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1 Abstract

This thesis serves as an introduction to number theory of polynomial rings over
finite fields. We give several classic and modern proofs for the prime number
theorem for polynomials. As an extension we prove the analogue of Dirichlet’s
theorem using Dirichlet L-series. We provide an asymptotic formula for the
bias of the primes towards any residue class modulo some polynomial, called the
Chebyshev’s bias. Finally we give an asymptotic formula for the bias towards
quadratic residues versus quadratic non-residues. Assuming the generalized
Riemann hypothesis and the grand simplicity hypothesis Rubinstein and Sarnak
proved in [RS94] that for integers this bias is always towards the non-residues.
We prove a similar result, however the GSH can be falsified in specific cases. We
provide examples where it fails and give an example where the bias is towards
the squares.
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2 Introduction

This thesis is concerned with the number of monic irreducible polynomials over
a finite field Fq. We can and will make this question formal in many different
ways, the first of which is perhaps the most obvious and also has a very famous
proof.

Theorem 2.1. There are infinitely many monic irreducible polynomials in
Fq[T ].

Proof. Assume there are finitely many monic irreducible polynomials {P1, · · · , Pn}.
Then consider the polynomial N = 1 +

∏n
i=1 Pi, it cannot be irreducible, since

it is monic and has bigger degree then any of the Pi. Also it cannot be a unit
since deg(N) =

∑
degPi ≥ deg T = 1 and the only units are those with degree

0. The only other option is that it is reducible. Because Fq[T ] is a unique factor-
ization domain, this means that for some unit u we can write N = uP e11 · · ·P enn
with en ∈ N. Finally this implies that for some Pi we have Pi|1 +

∏n
i=1 Pi i.e.

Pi|1. This is a contradiction and we conclude that there are in fact infinitely
many prime numbers. ,

This proof is an exact copy of Euclid’s proof to show that there are infinitely
many prime numbers! These two problems are so closely related because both
the integers and the polynomial ring Fq[T ] are a unique factorization domain,
this of course means that being prime and being irreducible is the same thing.
Moreover they are Euclidean domains, which lets us compare ”size” of num-
bers and polynomials via there absolute value and degree respectively. It turns
out this key similarity creates fascinating analogues far beyond this elementary
proof.

The original question could be seen as an algebraic one, but we will not
use much more than knowledge of what a unique factorisation ring is. Rather
we will take an analytic perspective of these problems as the area of analysis
lends itself perfectly for counting and analysing general behaviour. We will need
techniques like logarithmic derivatives, comparing coefficients of power series,
big O notation, little o notation. Furthermore we will use a few elementary
number theoretical concepts like Möbius inversion and Euler products. These
concepts are explained for example on Wikipedia or in the lecture notes [ES16].
We will not spend a lot of time explaining these concepts within this text, so it
is recommended to have at least some idea of these things beforehand.

This is of course not all of the story, for the more initiated people polynomials
over finite fields are intricately connected with algebraic geometry. The results
from this thesis can, and maybe should, be interpreted from this viewpoint as
well. However to keep this within the scope of a Bachelor’s thesis most of this
is omitted and we will at a few points have to trust on a result of Weil, the
Riemann hypothesis for curves over finite fields. This is a little bit unfortunate
but I hope the reader will not be to distracted by the few (but vitally important)
instances where this is used.
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Throughout the chapters we will state and prove three, each depending on
the previous, main theorems about counting specific classes of irreducible poly-
nomials. The first one will be an explicit formula for the number of monic
irreducible polynomials of a fixed degree. This formula turns out to be very
similar to the formula for the number of prime numbers up to a given size.
For this we will show several proofs dating back to Gauss and Euler and two
modern ones. Next we will investigate how these monic irreducibles (of a fixed
degree) distribute themselves over the residue classes modulo some polynomial.
For example we might ask what fraction of monic irreducible polynomials of
degree 2 are of the form x2 +αx+1, which is the same as looking at the residue
class 1 mod x. As it turns out every residue class that can have more then one
monic irreducible will have roughly the same amount as all the others. This is
the direct analogue of Dirichlet’s theorem for prime numbers. For Dirichlet’s
theorem we will follow the book [Ros02].

As it turns out the errors that we estimate for Dirichlet’s theorem contain
a lot of structure within them. In fact under certain circumstances there are
residue classes that will always have more primes then some of the others, no
matter the degree. This phenomenon was first observed by Chebyshev for the
integers where he looked at the primes that are 1 mod 4 and 3 mod 4. If we
look at all the primes that are less then n then it turns out that 3 is usually
ahead, but every now and again 1 takes over again. Under some very likely
hypotheses regarding zeros of the Dirichlet-L functions M. Rubinstein and P.
Sarnak proved [RS94] that usually the quadratic residues are behind on the
quadratic non-residues, however the quadratic residues take over the lead every
now and again. This is a case where the analogy breaks down a little bit,
because there are cases where the quadratic residues are usually ahead of the
non-residues and also cases where the non-residues are ahead forever and never
get taken over. The polynomial case was adapted in [Cha08] by closely following
[RS94].

As one might expect this is only one of the many directions one can take
when counting irreducible polynomials, many of the standard questions have
been investigated. One of the hypotheses for prime numbers is the infamous
hypothesis H. This conjecture is an extreme generalization of many number
theoretical problems about the existence (and number) of primes in the image
of polynomials. For example Dirichlet’s theorem is a specific case in which we
only look at a single degree 1 polynomial. However we know barely anything
beyond this degree 1 case for integers. Another specific case is the existence
of twin primes, for which there exists no proof in the integer case. Beyond
Dirichlet’s theorem and the recent results of Maynard 2013 on twin primes not
much more is known. If we try to write an analogue to this conjecture in
the polynomial rings, the validity of the conjecture depends crucially on how
we state the theorem. This is worked out for example in [Pol06] and in a
paper [CCG08] the first proving the theorem in a specific case and the second
providing counter examples in a more general setting. The above questions can
be phrased in the form ”is this thing prime?”. Another very standard type
of number theory question would be ”can we write this thing in the following
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form?” The question of if we can write a number as the sum of 9 cubes is what
got Hardy and Littlewood to invent the circle method and it is not surprising
that proofs of these kind of theorems depend on an adaptation of the circle
method. An example of a problem in this spirit is an analogue to the (weak)
Goldbach conjecture [Hay66].

There are of course many more interesting problems to consider that can be
found for example in the review paper [Rud15]. Another good starting point to
read would be the PhD thesis [Pol08]. It should be stated that theorems over
polynomial rings are usually easier to prove then their integer counterparts.
From my personal experience this seems to flow from the fact that degree is
a nicer notion of size then absolute value. A more experienced mathematician
might say that it is because the L series for polynomials have finitely many zeros
instead of the infinitely many of the integer case [Ros02]. Interestingly enough
in the days of Gauss and Euler this meant that a lot of results where proven
for polynomials before they where proven for integers. One of the motivations
for studying polynomials rings could therefore be that they might be a stepping
stone for attacking the more prestigious results within integers. However in
recent years results are sometimes proven for integers and then the methods are
later adapted to work for the polynomial case.
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3 The prime number theorem

One of the most celebrated results in number theory is the prime number the-
orem. This theorem gives an asymptotic formula for the number of primes up
to a given constant. As it turns out even for weak error terms this theorem is
very hard to prove, and the best error terms all rely on the (unproven) Riemann
hypothesis. However in our setting of polynomials we are more fortunate and
very elementary proofs of the analogous result are known. We will proceed with
stating our PNT and then we will give several different proofs, starting with
some very elegant modern proofs and ending with the classical proofs by Gauss
and Euler.

Definition 3.1. Let π(q, n) denote the number of monic irreducible polynomials
over Fq of degree n.

Note that this definition differs slightly from the normal prime counting
function in that we count polynomials of degree equal to n rather than up to n.

Theorem 3.2 (PNT). We can count the number of monic irreducible polyno-
mials as

π(q, n) =
1

n

∑
d|n

µ(d)qn/d.

This gives rise to the following result

Corollary 3.3. An asymptotic relation for the number of monic irreducible
polynomials is

π(q, n) =
qn

n
+O

(
qn/2

n

)
.

Proof. This follows from doing some basic estimates

∣∣∣∣π(q, n)− qn

n

∣∣∣∣ =

∣∣∣∣∣∣∣∣
1

n

∑
d|n
d≥2

µ(d)qn/d

∣∣∣∣∣∣∣∣ ;
≤ 1

n

∑
d|n
d≥2

qn/d.

Now we take out the term with d = 2 and there are at most n other terms all
of size at most q3

n .

≤ qn/2

n
+ qn/3;

= O
(
qn/2

n

)
.

,
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We briefly explain why this is considered to be the analogue of the prime
number theorem. The total number of monic polynomials of degree n is given
by X = qn, so if we write the above formula as a density we get

qn

n
+O

(
qn/2

n

)
=

X

logqX
+O

( √
X

logqX

)
.

This looks very much like the density for primes within the integers.
The first proof of the PNT will rely on some algebraic properties of the field

Fq and its extensions. It is taught in many introductory courses on finite fields.

Proof. Consider the following polynomial

Q =
∏

P :deg(P )|n

P,

where the product is over all the monic irreducible polynomials. We know that
the roots of P lie in Fqdeg(P ) . Also note that any element of Fqn has a minimal
polynomial f ∈ Fq[X] with deg(f)|n and hence is a root of Q. Moreover Q is
squarefree by construction, so any zero has multiplicity 1.

Now consider the polynomial

R = xq
n

− x

We see that all elements of Fqn are a root of this polynomial, because the
Frobenius map is Fqn -linear. Also there are qn elements in Fqn and qn roots
(with multiplicity) of xq

n − x, so these must be all the roots. We conclude that
Q and R have the same roots and they must be the same polynomial.

Now we will consider the degree of these polynomials.

deg(R) = deg
∏

P :deg(P )|n

P ;

qn =
∑

P :deg(P )|n

deg(P );

=
∑
d|n

π(q, d)d.

We then use Möbius inversion to conclude

π(q, n)n =
∑
d|n

µ(d)qn/d.

This proves the result. ,

In his thesis [Pol08] P. Pollack suggests an idea for a proof that he got from
personal communication with A. Granville, we work out the details here. Similar
to the previous proof it is based on computing the degrees of polynomials, but
it does not need the theory of field extensions.
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Proof. First we notice that

nqn =
∑
M

deg(M)=n

deg(M),

where the sum is over all the monic polynomials. From the unique factorization
of a polynomial M = P a11 · · ·P

ak
k we see that

deg(M) =
∑
P,a
Pa|M

degP.

Substituting this we obtain

nqn =
∑
M

deg(M)=n

∑
P,a
Pa|M

deg(P ).

Since this is just a finite sum we can reverse the order of summation

nqn =
∑
P,a

a deg(P )≤n

∑
M

deg(M)=n−a deg(P )

deg(P );

Then instead of summing over all the P we sum over their degrees d and keep
track of how many there are.

=
∑
d,a
ad≤n

π(q, d)d
∑
M

deg(M)=n−ad

1;

=
∑
d,a
ad≤n

π(q, d)dqn−ad.

Now we divide both sides by qn.

n =
∑
d,a
ad≤n

π(q, d)dq−ad.

This identity holds for all n, hence we can apply it to n − 1 and subtract this
from the above to obtain

1 =
∑
d,a
ad=n

π(q, d)dq−ad;

qn =
∑
d,a
ad=n

π(q, d)d.

And again applying Möbius inversion gives us the result.
,
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The following argument is due to C.F. Gauss and is probably the first proof
of this result. It relies on a combinatorics like argument to count monic poly-
nomials in terms of monic irreducible polynomials.

Proof. We can write every monic polynomial M of degree less than n as a
product of α1 degree 1 polynomials times α2 degree 2 polynomials, etc. The
number of possible monic polynomials is then given below, where the binomial
coefficient is the number of ways to pick αi things with replacement out of a
collection with π(q, i) elements, where ordering does not matter.

qn =
∑

α1+2α2+···+kαk≤n

k∏
i=1

(
π(q, i) + αi − 1

αi

)
We then consider the generating functions for both of these expressions.

1 + qu+ q2u2 + . . . =

∞∏
j=1

(1 + uj + u2j + . . .)π(q,n);

1

1− qu
=

∞∏
j=1

(
1

1− uj

)π(q,n)
.

A standard trick to get the π our of the power is to apply log to the expression,
and then differentiate with respect to u to get rid of the logs again. This is
exactly what we will do. Applying u d

du log to both sides gives.

qu

1− qu
=

∞∑
j=1

jπ(q, j)
uj

1− uj

qu+ q2u2 + . . . =

∞∑
j=1

jπ(q, j)
(
uj + u2j + . . .

)
Comparing the coefficients on both sides gives us the familiar formula.

qn =
∑
d|n

dπ(q, d)

,

The final proof is due to Euler and, as in the classical case, makes use of the
zeta-function.

Definition 3.4. We define the zeta function as

ζq(s) =
∑
M

1

|M |s
.

Here the sum is over all the monic polynomials over Fq and |M | = qdeg(M).
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The zeta function converges absolutely whenever <(s) > 1, because

∑
M

∣∣∣∣ 1

|M |s

∣∣∣∣ =

∞∑
d=0

∣∣∣∣ qdqds
∣∣∣∣ =

∞∑
d=0

qd(1−<(s)).

Here we turn the sum into a sum over all the possible degrees.

Proof. Because the sum in ζq(s) converges absolutely for <(s) > 1 we can write
it as an Euler product. Note that the proof of Euler products for polynomials
is an exact copy of the regular one. This is because the proof only relies on
the unique factorisation property, which both the integers and polynomials over
finite fields satisfy.

ζq(s) =
∏
P

1

1− |P |−s
=

∞∏
d=1

(
1

1− q−sd

)π(q,d)
We can also calculate it in a more straight forward way

ζq(s) =

∞∑
d=0

qd
1

qds
=

1

1− q1−s

Now substituting u = q−s gives us the generating functions of Gauss and the
result follows accordingly. ,

The proof by Euler lends itself to solve different counting problems as well.
In [Ros02] Rosen shows how to count the number of square free polynomials and
suggests this can be extended for k-th power free polynomials. We will show
how to do this.

Definition 3.5. We define the k-th power free indicator function as

δk(A) =

{
0 if P k|A for some P
1 otherwise

Theorem 3.6. The number of k-th power free polynomials of degree n is equal
to ∑

f :deg(f)=n

δk(f) = qn(1− qk) =
qn

ζ(k)

Proof. Because δk(A) is multiplicative we get the following Euler product

∏
P

( ∞∑
i=0

δk(Pn)

|P |sn

)
=
∑
A

δk(A)

|A|s
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Now using that δk(P i) = 0 for all i ≥ k and 1 otherwise, we get the following
relation. ∏

P

1− |P |−ks

1− |P |−s
=
∑
A

δk(A)

|A|s

ζ(s)

ζ(ks)
=

∞∑
i=0

 ∑
A:deg(A)=i

δk(A)

 q−is

1− quk

1− qu
=

∞∑
i=0

 ∑
A:deg(A)=i

δk(A)

ui

Here we again substitute u = q−s and compare coefficients to see∑
A:deg(A)=i

δk(A) = qi(1− q1−k).

We have seen before that

ζ(k) =
1

1− q1−k
.

So the result follows.
,

We can also explicitly calculate an analogue to the Mertens function M(n) =∑n
k=1 µ(k), for which we will recycle the notation.

Definition 3.7. The polynomial Möbius function

µ(M) =

{
0 if P 2|M

(−1)#{P |M} otherwise

Definition 3.8. The Mertens function for Polynomials

M(n) =
∑

M :deg(M)=n

µ(M)

Theorem 3.9. We have that

M(n) = O (q)

Proof. Using that µ is a multiplicative function we get an Euler product again∑
A

µ(A)

|A|−sn
=
∏
P

∞∑
i=0

µ(P i)

|P |−s
∞∑
i=0

M(i)q−si =
∏
P

(1− |P |s)

=
1

ζ(s)

= 1− q1−s
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Substitute u = q−s to get

∞∑
i=0

M(i)ui = 1− qu

So we see that

M(n) =

 1 if n = 0
−q if n = 1
0 if n ≥ 2

In particular we get the result of the theorem. ,
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4 Dirichlet’s Theorem

In the following chapter we will consider an analogue of Dirichlet’s theorem or
the prime number theorem for arithmetic progressions. The theorem answers
questions similar to: ”how many irreducible polynomials end in X+1.” We will
first make a few notions formal before giving the precise theorem.

Definition 4.1. Two polynomials are said to be congruent modulo M or A ≡ B
mod M whenever

A−B = FM

for some F ∈ Fq[X]. We often write A ≡ B(M) to save some space.

We see that we can restrict M to always be a monic polynomial, since
congruence mod M is the same as congruence mod x ·M for x ∈ Fq. We denote
the residue class of B as [B] = {A ∈ Fq[X] : A ≡ B}. We will write Fq[X]/(M)
for the set of congruence classes, which is a ring with the appropriate addition
and multiplication.

Definition 4.2 (Greatest common divisor). The greatest common divisor, or
gcd, of A and B or (A,B) is the monic polynomial of largest degree that divides
both A and B. We leave it undefined whenever A = B = 0.

The set of congruence classes that satisfy (A,M) = 1 is denoted by (Fq[X]/(M))
×

,
which is a group under multiplication. This is well defined since the gcd does
not depend on which representative we chose for [A]. Indeed take A ≡ B then
(A,M) = (A− FM,M) = (B,M).

Definition 4.3 (Euler phi). The Euler phi function for polynomials Φ(M)
is the number of residue classes [A] modulo M that satisfy (A,M) = 1 i.e.
#(Fq/MFq)×.

We are now ready to state Dirchlet’s theorem.

Theorem 4.4 (Dirichlet’s theorem). The number of monic irreducible polyno-
mials P of degree n of the form P ≡ A mod M with (A,M) = 1, denoted by
π(m,A,M) is given by

π(m,A,M) =
1

Φ(M)

qn

n
+O

(
qn/2

n

)
.

The restriction (A,M) = 1 is a natural one, since (A,M)|FM +A for all F .
This means there can be at most one such prime if (A,M) 6= 1 and therefore
this is not a very interesting case. The theorem basically tells us that the rest of
the irreducible polynomials show up in a certain residue class with probability

1
φ(M) . Just like you would expect if they were randomly distributed.

Before we can attempt to prove this we will have to develop some theory
on Dirichlet characters and so called Dirichlet L-series. This is motivated by
the fact that information about the irreducible polynomials was encoded in the
zeta function. L-series are a generalization of the zeta function that also encode
information about residue classes using so called Dirichlet characters.
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Definition 4.5. A Dirichlet character modulo M is a function χ from Fq[X]
to the complex numbers, satisfying

1. χ(A+BM) = χ(A) for all A,B.

2. χ(A)χ(B) = χ(AB) for all A,B.

3. χ(A) = 0 if and only if (A,M) 6= 0.

If we take (χ ∗ φ)(A) = χ(A)φ(A) and χ−1(A) = χ(A) the characters mod M
form a group. Also whenever (A,M) = 1 we can see that An ≡ A for some n,
then χ(An) = χ(A)n = χ(A). This means that |χ(A)| ∈ {0, 1}.

Dirichlet characters satisfy the following orthogonality relations.

Theorem 4.6. Let χ1 and χ2 be two Dirichlet characters mod M ,

1

Φ(M)

∑
A∈Fq [X]/(M)

χ1(A)χ2(A) = δ(χ1, χ2).

Let (A,M) = (B,M) = 1 then

1

Φ(M)

∑
χ

χ(A)χ(B) = δ(A,B),

where the sum is over all the characters mod M .

Proof. The proof is left as an exercise for the reader. Hint: Whenever χ1 6= χ2

multiply by χ1(X)χ2(X) 6= 1 and use the group structure of Fq[X]/(M). ,

Definition 4.7. The Dirichlet L-series of a character χ is

L(s, χ) =
∑
M

χ(M)

|M |s
,

where the sum is over all the monic irreducible polynomials.

Because |χ(M)| ≤ 1 we know this sum is dominated by ζq(s) and thus
converges absolutely whenever s > 1. Since the L-series converges absolutely
for s > 1 and χ is a multiplicative function we get the Euler product

L(s, χ) =
∏
P

(
1− χ(P )

|P |s

)−1
. (1)

For the trivial character modulo M ,

χ0(A) =

{
1 if (A,M) = 1
0 otherwise

,
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this expression reduces to ∏
P |M

(
1− 1

|P |s

)
ζq(s). (2)

Here we simply removed the factors in the Euler product of ζq(s) that correspond
to χ0(P ) = 0.

Theorem 4.8. For any non-trivial Dirichlet character mod M the L-series
L(s, χ) is a polynomial in q−s, with degree at most deg(M)− 1.

Proof. We define the numbers

A(n, χ) =
∑

monic F
deg(F )=n

χ(F ).

Then by substitution we get

L(s, χ) =

∞∑
n=0

A(n, χ)
(
q−s
)n
.

Hence the theorem is equivalent to showing that A(n, χ) = 0 for all n ≥ deg(M).
We know that any polynomial with degree n ≥ deg(M) can be uniquely written
as F = KM + R with deg(R) < deg(M) and K a monic polynomial of degree
deg(M)− deg(F ). Also for any K of appropriate degree every single R gives us
a polynomial of degree n. (Note that this is not true if M = 0, but this does
not happen because of our assumption.) So the sum becomes

A(n, χ) =
∑

KM+R

χ(KM +R) =
∑
K

∑
R

χ(R) =
∑
K

0 = 0.

Because R attains all the residue classes exactly once, the orthogonality relations
applied to χ and χ0 tell us that

∑
R χ(R) =

∑
R χ(R)χ0(R) = 0. ,

Here is a quick lemma that will be useful for computing logarithmic deriva-
tives.

Lemma 4.9.

u
d

du
log (1− αu)

−1
=

∞∑
k=1

αkxk.

Proof. This follows from the differentiating the series for log.

log(1− αu) = −
∞∑
k=1

αkuk

k
.

,
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We are now ready to prove Dirichlets theorem. Note the similarity between
the role of L-series in this proof with that of the zeta function in the proof of
the prime number theory.

Proof. From Theorem 4.8 we know that for χ 6= χ0 we can write an L series as
a polynomial in q−s = u. We can then describe this polynomial via a product
over its (inverse) roots. Note that A(0, χ) = χ(1) = 1, so 0 is not a root. Let
m = deg(M).

L∗(u, χ) =

m−1∑
k=1

ak(χ)uk =

m−1∏
k=1

(1− αk(χ)u). (3)

On the other hand we also know the Euler product for L(s, χ) as in equation 1.
We will regroup the terms in this product depending on their degree, this will
let us rewrite it in terms of u.

L(s, χ) =
∏
P -M

(
1− χ(P )|P |−s

)−1
=

∞∏
d=1

∏
P -M

deg(P )=d

(
1− χ(P )q−ds

)−1
.

As promised we get an expression in u = q−s.

L∗(u, χ) =

∞∏
d=1

∏
P -M

deg(P )=d

(
1− χ(P )ud

)−1
. (4)

As we have done before we will consider the logarithmic derivatives of these two
expressions and compare their coefficients which we will write as cn(χ).

u
d

du
log(L∗(u, χ)) =

∞∑
n=0

cn(χ)un.

First we consider the case of χ 6= χ0, using equation 3 and lemma 4.9.

u
d

du
log(L∗(u, χ)) = u

d

du
log

(
m−1∏
k=1

(1− αk(χ)u)

)
;

=

m−1∑
k=1

u
d

du
log(1− αk(χ)u);

=

m−1∑
k=1

∞∑
n=1

−αk(χ)nun;

=

∞∑
n=1

m−1∑
k=1

−αk(χ)nun.
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We now read off the coefficients to be cn(χ) =
∑m−1
k=1 −αk(χ)n. In essence

it follows from Weil’s theorem that these inverse zeros all have absolute value√
q or 1, to fully understand this some prerequisites in algebraic geometry are

necessary. A proof can be found in [Ros02]. Assuming this result this sum
contributes O

(
qn/2

)
. A weaker result can also be proven that amounts to

showing that the zeros of the L-series do not lie on the line with <(s) = 1. The
proof of this is similar to standard proof of the same fact for L-series over the
integers and can also be found in [Ros02].

In the case that χ = χ0 we use equation 2.

u
d

du
log(L∗(u, χ)) = u

d

du
log

 1

1− qu
∏
P |M

(1− udegP )

 ;

= u
d

du
log(

1

1− qu
) + u

∑
P |M

d

du
log(1− udegP );

=

∞∑
k=1

qnun +
∑
P |M

deg(P )
udeg(P )

udeg(P ) − 1
;

=

∞∑
k=1

qnun +
∑
P |M

deg(P )

∞∑
l=1

−udeg(P ).

We see that the second sum contributes at most O (1) to any coefficient, since
it is just a finite sum that does not depend on q or n. So we can summarize this
by stating that cn(χ0) = qn +O (1) and cn(χ 6= χ0) = O

(
qn/2

)
.

Finally we will compute the logarithmic derivative using equation 4 and
Lemma 4.9 again.

u
d

du
log(L∗(u, χ)) = u

d

du
log

 ∞∏
e=1

∏
P -M

deg(P )=e

(1− χ(P )ue)
−1

 ;

=

∞∑
e=1

∑
P -M

deg(P )=e

u
d

du
log (1− χ(P )ue)

−1
.

To evaluate the derivative we do the substitution x = ue. This gives us dx
du =

eue−1 and

u
d

du
log
(
1− χ(P )ud

)−1
= u

dx

du

d

dx
log (1− χ(P )x)

−1
= ex

d

dx
log (1− χ(P )x)

−1

And using Lemma 4.9 this becomes

e

∞∑
n=1

χ(P )nxn = e

∞∑
n=1

χ(P )nuen.
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We substitute this in and reorder the terms to get the powers of u together.

∞∑
d=1

∑
P -M

deg(P )=d

d

∞∑
n=1

χ(P )nudn =

∞∑
n=1

∑
d|n

∑
P -M

deg(P )=d

dχ(P )n/dun.

We can now estimate the coefficients again.

cn(χ) =
∑
d|n

∑
P -M

deg(P )=d

dχ(P )n/d = n
∑

deg(P )=n

χ(P ) +
∑
d|n

n≤N/2

d
∑
P -M

deg(P )=d

χ(P )n/d.

We know that |χ(P )| = O (1) and by the PNT the last sum contains O
(
qd

d

)
terms. So this becomes

n
∑

deg(P )=n

χ(P )+
∑
d|n

n≤N/2

O
(
qd
)

= n
∑

deg(P )=n

χ(P )+O
(
qn/2

)
+O

(
nqn/3

)
= n

∑
deg(P )=n

χ(P )+O
(
qn/2

)
.

We now use this to compute∑
χ

χ(A)cn(χ) = n
∑

deg(P )=n

∑
χ

χ(A)χ(P )+O
(
qn/2

)
= nΦ(M)π(n,M,A)+O

(
qn/2

)
.

At the same time we have∑
χ

χ(A)cn(χ) = cn(χ0) +
∑
χ6=χ0

χ(A)cn(χ) = qn +O
(
qn/2

)
.

Combining these two expressions

π(n,M,A) =
1

Φ(M)

qn

n
+O

(
qn/2

n

)
.

,
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5 Chebyshev’s bias

In this chapter we will investigate a phenomenon that was first observed by
Chebyshev in a certain specific case. If we count the number of primes that
are 1 mod 4 and 3 mod 4 then Dirichlet’s theorem tells us that asymptotically
both classes should contribute the same. However if we only count up to a
small number, say 10000, then it turns out that there are always more prime
numbers 3 mod 4 than 1 mod 4. A little bit after this 1 mod 4 takes the lead
for a short while, but 3 mod 4 is clearly ahead most of the time. Such a bias
can also be observed in the polynomial case for lots of different residue classes.
This seemingly contradictory fact has since been explained and it turns out to
have everything to do with the zeros of the L polynomials we have seen before
and the fact that 3 mod 4 is a quadratic non-residue. Both the integer and
polynomial results depend on the generalized Riemann hypothesis and grand
simplicity hypothesis, both of which are far from being proved for the integers.
However in our polynomial setting we have Weil’s theorem, and in specific cases
the grand simplicity hypothesis is provable and in other cases falsifiable. For
a much completer but still accessible overview of the integer case I recommend
the article [GM06]. In this chapter we will mainly follow the article [Cha08],
working out the details and changing a few arguments along the way.

5.1 General asymptotic formula

The reason the bias does not contradict Dirichlet’s theorem is that this bias is
O
(
qn/2

)
, so it hides inside the error term of the theorem. In order to analyse

this bias we will thus have to redo some of the analysis of the previous chapter
and be more careful about our estimations of the error term. To start we define
what we mean by the bias.

Definition 5.1. For a monic polynomial M , a residue class A mod M with
(A,M) = 1, and a positive integer X we define the bias as

EM,A(X) =
X

qX/2

X∑
N=1

(Φ(M)π(N,M,A)− π(N)) .

We can interpret the bias as the difference between the actual number of
primes and the expected number of primes from Dirichlet’s theorem.

Proposition 5.2. The summand

n (Φ(M)π(n,M,A)− π(n)) = −δ2|nc(M,A)qn/2−
∑
χ 6=χ0

χ(A)

deg(M)−1∑
k=1

αk(χ)n+O
(
qn/3

)
.

Here δ2|n = 1 when 2|n and 0 otherwise. As before αk(χ) denote the inverse
roots of L∗(u, χ). The number

c(M,A) = −1 +
∑

B2≡A mod M
b∈(Fq [T ]/(M))×

1,
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checks how many square roots A mod M has. It coincides with the Legendre
symbol whenever M is irreducible.

Proof. Recall from the previous chapter that cn(χ), the coefficients of u d
du log(L∗(u, χ)),

are given by

cn(χ) =
∑
d|n

d
∑
P -M

deg(P )=d

χ(P )n/d. (5)

Also for χ 6= χ0

cn(χ) = −
deg(M)−1∑

k=1

αk(χ)n; (6)

and
cn(χ0) = qn +O (1) . (7)

Now we will again sum over all characters, but this time without doing any
estimations. Using equation 5∑

χ

χ(A)cn(χ) =
∑
d|n

d
∑
P -M

deg(P )=d

∑
χ

χ(A)χ(P )n/d.

We introduce some notation to simplify this a bit,

π(d, k,M,A) := #{P |P k ≡ A mod M,deg(P ) = d}.

This is a generalization of the normal prime counting function in the sense that
π(d, 1,M,A) = π(d,M,A). It is then clear that using the orthogonality relations
as before we get ∑

χ

χ(A)cn(χ) =
∑
d|n

dΦ(M)π(d, n/d,M,A).

The term corresponding to d = n gives a contribution of

nΦ(M)π(n,M,A).

For the terms with d < n/3 we get at most

n

3
π(n/3, 3,M,A) ≤ n

3
π(n/3) = O

(
qn/3

)
.

Finally, when it exists, the d = n/2 term contributes

n

2
Φ(M)π(n/2, 2,M,A) =

n

2
Φ(M)

∑
P :deg(P )=n/2
P≡B(M)

B2≡A(M)

1 =
n

2
Φ(M)

∑
B2≡A(M)

∑
P :deg(P )=n/2
P≡B(M)

1.
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Note that (B,M) = 1⇔ (B2,M) = 1, so we can apply Dirichlet’s theorem.

=
n

2
Φ(M)

∑
B2≡A(M)

(
1

Φ(M)

qn/2

n/2
+O

(
qn/4

))
= δ2|N (c(M,A)+1)qn/2+O

(
qn/4

)
.

Combining all the terms gives∑
χ

χ(A)cn(χ) = nΦ(M)π(n,M,A) + δ2|N (c(M,A) + 1)qn/2 +O
(
qn/3

)
,

which we can rewrite using equation 6 and 7.

nΦ(M)π(n,M,A) = −
∑
χ 6=χ0

χ(A)

deg(M)−1∑
k=1

αk(χ)n+qn−δ2|N (c(M,A)+1)qn/2+O
(
qn/3

)
.

We can see that by adding the extra term n/2 we get an error of order qn/3,
instead of qn/2 like in the previous chapter. It is then also this term that is
responsible for the bias. Finally redoing the estimates for π(n),

nπ(n) =
∑
d|n

qn/dµ(d) = qn − δ2|nqn/2 +O
(
qn/3

)
.

Combining this with our other estimates cancels some terms

n(Φ(M)π(n,M,A)−π(n)) = qn−qn−δ2|n(c(M,A)+1−1)qn/2−
∑
χ 6=χ0

χ(A)

deg(M)−1∑
k=1

αk(χ)n+O
(
qn/3

)
.

Which proves the proposition. ,

To turn these estimates of the summand into estimates for the entire sum
we will need a lemma.

Lemma 5.3. For any complex number β, with |β| > 1,

lim
n→∞

n

βn

(
n∑
i=1

βi

i

)
=

β

β − 1

Proof. We first apply partial summation with arithmetic function f(n) = βn

and smooth function φ(x) = 1
x .

n∑
i=1

βi
1

i
=

(
n∑
i=1

βi

)
1

n
+

∫ n

1

 [t]∑
i=1

βi

 1

t2
dt.

Recognizing the geometric series this gives

n

βn

n∑
i=1

βi
1

i
=
β − β1−n

β − 1
+

n

βn
β

β − 1

∫ n

1

β[t] − 1

t2
dt.
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Clearly
β − β1−n

β − 1
→ β

β − 1
.

So we want the remaining terms to go to 0, firstly

n

βn
β

β − 1

∫ n

1

−1

t2
dt =

n

βn
β

1− β
→ 0.

The harder part is the integral

n

βn
β

β − 1

∫ n

1

β[t]

t2
dt ≤ C n

βn

∫ n

1

|β|t

t2
dt.

We will use partial integration to estimate this integral.

n

βn

∫ n

1

|β|t

t2
dt =

n

βn
1

log |β|
(
|β|n/n2 − |β|

)
+

2

log |β|
n

βn

∫ n

1

|β|t

t3
dt.

Clearly
n

βn
1

log |β|
(
|β|n/n2 − |β|

)
→ 0.

and finally we split up the integral into two intervals.

n

βn

∫ n

1

|β|t

t3
dt =

n

βn

∫ n/2

1

|β|t

t3
dt+

n

βn

∫ n

n/2

|β|t

t3
dt;

≤ n

βn
|β|n/2

∫ n/2

1

1

t3
dt+

n

βn
|β|n

∫ n

n/2

1

t3
dt;

≤ n

βn
|β|n/2 · c+

n

βn
|β|n

(
−2

n2
+
−2

(n/2)2

)
→ 0.

This concludes the proof. ,

The following theorem is the main result of this thesis and describes the bias
directly in terms of the inverse roots of L-series.

Theorem 5.4. Asymptotically as X →∞

EM,A(X) = −c(M,A)Bq(X)−
∑
χ6=χ0

χ(A)
∑
γχ

eiθ(γχ)X
γχ

γχ − 1
+ o(1)

where B (for bias) denotes

Bq(X) =

{ √
q/(q − 1) if X is odd;
q/(q − 1) if X is even.

The sum over γχ is a sum over the inverse roots of L∗(u, χ), with γχ =
√
qeiθ(γχ).
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Proof. The proof will apply Lemma 5.3 several times to Proposition 5.2.

EM,A(X) =
X

qX/2

X∑
n=1

δ2|nc(M,A)
qn/2

n

+
X

qX/2

X∑
n=1

−
∑
χ 6=χ0

χ(A)
∑deg(M)−1
k=1 αk(χ)n

n

+
X

qX/2

X∑
n=1

O
(
qn/3

)
n

.

We will do the three sums separately, firstly

X

qX/2

X∑
n=1

O
(
qn/3

)
n

≤ X

qX/2
XO

(
qX/3

)
= o(1).

Secondly if X = 2Y is even,

X

qX/2

X∑
n=1

δ2|nc(M,A)
qn/2

n
= c(M,A)

2Y

qY

Y∑
n=1

qn

2n
= c(M,A)

q

q − 1
+ o(1).

If X = 2Y + 1 is odd,

X

qX/2

X∑
n=1

δ2|nc(M,A)
qn/2

n
= c(M,A)

1
√
q

2Y + 1

qY

Y∑
n=1

qn

2n
= c(M,A)

√
q

q − 1
+ o(1).

Recall that the inverse zeros of the Dirichlet L series all have absolute value 1
or
√
q. For the zeros with absolute value one we will get

X

qX/2

X∑
n=1

χ(A)αn

n
≤ X

qX/2

X∑
n=1

1n

n
≤ X2

qX/2
= o(1).

For the rest of the zeros we write α =
√
qeiθ to obtain

X

qX/2

X∑
n=1

χ(A)αn

n
= χ(A)eiθX

X

αX

X∑
n=1

αn

n
= χ(A)eiθX

α

α− 1
+ o(1).

Combining all the terms gives the result.
,

Looking at this formula we should not expect limX→∞EM,A(X) to converge,
because there are oscillating terms that do not go to 0. However, the average
of EM,A(X) does converge.
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Theorem 5.5. For any M,A the limit

lim
n→∞

1

n

n∑
X=1

E(M,A)(X) = −c(M,A)

√
q + q

2(q − 1)
−
∑
χ∈I

χ(A)

√
q

√
q − 1

Here I is the set (with multiplicity) of all characters mod M that have
√
q as

an inverse root.

This theorem justifies thinking of −c(M,A) as the cause of the bias, since
often I is empty. For example when deg(M) ≤ 4 it is empty, since there are no
degree 3 polynomials with integer coefficients that have

√
q as an inverse root

twice. (The real roots of the polynomial L∗(u, χ) always have even multiplicity.)
Note that if this limit is negative this does not mean that in the limit the squares
always get less primes then they deserve. The bias might be very negative every
time it is negative and only a little bit positive whenever it is positive. This way
the average can be negative even though the bias is positive most of the time.

Proof. Because of Theorem 5.4 it suffices to compute the limits

lim
n→∞

1

n

n∑
X=1

Bq(X);

lim
n→∞

1

n

n∑
X=1

o(1);

lim
n→∞

1

n

n∑
X=1

eiθ(γχ)X .

For the first one we will group the neighbours.

lim
n→∞

1

n

n∑
X=1

Bq(X) = lim
n→∞

1

n

[n/2]∑
X=1

√
q + q

q − 1
+

1

n
(1− δ2|n)

√
q

q − 1
→
√
q + q

2(q − 1)

For the second limit, we recall that f(X) = o(1) implies that for every ε > 0
there exists an N such that for all X > N , |f(X)| ≤ ε. Now take any ε > 0

lim
n→∞

∣∣∣∣∣ 1n
n∑

X=1

o(1)

∣∣∣∣∣ ≤ lim
n→∞

1

n

(
N∑
X=1

f(X) +

n∑
X=N+1

ε

)
= lim
n→∞

K

n
+
n−N
n

ε→ ε.

Hence the limit exists and must be equal to 0. Finally we recognize a geometric
series whenever eiθ(γχ) 6= 1.

lim
n→∞

∣∣∣∣∣ 1n
n∑

X=1

eiθ(γχ)X

∣∣∣∣∣ = lim
n→∞

1

n

∣∣∣∣1− eiθ(γχ)n1− eiθ(γχ)

∣∣∣∣ ≤ lim
n→∞

1

n

∣∣∣∣ 2

1− eiθ(γχ)

∣∣∣∣ = 0.
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If eiθ(γχ) = 1 i.e. γχ =
√
q, then of course

lim
n→∞

1

n

n∑
X=1

eiθ(γχ)X = 1.

Combining everything gives the result.
,

5.2 Quadratic residues

We have seen above that the main cause of the bias is how many square roots A
mod M has. In view of this observation we will focus our attention to irreducible
modulus M and split the residues into two different groups, depending on if they
are a square or not.

a(n) = #{P |χquad(P ) = 1,deg(P ) = n}

b(n) = #{P |χquad(P ) = −1,deg(P ) = n}
Where χquad is the real quadratic character mod M , i.e.

χquad(F ) =

 1 if F is a square modulo M
−1 if F is not a square modulo M
0 if M |F

This is equal to c(M,A) whenever M is irreducible.

Proposition 5.6. With a, b as above we have

n(a(n)− b(n)) = −
deg(M)−1∑

k=1

αk(χquad)n − δ2|nqN/2 +O
(
qn/3

)
.

In the paper [Cha08] this is proven by comparing coefficients of the loga-
rithmic derivatives of certain products of L-series. However it is also suggested
that this may be proven using our previous Proposition 5.2, which is what we
will work out here.

Proof. By definition of a and b,

n(a(n)− b(n)) = n

 ∑
χquad(A)=1

π(n,M,A)−
∑

χquad(A)=−1

π(n,M,A)

 ;

=
1

Φ(M)

∑
A

χquad(A)nΦ(M)π(n,M,A),

where the sums are over all the residue classes A mod M . Since exactly half of
these are quadratic residues we can add nothing

=
1

Φ(M)

∑
A

χquad(A)n (Φ(M)π(n,M,A)− π(n)) .

25



Now we apply Proposition 5.2,

= − 1

Φ(M)

∑
A

χquad(A)2δ2|Xq
n/2− 1

Φ(M)

∑
A

χquad(A)
∑
χ

χ(A)

deg(M)−1∑
k=1

αk(χ)n+O
(
qn/3

)
.

Simplifying using the orthogonality relations and χ2
quad = χ0,

= −δ2|Xqn/2 −
deg(M)−1∑

k=1

αk(χquad)n +O
(
qn/3

)
.

,

Similar to before we define

Definition 5.7. For a monic irreducible M , the bias towards quadratic non-
residues is

EM,quad(X) :=
X

qX/2

X∑
n=1

(a(n)− b(n)).

And we get the analogue of theorem 5.4.

Theorem 5.8. Enumerate the inverse zeros of L∗(χquad, u) with absolute value√
q as γ1, γ1, · · · , γk, γk. Asymptotically as X →∞,

EM,quad(X) = −Bq(X)− 2

k∑
j=1

<
(
eiθjX

γj
γj − 1

)
+ o(1).

Proof. Of course all the complex roots γi have a partner γi. The fact that all
the purely real roots also come in pairs is a result from algebraic geometry and
we refer to Proposition 6.4 from [Cha08]. We observe

eiθjX
γj

γj − 1
+ e−iθjX

γj
γj − 1

= 2<
(
eiθjX

γj
γj − 1

)
.

Now the proof is just an exact repeat of the proof of theorem 5.4. ,

From here on we will try to answer the question of how often EM,quad(X) <
0, i.e. how often the non-square primes are ahead of the square primes. In
[Cha08] this is done in more generality, which requires a second course in mea-
sure theory. We will focus on the simpler cases deg(M) ≤ 4. This will allow us
to tackle it without much more then knowledge of the Lebesgue measure.

Corollary 5.9. If deg(M) ≤ 2, the quadratic non-residues almost always dom-
inate the quadratic residues.
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Proof. If deg(M) = 2 we can see from [Cha08, chapter 6] that the correspond-
ing L∗(χquad, u), has no roots with absolute value

√
q. This means that the

expression from Theorem 5.8 simplifies to

EM,quad(X) = −Bq(X) + o(1).

Now for all large enough X the function o(1), will be smaller then Bq(X) and
hence the expression will be negative for all large X. ,

Next we will consider the case of degree 3, 4. Again from [Cha08] we know
that there are exactly two zeros of L∗ (χquad, u) with absolute value

√
q, denote

them γ, γ. If this root has θ(γ) a rational multiple of π, then EM,quad(X) is
periodic (up to a small error) and we only have to compute the first few terms
in order to know how it behaves everywhere. We explain what to do if θ(γ) is
not a rational multiple of π.

Theorem 5.10. For a monic irreducible polynomial M of degree 3 or 4. With
θ(γ) not a rational multiple of π

lim
N→∞

1

N

N∑
X=1

sign (EM,quad(X)) =
cos−1

(
q

2q−2

∣∣∣γ−1γ ∣∣∣)+ cos−1
( √

q

2q−2

∣∣∣γ−1γ ∣∣∣)
2π

<
1

2

Here sign(x) is 1 if x > 0 and 0 if x ≤ 0.

Proof. We write γ
γ−1 in polar form

∣∣∣ γ
γ−1

∣∣∣ eiω and observe

<
(
eiθX

γ

γ − 1

)
= <

(
eiθX

∣∣∣∣ γ

γ − 1

∣∣∣∣ eiω) =

∣∣∣∣ γ

γ − 1

∣∣∣∣ cos (θX + ω) .

It then follows that

sign (EM,quad(X)) =

 1 if − cos (θX + ω) >
Bq(X)

2

∣∣∣γ−1γ ∣∣∣+ o(1)

0 if − cos (θX + ω) ≤ Bq(X)
2

∣∣∣γ−1γ ∣∣∣+ o(1)

By continuity of cos−1, for every ε > 0, we can find a δ > 0 such that:

bX,−ε = cos−1
(
Bq(X)

2

∣∣∣∣γ − 1

γ

∣∣∣∣)− ε ≤ cos−1
(
Bq(X)

2

∣∣∣∣γ − 1

γ

∣∣∣∣+ δ

)
;

bX,+ε = cos−1
(
Bq(X)

2

∣∣∣∣γ − 1

γ

∣∣∣∣)+ ε ≤ cos−1
(
Bq(X)

2

∣∣∣∣γ − 1

γ

∣∣∣∣− δ) .
These values are the boundary where the sign of EM,quad(X) switches with a
small error. We define cos−1(x) = 0 whenever x ≥ 1, to be consistent with this
property. Next we define

IX,big = [−bX,+ε, bX,+ε] ⊂ R/Z;

IX,small = (−bX,−ε, bX,−ε) ⊂ R/Z.
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Take any ε > 0 and take a δ such as above, then find a Y such that o(1) < δ for
all X ≥ Y . Now these intervals satisfy

sign (EM,quad(X)) = 1⇒ θX + ω + π ∈ IX,big

and
θX + ω + π ∈ IX,small ⇒ sign (EM,quad(X)) = 1

for all large X ≥ Y . Using this we can bound the limit in terms of these
intervals.

lim
N→∞

1

N

N∑
X=1

sign (EM,quad(X)) ≥ lim
N→∞

KY

N
+

1

N

N∑
X=Y

1IX,small (θX + ω + π) ;

= lim
N→∞

1

N

N∑
X=Y

1IX,small (θX + ω + π) .

The corresponding upper bound is

lim
N→∞

1

N

N∑
X=1

sign (EM,quad(X)) ≤ lim
N→∞

1

N

N∑
X=Y

1IX,big (θX + ω + π) .

Now we observe that the final summand only depends on the parity of X,
because we have removed the o(1) function by just estimating it as ±ε. We can
thus write the lower bound as

lim
N→∞

1

N

[N/2]∑
X=1

1I1,small (θX + ω + π) + 1I2,small (θX + ω + π) .

Here we have added finitely many terms at the start and maybe one at the
end, but these are divided by N and thus converge to 0. We then apply the
equidistribution theorem [HW08, Section 23.10], which says that whenever θ is
irrational

lim
N→∞

N∑
X=1

1I(θX) = µ (I)

Here µ(I) = µ̃(I)/2π where µ̃ is the Lebesgue measure. In our case

µ(I1,small) + µ(I2,small)

2
=

cos−1
(

q
2q−2

∣∣∣γ−1γ ∣∣∣)+ cos−1
( √

q

2q−2

∣∣∣γ−1γ ∣∣∣)− 2ε

2π

Which gives

lim
N→∞

1

N

N∑
X=1

sign (EM,quad(X)) ≥
cos−1

(
q

2q−2

∣∣∣γ−1γ ∣∣∣)+ cos−1
( √

q

2q−2

∣∣∣γ−1γ ∣∣∣)
2π

− ε
π
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And the lower bound follows similarly

lim
N→∞

1

N

N∑
X=1

sign (EM,quad(X)) ≤
cos−1

(
q

2q−2

∣∣∣γ−1γ ∣∣∣)+ cos−1
( √

q

2q−2

∣∣∣γ−1γ ∣∣∣)
2π

+
ε

π

Since this is true for all ε > 0 we get

lim
N→∞

1

N

N∑
X=1

sign (EM,quad(X)) =
cos−1

(
q

2q−2

∣∣∣γ−1γ ∣∣∣)+ cos−1
( √

q

2q−2

∣∣∣γ−1γ ∣∣∣)
2π

.

Finally since cos−1 of a positive number is strictly smaller then π/2 we get

lim
N→∞

1

N

N∑
X=1

sign (EM,quad(X)) <
π/2 + π/2

2π
=

1

2
.

Which concludes the proof. ,

We have just seen that also in the case of two inverse zeros the quadratic
non-residues dominate the quadratic residues. However this only works under
the hypothesis that it is not a rational multiple of π. In general the same can be
said in the case of higher degrees, but with the hypothesis that all the inverse
zeros are linearly independent over Q, that is linear combinations may also not
be a rational multiple of π. The proof of this is mostly just a technical extension
of the ideas in the previous proof and is worked out in [Cha08]. It is also very
important to notice that the result is not generally true whenever the inverse
zeros are rational multiples of π, this is because if we try to do the above analysis
again the equidistribution theorem fails. We will look at examples of this and
the other situations in the next chapter.

5.3 Numerical data

We end by showing some actual examples of the above behaviour. Most of these
polynomials turn out to satisfy the conditions of theorem 5.10, and whenever
the roots did have rational angles, the bias was usually towards the non-squares
regardless, so finding examples of these cases is not hard. This should not
come as a surprise, as usually ”normal” polynomials do not have roots with
rational angles. Also when the roots have a rational angle it is still very rare
for them to overcome the negative term that is always present in the formula
5.8. To find the other examples we try to find q, a, b such that the minimal
polynomial f of

√
qe2πi

a
b with small degree. The reciprocal polynomial f∗ then

has this number as its inverse root and several more which are easily calculated.
We can then use 5.8 to figure out if these roots will give a bias towards the
squares. Once we have found a candidate in this way we can just search all the
irreducible polynomials and calculate L∗(u, χquad) using formula 4.8, untill we
find one with L∗(u, χquad) = f∗. To speed this up we can use the symmetry of
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Table 1: M = T 2 + 1
X EM,quad(X)
1 -0.378
2 -1.714
3 -0.972
4 -1.469
5 -0.694
6 -1.294
7 -0.571
8 -1.246

L∗(u, χquad) =
∑d
i=1 αiu

i, namely that αd−i = qd−iαi for all 0 ≤ ibd/2c. Up to
deg(f) = 6, q = 9, this is still doable on any machine with a couple of minutes
of computation time. See also [Cha08] for some different examples.

Example 1. We start with the simplest case, where the degree of M ≤ 2. Take

M = T 2 + 1 ∈ F7[T ].

We expect EM,quad(2X) = − 7
6 + o (1) ≈ −1.143 and EM,quad(2X+ 1) = −

√
7
6 +

o (1) ≈ −0.441. We compute the first few values numerically in table 1. We see
that the numbers seem to follow the prescribed pattern fairly well. It is worth
mentioning that in general we should not expect the formula to work for small
numbers (or any finite set), since the formula only tells us something about the
limit.

Example 2. Next we consider an example where we can apply theorem 5.10.
Take the irreducible polynomial defined in F3[T ]

M = T 4 + T 2 + T + 1.

Then using formula 4.8 we find that the L-series is

L∗(u, χquad) = −3u3 + u2 + u+ 1.

This is just a third degree polynomial so it is not hard to find the inverse roots

α1 = 1 α2 = −1 + i
√

2 α3 = −1− i
√

2.

So we are only concerned with

γ = −1 + i
√

2 =
√

3ei(π−arctan(
√
2)).

The fact that arctan(
√

2) is not a rational multiple of π is non-trivial. In [Cal06,
Section 6] there is a complete list of square roots that are the tangent of a
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rational multiple of π. Since
√

2 is not in this list we know that arctan(
√
2))

π must
be irrational. We therefore expect EM,quad(X) to be positive about

cos−1
(

3
4

∣∣∣−2+i√2
−1+i

√
2

∣∣∣)+ cos−1
(√

3
4

∣∣∣−2+i√2
−1+i

√
2

∣∣∣)
2π

=
cos−1

(
3
√
2

4

)
+ cos−1

(√
6
4

)
2π

≈ 0.145 . . .

of the time. Checking this numerically we find the numbers in table 2. So we

Table 2: M = T 4 + T 2 + T + 1
X EM,quad(X)
1 0.577
2 0
3 -2.309
4 -1.778
5 -1.283
6 -3.556
7 -0.599
8 -1.778
9 -2.438
10 -0.576
11 -1.307
12 -2.733
13 0.268
14 -2.215
15 -1.750

see that for this small sample 2/15 ≈ 1.33 . . . of the numbers are positive, which
is already quite close to the limiting expectation.

Example 3. This is an example where there is no bias at all. Take the poly-
nomial

M = T 4 + 5T 2 + 5T + 5 ∈ F7[T ].

Again using formula 4.8 we get

L∗(u, χquad) = −7u3 + 7u2 − u+ 1 = (1− u)(1− i
√

7u)(1 + i
√

7u).

We then use formula 5.8 and also compute the values numerically in table 3. So
we predict that the squares and non-squares are both ahead half of the time.
We can see that also for small numbers this is the case.

Example 4. Now we give an example where we cannot apply 5.10, but we still
observe a bias towards the non-squares. Take

M = T 3 − T + 1 ∈ F9[T ].
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Table 3: M = T 4 + 5T 2 + 5T + 5
X Predicted EM,quad(X) Actual EM,quad(X)
1 -1.1024 -0.378
2 0.5833 0.571
3 0.2205 0.324
4 -2.9167 -2.939
5 -1.1024 -1.388
6 0.5833 0.350
7 0.2205 0.154
8 -2.9167 -2.932

Then using formula 4.8 we get

L∗(u, χquad) = 9u2 − 3u+ 1 =
(

1− 3e2πi
1
6

)(
1− 3e2πi

5
6

)
.

We then apply formula 5.8 as in the previous example and compute the actual
values numerically in table 4. We see that as predicted 2

3 of the times the

Table 4: M = T 3 − T + 1
X Predicted EM,quad(X) Actual EM,quad(X)
1 -2.0893 -1.000
2 -0.6964 -0.667
3 1.7679 1.667
4 0.5893 0.741
5 -0.8036 -0.679
6 -3.2679 -3.267

non-squares are ahead and the actual values are quite close.

Example 5. We end by giving a rare example where we do observe a bias
towards the squares. Take α ∈ F9, such that α2 = α + 1. Then we have the
polynomial

M = T 7 + 2T 6 + α3T 5 + α3T 4 + T 3 + α5T 2 + 2T + 2 ∈ F9[T ].

Then once again using 4.8 we get

L∗(u, χquad) = 729u6 + 243u5 + 81u4 + 27u3 + 9u2 + 3u+ 1,

which we recognize as(
1− 3e2πi

2
14u
)(

1− 3e2πi
4
14u
)(

1− 3e2πi
6
14u
)(

1− 3e2πi
8
14u
)(

1− 3e2πi
10
14u
)(

1− 3e2πi
12
14u
)

This will give us 14 different cases depending on X mod 14. We compute these
using formula 5.8 in table 5. And we can see that the squares are ahead exactly
9
14 >

1
2 of the time.
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Table 5: M = T 7 + 2T 6 + α3T 5 + α3T 4 + T 3 + α5T 2 + 2T + 2
X mod 14 Predicted EM,quad(X)

1 -1.2094
2 -0.4031
3 0.8656
4 0.2885
5 1.0962
6 0.3654
7 -5.8782
8 -1.9594
9 0.3469
10 0.1156
11 1.0385
12 0.3462
13 1.1154
14 -6.6282
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6 Discussion

We have shown a variety of proofs for the prime number theorem for polynomials
of finite fields. Doing this showed the similarity in results with the integer
prime number theorem, while also showing that the proofs are simpler. We
then extended the techniques of zeta functions and Euler products to give a
proof of Dirichlet’s theorem following [Ros02]. The error terms in this theorem
depend crucially on the absolute value of the inverse roots of L-series, which
can be derived from Weil’s theorem. This derivation is not part of the thesis
and would be interesting to investigate further.

More careful analysis of the error terms following [Cha08] reveal the Cheby-
shev’s bias, showing that the error term is not zero on average. We then give
some formulas for the asymptotic behaviour of this bias depending on the roots
of L-series. From this formula we then derive a formula for the specific case
where we split up the residue classes into squares and non-squares. This expre-
sion only depends on the single L-series L∗(u, χquad), which allows us to give a
method of computing the bias for any irreducible modulus of degree ≤ 4. We
then show some new examples of all the cases, bias towards squares, no bias and
bias towards non-squares. The cases ≥ 5 are considered in [Cha08], but apart
from existence no explicit approach is given as to calculating the bias there.
The case of a bias towards squares is very rare and can only happen when the
angles of the roots are linearly dependent over Q, so it might be possible to
classify all the cases in which it does. A heuristic approach to finding examples
of this case is given, but it is not at all clear if there are infinitely many or if
this approach will even find them.
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