is immediate that ∞
always maps to ∞. We make the following convention: if r1 has a pole at
x = x0, then (x0, y0) 7→ ∞. For future reference, we will prove the following
property of this representation.

1 The genus of a curve is a rather technical geometric notion, so we will not define it here.
In the case K = C we have the following visualization: consider a curve E. Then we have
a group E(C), which can be considered as a complex manifold. Now ignore everything
but the topology of this manifold. Then the genus is the number of ‘handles’ in this
topological space. For instance, as a topological space, a sphere has genus 0, and a torus
has genus 1. In section 1.4 we show that an elliptic curve over C is ‘the same’ as C modulo
a lattice, i.e. a parallellogram with opposing sides glued together: that is, a torus.
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Lemma 1.3 Let (x, y) 7→ (r1(x), r2(x)y) be the representation of an isogeny
α from an elliptic curve E1 : y2 = x3 + A1x + B1 to an elliptic curve
E2 : y2 = x3 + A2x + B2, both defined over K. If (x0, y0) ∈ E1(K) is such
that r1 has no pole at x0, then r2 also has no pole at x0.
Proof:
Let us write r1(x) = p(x)/q(x) and r2(x) = s(x)/t(x) for polynomials p(x),
q(x), r(x) and s(x). We assume p(x) and q(x) to be coprime, and s(x) and
t(x) too. Suppose that (x0, y0) is such that r2 has a pole at x0. We want to
show that r1 also has a pole at x0. In our notation: we want to show that
t(x0) = 0 implies q(x0) = 0.

Since (x, y) ∈ E1(K) implies that α(x, y) is a point on E2 we have

s(x)2

t(x)2
y2 =

p(x)3

q(x)3
+A2

p(x)

q(x)
+B2.

We clear denominators:

s(x)2q(x)3y2 = p(x)3t(x)2 +A2p(x)q(x)2t(x)2 +B2q(x)3t(x)2.

Since (x, y) is a point on E1, we also have

s(x)2q(x)3(x3 +A1x+B1) = p(x)3t(x)2 +A2p(x)q(x)2t(x)2 +B2q(x)3t(x)2

Now we look at this equality in polynomials at the point x = x0: sup-
pose t(x0) = 0, then at the right hand side we have a zero of order ≥ 2.
s(x0) 6= 0, because we assumed s(x) and t(x) to be coprime, and if s(x0) = 0,
then (x − x0) divides both t(x) and s(x). Because E1 is an elliptic curve,
x3 + A1x + B cannot have multiple zeros (see also our discussion on page
xi), so this means that the order of x3 + A1x + B1 in x0 can be at most 1.
So q(x0) also needs to have a zero of order at least 1 in x0: q(x0) = 0, which
is what we did want to prove. �

In the remainder, we will be mainly interested in isogenies from one curve
to itself.

Definition 1.4 An endomorphism of an elliptic curve E is an isogeny from
E to itself.

Theorem 1.5 The set of endomorphisms (defined over K) of an elliptic
curve E (defined over K) is a ring of characteristic 0 without zero divisors,
if we define (ϕ + ψ)(P ) = ϕ(P ) + ψ(P ) and ϕ · ψ(P ) = ϕ(ψ(P )) for any
point P and endomorphisms ϕ and ψ. We denote this ring with End(E).
Occasionally, we will talk about the subring EndK(E) of endomorphisms
defined over K.
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We will postpone the proof a little, to introduce some concepts that are
useful in proving this theorem.

Example 1.6 An important example of an endomorphism is the multiplica-
tion-by-m map, denoted by [m]. We define

[m](P ) =

m times︷ ︸︸ ︷
P + · · ·+ P (m > 0),

[0](P ) = O (also known as the zero endomorphism) and

[m](P ) = [−m](−P ) (m < 0).

This is a group homomorphism, because the set of points of an elliptic curve
forms an abelian group. The map Z→ End(E) : m 7→ [m] embeds the inte-
gers injectively in the endomorphism ring of any curve. (That this happens
injectively is the content of Proposition III.4.2.a in [8].) �

Example 1.7 Let E be an elliptic curve over the finite field Fq. Then the
Frobenius map Fq defined by

Fq(x, y) = (xq, yq)

is an endomorphism of E. �

As we mentioned above, any isogeny and therefore every endomorphism
between curves written in the Weierstrass normal form can be written as
(x, y) 7→ (r1(x), r2(x)y) for some rational functions r1 and r2. A lot of
properties and quantities associated to endomorphisms can be defined either
in terms of these rational functions, or, more abstractly, in terms of a certain
field extension. We will first describe this field extension, and then define
the concepts in terms of the polynomials while mentioning how these relate
to properties the field extension.

In Definition A.26 we defined the function field K(V )of an projective variety
V defined over a field K. Now, if we have a morphism ϕ : V1 → V2, we also
get a map ϕ∗ : K(V2) → K(V1), namely the map that sends the rational
map f : V2 → P1 to the rational map f ◦ ϕ : V1 → P1.
The field extension associated to a morphism ϕ is the extension K(V1) ⊇
ϕ∗K(V2).

Definition 1.8 Let α : E → E : (x, y) 7→ (p(x)/q(x), r2(x)y) be a non-
trivial endomorphism where p(x) and q(x) are polynomials with no common
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factors, and r2(x) is a rational function. The degree of α is the maximum
of deg(p(x)) and deg(q(x)). 2 The degree of the zero endomorphism is 0.

The degree of an endomorphism is the same as the degree of the associated
field extension.

We now prove Theorem 1.5:
Proof:
Since E(K) is an abelian group, its set of endomorphisms can be assigned

a ring structure, when we take + and · to be the operations in the statement
of the theorem.

Proposition III.4.2.a in [8] states that any endomorphism [m] is non-trivial,
for m 6= 0. Therefore, the ring has characteristic 0. Furthermore, if a prod-
uct of two endomorphisms α and β is the zero endomorphism, then α or β
should be constant too: by Theorem A.35, any morphism from an elliptic
curve to another (so a fortiori any isogeny) is either surjective or constant:
the composition of two surjective maps cannot be constant, since E(K) is
an infinite group, so either α or β must be constant, i.e. the zero endomor-
phism. �

Example 1.9 The degree of the multiplication-by-m-map [m] is m2, for any
m ∈ Z. One way to see this is to determine inductively the degree of the ra-
tional maps that give this endomorphism, as is done in section 3.2 of [11]. �

We also make the following definition. Again we have the close connection
with the field extension: an endomorphism is (in)separable if the associated
field extension is (in)separable.

Definition 1.10 Let α : E1 → E2 : (x, y) 7→ (r1(x), r2(x)y) be a isogeny
where r1(x) and r2(x) are rational functions. α is said to be separable if
r′1(x) is not the zero polynomial. If it is not separable, it is called insepara-
ble.

It is immediate that all non-zero endomorphisms are separable if they are
defined over a field of characteristic 0. In fact, the only non-constant poly-
nomials with zero derivative are of the form g(xp), if we are working over
a field of characteristic p. The Frobenius endomorphism is therefore always
inseparable, and of degree q.

2 It falls outside the scope of this thesis, but one can show that in fact
deg(p(x)) > deg(q(x)), so deg(α) = deg(p(x)). A heuristic for this is: ∞ is always
mapped to ∞, so if x =∞, then p(x)/q(x) should also be infinity. This happens precisely
if the order of q at infinity is larger than the order of p at infinity, and the order of a
polynomial at infinity is minus its degree, so the degree of q is smaller than the degree p.
Of course this is not rigourous at all.
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Intuitively, the size of the kernel of a map is related to the degree of the
polynomial that defines it. We have the following theorem:

Theorem 1.11 Let α : E1 → E2 be a non-zero isogeny between elliptic
curves E1 and E2. If α is separable we have

deg(α) = # kerα

and if α is inseparable we have

deg(α) > # kerα

where kerα is the kernel of the map α in E1(K).
Proof:
First, we fix notation: we know that we can write α as

α : (x, y) 7→
(
p(x)

q(x)
, r(x)y

)
,

where we take p and q to be coprime polynomials and r a rational function
in x.

We first prove deg(α) = # kerα for separable α.

Now, we define

S = {x ∈ K : p(x)q′(x)− p′(x)q(x) = 0}.

Note that this is a finite set: since we take α to be separable, we have
(p(x)
q(x) )′ 6= 0, so pq′ − p′q is not the zero polynomial.

We choose an element (a, b) of α(E1(K))\{O} that satisfies the following
conditions: a 6= 0, b 6= 0 and a 6∈ r(S). Such an element can always be
found, because α(E1(K)) is an infinite set, and all conditions only rule out
a finite number of its elements: S is a finite set and so r(S) is also a finite
set.

Now we will count the number of elements of E1(K) that are mapped to

(a, b) by α. Suppose (z, w) maps to (a, b). Then (a, b) = (p(z)q(z) , r(z)w) (note

that a, b is not the point at infinity), so x = z is a solution of the equation
p(x) − aq(x) = 0. Since r has no pole at z since q(z) 6= 0 (by Lemma 1.3)
and no zero (since we assumed b 6= 0), we see that w = b

r(z) . So if we

have a z that satisfies p(z) − aq(z) = 0, there is exactly one w such that
α(z, w) = (a, b).
If we show that p(x) − aq(x) = 0 has no solutions with multiplicity larger
than 1, we know (see the footnote in Definition 1.8) that there are exactly
deg(p(x)− aq(x)) = deg(p(x)) = deg(α) points that map to (a, b). Suppose
there is a solution z0 that has multiplicity ≥ 2. Then p(z0) − aq(z0) = 0
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and p′(z0) − aq′(z0) = 0. Multiplication of these equations with suitable
constants gives

p(z0)p′(z0)− ap′(z0)q(z0) = 0 = p(z0)p′(z0)− ap(z0)q′(z0),

so
ap′(z0)q(z0) = ap(z0)q′(z0).

Since we took a 6= 0, this implies z0 ∈ S, but then a = r(z0) ∈ r(S). This
also contradicts with our assumptions.
So p(x)− aq(x) = 0 has exactly deg(α) solutions, and the preimage of (a, b)
consists of deg(α) points.

Since an endomorphism is a group homomorphism, the preimage of any
point in the image has the same size, so the size of the kernel is also deg(α).

If α is not separable on the other hand, we have (p/q)′(x) is the zero poly-
nomial. In that case, p′ and q′ are both the zero polynomial. We can again
look at the preimage of an arbitrary point that is not infinity, say (a, b), with
a, b 6= 0. This consists of exactly the points (z, w) with p(z) − aq(z) = 0
and w = b

r(z) . However, since p′(z) − aq′(z) = 0 (since p′ and q′ are the

zero polynomial), any root of p(x) − aq(x) will be a multiple root. So the
preimage of any point satisfying the above conditions will be smaller than
deg(p(x)− aq(x)), which is deg(α). So in this case the preimage of a point
(and hence of all points) will be smaller than deg(α). So the size of the
kernel is smaller than deg(α). �

From this theorem it follows that the kernel of any non-zero isogeny E1 → E2

must be a finite subgroup of E1(K). This also works the other way round:

Theorem 1.12 Let E be an elliptic curve. For any finite subgroup Φ of
E(K), there is a unique elliptic curve E′ such that there is an isogeny
ϕ : E → E′ with kernel Φ.
Proof:
This is Proposition III.4.12 in [8]. �

§1.1.2. The dual isogeny. When we will study the theory of com-
plex multiplication, there will be a very useful property of the endomorphism
ring: namely that we can define an anti-involution3 on it, the dual isogeny.
It bears this name, since this phenomenon is not limited to endomorphisms:
it works for all isogenies.

Since we need some machinery outside of the scope of this thesis, we will
not prove the following statement here:

3 An anti-involution on a ring R is a map ·̂ : x 7→ x̂ satisfying â+ b = â + b̂, âb = b̂â,
ˆ̂a = a for all a, b ∈ R and n̂ = n for all n ∈ Z ⊆ R.



8 The B-N method for elliptic curves with complex multiplication

Theorem 1.13 Let ϕ : E1 → E2 be a non-zero isogeny of degree m. Then
there exists an isogeny ψ : E2 → E1 such that

ψ ◦ ϕ = [m]

Proof:
This is Theorem III.6.1.a in [8]. �

We now prove it makes sense to speak of the dual isogeny.

Corollary 1.14 The isogeny ψ in Theorem 1.13 is unique with this prop-
erty.
Proof:
Suppose there are two isomorphisms ψ and ψ′ from E2 to E1 satisfying
ψ ◦ ϕ = [m] = ψ′ ◦ ϕ. Then

(ψ − ψ′) ◦ ϕ = [m]− [m] = [0].

Using Theorem A.35 (just like in the proof of Theorem 1.5 on page 5), we
see that either ψ − ψ′ = [0] or ϕ = [0]. Since we assumed ϕ to be non-zero,
it follows that ψ = ψ′. �

Definition 1.15 Let ϕ : E1 → E2 be a non-zero isogeny. We call the
unique isogeny specified in Theorem 1.13 the dual isogeny and denote it
with ϕ̂. Furthermore, we define ˆ[0] = [0].

We now list some properties of the dual isogeny:

Theorem 1.16 Suppose Ei is an elliptic curve for i ∈ {1, 2, 3}. Let ϕ :
E1 → E2 be an isogeny and ϕ̂ its dual isogeny, and let ψ : E2 → E3 also be
an isogeny with dual ψ̂. Then

1. ϕ ◦ ϕ̂ = [degϕ] and ϕ̂ ◦ ϕ = [degϕ].

2. ϕ̂+ ψ = ϕ̂+ ψ̂.

3. ψ̂ ◦ ϕ = ϕ̂ ◦ ψ̂.

4. [̂m] = [m] for all m ∈ Z.

5. ˆ̂ϕ = ϕ.

6. deg(ϕ) = deg(ϕ̂).

Proof:
All properties hold trivially if ϕ = [0] or ψ = [0], so we will ignore that case.
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1. The first property follows from Theorem 1.13. For the second property,
consider the equation

[degϕ] ◦ ϕ = ϕ ◦ [degϕ] = ϕ ◦ ϕ̂ ◦ ϕ.

The first equality follows here from the fact that [m]ϕ = ϕ[m] for all
isogenies: since an isogeny is a group homomorphism, we have

[m]ϕ(P ) =

m times︷ ︸︸ ︷
ϕ(P ) + · · ·+ ϕ(P ) = ϕ(

m times︷ ︸︸ ︷
P + · · ·+ P ) = ϕ[m](P ).

Since ϕ is surjective by Theorem A.35, we see that [degϕ] = ϕ ◦ ϕ̂.

2. This is Theorem III.6.2.(c) in [8].

3. We know that the degree of ψ ◦ ϕ is degψ · degϕ. Since

ψ ◦ ϕ ◦ ϕ̂ ◦ ψ̂ = ψ ◦ [degϕ] ◦ ψ̂ = ψ ◦ ψ̂ ◦ [degϕ] =

= [degϕ] ◦ [degψ] = [degϕ · degψ],

we see by the uniqueness of the dual that ϕ̂ ◦ ψ̂ must be the dual of
ψ ◦ ϕ.

4. By Example 1.9, the degree of [m] is m2 for all m ∈ Z. Since [m]◦[m] =
[m2], by the uniqueness of the dual we see that [m] is its own dual.

5. Note that, with use of (1) and the multiplicity of the degree:

[degϕ]2 = [(degϕ)2] = [deg[degϕ]] = [deg(ϕ ◦ ϕ̂)] =

= [degϕ · deg ϕ̂] = [degϕ][deg ϕ̂]

so degϕ = deg ϕ̂.

6. With [4] we see

[degϕ] = ̂[degϕ],

then with (1) and (3) it follows that

ϕ ◦ ϕ̂ = ϕ̂ ◦ ϕ̂ = ˆ̂ϕ ◦ ϕ̂.

Since ϕ̂ is surjective (by Theorem A.35), we see ϕ = ˆ̂ϕ.

�

Analogous to the degree of an endomorphism (which can be seen as a norm),
we can define the trace of an endomorphism. We will first demonstrate that
– just like the degree – this is always a member of Z.
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Proposition 1.17 Let ϕ be an endomorphism of an elliptic curve E. Then
ϕ+ ϕ̂ ∈ Z.
Proof:
If ϕ is an endomorphism, then so is ϕ− [1]. The degrees of these maps are
integers. Now we employ the Theorems 1.13 and 1.16: we get

[degϕ] = ϕϕ̂,

and

[degϕ− [1]] = (ϕ− [1]) ̂(ϕ− [1]) = ϕϕ̂− ϕ− ϕ̂+ [1].

Since the degrees of ϕ and ϕ− [1] are integers, so is their difference:

[degϕ− deg(ϕ− [1])] = ϕ+ ϕ̂− [1]. (1.1)

Clearly ϕ+ ϕ̂ = [degϕ− deg(ϕ− [1]) + 1], so [ϕ+ ϕ̂] is in the image of Z in
End(E). �

Definition 1.18 We define the trace tr(ϕ) of an endomorphism ϕ ∈ End(E)
to be the endomorphism ϕ+ ϕ̂, which is an integer.

Corollary 1.19 Let ϕ be an endomorphism of an elliptic curve E. Then

tr(ϕ) = deg(ϕ)− deg(ϕ− [1]) + 1.

Proof:
This follows from (1.1) and the definition of the trace. �

Finally, we have the following equality:

Lemma 1.20 Let ϕ be an endomorphism of an elliptic curve E. Then

ϕ2 − tr(ϕ) · ϕ+ [degϕ] = [0].

Proof:
Clearly

ϕ2 − ϕ2 − ϕ̂ϕ+ ϕ̂ϕ = [0]

holds. We have ϕ̂ϕ = [degϕ] and ϕ + ϕ̂ = tr(ϕ), so taking ϕ out of the
brackets gives

ϕ2 − tr(ϕ) · ϕ+ [degϕ] = [0]..

�
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§1.1.3. Torsion points. We are often interested in points of finite
order, i.e. points in the kernel of [m], for some m ∈ Z. We write

E[m] = {P ∈ E(K) : [m]P = O}

and we have the following theorem:

Theorem 1.21 Let E be an elliptic curve defined over K, and n be a
positive integer such that either charK - n or charK = 0. Then

E[n] ∼= Z/nZ× Z/nZ.

Proof:
This is Theorem 3.2 in [11]. �

In fact, this shows that [m] is separable precisely when charK = 0 or
charK - m, by Theorem 1.11 and Example 1.9.

In this case, i.e. when charK = 0 or charK - n, we can see E[n] as a free
Z/nZ-module of dimension 2. Now, let α : E → E be an endomorphism.
Clearly, α sends points of order dividing n to points of order dividing n: so
α restricted to E[n] is a module homomorphism.

Theorem 1.22 If we have an elliptic curve E defined over K, and n a
positive integer such that either charK - or charK = 0. Let α : E → E be
an endomorphism, and write αn for the Z/nZ-module homomorphism from
E[n] to itself. Then

det(αn) ≡ deg(α) modn.

Proof:
This is Theorem 3.15 in [11]. �

Theorem 1.23 Let the notation be as in Theorem 1.22. Then

tr(αn) ≡ tr(α) modn.

Proof:
Note that we have, for any 2× 2-matrix M = ( a bc d ):

tr(M) = a+ d = ad− bc− ad+ a+ d− 1 + bc+ 1 =

= (ad− bc)− ((a− 1)(d− 1)− bc) + 1 = det(M)− det(M − 1) + 1. (1.2)

Furthermore, by Corollary 1.19, we have for any endomorphism ϕ

tr(ϕ) = deg(ϕ)− deg(ϕ− 1) + 1 (1.3)
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If we substitute αn for M in (1.2) and α for ϕ in (1.3) and use Theorem
1.22, we get

tr(αn) = det(αn)−det((α−1)n)+1 ≡ deg(α)−deg(α−1)+1 = tr(α) modn.

�

§1.1.4. The j-invariant. Now that we have defined isomorphisms
of curves, we could ask if there are invariants that determine if certain curves
are isomorphic or not. It turns out that there is a very interesting function
that has this property:

Definition 1.24 The j-invariant of the elliptic curve E : y2 = x3 + ax+ b
is

j(E) = 1728
4a3

4a3 + 27b2
.

We have the following:

Theorem 1.25 Two elliptic curves defined over K are isomorphic over K
iff their j-invariants are equal.
Proof:
This is Theorem III.1.4.b in [8]. �

and

Theorem 1.26 Let K be a field, and j0 ∈ K. Then there exists an elliptic
curve defined over K(j0) with j-invariant j0.
Proof:
If j0 is not equal to 0 or 1728, a straightforward calculation reveals that

E : y2 = x3 +
−27j0

j0 − 1728
x+

54j0
j0 − 1728

,

has j-invariant j0. Furthermore, y2 = x3 + x has j-invariant 1728 and
y2 = x3 + 1 has j-invariant 0. �

§1.1.5. Twists of curves. In this subsection we discuss an interest-
ing relationship between curves that is similar to what happens in Example
A.34. This example is about varieties defined over K that are isomorphic
over the algebraic closure of K.

Definition 1.27 Two elliptic curves E1 and E2 defined over a field K are
twists of each other if they are isomorphic over K.
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In Theorem 1.25, we saw that two curves are twists from each other if they
have the same j-invariant. We will now discuss an example:

Example 1.28 Consider an elliptic curve E : y2 = x3 + ax + b over K.
Then, for every d ∈ K, we can define the twist by d:

E(d) : y2 = x3 + ad2x+ bd3.

Indeed,

j(E) = 1728
4a3

4a3 + 27b2
= 1728

4a3d6

4a3d6 + 27b2d6
=

= 1728
4(ad2)3

4(ad2)3 + 27(bd3)2
= j(E(d)).

These two curves are isomorphic over K(
√
d), namely by the change of co-

ordinates E → E(d) : x 7→ dx, y 7→ d
3
2 y. �

We will discuss the special case of twists of curves over finite field on page
17.

§1.2 Elliptic curves over the rational numbers

We now return to the case we considered in the introduction: that of ra-
tional points on an elliptic curve. Two important theorems exist about the
structure of E(Q): the Lutz-Nagell theorem, which gives a complete finite
list of possible points with finite order, and the Mordell-Weil theorem, which
states that E(Q) is finitely generated.

§1.2.1. The Lutz-Nagell theorem. We start with stating the the-
orem. Note that this works for curves that can be put in the form y2 =
x3 + ax+ b, however, this is always possible in fields of characteristic 0 such
as Q.

Theorem 1.29 (Lutz-Nagell) Let P = (x, y) ∈ E(Q) be a point of finite
order on the elliptic curve E : y2 = x3 + ax+ b with a and b integers. Then
x, y ∈ Z, and y = 0 or y2 | 4a3 + 27b2.
Proof:
This is Theorem 8.7 in [11]. �

The proof of this theorem goes along these lines: if P is a point of finite
order with non-integral coordinates, then there is a prime p that divides
the denominator of one of the coordinates. Using the relation between the



14 The B-N method for elliptic curves with complex multiplication

coordinates, we can show that p also divides the denominator of the other
coordinate. From there on, we can, with the use of a coordinate transfor-
mation and the fact that P is of finite order, show that there higher and
higher powers of p that divide the denominator, eventually reaching a con-
tradiction.

The condition on y in Theorem 1.29 makes it an effective way to find all
points of finite order: it follows from the fact that both P and 2P have
integral coordinates (since they are both of finite order). This allows us to
use the duplication formula (which gives the coordinates of 2P in terms of
P ) to show that y divides the discriminant of the curve, i.e. 4a3 + 27b2. We
can strenghten the result to y2 dividing the discriminant.

§1.2.2. The Mordell-Weil theorem. We first state the theorem:

Theorem 1.30 (Mordell-Weil) Let E be an elliptic curve defined over Q.
The abelian group E(Q) is finitely generated.
Proof:
This is Theorem 8.17 in [11]. �

In the proof of the Mordell-Weil theorem, the descent method is used. We
will discuss parts of the proof.

We will take for granted that the group E(Q)/2E(Q) is finite. The proof
of this uses a lot of algebraic number theory, at least in the general case, so
we will not discuss it here. (If we assume E(Q) has a point of order 2, an
easier proof can be given, like in chapter 3 of [10].)

The name ‘descent method’ implies that we want to look at some decreasing
quantity. This quantity is the height, which for a point (m1

n1
, m2
n2

) is defined
as log(max(|m1|, |n1|)), with gcd(mi, ni) = 1. From a number-theoretic
perspective, this is a useful way of looking at points, because we have the
following inequalities for points in E(Q):

For every P0 there is a κ0 such that for all P we have h(P+P0) ≤
2h(P ) + κ0.

and

There is a κ such that for all P we have h(2P ) ≥ 4h(P )− κ.

These equalities follow from analyzing the formules for addition and dupli-
cation of points, and checking that the amount of cancellation between the
numerator and the denominator is not too large.
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Now we can prove E(Q) is finitely generated. If we take a set of represen-
tatives for E(Q)/2E(Q), say {Q1, . . . , Qn}, we can write any P ∈ E(Q) as
P ∈ 2E(Q) + Qi1 for some 1 ≤ i1 ≤ n, so there is a P1 such that P =
2P1 +Qi1 . Analogously, there are a Qi2 and a P2 such that P1 = 2P2 +Qi2 ,
etcetera. So, we can write

P = Qi1 + 2Qi2 + 4Qi3 + · · ·+ 2m−1Qim + 2mPm

for m as large as we want. Using the inequalities for the height above, one
can show that the Pi’s are of decreasing height, as long as their height is
larger than a certain constant, say c0. So if we make m large enough, we can
write P as the sum of points in {Q1, . . . , Qm} and a point of height less than
c0. The first set is finite, and the second set is too: there are only a finite
number of rational numbers with numerator and denominator bounded by
exp(c0), and there are at most 2 points with the same x-coordinate. So we
can write every point of E(Q) as the sum of points from a finite set. So it
is finitely generated.

Now that we know that E(Q) is finitely generated, by elementary abelian
group theory it follows that it can be written as

E(Q) ∼= Zr × T,

where r ≥ 0 is the rank and T the torsion group: the points of finite order.
The group T can easily be determined with Theorem 1.29. Determining the
rank is a harder task; for some types of curves there is an algorithm, but
not for all of them. The question ‘Is there an upper bound for the rank of
E(Q)?’ is still an unanswered one.

§1.3 Elliptic curves over finite fields

Closely related to elliptic curves over Q are elliptic curves defined over the
finite fields. As we said on page vii, Fp will refer to the field with p elements
with p a prime number, and Fq to the field with q = pk elements, where
k ≥ 1.

A first question is: what is the structure of E(Fq), for any elliptic curve E?
Since there are only finitely many pairs of elements (x, y) in Fq, this is a
finite group. A finite abelian group must be isomorphic to

Z/n1Z× · · · × Z/nkZ (1.4)

for 1 < n1 | n2 | · · · | nk. Let us now consider E[n1], the set of points
of order dividing n1, in E(Fp), i.e. over the algebraic closure of Fq. By
Theorem 1.21, this is isomorphic to Z/n1 × Z/n1Z, i.e. we can not find 3
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points that are independent of each other. If k ≥ 3 in the representation of
1.4, then the first three factors would all contain a point of order n1 that is
independent of the others, which is a contradiction. So only 0 ≤ k ≤ 2 can
occur. We conclude:

Proposition 1.31 Let E be an elliptic curve defined over Fq. Then there
exist integers n1, n2 > 0 such that E(Fq) ∼= Z/n1Z× Z/n2Z, for n1 | n2.

We can say even more about E(Fq): namely about its size. The classical
heuristic reasoning:

The elliptic curve y2 = f(x) has two points with first coordinate
x for every non-zero square value of f(x), one point with that first
coordinate if f(x) = 0 and zero points for every non-square value.
Half of F×q is a non-zero square, so there are 1

2 ·2 ·(q−1)+1+1 =
q + 1 points in E(Fq). (The first +1 is for the point for which
f(x) = 0, the second one is for the point at infinity.)

turns out to be a good estimate. One can prove a bound on the error of the
estimate, called the Hasse bound.

§1.3.1. The Hasse bound and the Frobenius trace. In the ’30s,
Hasse proved this result about the size of E(Fq), which was first conjectured
by Artin. Later, Weil generalized the bound to other types of curves.

Theorem 1.32 Let E be an elliptic curve over Fq. Then

|q + 1−#E(Fq)| ≤ 2
√
q.

Proof:
This is Theorem 3.5 in [11]. �

The standard proof of this theorem (see for example [8]) makes heavy use
of the endomorphism defined in 1.7, the Frobenius map F that sends (x, y)
to (xq, yq). We can define this map over the algebraic closure Fp of Fq.
This endomorphism fixes exactly the points (x, y) for which both x and y
are inside Fq, since Fq is the set of zeroes of the polynomial xq − x in Fp.
So E(Fq) = ker(F − 1). In fact, one can show that F − 1 is separable, so
deg(F − 1) = #(E(Fq)).

A quantity that will play an important role in this thesis is that of the trace
of the Frobenius morphism F . As we saw in Theorem 1.23, we have

tr(F ) = deg(F )− deg(F − 1) + 1 = q −#E(Fq) + 1.
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Note that this is precisely the quantity that is bounded by the Hasse bound
in Theorem 1.32. Often we will denote it with t.

From Lemma 1.20 it follows that F satisfies the following equation:

F 2 − tF + q = 0. (1.5)

§1.3.2. Reducing elliptic curves. The central problem of this the-
sis is based upon the concept of ‘reducing curves’: if we have a curve defined
over Z4 and some map Q → Fp, we can try to say something about the
‘image’ of the curve and its points. This turns out to work rather well.

The map from Q → Fp is not very surprising: take a
b 7→ ab−1 mod p where

a, b ∈ Z. One restriction applies: it is not defined if p | b, so we have to take
care of this case separately.

Furthermore, to ensure the ‘reduced’ curve is still an elliptic curve, we need
to know if the polynomial f(x) is not mapped to a polynomial with multiple
roots. We have the following definition:

Definition 1.33 Let E be a curve defined over Q with discriminant ∆,
and p a prime number. We say E has good reduction modulo p, if p - ∆.
Otherwise, E has bad reduction modulo p.

Now we can formulate the reduction theorem:

Theorem 1.34 Suppose we have an elliptic curve E with coefficients in Z
which is of good reduction modulo p. We reduce E modulo p (by taking the
coefficients modulo p) and we obtain a curve Ẽ over Fp. Consider the map
defined by

ρ : E(Q)→ Ẽ(Fp) :
(a
b
,
c

d

)
7→ (ab−1 mod p, cd−1 mod p)

if p | b and p | d, and defined by ρ(P ) = O otherwise.

This map is a group homomorphism. Furthermore, if gcd(n, p) = 1, then
E[n] ∩ E(Q) is injectively mapped into Ẽ(Fp).
Proof:
This is Proposition VII.2.1 and Theorem VII.3.1 in [8]. �

§1.3.3. The quadratic twist. For curves over finite fields, the twists
are easy to describe. Furthermore, there is a connection with the trace of
the Frobenius that will be useful later on.

4 If we have a curve defined over Q we can with a simple change of coordinates make sure
that the coefficients are integral, so this is not a restriction.
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Theorem 1.35 Let E be an elliptic curve over Fq. Then there are – modulo
Fq-isomorphisms – two twists of E, if j(E) 6∈ {0, 1728}. (If j(E) = 1728
there are four twists, and if j(E) = 0 there are six.)
Proof:
This is Theorem X.5.4 in [8]. �

For curves with j-invariant not equal to 0 and 1728, we write Etw for the
elliptic curve that is a twist of E and not Fq-isomorphic to E. This is called
the quadratic twist of E.

Theorem 1.36 Let E be a curve over Fq with j-invariant not equal to 0
or 1728. We write E(d) for the twist of E by d, as in Example 1.28. Then
E = E(d) if d is a square in F×q and Etw = E(d) if d is a non-square.
The Frobenius trace of Etw is the opposite of the Frobenius trace of E.
Proof:
This is Proposition 13.1.10 in [4]. �

§1.4 Elliptic curves over the complex numbers

After all the number theory above, we now look from an analytic perspec-
tive. As it turns out, the points of an elliptic curve defined over the com-
plex numbers form a torus. The central tool we need to show this is the
Weierstrass-℘-function.

§1.4.1. Lattices and the Weierstrass-℘-function. The focus of
this subsection is on complex-valued functions that are defined on a torus.
Since a torus is basically a parallellogram with opposing sides glued together,
it is natural to look at functions with as domain a parallellogram in C. In
order to garantuee that the function is analytical ‘around the seam’, we
consider meromorphic functions that are defined on the whole of C and
periodic along both axes of the parallellogram.

Definition 1.37 A lattice is a discrete subgroup of C+ generated by two
elements of C that are R-independent.
An elliptic function for a lattice Λ is a meromorphic function such that

f(z) = f(z + ω) for all ω ∈ Λ

for all z where f is defined.

Usually we denote a set of two generates for a lattice with ω1 and ω2. The
set

{λω1 + µω2 : 0 ≤ λ, µ ≤ 1}
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is called a fundamental parallellogram for Λ.

A very important example of an elliptic function is the Weierstrass-℘-function:

Example 1.38 Let Λ be the lattice generated by ω1 and ω2. The Weierstrass-
℘-function is defined as

℘(z) =
1

z2
+

∑
ω∈Λ\{0}

1

(z − ω)2
− 1

ω2

Of course, this function depends on Λ. If it is unclear to which lattice Λ
the Weierstrass-℘-function is associated, we write ℘(z,Λ). One can show
that this series defines indeed an even meromorphic function on C: it has a
double pole at every point of Λ. The periodicity follows from Example 1.39.
�

Example 1.39 Another example of an elliptic function is the derivative of
the Weierstrass function:

℘′(z) = −2
∑
ω∈Λ

1

(z − ω)3
.

This function is odd, and clearly periodic with respect to Λ. In fact, since
this function is periodic, there must be a constant c only depending on ω
such that ℘(z) = ℘(z + ω) + c. However, since ℘(−ω/2) = ℘(ω/2) (by its
evenness), we see that c = 0, so ℘ is also periodic. �

We now have seen two examples of elliptic functions. As it happens, this is
‘all there is’:

Theorem 1.40 Every elliptic function on a lattice Λ can be written as a
rational function of ℘ and ℘′.
Proof:
This is Theorem VI.3.2 in [8]. �

§1.4.2. Elliptic functions and curves. Now that we have estab-
lished the importance of the function ℘, we want to connect it to the theory
of elliptic curves. First, we need a lemma:

Lemma 1.41 Every holomorphic elliptic function is constant.
Proof:
Suppose we have an holomorphic elliptic function f . We look at the values
of f on the fundamental parallellogram. Since this is a compact subset of C,
the function takes a minimum and a maximum here, so |f | is also bounded
on the fundamental parallellogram. But all the values that f assumes in C
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are already assumed on the fundamental parallellogram, so |f | is bounded
everywhere. By Liouville’s theorem, it follows that f is constant. �

The use of this lemma is that, if we have two Laurent series of elliptic
functions, say of f and g, around a point z0 and we can show that the
Laurent series of f − g has no terms of negative degree, it follows that f − g
is holomorphic around z0. If f and g can be written as polynomials in ℘
and ℘′ this is especially interesting, because these functions have only poles
in points of Λ. So, if we take the Laurent series around 0, show that f − g
is holomorphic around 0, it follows that f − g is holomorphic everywhere by
the periodicity. But then f − g is a holomorphic elliptic function and hence
constant.
So: if we can show that f and g have the same coefficients for terms of
negative degree in the Laurent expansions, we get f = g + a constant. And
that is exactly how one shows

Theorem 1.42 There are exist constants g2 and g3 in C such that

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3

for all z ∈ C where ℘ and ℘′ are defined (i.e. in C\Λ)
Proof:
This is Theorem VI.3.5 in [8]. �

In the theorem above, g2 and g3 are some constants depending on the lattice.
It is not hard to show that the polynomial 4x3−g2x−g3 always has distinct
roots. So if we map a point z in C to a point (℘(z), ℘′(z)), it is a point on
the elliptic curve y2 = 4x3 − g2x− g3.

Theorem 1.43 There is a isomorphism between C/Λ and the elliptic curve
E : y2 = 4x3 − g2x− g3 over C, given by

z 7→ (℘(z), ℘′(z)).

Proof:
This is Theorem VI.3.6 in [8]. �

This also works the other way round:

Theorem 1.44 (Uniformization theorem) Let E be an elliptic curve of the
form y2 = 4x3 − g2x− g3. Then there is a lattice Λ in C such that C/Λ is
isomorphic to E(C), and Λ is unique up to multiplication with a constant
α ∈ C.
Proof:
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This is Theorem VI.5.1 in [8]. �

The equivalence between lattices and elliptic curves gives us directly insight
into the group structure of E(C). A simple observation such as ‘the points
z in C for which mz ∈ Λ = 〈ω1, ω2〉 are precisely the points i

mω1 + j
mω2 for

integers i, j’ implies that there are m2 points z in C/Λ such that mz ∈ Λ.
It is not hard to determine the group structure of this set of points of order
m and we obtain:

Proposition 1.45 For any m ≥ 1 and any elliptic curve defined over C we
have

E[m] ∼= Z/mZ× Z/mZ.

§1.4.3. Maps between elliptic curves. As we have seen that el-
liptic curves are essentially the same thing as complex tori, we can study
maps between elliptic curves via maps between tori, which are much easier
to understand. We will first give an example of a map between two tori, i.e.
C/Λ1 → C/Λ2: suppose we have an α ∈ C such that αΛ1 ⊆ Λ2. Then

fα : C/Λ1 → C/Λ2 : z + Λ1 7→ αz + Λ2

is a well-defined holomorphic map, that sends 0 to itself.
We will now show that this exhausts all possible maps with these properties.

Theorem 1.46 There is a bijection between α ∈ C such that αΛ1 ⊆ Λ2 and
holomorphic maps fα : C/Λ1 → C/Λ2 that send 0 + Λ1 to 0 + Λ2.
Proof:
We will show that the map α 7→ fα is surjective and injective.

Suppose fα = fβ for α and β both in the set {γ : γΛ1 ⊆ Λ2}. We compose
fα and fβ from the left with the canonical map C → C/Λ1, so that we
can assume the input to be in C. Then αz = βzmod Λ2 for all z ∈ C. So
(α − β)z ∈ Λ2 for all z. Since the map g : z 7→ (α − β)z is a continuous
function, and Λ2 is a discrete set in C, the image of g consists of a single
point. The only way in which (α − β)z = (α − β)w can be true for z 6= w,
is when α− β = 0. So α = β. This proves the injectivity.

Let f be a holomorphic map C/Λ1 → C/Λ2 that sends 0 + Λ1 to 0 + Λ2.
Using that C is simply connected, we can lift this map to f̄ : C/Λ1 → C.
If we compose this with the canonical map C → C/Λ1, we get a map
g : C→ C that satisfies

g(z) = g(z + ω) mod Λ2,
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for any z ∈ C and ω ∈ Λ1. So g(z) − g(z + ω) ∈ Λ2. Since z 7→ g(z) −
g(z + ω) is a continous function, and Λ2 is a discrete set, we conclude that
g(z)− g(z + ω) must be some constant (dependent on ω):

g(z) = g(z + ω) + cω.

g is holomorphic, so we can differentiate this equation:

g′(z) = g′(z + ω)

This relation holds for any ω ∈ Λ2, so g′ is a elliptic function! However,
by Lemma 1.41, then g′ is a constant function. So g(z) = cz + d. By our
assumption, 0 is mapped to 0, so d = g(0) = 0. So g(z) = cz, and that
implies that f(z) = cz + Λ2. So f = fc, which proves the surjectivity. �

Using the periodicity of the Weierstrass-℘-function, one can show that

Theorem 1.47 Let Λi be the lattice associated to the elliptic curve Ei, for
i = 1, 2. There is a bijection between isogenies E1 → E2 over C and holo-
morphic maps C/Λ1 → C/Λ2 that send 0 + Λ1 to 0 + Λ2.
Proof:
Since isogenies are given by rational functions that are locally everywhere
defined, any isogeny E1 → E2 corresponds to a holomorphic map C/Λ1 →
C/Λ2. That 0 maps to 0 follows from the fact that isogenies are group homo-
morphisms. So the map from the set of isogenies to the set of holomorphic
maps is well-defined, and clearly injective.

It is also surjective. One can see this in the following way. Take a holo-
morphic map C/Λ1 → C/Λ2 that sends 0 + Λ1 to 0 + Λ2. By the previous
lemma, this map is of the form z 7→ αz+Λ2 for some α satisfying αΛ1 ⊆ Λ2.
By Theorem 1.43, this corresponds to a map

E1 → E2 : (℘(z,Λ1), ℘′(z,Λ1)) 7→ (℘(αz,Λ2), ℘′(αz,Λ2).

This is an isogeny if we can write the expression to the right of 7→ as a ratio-
nal function of ℘(z,Λ1) and ℘′(z,Λ1). (It is already a group homomorphism,
since 0 maps to 0. However, for any ω ∈ Λ1,

℘(α(z + ω),Λ2) = ℘(αz + αω,Λ2) = ℘(αz,Λ2)

since αω ∈ αΛ1 ⊆ Λ2. Similarly, ℘′(αz,Λ2) is periodic with respect to Λ1.
So, by Theorem 1.40, we can write ℘(αz,Λ2) and ℘′(αz,Λ2) as rational
functions of ℘(z,Λ1) and ℘′(z,Λ1). This proves that the map is an isogeny,
and hence the desired surjectivity holds. �

From the Theorems 1.46 and 1.47 we can conclude directly
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Corollary 1.48 Let Λi be the lattice associated to the elliptic curve Ei,
for i = 1, 2. Two elliptic curves E1 and E2 are isomorphic over C iff there
exists an α 6= 0 such that αΛ1 = Λ2.

For future reference, we will give lattices that differ by a factor a name:

Definition 1.49 Let Λ1 and Λ2 be lattices in C. They are homothetic if
there is an α ∈ C\{0} such that αΛ1 = Λ2.
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Chapter 2

The result of Barreto and
Naehrig

In this chapter I will detail the reasoning of Barreto and Naehrig in their
paper ‘Paring-Friendly Curves of Prime Order’ [1], for the following result:

The polynomials p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1 and n(x) =
36x4 + 36x3 + 18x2 + 6x + 1 have the following property: if x0

is such that p = p(x0) and n = n(x0) are prime, we can find
an elliptic curve E of the form y2 = x3 + b over Fp that has
exactly n points with embedding degree 12. This means that
the coordinates of the points in E[n] generate Fp12 .

Their strategy is to use the relation n(x) | Φ12(t(x)− 1), where t(x) is
defined as p(x) + 1− n(x) and Φ12 the twelfth cyclotomic polynomial. By
the definition on page 16, it follows that if x0 is chosen such that p(x0) and
n(x0) are prime, then t(x0) is the trace of the Frobenius map of Fp(x0).
First, we will show where this relation comes from. Then we will
demonstrate how they did find polynomials that satisfy this relation and
finally we will describe how one can find elliptic curves of the form
y2 = x3 + b (with b ∈ Fp) that have n points over Fp.
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2.4 How often are p(x) and n(x) prime numbers? . . 34

§2.1 Determining the embedding degree

A essential part of [1] is that the embedding degree of the generated elliptic
curves is equal to 12. This section discusses the connection between the
embedding degree of a curve over a prime field, and the number of points
and the size of the field. For convenience, we restrict our attention to a
certain group of curves.

§2.1.1. Some definitions.
Definition 2.1 Let E be an elliptic curve defined over Fp, such that #E(Fp)
is a prime number, say n, and p 6= n. Then E is said to be a good curve of
size n over Fp.

Note that saying that E is a good curve states two things: #E(Fp) is prime,
and it is not equal to p.

For these curves, we can now define the embedding degree.

Definition 2.2 Let E be a good curve of size n over Fp. Then the embed-
ding degree of E is the smallest integer k ≥ 1 such that E[n] ⊆ E(Fpk).

Barreto and Naehrig show that n(x) | Φ12(t(x)−1) iff the embedding degree
is 12. They are only interested in the special case where the embedding
degree k is equal to 12. However, it is no more work to prove that this
relation holds in general: that is, for suitable x0, the embedding degree of
the curve with n(x0) points over Fp(x0) is equal to k if the k-th cyclotomic
polynomial modulo n(x0) has a zero in t(x0)− 1.

We prove a straightforward lemma that will be of use in proving the relation
this section is about.

Lemma 2.3 Let E be a good curve of size n over Fp. Then the embedding
degree is equal to the smallest k such that the k-th power of the Frobenius
morphism is the identity on E[n]. (Formulated in group-theoretic terms: the
embedding degree of a good curve with n points is equal to the order of the
Frobenius map restricted to E[n].)
Proof:
Suppose k is the embedding degree of E. Then E[n] ⊆ E(Fpk), and E[n] 6⊆
E(Fp`) for any ` < k. Let F be the Frobenius morphism E(Fp) → E(Fp) :

(x, y) 7→ (xp, yp). In the algebraic closure of Fp, the map z 7→ zp
m

fixes
precisely the points in Fpm . Since Fm : (x, y) 7→ (xp

m
, yp

m
), the map Fm
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fixes precisely the points (x, y) with x and y both in Fpm . So the set of
fixpoints of Fm is E(Fpm). So F ` (for ` < k) does not send all points of E[n]
to itself, but F k does. This proves what we want. �

§2.1.2. The relation n | Φk(t−1). The largest part of the reasoning
is contained in the following proposition. We prove it by showing that the
action of the Frobenius morphism on E[n] can be represented as a matrix,
after which we will determine the order of this matrix.

Proposition 2.4 Let E be a good curve of size n over Fp. We assume
n ≥ 5. Then E has embedding degree k precisely when n | Φk(p).
Proof:
We consider again the Frobenius endomorphim F on E. As we have seen
on page 11, E[n] is a free Z/nZ-module of rank 2. In fact, since n is prime,
E[n] is a Fn-vector space of dimension 2.

The Frobenius morphism sends, like any endomorphism, the points of E[n]
to itself. Since it is a linear map, we can represent it with a 2 × 2-matrix,
once we fix a basis of E[n]. Let P be a non-trivial point of E(Fp), and Q a
point of E(Fpk) that is not a multiple of P . Then (P,Q) clearly is a basis
of E[n].

Since the Frobenius morphism F acts like the identity on E(Fp), it follows
that FP = P . So the matrix looks like(

1 ∗
0 ∗

)
. (2.1)

As we have seen on page 17, the trace of the matrix representing the Frobe-
nius endomorphism on E[m] is equal to p+ 1−#E(Fp), modulo m. In our
case, this means that the trace of the matrix in (2.1) is equal to p+ 1− n,
modulo n. It follows that the matrix looks like(

1 ∗
0 p

)
. (2.2)

We now invoke Lemma 2.3. The embedding degree of E is equal to the
smallest k such that F k is the identity on E[n], i.e. the smallest k such that
the matrix M in (2.2) satisfies Mk = I.

There are a few possible cases, depending on the Jordan normal form of the
matrix.

If p 6≡ 1 modn, we can diagonalize the matrix to ( 1 0
0 p ). Since

(
a1 0
0 a2

)m
=( am1 0

0 am2

)
, it follows that the order of the matrix is equal to the order of p as

an element of F×n .
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If p ≡ 1 modn, the matrix is similar to either the identity matrix or to ( 1 1
0 1 ).

In the first case F is the identity on P and Q which means that F is the
identity on all elements of E[n], so E[n] ⊆ E(Fp). However, E[n] has n2

elements and E(Fp) only n, so this is not possible.
In the second case the order of the matrix is of course n. We will now show
why F cannot have order n, if p ≡ 1 modn.

We will argue by contradiction. Suppose n ≥ 5 and p = `n+ 1, with ` ≥ 2.
By the Hasse bound (Theorem 1.32) p + 1 and n have to be close together
(within 2

√
p of each other).:

2
√
p > |p+ 1− n|.

We substitute our expression for p:

2
√
`n+ 1 > |(`− 1)n+ 2|.

We square both sides to get

4`n+ 4 > (`− 1)2n2 + 4(`− 1)n+ 4.

This is equivalent to:

0 > (`− 1)2n2 − 4n = n((`− 1)2n− 4)

Of course, a product of two numbers is negative if one of the factors is
positive and the other negative. However, since n ≥ 5, we see that

(`− 1)2n < 4

Since we did assume ` ≥ 2, we have (` − 1)2 ≥ 1, so n < 4. But we did
assume n ≥ 5. Contradiction.

So p ≡ 1 modn implies p = n+1, under the assumption that n ≥ 5. However,
since we require p and n to be both prime we can never have p = n+ 1 for
n 6= 2, so this situation does not occur.

So k is the order of pmodn. This is equivalent to n | pk − 1, and n - p` − 1
for all ` < k. By definition of the cyclotomic polynomial, this is equivalent
to n | Φk(p). �

Of course, since we have defined the trace of the Frobenius to be t = p+1−n,
the relation n | Φk(p) is equivalent to n | Φk(t − 1), which is the form we
used in the introduction of this chapter.
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§2.2 The parametrization

We now want to use the relation n | Φk(t − 1). Barreto and Naehrig do
this in the following way: they choose t(x) to be a quadratic polynomial
in x such that Φ12(t(x) − 1) decomposes into two quartic factors, one of
which is chosen to be n(x). Then p(x) can be calculated using the relation
n = p− t+ 1.

§2.2.1. Galbraith’s lemma. The possible choices for a t(x) such
that there is a decomposition in two factors are a result of Galbraith et al.
in [2]. We will describe in detail how they found these polynomials.

The basis of their result is the following lemma:
Lemma 2.5 Let q(x) be a quadratic polynomial over Q, and ζk a complex
k-th root of unity. Then Φk(q(x)) is over Q either irreducible, or splits into
two irreducible polynomials of degree ϕ(k). The latter happens iff q(z) = ζk
has a solution in Q(ζk).
Proof:
Let θ be a root of Φk(q(x)). Since q(θ) is a root of the k-th cyclotomic
polynomial, it must be a primitive k-th root of unity, say ωk. We see ωk ∈
Q(θ), so Q(ωk) ⊆ Q(θ), and so ϕ(k) = [Q(ωk) : Q] which divides [Q(θ) : Q].

If we have θ ∈ Q(ωk), then Q(θ) = Q(ωk), and then we see that θ has degree
ϕ(k) over Q. The minimum polynomial f(x) of θ divides Φk(q(x)). f(x)
is one irreducible factor (of degree ϕ(k)), and since we did assume nothing
about θ except that it is a root of Φk(q(x)), it follows by analogy that the
minimum polynomial of any root of Φk(q(x)) has to be an irreducible factor
of Φk(q(x)) of degree ϕ(k). So Φk(q(x)) splits into two irreducible factors
of degree ϕ(k).

If on the other hand θ 6∈ Q(ωk), [Q(θ) : Q] must be strictly larger than
ϕ(k). However, it has to be a multiple of ϕ(k) and we know that it is the
root of a polynomial of degree 2ϕ(k). So then θ has degree 2ϕ(k) over Q,
and Φk(q(x)) is irreducible over Q.

Finally, we will prove the last claim in the lemma, namely that q(z) = ζk
has a solution in Q(ζk) iff θ ∈ Q(ωk).
If θ ∈ Q(ωk), then clearly q(z) = ωk has a solution in Q(ωk), since q(θ) =
ωk). By Galois conjugation, it follows that q(z) = ζk also is solvable in this
field, and this field is of course equal to Q(ζk).
Suppose that q(z) = ζk has a solution in Q(ζk). Again by Galois conjuga-
tion, this implies that q(z) = ωk has a solution in the field Q(ζk) = Q(ωk).
But if the quadratic polynomial q(z)− ωk has one root in Q(ωk), the other
root must also be in Q(ωk). So all roots of q(z) − ωk are in Q(ωk), and
therefore θ ∈ Q(ωk) because q(θ)− ωk = 0 by definition. �
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§2.2.2. The application of the lemma. In our case, we are inter-
ested in the case k = 12, so then ϕ(k) = 4 (in fact, ζ4

12 = ζ2
12−1 for any root

of unity ζ12 of order 12). We want Φ12(q(x)) to split, so we are interested
in polynomials q(z) assume the value ζ12 when z ranges over Q(ζ12).

A particular example (in section 6 of [2] it is shown that this is the only
solution up to translation and scaling) forms the polynomial:

q(z) =
1

a
z2 − b

a
,

with a, b ∈ Q. If we can find an x ∈ Q(ζ12) such that

x2 = aζ12 + b,

we are done, since q(x) = ζ12.

One could say that this only a trivial reformulation of the problem, but
it gives a way to find such x’s in a clean way. Since Q(ζ12) is a quartic
extension of Q, (1, ζ12, ζ

2
12, ζ

3
12) is a Q-basis of Q(ζ12). If we express x in

this basis, we can easily do the same for x2 (using the relation ζ4
12 = ζ2

12−1),
and simply require the ζ2

12 and ζ3
12 coefficient to be 0.

We get to work: write x = A + Bζ12 + Cζ2
12 + Dζ3

12 with A,B,C,D ∈ Q
and compute the ζ2

12 and ζ3
12 coefficients of x2. A little computation gives

us 2AC +B2 + 2BD + C2 resp. 2AD + 2BC + 2CD. So if we have

2AC +B2 + 2BD + C2 = 0 (2.3)

and
2AD + 2BC + 2CD = 0 (2.4)

we see that we then have x2 = (2AB − 2CD)ζ12 + (A2 − 2BD − C2 −D2),
so that

q(z) =
1

2AB − 2CD
z2 − A2 − 2BD − C2 −D2

2AB − 2CD
(2.5)

is such that Φ12(q(z)) is the product of two quartic factors.

Since D appears in both (2.3) and (2.4) with degree 1, we can eliminate this
variable with little effort. If we multiply (2.3) with A+ C we get

2A2C +AB2 + 2ABD +AC2 + 2AC2 +B2C + 2BCD + C3 = 0,

and if we multiply (2.4) with B we obtain:

2ABD + 2B2C + 2BCD = 0.

The difference of these two equation is a homogeneous equation in three
variables.

2A2C +AB2 + 3AC2 −B2C + C3 = 0.
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We can rewrite this to

−C3 − 3AC2 − 2A2C = (A− C)B2

After a change of variables (namely X = −6C, Y = 6B and Z = A − C),
this becomes

ZY 2 = X3 − 7X2Z + 12XZ2. (2.6)

Of course, this is an elliptic curve, which we can dehomogenize to

E : y2 = x3 − 7x2 + 12x.

As it turns out, E(Q) is of rank 0: we have E(Q) = Z/2Z× Z/4Z. A pair
of generators is (0, 0) and (6, 6).

One can show that most rational points on this curve E do not lead back
to a quadratic polynomial. The only points that do are (6,±6) and (2,±2).
We will now work this out for one of these points: (6, 6) corresponds to the
point (6 : 6 : 1) on (2.6). Using the formulae for the change of variables, we
see that this corresponds to A = 0, B = 1 and C = −1. Using (2.4), we see
that D = −1, so x = ζ12− ζ2

12− ζ3
13 and the polynomial q(z) is – using (2.5)

–

q(z) =
1

−2
z2 + 0.

Of course, using a change of variables, we also get the polynomial q(z) = 2z2.
(More generally, all polynomials of the form q(z) = 2(αz + β)2 for α, β ∈ Q
can be obtained by a linear change of variables.)

We can verify that this really works:

Φ12(2z2) = 16z8 − 4z4 + 1 =

=
(
4z4 − 4z3 + 2z2 − 2z + 1

) (
4z4 + 4z3 + 2z2 + 2z + 1

)
. (2.7)

Similarly, the point (2, 2) leads to a family of polynomials that differ by a
linear change of variables. An example is q(z) = 6z2.

Unfortunately, all other points on the curve do lead to either the same
polynomial, or to linear polynomials. So there are only two options for
a quadratic polynomial q(z) for which Φ12(q(z)) splits into two factors of
degree 4.

§2.3 Making the curves

Now we use the relation n(x) | Φ12(t(x)− 1) to find suitable n(x), and p(x).
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We first work out q(x) = 2x2. We set t(x) − 1 = 2x2, so t(x) = 2x2 + 1.
From (2.7), we see that we have two choices for n(x). We try

n(x) = 4x4 − 4x3 + 2x2 − 2x+ 1.

Using the relation t(x) = p(x) + 1− n(x), we have to set

p(x) = 4x4 − 4x3 + 2x2 − 2x+ 1− 1 + 2x2 + 1 = 4x4 − 4x3 + 4x2 − 2x+ 1.

The other choice for n(x) (and p(x)) is found by changing the two minuses
into plusses.

In the other case we have q(x) = 6x2. It follows that t(x) = 6x2 + 1. Since

Φ12(6x2) = 1298x8 − 36x4 + 1 =

= (36x4 − x3 + 18x2 − 6x+ 1)(36x4 + x3 + 18x2 + 6x+ 1),

we have to set

n(x) = 36x4 ± x3 + 18x2 ± 6x+ 1.

We can now compute

p(x) = n(x)− 1 + t(x) = 36x4 ± x3 + 18x2 ± 6x+ 1− 1 + 6x2 + 1 =

= 36x4 ± x3 + 24x2 ± 6x+ 1. (2.8)

When we have found a value x0 for which p = p(x0) and n = n(x0) are
both prime, we want to construct elliptic curves over Fp with n points. This
can be done with the CM-method, as described in [7]. This method which
generates a curve of n points over Fp

1 has the following steps:

1. Compute t = p+ 1− n and the CM-discriminant D = 4p− t2.

2. Compute the Hilbert class polynomial HD(x) of D.

3. Find a root j0 of HD modulo p.

4. Produce2 a curve of j-invariant j0 and check if this curve or its twist
has n points.

We will not go further into how one can compute the Hilbert class polyno-
mial. An alternative way to get the j-invariant of a curve with a certain
CM-discriminant is demonstrated in section 3.4. Furthermore, the method
above is implemented in Magma (Listing 4.4) in section 4.2.

1 That is, if p and n satisfy the Hasse bound (Theorem 1.32). 2 This can be done by
Theorem 1.26.
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The CM-discriminant D mentioned above is defined in section 3.1. It is the
discriminant of the quadratic equation that the Frobenius endomorphism
satisfies, as discussed on page 17. In chapter 3, we will see that a curve
E with Frobenius trace t over Fp has complex multiplication by the ring

of integers of Q(
√
t2 − 4p). Since Q(

√
m2n) = Q(

√
n), we might as well

ignore the square part of the discriminant.

A practical consideration is that the Hilbert class polynomial get extremely
large for large CM-discriminants, so if we want to generate lots of curves
with a certain CM-discriminant D, we want D to be very small.

With Magma, we can easily compute the factorization of the associated CM-
discriminant in the four cases mentioned above. The results are summarized
in Table 2.1.

Table 2.1 CM-discriminants for values of p(x) and t(x) associated to curves with
embedding degree 12

field size p(x) trace t(x) factorized CM-discr. D

4x4 − 4x3 + 4x2 − 2x+ 1 2x2 + 1 −(2x2 + 1)(6x2 − 8x+ 3)
4x4 + 4x3 + 4x2 + 2x+ 1 2x2 + 1 −(2x2 + 1)(6x2 + 8x+ 3)

36x4 − 36x3 + 24x2 − 6x+ 1 6x2 + 1 −3(6x2 − 4x+ 1)2

36x4 + 36x3 + 24x2 + 6x+ 1 6x2 + 1 −3(6x2 + 4x+ 1)2

We can now see two things: the curves with trace 2x2 + 1 will have a very
large CM-discriminant with no square part immediately visible, and the
curves with trace 6x2 + 1 will always have CM-discriminant −3 times a
square: so complex multiplication in the ring of integers of Q(

√
3).

As it turns out, complex multiplication with discriminant −3 happens pre-
cisely for the curves with j-invariant 0. By Definition 1.24, in Weierstrass
form those are the curves with no linear term, i.e. of the form y2 = x3 + b.
The only thing we have to do is to find a b in Fp such that this curve has n
points. Barreto and Naehrig describe in [1] a very easy algorithm for this:
they just look for a b such that 1 + b is a square in F×p (for half of the b’s

this is true). Then (1,
√

1 + b) is on the curve. They then check the order
of this point: if it is n, they are done. We will not go into detail here, but
since there are six twists of a curve with j-invariant (by Theorem 1.35), one
out of six curves does have the right number of points. So, on average, they
need to test 12 choices of b before finding a curve with n points.

So if we choose the trace t(x) to be 6x2 + 1, there is a very fast way to find
a curve over p(x0) with n(x0) points for any choice of x0 that makes p(x0)
and n(x0) prime.
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§2.4 How often are p(x) and n(x) prime numbers?

In section 2.1, we operate under the hypothesis that we have chosen x0 such
that p = p(x0) and n = n(x0) are prime numbers. We have to, because the
argument uses the fact that there exist prime fields of size p and n. The
method would not be very interesting if there would be only a finite number
of values such that this occurs, so the following question comes to mind: are
there infinitely many values of x such that p(x) and n(x) are prime?

This question is not yet answered, but the generalized Bunyakovsky conjec-
ture states that any finite family F of polynomials satisfying the following
rather obvious conditions:

• The leading coefficients of all polynomials in F should be positive.

• All polynomials should be irreducible over Z.

• The set {f(n) : n ∈ Z} should not have a common prime divisor for
any polynomial f in F .

• For any prime p, there has to be an x ∈ Z such that p - f(x) for all f
in F .

has the following property:

There are infinitely many x ∈ Z such that f(x) is prime for all
polynomials f in the family F .

If this conjecture is true and we have verified the above conditions, there
are infinitely many values of x such that p(x) and n(x) are prime.

It is clear that p(x) = 36x4 + 36x3 + 24x2 + 6x + 1 and n(x) = 36x4 +
36x3 + 18x2 + 6x + 1 satisfy the first condition. By Lemma 2.5, n(x) is
irreducible. Below we prove that p(x) mod 5 does not have linear factors
and no quadratic factors, so p(x) must be irreducible over F5 and therefore
over Z.

Lemma 2.6 The polynomial p(x) = 36x4+36x3+24x2+6x+1 is irreducible
over F5 and therefore over Q.
Proof:
We will show that the reduction p̄(x) = x4 + x3 − x2 + x + 1 of p(x) in F5

is irreducible. The quickest way to prove this is by checking for factors of
degree 1 and 2. A linear factor corresponds to a root of p̄(x) in F5. However,
a simple calculation show that p̄(0) = 1, p̄(1) = 3, p̄(2) = 3, p̄(3) = 3 and
p̄(4) = 4, so p̄(x) has no roots in F5.
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So if p̄(x) is reducible, it has two quadratic factors, say x2 + ax + b and
x2 + cx+ d. Then

x4 + x3 − x2 + x+ 1 = x4 + (a+ c)x3 + (ac+ b+ d)x2 + (ad+ bc)x+ bd.

This gives us a system of four equations over F5 which we will show has no
solution, by checking all values of b.

Suppose b = 0. Then bd can never be 1. So this cannot be the case.
Suppose b = 1. By bd = 1, we have d = 1. So ac + b + d = −1 implies
ac = 2. We also have a + c = 1. But these things cannot be true at the
same time, because ac = 2 implies {a, c} = {1, 2} or {a, c} = {3, 4}.
Suppose b = 2. From bd = 1 it follows that d = 3. 1 = ad+ bc = 3a+ 2c. If
we subtract a+ c = 1 twice, we get a = 4. Now, a+ c = 1 gives c = 2, but
then 4 = ac+ b+ d = 3 + 2 + 3 = 3. Contradiction.
Suppose b = 3. We see d = 2, and similarly as above, 1 = 2a+ 3c, so c = 4.
a+ c = 1 gives a = 2 and then 4 = ac+ b+ d = 3 + 3 + 2 = 3 which is also
a contradiction.
Suppose b = 4. By bd = 1, we see d = 4. So 1 = ad + bc = −a − c and
a+ c = 1 at the same time. But a+ c cannot be both 1 and −1.

We see that p̄(x) is irreducible. If p(x) was reducible, its reduction modulo 5
would also be reducible, because the degree of p̄(x) is equal to that of p(x).
So p(x) is irreducible over Z. �

Since p(0) = n(0) = 1, there can be no common prime divisor for the set of
all values of p(x) resp. n(x) for integer inputs x, and this also makes sure
the fourth condition is satisfied: for all primes we can take x = 0.
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Chapter 3

Complex multiplication

In this chapter, we discuss the theory of complex multiplication. First we
will cover the general theory and the basic results. After that we will con-
sider two cases: that of CM-discriminant −3 and −11. We will compute
parametrizations for p and n for these cases, and we will describe how to
find a curve over Q with CM-discriminant −11, using the relation between
kernels and isogenies from Theorem 1.12.

Contents
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3.4.1 The other elliptic curve . . . . . . . . . . . . . . . 48

§3.1 General theory

In this section we will give a short introduction of complex multiplication,
expanding on the exposition in Chapter 1. Coarsely said, complex multipli-
cation is about the size of the endomorphism ring of a curve. As it turns
out, this depends heavily on the field the curve is defined over. As we have
seen in Example 1.6, every endomorphism ring contains a copy of Z. With
this in mind, we define

37
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Definition 3.1 A elliptic curve E defined over K has complex multiplica-
tion if its endomorphism ring is strictly larger than Z.

§3.1.1. Algebraic number theory. In order to formulate the the-
ory of complex multiplication, we need a few bits of algebraic number theory.
In algebraic number theory one studies subrings of finite extensions of Q that
have properties similar to that of Z with respect to Q. Since finite exten-
sions of Q are a central object of study, they have their own name: number
fields.

The analogon of Z in these number fields is called the ring of integers:

Definition 3.2 Let K be a number field. We define the ring of integers OK
to be the set of roots in K of all monic polynomials with coefficients in Z.

As it turns out, this is indeed a ring.

Example 3.3 Consider K = Q(
√
d) with d squarefree (i.e. there is no n > 1

such that n2 | d). Then OK = {a2 + b
2

√
d : a, b ∈ Z, 2 | a− b} if d ≡ 1 mod 4

and OK = {a+ b
√
d : a, b ∈ Z} if d ≡ 2, 3 mod 4. �

Often enough we are also interested in certain subrings of rings of integers:

Definition 3.4 Let K be a number field. An order in K is a ring R such
that Z ⊂ R ⊆ OK and the field of fractions of R is K.

Example 3.5 The orders in the ring of integers of Q(
√
d) with d squarefree

have the following form:

Z + fZ · δ

where f ≥ 1 is an integer and δ =
√
d if d ≡ 2, 3 mod 4, and δ = 1+

√
d

2 if
d ≡ 1 mod 4. �

For future reference, we define, with the notation as in the above examples:

Definition 3.6 The number f is called the conductor of the order Z+fZ·δ.
f is also the index of the order in the ring of integers.
We define the discriminant of this order to be the number f2d if d ≡ 1 mod 4,
and otherwise, we let −4f2d be the discriminant.

An important property of Z is that numbers factor into primes uniquely.1

Unfortunately, this is not always the case in rings of integers in number

1 To be more explicit, unique factorization in a ring R means the following: Suppose we
write an element of R as a product of irreducible elements in two ways. Then the factors
of the products are the same, but possibly in a different order, and up to multiplication
by a unit in R. Example: 10 = 2 · 5 = (−5) · (−2) is one factorization.
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fields. For instance, we have

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5) (3.1)

in Z[
√
−5], and one can show that these factorizations are really different in

the sense of the previous footnote

However, it turns out that we do have some form of unique factorization in
number rings.

Proposition 3.7 Let R be a ring of integers of a number field. Then every
non-zero ideal of R can be written as the product of prime ideals in a unique
way, up to order.
Proof:
This is Theorem 3.7 in [6]. �

Indeed, we see that we can decompose the prime elements in (3.1) further
into prime ideals:

(2) = (2, 1 +
√
−5)2

(3) = (3, 1 +
√
−5)(3, 1−

√
−5)

(1 +
√
−5) = (2, 1 +

√
−5)(3, 1 +

√
−5)

(1−
√
−5) = (2, 1 +

√
−5)(3, 1−

√
−5)

Now we see that the two factorizations in (3.1) are in fact the same.

There is a way to measure how much unique factorization fails in a ring of
integers. We do this by defining an equivalence relation:

Definition 3.8 Let R be a ring of integers. We say that two ideals a and b
are equivalent if there are x, y ∈ R such that xa = yb. The ideal class group
C̀ (R) of R is the set of equivalence classes in the set of ideals with respect
to the above equivalence relation.
It is a group under the operation [a][b] = [ab].

It is not easy, but one can prove that:

Theorem 3.9 Let OK be the ring of integers of a number field K. Then
the ideal class group of K is finite.
Proof:
This is Theorem 4.4 in [6]. �
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§3.1.2. Complex multiplication over C. First we study complex
multiplication over C. It is this case that motivates the name ‘complex
multiplication’. Luckily, it is not hard to describe the endomorphism ring of
a curve over C, since we already derived a description of the set of isogenies
from one curve to another, in the Theorems 1.46 and 1.47.

Corollary 3.10 The ring of endomorphisms of an elliptic curve E defined
over C is in a canonical bijection with the set

{α ∈ C : αΛ ⊆ Λ}

where Λ is any lattice that is corresponding to E.

We will write [α] for the endomorphism corresponding to α ∈ C via this
bijection.

This severely limits the possibilities for the endomorphism ring:

Proposition 3.11 Let E be an elliptic curve over C with complex multipli-
cation, with associated lattice Λ. If αΛ ⊆ Λ, then α is in the ring of integers
of an imaginary quadratic field K, depending only on Λ.
Proof:
Let Λ = Zω1 +Zω2. If αΛ ⊆ Λ, then αω1 = aω1 +bω2 and αω2 = cω1 +dω2,
for some a, b, c, d ∈ Z. So we have

α

(
ω1

ω2

)
=

(
a b
c d

)(
ω1

ω2

)
. (3.2)

Since M = ( a bc d ) is a 2 × 2-matrix, by Cayley-Hamilton it satisfies its own
characteristic polynomial, i.e.

M2 − (a+ d)M + (ad− bc) = 0

If we multiply this from the right with the vector (ω1 ω2)> and use (3.2), we
get

α2

(
ω1

ω2

)
− (a+ d)α

(
ω1

ω2

)
+ (ad− bc)

(
ω1

ω2

)
= 0.

Clearly this equation can only hold if

α2 − (a+ d)α+ (ad− bc) = 0.

So α is the ring of integers of a quadratic number field K.

Consider another endormorphism β 6∈ Z. By the reasoning above, β lies in
the ring of integers of a quadratic number field K ′. Say K = Q(

√
d) and

K ′ = Q(
√
d′). Then the smallest field containing α+β over Q is Q(

√
d,
√
d′).

α+ β lies – again by the reasoning above – in a quadratic number field. So
Q(
√
d,
√
d′) is a quadratic number field, but that can only be true if K = K ′.
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This proves that all endomorphism lie in the ring of integers of the same
quadratic number field.

We will now show why this field is imaginary. Suppose α ∈ R. Then αω1

lies in the subspace of C spanned by {ω1} since {ω1, ω2} is a R-basis of C.
Analogously αω2 lies in the subspace of C spanned by {ω2}. This means
that in the matrix M defined above, we have a = d = α and b = c = 0.
Since a, d ∈ Z, we conclude M = ( n 0

0 n ) for some n ∈ Z. So then [α] is
just the multiplication-by-n-map. So if α 6∈ Z, then α is not real. Since
E has complex multiplication, there are elements in End(E) that are not
multiplication-by-an-integer maps, so K is imaginary. �

Proposition 3.12 Let E be an elliptic curve over C, and consider End(E)
as a subring of C, as in Corollary 3.10. Let α ∈ End(E). Then the dual
endomorphism of α is the complex conjugate of α.
Proof:
In Lemma 1.20 we saw that α satisfies a quadratic equation with coefficients
in Z:

α2 − (α+ α̂)α+ (αα̂) = 0.

Since this equation has a non-real solution (namely α, per Proposition 3.11),
it follows that the other solution must be the complex conjugate of α. Fur-
thermore, we know that the constant term of a polynomial is the product of
its roots (in the algebraic closure). So if α is one solution of the equation,
α̂ must be the other. So α̂ = ᾱ.

For n ∈ Z, we have that [̂n] = n by Theorem 1.16, so then the conjugate of
n is the same as its dual too. �

Corollary 3.13 Let E be an elliptic curve over C, and consider End(E)
as a subring of C. Then deg(α) = αᾱ.
Proof:
By Theorem 1.13, [deg(α)] = αα̂, and by Proposition 3.12 α̂ = ᾱ. From this
the above follows immediate. �

We can summarize this to:

Corollary 3.14 Let E be an elliptic curve over C. Then End(E) ∼= Z or
End(E) is an order in an quadratic imaginary number field.

In fact, there is more algebraic number theory going on.

Proposition 3.15 Let R be an order in a quadratic imaginary number
field. Then there is a bijection between

• homothety classes of lattices Λ such that RΛ ⊆ Λ, and
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• ideal equivalence classes in R.

Proof:
This is Proposition 10.3 in [11]. �

Furthermore, we have the following way to determine what type of complex
multiplication is going on.

Proposition 3.16 The elliptic curve over C corresponding to the lattice
Zω1 +Zω2 has complex multiplication by an order in an imaginary quadratic
number field K iff ω2/ω1 ∈ K.
Proof:
This is Corollary 10.5 in [11]. �

§3.1.3. Complex multiplication over finite fields and Q. Com-
plex multiplication over finite fields is rather different than over C. The most
striking difference is that every curve has complex multiplication.

Let us consider the finite field Fp. We repeat (1.5): for the Frobenius mor-
phism F we have:

F 2 − tF + p = 0.

The Hasse bound (Theorem 1.32) states that |t| ≤ 2
√
p, so t2 ≤ 4p and in

fact t2 < 4p since t is an integer so equality cannot be reached. Since the
discriminant of the polynomial is t2 − 4p, we see that F cannot be in Z.
However, in finite fields not of prime order, we may have that F ∈ Z. We
will now only discuss fields of prime size (although the classification below
holds for all finite fields):

Theorem 3.17 Let E be an elliptic curve over Fp. There are two possible
situations:

• E is ordinary. In this case #E[p] = p. End(E) is an order in a
quadratic imaginary field.

• E is supersingular. In this case #E[p] = 1. End(E) is an order in a
quaternion algebra.

A curve over Fp is supersingular precisely when #E(Fp) = p+ 1.
Proof:
This is Theorem V.3.1 in [8], and the last claim is Proposition 13.3.9 in [4].
�
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We will not discuss supersingular curves, since we will be interested in the
cases where #E(Fp) is a prime number, and p + 1 cannot be prime if p is
prime and p > 2.

Definition 3.18 Let E be an elliptic curve over Fp with ordinary complex
multiplication, and t the trace of the Frobenius. We call t2 − 4p the CM-
discriminant. It is the discriminant of the equation F 2− tF +p = 0 that the
Frobenius endomorphism satisfies.

One can show that the CM-discriminant is – up to a square – equal to the
discriminant of the endomorphism ring, as defined in Definition 3.6.

As we have seen in Theorem 1.34, we can reduce curves defined over Q to
curves defined over Fp, for p prime. Let us write Emod p for the reduction
of E to Fp.

Theorem 3.19 Let E be an elliptic curve defined over Q. Suppose E is of
good reduction over a prime p.

• End(E) maps injectively into End(Emod p).

• If End(E) is an order in Q(
√
−D), then E is ordinary precisely when

−D is a non-zero square modulo p.

Proof:
This is Theorem 13.12 in [5]. �

§3.2 Complex multiplication with discriminant −3 and −11

In this section, we will discuss elliptic curves with a CM-discriminant −3

resp. −11. That is, the endomorphism ring of these curves is Z[1+
√
−3

2 ]

resp. Z[1+
√
−11

2 ]. The first of these is the sort of complex multiplication
that appears in the curves Barreto and Naehrig describe. We will now
describe this more explicitly.

We will show that the CM-discriminant is −3 iff there is a endomorphism
satisfying a certain quadratic polynomial:

Theorem 3.20 Let E be an elliptic curve defined over Q. End(E) =

Z[1+
√
−3

2 ] if and only if there exists an endomorphism α for which

α2 + α+ [1] = [0].

Proof:
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We start with the easy half. Suppose End(E) = Z[1+
√
−3

2 ]. Then there is

an endomorphism α = −1+
√
−3

2 . This α satisfies

α2 + α+ 1 =
1

4
−
√
−3

2
+
−3

4
+
−1

2
+

√
−3

2
+ 1 = 0.

Suppose on the other hand that we have an elliptic curve E for which there
exists an endomorphism α that satisfies α2 + α + 1 = 0. Clearly, the only

α satisfying this equation is α = −1±
√

12−4·1·1
2 = −1±

√
−3

2 . So the ring of en-

domorphisms contains at least Z[−1+
√
−3

2 ]. Since this is the ring of integers
of Q(

√
−3) (see Example 3.3), and because every endomorphism ring of a

curve defined over the rationals is an order in a ring of integers (Corollary

3.14), we know that Z[−1+
√
−3

2 ] is the entire endomorphism ring. �

We can make this more concrete. The curves with CM-discriminant −3 are
precisely those with j-invariant 0, and those are the elliptic curves that can
be written as Eb : y2 = x3 + b (for some b ∈ K). But for these curves, we
can give α such that α2 + α+ 1 = 0 explicitly. Take

α : Eb → Eb : (x, y) 7→ (ωx, y),

where ω is a primitive third root of unity. Clearly this is an endomorphism,
since, if (x, y) is a point on Eb, then

(ωx)3 + b = ω3x3 + b = x3 + b = y2

so α(x, y) is too. Furthermore, since α2(x, y) = (ω2x, y), the points P =
(x0, y0) ∈ Eb, αP and α2P always have the same y-coordinates, so they are
the three intersection points of the line y = y0 and the curve Eb. By the
way we did define the group structure on an elliptic curve, way back in the
introduction, it follows that P +αP +α2P = O for all P , so α2 +α+ 1 = 0
as endomorphisms.

If we have such an elliptic curve over Q with complex multiplication with
discriminant −3, we can look at the reductions of this curve modulo p for
various primes p, as described in Theorem 1.34. (Of course we want the curve
to be of good reduction modulo p.) We will be interested in cases where the
reduced curve Emod p is ordinary, and not supersingular, as described in
Theorem 3.17. By Theorem 3.19 happens precisely when 3 is a non-zero
square modulo p, i.e. when (−3

p ) = 1. By quadratic reciprocity, if p is ≥ 5,(
−3

p

)
=

(
−1

p

)(
3

p

)
= (−1)

p−1
2

(p
3

)
=
(p

3

)
.
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So Emod p is ordinary, if p is a square modulo 3. This is the case for
p ≡ 1 mod 3. Finally, −3 is also a square modulo 2, so Emod 2 is also
ordinary. For p = 3, we have supersingularity, because 3 = 0 there.

For our specific curve Eb : y2 = x3 + b, we can see this phenomenon il-
lustrated. Let us reduce Eb modulo p (we assume this is good reduction,
i.e. p - b). Then we have the two endomorphisms: α(x, y) = (ωx, y) (if Fp
does not contain third roots of unity, α is defined over the larger field Fp2)
and the Frobenius morphism F (x, y) = (xp, yp). If these do not commute,
then End(Emod p) has to be an order in a quaternion algebra, and hence
Emod p is supersingular.

We have
Fα(x, y) = F (ωx, y) = (ωpxp, yp),

and
αF (x, y) = α(xp, yp) = (ωxp, yp).

So: α and F commute iff ωp = ω, so iff ωp−1 = 1. Since ω is a third root
of unity, this happens iff 3 | p − 1, that is, if p ≡ 1 mod 3. This is precisely
what we have shown above: if Emod p is supersingular, then indeed we can
find non-commuting endomorphisms.

Similarly, for the curves with complex multiplication with discriminant −11,
we can show that this is equivalent with the existence of an endomorphism
w for which w2 + w + [3] = [0].

If we have an elliptic curve over Q with complex multiplication with dis-
criminant −11, we can look again at the reductions of this curve modulo p
for various primes p, as described in Theorem 1.34. We will be interested in
cases where the reduced curve Emod p is ordinary, and not supersingular, as
described in Theorem 3.17. By Theorem 3.19 happens precisely when 11 is
a non-zero square modulo p, i.e. when (−11

p ) = 1. By quadratic reciprocity,
if p is odd, (

−11

p

)
=

(
−1

p

)(
11

p

)
= (−1)

p−1
2

( p
11

)
=
( p

11

)
.

So Emod p is ordinary, if p is a square modulo 11. This is the case for
p ∈ {1, 3, 4, 5, 9}mod 11. Finally, −11 is also a square modulo 2, so Emod 2
is also ordinary.

§3.3 The relation between the Frobenius and the 1- or
3-norm element

Suppose that we are working with a elliptic curve E with complex multipli-
cation with discriminant −3 or −11 over Q. Now we look at the reduction
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of this curve modulo some prime p, such that Emod p is ordinary, as spec-
ified in the previous section. Since End(E) injects into End(Emod p) by
Theorem 3.19, we also have in End(Emod p) an endomorphism α such that
α2 + α+ 1 = 0 resp. an endomorphism w that satisfies w2 + w + 3 = 0.

Again, we will first discuss the case where the discriminant is −3.

Since E = Emod p is an elliptic curve over Fp, the endomorphism ring
contains the Frobenius morphism F : (x, y) 7→ (xp, yp). Let us write F =
a + bα, for some a, b ∈ Z. We now calculate the degree of this map, using
that the degree of the Frobenius is p, and that we have the properties in
Theorem 1.16:

p = deg(F ) = deg(a+bα) = (a+bα) ̂(a+ bα) = a2+ab(α+α̂)+b2αα̂. (3.3)

By Lemma 1.20, we know that α satisfies the following equation in Z[x]:

x2 − (α+ α̂)x+ (αα̂) = 0. (3.4)

Since α is not in Z (since no integer x satisfies x2 + x+ 1 = 0), the minimal
polynomial of α is x2 + x + 1. Since the minimal polynomial is unique, it
must be equal to (3.4). So tr(α) = −1 and deg(α) = 1. If we substitute this
in (3.3), we get

p = a2 − ab+ b2. (3.5)

Since the Frobenius morphism F fixes precisely the points in E(Fp) with
coordinates in Fp, the kernel of the map F − 1 is E(Fp). So

#E(Fp) = # ker(F − 1) = deg(F − 1) =

= deg((a− 1) + bα) = (a− 1)2 − (a− 1)b+ b2 =

= a2 − 2a+ 1− ab+ b+ b2 = p− 2a+ b+ 1.

Note that we did use that F −1 is separable (this is Corollary III.5.5 in [8]).

Furthermore,

tr(F ) = F + F̂ = a+ bα+ â+ bα =

= a+ bα+ a+ bα̂ = 2a+ btr(α) = 2a− b.

Note that this confirms the equality tr(F ) = p−#E(Fp) + 1 from page 17.

Again, we can do the same for the curves with CM-discriminant −11: from
the equation w2 + w + 3 = 0, we derive with Lemma 1.20 that the trace is
−1 and the degree 3. We have

p = deg(F ) = deg(a+bw) = (a+bw) ̂(a+ bw) = a2+ab(w+ŵ)+b2wŵ. (3.6)
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and hence
p = a2 − ab+ 3b2. (3.7)

The number of points on E with coordinates in Fp is given by

#E(Fp) = # ker(F − 1) = deg(F − 1) =

= deg((a− 1) + bα) = (a− 1)2 − (a− 1)b+ 3b2 =

= a2 − 2a+ 1− ab+ b+ 3b2 = p− 2a+ b+ 1.

so the trace of the Frobenius is again

tr(F ) = F + F̂ = a+ bw + a+ bŵ = 2a+ btr(w) = 2a− b.

§3.4 A family of curves with CM-discriminant −11

In this section we will use Theorem 1.12 to construct an explicit example of
a curve over C with CM-discriminant −11.

The content of the theorem is that the existence of a degree 3 isogeny from
a curve E to another curve E′ corresponds with the existence of a subgroup
of E(C) of order 3. This subgroup must be generated by a point P of order
3. If E is written in Weierstrass form (we will assume this from now on),
then the y-coordinate of a point with order 3 cannot be 0, so we can rescale
the curve so that P = (0, 1). Let us write E : y2 = x3 + ax2 + bx + 1. If
3P = O, then P ∗P = P , that is, the tangent line to E in P has multiplicity
3 there.

We will now do the calculation. First we will compute the coefficient of the
tangent line. We write ` : y = tx+ 1, for some t ∈ C. We have t = dy

dx |(0,1).
Since we have for points on the curve

dy2 = d(x3 + ax2 + bx+ 1),

so
2ydy = (3x2 + 2ax+ b)dx,

it follows that

t =
dy

dx
|(0,1) =

3x2 + 2ax+ b

2y
|(0,1) =

b

2

We will now determine when the intersection multiplicity in P is 3. This
happens if the third intersection point of the line ` and the curve E has
x-coordinate 0. For any intersection point (x, y) we have that they satisfy

y2 = x3 + ax2 + bx+ 1,
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and

y =
b

2
x+ 1.

If we square this second equation and combine it with the first, we obtain:

b2

4
x2 + bx+ 1 = y2 = x3 + ax2 + bx+ 1.

Clearly
b2

4
x2 = x3 + ax2.

The three roots of this equation are the x-coordinates of the intersection
points. Obviously x = 0 is a double solution: the line ` is tangent to E
there. If we divide by x2, we get

b2

4
= x+ a.

So the last intersection point has x-coordinate b2

4 − a.

So the third intersection point is also P exactly when a = b2

4 .

So the curve E has a subgroup of order 3 in E(K) generated by (0, 1)
precisely when it can be written as

E : y2 = x3 +
b2

4
x2 + bx+ 1 (3.8)

For technical purposes, it is easier to look at a curve that is isomorphic to
this one, namely

y′2 = x′3 +
1

4
x′2 +

1

b3
x′ +

1

b6
.

E and this curve are indeed isomorphic: consider the change of coordinates
y′ = y

b2
and x′ = x

b3
. (Under this change of coordinates, P is mapped to

(0, b−3). From now on we will call this curve E.

§3.4.1. The other elliptic curve. Now we have the general form
of a curve E with a subgroup of size 3. As mentioned above, this implies
that there is a unique elliptic curve E′ and a separable isogeny ϕ such that
ϕ : E → E′ is an isogeny of degree 3. We can give this curve E′ explicitly
with Vélu’s formula’s. This is described in for instance Theorem 12.16 in
[11]. We will not do the calculation by hand, but instead let Magma do the
dirty work. This gives that E′ has the formula

E′ : y2 = x3 +
1

4
x2 − 9

b3
x+
−2b3 − 27

b6
.



Chapter 3. Complex multiplication 49

Furthermore, the isogeny E → E′ is given by

f : (x, y) 7→

(
x3 + 1

54x
2 + 1

2916

x2
,
x3 + 1

54x
2 + 1

1458

x3
y

)

In the previous section, we have constructed an elliptic curve with an isogeny
of degree 3. However, we are not interested in isogenies of degree 3, but in
endomorphisms of degree 3. Since an endomorphism is just an isogeny from
a curve to itself, this happens precisely when E′ is isomorphic to E. A
simple way to test this is by calculating the j-invariants of both curves (by
Theorem 1.25). With the help of Magma, we see that

j(E) =
1
8b

12 − 18b9 + 864b6 − 13824b3

b3 − 54

and

j(E′) =
1
2b

12 + 648b9 + 279936b6 + 40310784b3

b9 − 162b6 + 8748b3 − 157464

After a short calculation, we see that

j(E)−j(E′) =
1
8b

18 − 63
2 b

15 + 3172b12 − 160272b9 + 3732480b6 − 80621568b3

b9 − 162b6 + 8748b3 − 157464

We can factor the numerator of this expression:

1

8
b18 − 63

2
b15 + 3172b12 − 160272b9 + 3732480b6 − 80621568b3 =

=
1

8
b3(b3 − 108)(b6 − 128b3 + 6912)(b6 − 16b+ 864)

So we have a couple of options for b3 that cause the j-invariant of E = Eb and
E′ to be equal: 0, 108, 64± 16

√
−11 and 8± 20

√
−2. In Magma, it is easy

to compute the j-invariants and the corresponding complex multiplication.
If b3 = 0, we cannot use our ‘new’ curve, so we have to use the ‘old’ curve
E in (3.8) (i.e. before we did our change of coordinates). It turns out that
the curve E0 is y2 = x3 + 1, with j-invariant 0 and CM-discriminant −3.
If b3 = 108, we get the j-invariant 54000, and CM-discriminant −12.
If b3 = 64 ± 16

√
−11, we get the j-invariant −32768 and CM-discriminant

−11.
And the last option is b3 = 8 ± 20

√
−2, and in this case the curve has

j-invariant 8000, and CM-discriminant −8.

It turns out that the only elliptic curve (up to isomorphism) with complex

multiplication by Z[1+
√
−11

2 ] has j-invariant −32768 = −215. In subsection
4.1.1, we give an elliptic curve defined over Q with j-invariant −32768.
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Chapter 4

Extending the
Barreto-Naehrig result

In this chapter we discuss our attempts to extend the result of Barreto
and Naehrig. These attempts consisted of writing Sage and Magma code,
executed in the online free Sage environment respectively in the online
Magma calculator. A version of the code in section 4.3 was run on the
licensed version of Magma. Due to restrictions on the runtime (most no-
tably in Magma), we were not able to find examples with large numbers
(that is, with p, n > 107). In this chapter a number of code fragments are
discussed, after which we examine some examples more closely. The chap-
ter finishes with a description of yet another way to generate curves with
CM-discriminant −11 and a summary of the efforts and a general conclusion.
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1 repeat

2 p := RandomPrime (30);

3 if p ge 7 then

4 ok,E := IsEllipticCurve ([GF(p)|0,0 ,0 ,-264,1694]);

5 if ok then

6 if IsPrime (#E) and p ne #E then

7 n := #E;

8 if Order(GF(n)!p) le 50 then

9 k:=Order(GF(n)!p);

10 print "Curve found with low embedding degree:", E;

11 print "p =", p, "n =", n, "k =", k;

12 end if;

13 end if;

14 end if;

15 end if;

16 until false;

Listing 4.1 Magma code, testing reductions of a curve over Q with CM-discriminant
−11.

4.5 Concluding remarks . . . . . . . . . . . . . . . . . 60

§4.1 Testing curves with CM-discriminant −11

§4.1.1. The theory. The first attempt we did was testing a family
of curves we know has CM-discriminant −11. In section 3.4 we saw that the
only elliptic curves with this type of complex multiplication are those with
j-invariant −32768. After a small calculation (performed with Magma) we
see that one of those curves is

E : y2 = x3 − 264x+ 1694,

as one can verify with the formula in Definition 1.24.

If reduce that curve modulo p, and E is of good reduction modulo p, then

Emod p is curve with CM by Z[1+
√
−11

2 ]. If E is a good curve, we can
determine its embedding degree by finding the order of p in F×n .

§4.1.2. The code. In the Listing 4.1, the code performing this pro-
cedure is listed. We will now discuss the code line by line.
The code tests random primes below a certain bound until the program is
terminated. In this program, the bound is 230. The bound can be set to
any 2m by changing 30 into m on line 2.
The if-statement in line 3 makes sure we can apply Proposition 2.4, and the
if-statement in line 5 makes sure the discriminant of the reduced curve is
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not zero.
In line 6 we test if the curve is good, and then we test in line 8 if the
embedding degree is ≤ 50. Any curve satisfying that condition is printed.

After running the program1 once in the free version of Magma, we see that
in 120 seconds, approximately 1430000 random primes were selected in line
2. 16460 of those primes (about 1.2%) turned out to have good reduction
and resulted in a good curve. Of those primes, 0 turned out to have a
lower embedding degree than 50. (The smallest embedding degree found
was 1655.) Of course this is just one trial of the program, but this indicates
that good curves are relatively rare, and that a small embedding degree is
extremely rare.

§4.1.3. The results. The only interesting example (that is, with
p > 100) found with this code is the following:

Example 4.1 The elliptic curve

E : y2 = x3 + 202337x+ 47913

defined over Fp with p = 452587 has n = 453601 points. The endomorphism

ring of this curve is Z[1+
√
−11

2 ], as it is ordinary and the reduction of a curve
over Q with that endomorphism ring. As it turns out, the order of p in Fn
is 40, so this curve has embedding degree 40, by Proposition 2.4. �

§4.2 Testing curves with a small embedding degree

§4.2.1. The theory. In this section we first discuss an attempt to
use Proposition 2.4 like Barreto and Naehrig do: namely by picking a
quadratic polynomial t(x), after which they take n(x) to do a factor of
Φk(t(x) − 1), where k is the desired embedding degree. From the relation
p = t− 1− n, we can derive p(x), and we can compute the form of complex
multiplication by looking at the squarefree part of t2 − 4p.

There are two pieces of code for this. In the code in Listing 4.2, we look at
the polynomials q(z) for which Φk(q(z)) decomposes in factors. In Listing
4.3, we look at the cases where this polynomial is irreducible. Both pieces
of code turn out to produce examples with a small CM-discriminant.

To avoid that we repeatedly check the same case, we do not check all
quadratic polynomials: after a translation one can ensure the polynomial
has no linear term. Furthermore we do not check the cases where a and c
share a factor, if they are both non-zero. Finally, we take a to be positive.

1 The program was somewhat adapted to be able to count the number of primes used.
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1 R, x = ZZ[’x’]. objgen ()

2 for k in [12..50]:

3 f = R.cyclotomic_polynomial(k)

4 for a in [1..100]:

5 for c in [ -100..100]:

6 if (gcd(a,c)!=1 and c!=0):

7 continue

8 q = a*x^2+c

9 F=factor(f(x=q))

10 length = len(list(F))

11 if length != 1:

12 maxfact = list(F)[length - 1][0]

13 if maxfact.degree () != 2*f.degree ():

14 t = q + 1

15 n = maxfact

16 p = n + t - 1

17 D = t^2 - 4*p

18 y = 0

19 while y < 100:

20 if is_prime(p(x=y)) and is_prime(n(x=y)) and

squarefree_part(D(x=y)) >= -1000:

21 print "k =",k,"y =",y,"n =",n(x=y),"p =",p(x=y),"

sq.free CM -disc. =", squarefree_part(D(x=y))

22 if is_prime(p(x=-y)) and is_prime(n(x=-y)) and

squarefree_part(D(x=-y)) >= -1000:

23 print "k =",k,"y =",-y,"n =",n(x=-y),"p =",p(x=-y

),"sq.free CM -disc. =", squarefree_part(D(x=-y))

24 y = y + 1

Listing 4.2 Sage code, looking for factors of Φk(q(x)) for quadratic polynomials
q(x).

Once we have found a p, an n and a CM-discriminant D, we have to find a
curve over Fp with n points. We do this based on the CM-method described
in [7]. We ask Magma for the Hilbert class polynomial corresponding to the
CM-discriminant. The roots of that polynomial over Fp are the j-invariants
of the curves with that type of complex multiplication. After that, we let
Magma generate those curves and test if their number of points is n.

§4.2.2. The code. We start with the case where we look for factors
of the composition of the cyclotomic and the quadratic polynomial.
In line 1, we specify that we are working in Z[X], after which we define f to
be the k-th cyclotomic polynomial. In the lines 4 – 7 we let f be a quadratic
polynomial of the form specified in the previous subsection.
Then we factor Φk(q(x)). If there is more than one factor, we look at the
factor with the highest degree (maxfact). If the degree of this factor is not
equal to the degree of Φk(q(x)), that is, if the other factors are not constants,
we let n(x) be this factor and t(x) = q(x) + 1. Now we can compute p(x),
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1 R, x = ZZ[’x’]. objgen ()

2 for k in [12..50]:

3 f = R.cyclotomic_polynomial(k)

4 for a in [1..100]:

5 for c in [ -100..100]:

6 if (gcd(a,c)!=1 and c!=0):

7 continue

8 q = a*x^2+c

9 F=factor(f(x=q))

10 length = len(list(F))

11 if length == 1:

12 t = q + 1

13 n = f(x=q)

14 p = n + t - 1

15 D = t^2 - 4*p

16 y = 0

17 while y < 100:

18 if is_prime(p(x=y)) and is_prime(n(x=y)) and

squarefree_part(D(x=y)) >= -1000:

19 print "k =",k,"y =",y,"n =",n(x=y),"p =",p(x=y),"

sq.free CM-disc. =", squarefree_part(D(x=y))

20 if is_prime(p(x=-y)) and is_prime(n(x=-y)) and

squarefree_part(D(x=-y)) >= -1000:

21 print "k =",k,"y =",-y,"n =",n(x=y),"p =",p(x=y)

,"sq.free CM-disc. =", squarefree_part(D(x=-y))

22 y = y + 1

Listing 4.3 Sage code, looking for cases where Φk(q(x)) is irreducible for quadratic
polynomials q(x).

and then the CM-discriminant.
In the while-loop starting on line 19, we test for y ∈ {−100, . . . , 100} if there
is a y such that p(y) and n(y) are prime and if the CM-discriminant has a
small squarefree part (here we look for squarefree parts > −1000).
If we find such a y, we print k, y, n(y), p(y) and the squarefree part of the
CM-discriminant.

The code for the case where the composition of the cyclotomic and the
quadratic polynomial is irreducible is basically the same. The only difference
is that we require the list of factors to be of length 1, in line 10.

In the first two lines, one has to fill in the prime field and the curve size for
which elliptic curves should be sought. Then the CM-discriminant and the
Hilbert polynomial is computed, and the roots of that polynomial in Fp are
listed in rootslist.
Then Magma makes an elliptic curve for every j-invariant, which is succe-
sively reduced to Fp, and it tests for that curve (and its quadratic twist2) if

2 We also test the twist of the generated curve, since this curve has the same CM-dis-
criminant (for t2 − 4p = (−t)2 − 4p).
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1 p:= ; //the field size

2 n:= ; //the size of the curve

3 t:= p + 1 - n;

4 D:= t^2 - 4*p;

5 H := HilbertClassPolynomial(D);

6 Q<y> := PolynomialRing(GF(p));

7 len := #Roots(Q!H);

8 rootslist := Roots(Q!H);

9 for j in [1.. len] do

10 E:= EllipticCurveFromjInvariant(rootslist[j][1]);

11 E1:= ChangeRing(E,GF(p));

12 E2:= QuadraticTwist(E1);

13 if #E1 eq n then

14 print E1, "satisfies ";

15 end if;

16 if #E2 eq n then

17 print E2, "satisfies .";

18 end if;

19 end for;

Listing 4.4 Magma code, looking for curves over Fp with n points and CM-
discriminant D.

the number of points is n. If that is the case, the curve is printed.

§4.2.3. The results. With these pieces of code, no large examples
were found. We discuss the two interesting curves.

Example 4.2 The curve

E : y2 = x3 + 1440x+ 834

turns out to have n = 1657 points over Fp with p = 1669. Its embedding
degree is 18, and it has CM-discriminant −723. �

Example 4.3 The curve

E : y2 = x3 + 209x+ 60

has n = 241 points over Fp with p = 239. The embedding degree is 24, and
it has CM-discriminant −955. �

§4.3 Testing curves with CM-discriminant −11 and small
embedding degree

§4.3.1. The theory. The third attempt was to use the theory of
Chapter 3: we start with a curve with CM-discriminant −11, and then we
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look for values of p and n such that the embedding degree is low, and p and
n are prime.

If the CM-discriminant is −11, for the Frobenius trace t and p the following
holds:

t2 − 4p = −11s2

for some integer s. Consequently,

4p = t2 + 11s2. (4.1)

n is now determined by n = p+ 1− t:

4n = 4p+ 4− 4t = t2 − 4t+ 4 + 11s2 = (t− 2)2 + 11s2. (4.2)

If we look at (4.1) modulo 4, we see that 0 ≡ t2−s2 mod 4, so t2 ≡ s2 mod 4.
It follows that t and s have the same parity. Furthermore, since the cases we
consider have p, n > 2 both these numbers are odd. It follows that 4(p− n)
is divisible by 8. Since the difference of (4.1) and (4.2) is 4t − 4, we now
have 8 | 4t − 4, so 2 | t − 1. So t is odd, and so is s. We write t = 2a + 1
and s = 2b+ 1.

We can also analyze (4.1) and (4.2) modulo 3. Then we get p ≡ t2+2s2 mod 3
and n ≡ (t− 2)2 + 2s2 mod 3. Let us assume p, n > 3. Then p, n 6≡ 0 mod 3.
Since squares are 0 or 1 modulo 3, it follows that t2 + 2s2 ≡ t2 − s2 is not
0 mod 3 only if exactly one of t and s is divisible by 3. Similarly, we see that
only one of the numbers t− 2 and s is divisible by 3. If s is not divisible by
3, then both t and t − 2 are, which is impossible. So 3 | s, and both 3 - t
and 3 - t− 2 hold, so t ≡ 1 mod 3. This happens precisely if a ≡ 0 and b ≡ 1
modulo 3.

One can express p and n in a and b:

p =
t2 + 11s2

4
=

4a2 + 4a+ 1 + 44b2 + 44b+ 11

4
= a2 + a+ 3 + 11b2 + 11b,

and

n = p+ 1− t = a2 +a+ 3 + 11b2 + 11b+ 1− 2a− 1 = a2−a+ 3 + 11b2 + 11b.

The divisibility relation n | Φk(t−1) of Proposition 2.4 can also be expressed
in a and b:

a2 − a+ 3 + 11b2 + 11b | Φk(2a). (4.3)

So if we find an a and a b such that p and n are prime and the above
condition is satified, we have found a curve with CM-discriminant −11 and
an embedding degree of k.
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1 R, x = ZZ[’x’]. objgen ()

2 for k in [12..50]:

3 f = R.cyclotomic_polynomial(k)

4 for c in [ -1000..1000]:

5 for d in [1..1000]:

6 a = 3*c

7 b = 3*d+1

8 m = a^2 - a + 3 + 11*b^2 + 11*b

9 n = f(x=2*a)

10 if m.divides(n):

11 t = 2*a + 1

12 s = 2*b + 1

13 p = (t^2 + 11*s^2)/4

14 n = p + 1 - t

15 if is_prime(ZZ(p)) and is_prime(ZZ(n)):

16 print "k =",k,"p =",p,"n =",n

Listing 4.5 Sage code, looking for p and n such that the CM-discriminant is −11
and the embedding degree low.

§4.3.2. The code. This code is relatively simple: again we define
the cyclotomic polynomial, in line 3, and then we test for a number of a’s
and b’s if the relation (4.3) holds. Since we only need to test a ≡ 0 mod 3
and b ≡ 1 mod 3, we parametrize a and b by c and d. If the divisibility
relation holds, the corresponding p and n are computed, and if they are
indeed primes, they are printed.

§4.3.3. The results. Using this code, we found the following exam-
ples:

Example 4.4 Over F2347, we have the elliptic curve

y2 = x3 + 160x+ 672

with n = 2311 points. It has embedding degree 35 and CM-discriminant
−11. �

Example 4.5 Over F9277, we have the elliptic curve

y2 = x3 + 7899x+ 5591

with n = 9241 points. It has also embedding degree 35 and CM-discriminant
−11. �

We also found the curve from Example 4.1: for this curve we have p = 452587
and n = 453601, and

4p = (−1013)2 + 11 · 2672,
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and
4n = (−1015)2 + 11 · 2672,

so the corresponding values of a and b are

a = −507, b = 133.

Indeed:

n = 453601 | 1249128967855737316300418401433562567438965418481 = Φ40(2a)

so the divisibility relation for k = 40 is satisfied.

A version of this code was run on the full version of Magma by Jaap Top.
Not bounded by time limits, he was able to find the following two examples:

Example 4.6 The elliptic curve

y2 = x3 + 192480115x+ 263727633

has n = 1571812201 points over Fp, where p = 1571795437. The embedding
degree is 24, and the CM-discriminant −11. �

We finish with the largest example we found:

Example 4.7 The elliptic curve

y2 = x3 + 15445874592x+ 26923017614

has n = 28907447911 points over Fp with p = 28907383399. The embedding
degree of this curve is 30, and it has CM-discriminant −11. �

§4.4 Recycling the 2x2 + 1-trace parametrization

Another possible avenue of investigation is the following: consider the parametriza-
tions Barreto and Naehrig found (as described in section 2.3). These pa-
rametrization lead to four different CM-discriminants. For the curves with
trace 2x2 + 1 this discriminant is given by −(2x2 + 1)(6x2 ± 8x + 3), for
the curves with trace 6x2 + 1 it is given by −3(6x2 ± 4x + 1)2. Since we
are interested in the squarefree part of this expression, the curves with trace
6x2 + 1 are not interesting (they always have CM-discriminant −3).

We can look at the curves with trace 2x2 + 1. In that case, we need to find
(x, y) ∈ Z such that

−(2x2 + 1)(6x2 ± 8x+ 3) = −11y2. (4.4)
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For any point (x0, y0) satisfying this, we have that the CM-discriminant is
−11 times a square, so if p(x0) and n(x0) are primes, this gives a curve with
embedding degree 12 and CM-discriminant −11.

Since it can be shown that the curve (4.4) is an elliptic curve, by Siegel’s
theorem (see section IX.3 in [8]) there are only a finite number of points
with integral coordinates, so this method can never give us infinitely many
curves with CM-discriminant −11.

In fact, one can find all the integral points using Magma with the command
IntegralQuarticPoints. To use this command, we need to give a point on
the curve, and write it in the z2 = f(x) for a quartic polynomial f(x). The
first of these is easy: (2, 3) lies on −(2x2 + 1)(6x2 − 8x + 3) = −11y2 and
(−2, 3) lies on −(2x2+1)(6x2+8x+3) = −11y2. For the second requirement
we multiply (4.4) with −11:

11(2x2 + 1)(6x2 ± 8x+ 3) = (11y)2.

If we take z = 11y, we see that this becomes

132x4 ± 176x3 + 132x2 ± 88x+ 33 = z2.

The point (x, y) = (±2, 3) becomes (x, z) = (±2, 33). According to Magma,
(2, 33) resp. (−2, 33) are the only integral points on these curves.

As it turns out, for both the parametrizations with trace 2x2 + 1, the value
of p(2) is a composite number. If we take p(x) = 4x4−4x3 +2x2−2x+1, we
get p(2) = 45 and n(2) = 29, and if we take p(x) = 4x4 + 4x3 + 2x2 + 2x+ 1,
we get p(2) = 117 and n(2) = 109.
So this method cannot be used to generate curves with embedding degree
12 and CM-discriminant −11.

§4.5 Concluding remarks

Using the programs above, some examples were found. However, we did
find only five remarkable examples, where remarkable means that k � p, n.
However, since we did not search with much computation power (a few
hours in Magma and Sage), it seems not unlikely that more examples can
be found using the code in this chapter.

The meagre harvest illustrates how remarkable the result of Barreto and
Naehrig is: whereas we struggle to find a handful of examples, they give a
method to produce without effort infinitely many curves.

We could not find another coincidence like Barreto and Naehrig did, namely
the appearance of a factor that appears twice in the CM-discriminant given
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n(x) and p(x), which is essential for generating a whole family of curves like
they did. Asking for this coincidence to happen for CM-discriminant −11 is
even more hard to come by.
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Appendix A

Just enough algebraic
geometry

To be able to define elliptic curves and the maps between them, we need
some concepts from algebraic geometry. In this appendix we discuss the
theory from the subject we need. We will not go into every detail. The
interested reader is referred to any introduction on algebraic geometry, for
instance [3].

Contents
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A.1.2 Maps between affine varieties . . . . . . . . . . . . 65

A.2 Projective varieties . . . . . . . . . . . . . . . . . 66

A.2.1 Projective coordinates . . . . . . . . . . . . . . . . 66
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A.2.3 The connection between projective and affine . . . 68

A.2.4 Maps between projective varieties . . . . . . . . . 70

§A.1 Affine varieties

§A.1.1. Ideals and algebraic sets. We start with the study of
subsets of Kn.

Definition A.1 Affine n-space over K is defined as the set of points

An = An(K) = {(x1, . . . , xn) : xi ∈ K}.

63
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The set of K-rational points is defined as

An(K) = {(x1, . . . , xn) : xi ∈ K}.

Within this space, we want to study the set of points where a certain (family
of) polynomial(s) vanishes. Let S ⊆ K[X1, . . . , Xn] be a subset of the
polynomials over K. We then look at the set of all the points where all
polynomials in S vanish. Of course, any linear combination of vanishing
polynomials also vanishes, so we don’t lose anything if we look just at the
ideal generated by S.

Definition A.2 Let I be an ideal in K[X1, . . . , Xn]. Then we define

V(I) = {(x1, . . . , xn) ∈ An : f(x1, . . . , xn) = 0 for all f ∈ I}

Any subset of An of this form is called an algebraic subset.

Note that we have V(I) ∪ V(J) = V(I + J) and V(I) ∩ V(J) = V(IJ), for
any ideals I, J in K[X1, . . . , Xn]

Since any finite union of algebraic sets is an algebraic set itself, we don’t
lose much if we restrict ourselves to sets that cannot be written as a union:

Definition A.3 If an algebraic set cannot be written as the union of two
strictly smaller algebraic sets, it is called an irreducible algebraic set, or a
affine variety.

We have defined the set corresponding to an ideal, but we can also define
the ideal corresponding to an algebraic set:

Definition A.4 Let V be an algebraic subset of An. Then we define

I(V ) = {f ∈ K[X1, . . . , Xn] : f(x1, . . . , xn) = 0 for all (x1, . . . , xn) ∈ V }.

We will not prove the following statement: it can be found in any introduc-
tory text on the subject.

Proposition A.5 An algebraic set V ⊆ An is a variety precisely when I(V )
is a prime ideal in K[X1, . . . , Xn].

In fact, the operations I(·) and V(·) are almost each other’s inverse. This is
the content of Hilbert’s famous Nullstellensatz. We will not go further into
this.

Definition A.6 We say that an affine variety V ⊆ An is defined over K
if I(V ) can be generated by polynomials in K[X1, . . . , Xn].
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If an affine variety V is defined over K, we write V (K) = V ∩An(K), and
IK(V ) = I(V ) ∩K[X1, . . . , Xn].

Let V be an affine variety defined over K. Every element f of K[X1, . . . , XN ]
defines a polynomial function from the variety to K: simply by sending
(x1, . . . , xn) to f(x1, . . . , xn). This gives a surjective map

K[X1, . . . , Xn]→ {polynomial functions from V to K}

Of course, the kernel of this map is IK(V ). This means that there is a
bijection between a quotient of the polynomial ring and the set of polynomial
functions from V to K. The former object is an important object called the
coordinate ring.

Definition A.7 Let V be an affine variety defined over K. Then the
coordinate ring of V is defined as

K[V ] = K[X1, . . . , Xn]/IK(V ).

The function field K(V ) of V is defined as the field of fractions of K[V ].

Finally, we will formally define the dimension of a variety.

Definition A.8 Let V be an affine variety. We define the dimension of V
to be the transcendence degree1 of K(V ) over K.

§A.1.2. Maps between affine varieties. Now we want to define
maps from one variety to another. Since we are working with sets defined by
polynomials in some sense, the logical thing to do is to look at maps defined
by polynomials:

Definition A.9 A morphism between two affine varieties V ⊆ An and
W ⊆ Am is a map:

f : V →W : (x1, . . . , xn) 7→ (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))

with fi ∈ K[X1, . . . , Xn], such that the image of f lies inside W .

Example A.10 On every affine variety V ⊆ An we can define the identity
morphism idV that is given by

(x1, . . . , xn) 7→ (x1, . . . , xn).

�

1 The transcendence degree of a field extension L over K is defined as the size of the
smallest subset S of L such that L is algebraic over K(S).
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Example A.11 Consider the varieties V = A1 and W = V(y − x2) ⊆ A2.
Then

f : V →W : x 7→ (x2, x)

is a morphism from V to W . �

Just like many other mathematical structures, the idea of a structure-preserving
map (a morphism) allows us to say that two structures are ‘essentially the
same’ (isomorphic).

Definition A.12 Two affine varieties V and W are said to be isomorphic
if there exists an morphism ϕ : V → W and an isomorphism ψ : W → V
such that ψ ◦ ϕ = idV and ϕ ◦ ψ = idW .

Example A.13 The two varieties V and W from Example A.11 are iso-
morphic. The map

g : W → V : (x, y) 7→ y

is the inverse of the map f . �

One says that two varieties are isomorphic over K if we can define mor-
phisms over K between them that are each other’s inverse.

§A.2 Projective varieties

On page x we encountered the following phenomenon: we wanted to describe
straight lines in the plane. These are of the form y = ax+b with a, b in some
field K. However, this is not entirely true. One group of lines in the plane
cannot be written in this way: the line x = c for any c ∈ K. Intuitively, this
corresponds to the case ‘a = ∞’. This is inconvenient: everytime we want
to prove something for all straight lines we need to take this ‘exceptional
case’ in account, so we would like to find some way to describe all lines at
once.

§A.2.1. Projective coordinates. A way to solve this problem is
with projective coordinates. We add some points to the affine space, and we
extend the definition of any variety defined on the affine part to the new
space. We will first define projective space.

Definition A.14 Projective n-space over K is defined as the set of points
(x0 : x1 : · · · : xn) where all xi are in K and not all xi are zero, modulo the
following equivalence relation:
(x0 : · · · : xn) ∼ (y0 : · · · yn) if there exists a λ ∈ K\{0} such that for all i
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we have xi = λyi.
We write Pn or Pn(K).

As we can see, a point P in projective space has many different repre-
sentations of the form (x0 : . . . : xn). We will call such a representation
homogeneous coordinates for P .

Example A.15 Let K = Q. Typical points of P2 look like (0 : 0 : 1) or
(3 : 4 : 5). We have for instance (2 : 0 : 4) = (−1 : 0 : −2). �

We can embed An in many ways in Pn: take for instance the map (x, y) 7→
(x : y : 1).

Just like with affine space, we want to define the K-rational points of the
space. We cannot simply demand that all coordinates are in K, since every
point can be written with coordinates not in K. Instead, we define:

Definition A.16 The K-rational points of Pn are points (x0 : · · · : xn)
such that there is a λ ∈ K\{0} with λxi ∈ K for all i.

§A.2.2. Ideals and algebraic sets. Again, we want to study zero
sets of polynomials in a space. However, we have a problem: a point has
many coordinates, and we do not want the answer to the question ‘does
this point lie in the zero set?’ to be dependent of the particular choice of
coordinates. We therefore have to restrict our focus to polynomials f ∈
K[X0, . . . , Xn] with the following property:

f(λX0, . . . , λXn) = λdf(X0, . . . , Xn)

for some d ∈ Z. Such a polynomial is said to be homogeneous of degree d.

We also define homogeneous ideals:

Definition A.17 A homogeneous ideal of K[X0, . . . , Xn] is an ideal that is
generated2 by homogeneous polynomials.

Now we can define the operations V(·) and I(·) for projective spaces.

Definition A.18 Let I be a homogeneous ideal of K[X0, . . . , Xn]. Then
we define

V(I) = {P ∈ Pn : f(P ) = 0 for all homogeneous f in I}.

Any set of this form is called an algebraic subset of Pn.

Definition A.19 Let V be an algebraic set in Pn. Then we define I(V ) to
be the ideal generated by all homogeneous polynomials f in K[X0, . . . , Xn]

2 Be warned, a homogeneous ideal will usually contain lots of non-homogeneous
polynomials.
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such that f(P ) = 0 for all points P in V . We say V is defined over K if
I(V ) can be generated by homogeneous polynomials in K[X0, . . . , Xn].

With Proposition A.5 in mind, we define:

Definition A.20 Let V be an algebraic set in Pn. V is said to be a projec-
tive variety if I(V ) is a prime ideal in K[X0, . . . , Xn].

§A.2.3. The connection between projective and affine. Of
course, the reason for defining all these things is that we wanted to make
the study of affine varieties more natural. Certainly we need a way to make
projective varieties out of affine varieties and vice versa.

We already have seen a map from affine space to projective space. In fact
we can define for any i between 0 and n the function ϕi : An → Pn :
(x1, . . . , xn) 7→ (x1 : · · · : xi : 1 : xi+1 : · · · : xn) which is a bijection between
An and the set Ui of points in Pn with non-zero i + 1-th coordinate, since
we can write down its inverse:

ϕ−1
i : Ui → An : (y0 : · · · : yn) 7→

(
y0

yi
, . . . ,

yi−1

yi
,
yi+1

yi
, . . . ,

yn
yi

)
.

So, Pn is covered by n+ 1 copies of An.

Another ingredient for this process is that we can homogenize and dehomog-
enize polynomials with respect to a variable.

Definition A.21 Suppose we have a polynomial f(X1, . . . Xn). We define
the homogenization of f with respect to Z to be

f ](X1, . . . , Xn, Z) = Zdf

(
X1

Z
, . . . ,

Xn

Z

)
where d is the smallest integer such that f ] is a polynomial.
Suppose we have a homogeneous polynomial f(X0, . . . , Xn). We define the
dehomogenization of f with respect to the i+ 1-th coordinate to be

f [(X0, . . . , Xi−1, Xi+1, . . . , Xn) = f(X0, . . . , Xi−1, 1, Xi+1, . . . , Xn).

We interrupt ourselves for a short view back to the problem we discussed
on page 66. We looked at lines of the form y = ax+ b, and the ‘exceptional
case’ x = c. If we homogenize the first equation, we get y = ax+ bz, which
can also be written as 0 = αx + βy + γz. Now the exceptional case is also
covered by this formula: take β = 0 and we get 0 = αx+ γz which is x = c
after dehomogenization.

Now we return to the connection between the two flavors of varieties and
how to switch between them.
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Definition A.22 (From projective to affine.) Let V be a projective algebraic
set, in Pn. Let I = I(V ) be the homogeneous ideal corresponding to V . Then
for any Xi (with 0 ≤ i ≤ n) we define an3 affine algebraic set V [ = V ∩An =
ϕ−1
i (V ∩ Ui) with ideal

I ′ = {f(X0, . . . , Xi−1, 1, Xi+1, . . . , Xn) : f(X0, . . . , Xn) ∈ I}.

That is, I ′ consists of the dehomogenized elements of I with respect tot i+1-
th coordinate.

Definition A.23 (From affine to projective.) Let V be an affine algebraic
set, in An. Let I = I(V ) be the ideal corresponding to V . We define
V ] (often called the projective closure of V ) to be the4 projective algebraic
set corresponding to the homogeneous ideal generated by all homogenized
elements of I.

Of course, this is only useful if we can show that these operations are in
some way each other’s inverse:

Proposition A.24 Let V be an affine variety defined over K. Then V ] is
a projective variety defined over K.
Let W be a projective variety defined over K. Then W [ is an affine variety
defined over K.
We have V = (V ])[, and if W [ 6= ∅ then (W [)] = W .

Given a affine variety V , and its projective closure V ], we can identify the
points on V with a subset of V ]. The points outside this subset are called,
slightly informally, the points at infinity.

We will now demonstrate this process with an elliptic curve.

Example A.25 Suppose we have the elliptic curve y2 = x3 + x + 2, say
over Q. Formally, this is the affine variety, say V , corresponding to the ideal
I = (Y 2 −X3 −X − 2) ⊆ Q[X,Y ]. This ideal is clearly generated by one
polynomial f = Y 2 −X3 −X − 2. We want to find V ], with respect to Z,
so we homogenize this polynomial. We get

f ] = Zd(Y 2Z−2 −X3Z−3 −XZ−1 − 2).

for some d. The smallest d for which this a polynomial is 3, so we conclude
f ] = Y 2Z −X3 −XZ2 − 2Z3. So V ] is the projective variety generated by
the homogeneous ideal (Y 2Z −X3 −XZ2 − 2Z3) in Q[X,Y, Z].

The points at infinity are the points of V ] that do not lie in ϕ3(An), i.e. the
points of V ] for which Z = 0. It is not hard to find these: these are the

3 For any projective set we have usually different affine set. However, since by Proposition
A.24 these all have the same homogenization, we do not distinguish between them in the
notation. 4 From Propostion A.24 we know that V ] is essentially independent of the
choice of the variable we homogenize with.
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points (x : y : z) for which z = 0 and y2z − x3 − xz2 − 2z3 = 0 hold, i.e.
x3 = 0 so x = 0. The only point in P2 that satisfies this has coordinates
(0 : 1 : 0). So this is the only point of infinity of V . Let us keep this point,
say Q, a moment in our thoughts.

We also can go the other way round. Take W = V ] as defined above.
Suppose we want to dehomogenize by Y : now W [ corresponds to the ideal
consisting of the dehomogenized elements of (Y 2Z −X3 −XZ2 − 2Z3). If
we dehomogenize (w.r.t. Y ) the generator Y 2Z −X3 −XZ2 − 2Z3 of this
ideal, we get Z −X3 −XZ2 − 2Z3. So

W [ = V(Z −X3 −XZ2 − 2Z3),

or, more informally, the variety x3 = −2z3 − xz2 + z.

Since we have dehomogenized with respect to a variable where Q has a non-
zero coordinate, the point Q is no longer at infinity. Indeed, it corresponds
to the point (x, z) = (0, 0) on this variety. �

Finally, we extend the scope of the definition of some concepts we already
defined for affine varieties.

Definition A.26 Let V be a projective variety defined over K.
The dimension of V is defined to be the same as that of V [ (where we choose
the dehomogenization variable such that V [ 6= ∅).
We say that V is smooth in a point P if it it is smooth in V [ if P does not
lie at infinity.
The function field K(V ) of V is the field of rational functions f/g such that
f and g are homogeneous elements of K[X0, . . . , Xn] of the same degree and
g 6∈ I(V ), modulo the follow equivalence relation: f/g ∼ f ′/g′ if fg′− f ′g ∈
I(V ).

A curve is a projective variety of dimension 1.

§A.2.4. Maps between projective varieties. Our last task is to
define maps between projective varieties. We do not only define morphisms,
but also rational maps.

Definition A.27 A rational map ϕ : V1(⊆ Pm)→ V2(⊆ Pn) is a map

(x0 : · · · : xm) 7→ (ϕ0(x0, . . . , xm) : · · · : ϕn(x0, . . . , xm)),

where

• every ϕi is a homogeneous polynomial in K[X0, . . . , Xm] of the same
degree. We require that not all ϕi’s are in I(V1).
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• for all f ∈ I(V2) we have that

f(ϕ0(X0, . . . , Xm), . . . , ϕn(X0, . . . , Xm)) ∈ I(V1).

If ϕi(P ) = 0 for all i for some point P ∈ V1, we set, instead of the
definition above,

ϕ(P ) = (ψ0(P ) : · · ·ψn(P )),

for any choice of homogeneous polynomials ψ0, . . . , ψn of the same
degree in K[X0, . . . , Xm] that satisfy for all i and j:

ϕiψj − ϕjψi ∈ I(V1)

and ψi(P ) 6= 0 for some i.

Note that there might be points where a rational map is not defined, even
with the provision in the second part of the definition. We call all points
where we can define ϕ(P ) regular.

Definition A.28 A rational map V1 → V2 that is regular everywhere on V1

is called a morphism.

Definition A.29 A rational map ϕ = (ϕ0, . . . , ϕn) between projective va-
rieties V1 ⊆ Pm and V2 ⊆ Pn is defined over K if there is a λ ∈ K such
that λϕ ∈ K[X1, . . . , Xm]

We now give a couple of examples:

Example A.30 Let V ⊆ Pn be a projective variety. We can now define
the identity morphism:

idV : V → V : (x0 : · · · : xn) 7→ (x0 : · · · : xn)

�

Example A.31 Let K be a finite field of size q, and V ⊆ Pn a variety
defined over K. Then

Fq : (x0 : · · · : xn) 7→ (xq0 : · · · : xqn)

is a morphism, since it is defined everywhere and the map x 7→ xq is an
automorphism of K. �

Isomorphisms of projective varieties are exactly in the same way defined as
with affine varieties:



72 The B-N method for elliptic curves with complex multiplication

Definition A.32 Two projective varieties V and W are said to be isomor-
phic if there exists an morphism ϕ : V → W and a morphism ψ : W → V
such that ψ ◦ ϕ = idV and ϕ ◦ ψ = idW .
If V and W are defined over K we say that they are isomorphic over K if
there maps as mentioned above that are defined over K.

Example A.33 Consider the variety V : Y 2Z = X3. Then

ϕ : P1 → V : (s : t) 7→ (s2t : s3 : t3)

is a morphism. To see this, we need to check that y2z = x3 if we substitute
x = s2t, y = s3 and z = t3, and that ϕ(P ) is well-defined for all P ∈ P1. The
former is clear, and the latter follows from the fact that s2t = s3 = t3 = 0
implies that s = t = 0: there are no points for which all coordinate functions
are zero.

It is easily checked that the map

ψ : V → P1 : (x : y : z) 7→ (y : x)

is a rational map. One can show that

ϕ ◦ ψ : V → V : (x : y : z) 7→ (y2x : y3 : x3) = (y2x : y3 : y2z) = (x : y : z)

and
ψ ◦ ϕ : P1 → P1 : (s : t) 7→ (s3 : s2t) = (s : t)

are the identity morphism where they are defined.

However, since ψ is not defined at (0 : 0 : 1) ∈ V , ψ is not an isomorphism.
�

Example A.34 Consider the varieties V : Y 2Z = X3 − 5XZ2 and W :
Y 2Z = X3 − XZ2. We can easily show that they are isomorphic over Q.
Take

ϕ : V →W : (x : y : z) 7→
(
x :

y
4
√

5
:
√

5z

)
.

clearly if y2z = x3 − 5xz2, then ( y
4√5

)2
√

5z = x3 − x(
√

5z)2. However, V

has infinitely many rational points and W has only 4, so they can’t be iso-
morphic over Q, since then this Q-isomorphism would send rational points
bijectively to rational points. (The sizes of V (Q) and W (Q) are computed
in section III.6 of [10], using the Mordell-Weil-theorem.) �

A fact we will often need is the following:

Theorem A.35 Let ϕ : C1 → C2 be a morphism from a curve C1 to a curve
C2. Then ϕ is either surjective or constant.
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Proof:
This is Theorem II.6.8 in [3]. �
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rational points, 67
projective closure, 69
projective coordinates, 66
projective variety, 68
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