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Abstract

An overview of the black hole information paradox is given together with a possi-
ble resolution for the problem. After an introduction into the various concepts, the
information paradox is addressed and explored by means of a toy model for the Hawk-
ing radiation. After information conserving arguments from AdS/CFT correspondence
and an analyses of the Page curve and strong subadditivity, another form of the para-
dox is addressed, namely the Firewall. In the end a possible resolution with its roots
in AdS/CFT correspondence and black hole complementarity is discussed, as well as
future prospects of the paradox.
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Conventions

Throughout this thesis we will use the the conventions that ~ = G = c = kb = 1 (natural units)
and metric signature (+ - - -) unless specified otherwise. When referring to a black hole, we will
mean a non-rotating black hole with no charge.
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1 Introduction

As exotic as black holes are, as interesting they are for theoretical physicists to find a way to unify
quantum mechanics and gravity into one picture. From the inescapable interior to the quantum
fluctuations near the horizon, black holes are objects in which, to fully describe them, one needs
General Relativity and Quantum Mechanics to work together. Each on its own has its foundational
principles, which do not get married into one theory easily. As we will see, some principles may
need to be sacrificed to fully come to an understanding of what’s happening on the boundary and
on the inside of a black hole. There is extensive research being done in this area of physics, which
has grown more popular with time since Stephen Hawking came with the proposal that black holes
weren’t entirely "black".

Hawking showed [7] in 1974 that black holes emit particles as if they were hot bodies with a tem-
perature, meaning they are not entirely "black". This was the start of "the black hole information
paradox", starting with the question whether information falling into a black hole would be de-
stroyed or not. Hawking calculated [8] that the radiation emitted by a black hole (assumed to be
in a pure state) was exactly thermal, i.e. it evolves from a pure state into a completely mixed state.
This would mean that two black holes with the same mass, charge and angular momentum could,
when evaporated, be in the same mixed quantum state, independent of their history. This violates
the unitarity of the time evolution operator, a foundational principle in quantum mechanics, which
means that information is lost. Therefore, Hawking concluded that information falling into a black
hole was lost.

This was not accepted by everyone in the Physics community, and some physicists wondered if the
violation of unitarity could be restored by a theory of quantum gravity1. The first step towards
restoring conservation of information came from the insight of Gerard ’t Hooft, who came up with
the holographic principle, a supposed property of quantum gravity and string theory.

Black holes have an entropy proportional to the surface area of the event horizon (as shown by
Bekenstein [3], 1973), which inspired ’t Hooft to formulate the principle. The principle states:
"given any closed surface, we can represent all that happens inside it by degrees of freedom on this
surface itself. This, one may argue, suggests that quantum gravity should be described entirely
by a topological quantum field theory, in which all physical degrees of freedom can be projected
onto the boundary" [19]. This means the description of a (3 dimensional) volume of space can
be encoded on the two dimensional boundary of the space. In 1993, Leonard Susskind and Larus
Thorlacius then built on these ideas and formulated the principles of black hole complementarity
[18]. These were intriguing ideas about the nature of the black hole, but not all physicists were
convinced by this idea.

Then, in 1997, Juan Maldacena came with a proposal that was the most successful realization
of the holographic principle; the conjectured duality between Anti-de Sitter space and Conformal
Field Theory, called AdS/CFT correspondence for short [12]. The correspondence showed a very
important result: information was not lost inside a black hole. The theory is considered one of the
most important discoveries in theoretical physics of the last 20 years, and it was the theory that
made Hawking change his mind [9] about the question that information was lost inside a black
hole. It is now considered to be a promising candidate for a theory of quantum gravity, where
a solution for the black hole information paradox also may be found. Although the theory has
some nontrivial evidence, it is not yet rigorously proved, and it is still an open question on how to
translate it to the cosmological spacetime picture.

In the next section we will start with the theoretical background necessary to understand the basic
concepts which are important to understand the paradox. In section (3) we will go through a
derivation of the Hawking temperature of a black hole, which is useful for section (4). We will
also look at the theory proposed by Maldacena in section (5.2), but we will first go through the
developments and history of the paradox, allowing us to appreciate the results that were obtained
in attempting to solve the paradox.

1Quantum gravity concerns itself with describing gravity and quantum mechanics in one theory, but is still ’under
construction’
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2 Theoretical background

In this section we study the theory about the underlying principles and formalisms of black holes,
which are necessary to come to a qualitative understanding of the paradox. We will discuss
the Schwarzschild metric, quantum entanglement, the density matrix and Von Neumann En-
tropy.

2.1 The Schwarzschild metric

The first to find a non-trivial exact solution to the Einstein equations of gravity was Karl Schwarzschild
[17]. Schwarzchild solved the equations in 1915, under the assumption of spherical symmetry. The
Schwarzschild metric for the corresponding spacetime interval of a mass M is given by

ds2 = (1− 2M
r ) dt2 − (1− 2M

r )−1 dr2 − r2 dΩ2 (1)

where the Schwarzschild radius of the black hole is rs = 2M . Here, we have used short-hand
notation for the metric on the 2-sphere: dΩ2 = sin θ dϕ2 + dθ2. The metric appears to become
singular at r = 2M , which can be avoided by a change in coordinates. The singularity at r = 0
however, is a non-removable singularity, and is believed to be a physical singularity as well: a point
of infinite gravity. The specific points where r equals the Schwarzschild radius, is called the event
horizon. The region smaller than the Schwarzschild radius (r ≤ 2M) is, classically, the point of no
return; even light can not escape it and hence the appropriate term black hole.

2.2 Quantum entanglement

Entanglement is a very subtle, quantum mechanical phenomenon that can occur when pairs or
groups of particles interact with each other in a way that their total quantum state can not be
described independently of each other. One member of the state can only be described relative
to all the others. Wikipedia states: "An entangled system is defined to be one whose quantum
state cannot be factored as a product of states of its local constituents; that is to say, they are
not individual particles but are an inseparable whole. The state of a composite system is always
expressible as a sum, or superposition, of products of states of local constituents; it is entangled if
this sum necessarily has more than one term"[23].

Wikipedia also has a clear, formal approach to this, so we will follow the same reasoning. Consider
two subsystems S1 and S2 with their corresponding Hilbert spacesH1 andH2. The space where the
composite state of these two systems ’lives’ is then spanned by the tensor product of H1⊗H2. If we
fix a basis |i〉1 for H1 and |j〉2 for H2, we can have a separable state consisting of |φ〉1 =

∑
i c

1
i |i〉1

and |ψ〉2 =
∑
j c

2
j |j〉2. The most general state in H1 ⊗H2 is

|Φ〉 =
∑
i,j

c1,2i,j |i〉1 ⊗ |j〉2 . (2)

This state is entangled (non-separable) if there is at least one coefficient for which c1,2i,j 6= c1i c
2
j .

Suppose we have the state

|Ψ〉12 = 1√
2

(|1〉1 ⊗ |0〉2 − |0〉1 ⊗ |1〉2) (3)

where |1〉 can for example be spin up along the z direction and |0〉 spin down along the same
direction. We can not assign to either system 1 or system 2 a definite pure state in this entangled
state, until we perform a measurement on the system, forcing it to be in either of the two states.
The full state |Ψ〉12 is in a 100% pure state, but neither of the components separately are. The only
full description of the state, is the description of all the components relative to each other.

Suppose we performed a measurement on system 1 which would give the outcome |1〉 along an
axis, the measurement outcome for system 2 is certain to be |0〉 along the same axis. Even if the
two systems are separated by a space-like interval, and measured subsequently before any signal
could be exchanged between them, the results will always be that the two measurements will give
opposite results!

3



2.3 Quantum information

Several times in this thesis we will refer to quantum bits or for short: qubits. These are the
quantum analogue for the classical bit, and are the smallest possible unit of quantum information.
Qubits are always two state systems, and can be for example the vertical/horizontal polarization
of a photon, or spin up/down of a particle. The crucial difference with the classical bit, is that a
classical bit is in only one of the two states at once, whereas a qubit can be in a superposition of
states. We can express this more formally with an example for a spin up/down particle, where we
have used the same notation as in section (2.2) for the spins:

|ψ〉 = α |0〉+ β |1〉 . (4)

The wavefunction ψ here represent a qubit, with probability α2 to be spin down, and β2 to be spin
up. Clearly, equation (3) is an entangled state of two qubits.

2.4 The density matrix

A construction concerning entanglement is the density matrix, which gives insight into the quantum
state a system is in. It can be used to describe pure and mixed states, but there are fundamental
differences between the two. A mixed state is a statistical ensemble, where we have only partial
knowledge about the state of the system. In case of a mixed state, the eigenvalues of the density
matrix give the probability for the system to be in the corresponding state. In a pure state, we have
full knowledge over the system; we know exactly in which state it is in. In this case, all eigenvalues
of the density matrix of the full system are equal to zero except one. The formal definition of the
density matrix is

ρ =
∑
i

pi |ψi〉 〈ψi| (5)

where the coefficients pi are non-negative probabilities which add up to one, and the |ψi〉 are
orthonormal states. For all states the trace of the density matrix equals unity, however only for
pure states, Tr(ρ2) = 1. In case of a mixed state: Tr(ρ2) < 1.

Example: Bell state
To illustrate the theory of the density matrix with an example we will use the Bell state |Ψ〉 =
1√
2

(|00〉 + |11〉), where the state |00〉 is the direct product |0〉1 ⊗ |0〉2. The factor in front of the
states is a probability amplitude rather than a probability, where the difference between the two
is that probability amplitudes can interfere with each other, whereas probabilities can not. To be
clear, it is a fundamentally different state than the mixed state with probability 50% for |00〉 and
50% for |11〉, which is just an example of our ignorance of the system. The difference is subtle
and may be very elusive. Nevertheless, performing a measurement on either the mixed or the
entangled state would give |00〉 or |11〉, both with probability 50%.

In the basis |00〉, |10〉, |01〉, |11〉, the density matrix takes the form (using equation (5))

ρ = |Ψ〉 〈Ψ| = 1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 (6)

It is easily verified that Tr(ρ2) = 1, as expected for a pure state. Suppose we would do a measure-
ment on the system and collapse its superposition, the results (as can be seen from the two diagonal
terms of the matrix) would be 50% to collapse to |00〉 and 50% to collapse to |11〉. We also notice
the off-diagonal terms of the matrix, which represent the coherence between the states.

The density matrix also has a use in calculating the entropy of a given system, which will be briefly
explained next.
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2.5 Von Neumann Entropy

We define the von Neumann entropy to be

S ≡ −Tr(ρ log ρ). (7)

The von Neumann entropy provides information on how mixed a state is, and also on how much
information is available. For all pure states S = 0, which is intuitive since we know exactly in what
state the system is, and all information about the state is available to us. When we calculate the
von Neumann entropy of (6), we see that indeed2 S = 0 for this pure state. If S > 0, the state is
mixed.

Suppose we only have partial access to a system, say subsystem A, and the total system is A+B
which is pure. We can define the reduced density matrix for subsystem A, as the partial trace over
the full density matrix:

ρA ≡ TrBρ (8)
or equivalently:

ρA,ij =
∑
a

〈i, a|ψ〉 〈ψ|j, a〉 (9)

where the sum a is over the basis of states of system B.

It is now natural to define the entanglement entropy, which is just the von Neumann entropy of
subsystem A:

SA = −Tr(ρA logρA). (10)

We can calculate the reduced density matrix for our previous Bell state |Ψ〉 = 1√
2

(|00〉+|11〉):

ρA =

1
2 0

0 1
2

 .

The corresponding entanglement entropy is SA = log 2. As we can see, while ρ (of system A+B) is
in a pure state, when we measure subsystem A, it behaves as a mixed state! We can then understand
that the entanglement entropy measures how much subsystem A and B are entangled, and how
much information we are missing of the total system when we only have access to subsystem A,
which are basically two equivalent expressions.

3 The Unruh effect and Hawking radiation

Until the paper posted by Stephen Hawking, black holes were really black and nothing crossing the
event horizon would ever come out again. In 1974, this picture changed dramatically by Stephen
Hawking. By his calculations, a black hole actually radiated, and the Hawking radiation, i.e. the
radiation emitted by a black hole, was exactly thermal, with no correlations between the separate
radiation what’s however.

The calculations of Hawking were made after findings of P.C.W. Davies, John Fulling and W.G.
Unruh [5] [6] [22], that a uniformly accelerated observer measuring the Minkowski vacuum actually
sees a thermal bath, where an inertial observer would see none (i.e. just the Minkowski vacuum).
This is called the Unruh effect.

The derivation of the Unruh effect has its roots in Quantum Field Theory, or QFT for short. In
QFT, a free field is described by an infinite set of harmonic oscillators, one for each point in space.
Each harmonic oscillator vibrates at its own frequency with a different amplitude. Excitations of
this field are interpreted as particles, and there are different fields for different kinds of particles.
A detailed derivation of the Unruh effect is given in [4], but we will skip some intermediate steps,
since the full derivation is quite tedious.

To continue, we first need to make an introduction into Rindler space, which is used to describe
Minkowski space observed by a uniformly accelerated observer.

2Here we have used the result that 0 · log(0) = 0
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3.1 Rindler space

Because of the restriction on the cosmic speed limit, a uniformly accelerated observer (hereafter
called Rindler observer) necessarily undergoes hyperbolic motion. To be more precise, the shape
of the hyperbola is given by the following formula:

x2 − t2 = 1
α2 (11)

where x and t are the space and time coordinates in the inertial frame, and α is the proper
acceleration, i.e. the constant acceleration as felt by the Rindler observer. A spacetime diagram
of a Rindler observer in Minkowski space looks as follows:

Figure 1: Spacetime diagram for a Rindler observer; the sections in between the light cone rays
(R and L) are causally disjoint universes for the Rindler observer called Rindler wedges. These
sections have an event horizon similar to a black hole.

Here, ξ and τ are the proper distance and time, respectively, as observed by the Rindler observer.
As one can see, straight lines through the origin correspond to time slices for the Rindler observer
(τ), and hyperboles are points of constant position for the Rindler observer (ξ, one shown bold).
What this implies for space and time observations of the Rindler observer is interesting enough,
but will not be treated here because it is not part of the subject. What is relevant here, is that
a Rindler observer has an event horizon (as shown in figure 1). From figure 1 we can see that
the signal from "a" can never reach the Rindler observer in the Rindler wedge "R" as long as he
is accelerating. As a consequence the light cone rays act as an event horizon for the accelerated
observer. This means that any constantly accelerating observer has an event horizon similar to a
black hole event horizon; observers in Rindler wedge R are not able to send a signal to L and vice
versa, R and L are causally disjoint universes.

For the following section we need to define the metric in Rindler space. To derive this we make a

substitution and define the new coordinates to be ρ = eaξ

a
and η = aτ , where a is the acceleration

as seen by the inertial observer (which is not constant!). We can explicitly write the coordinates
of the inertial observer in terms of ρ and η as

x = ρ cosh η, t = ρ sinh η. (12)

Equation (12) then gives us the following metric for the right Rindler wedge:

ds2 = e2aξ(dτ2 − dξ2) = ρ2dη2 − dρ2. (13)
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We will use this result in the next section. Also, in appendix B we see that this metric is equivalent
to the Schwarzschild metric near the event horizon of a black hole (equation (50)), giving a more
formal statement of the equivalence principle.

3.2 Plane waves in Rindler space

To study the quantum field in the Rindler observer’s spacetime, we first solve the Klein-Gordon
equation for a massless scalar field, which is given by

�φ = 0. (14)

The corresponding equation for the field is then given by:

φ(x, t) =
∫ dk

(2π) 1
2

1√
2ωk

(a†ke
ik·x + ake

−ik·x) (15)

where the exponent is written in four-vector notation: k · x = ωkt − k · x, and the operators a†k
and ak are creation and annihilation operators respectively. Using the metric in equation (13), we
arrive at a similar equation for the field in the right Rindler wedge (in Rindler coordinates):

φR(ξ, τ) =
∫ dk

(2π) 1
2

1√
2ωk

(b†ke
iωkτ−ik·ξ + bke

−iωkτ+ik·ξ). (16)

The equation for the field in the left Rindler wedge is of the same form, with coordinates (ξ,τ)
→ (ξ̄,τ̄). When restricting to one of the Rindler wedges, the other wedge will be inaccessible for
the accelerator, therefore we only have to look at one wedge at a time to calculate the effects.
Together, the left and right Rindler wedge modes form a complete set, where the modes can be
expanded into future wedge (F) and past wedge (P) by time evolution (figure 2).

Figure 2: Right (R), left (L), future (F) and past (P) wedges of Rindler space. Together they
form a complete set of Minkowski space. The lines u,v=const. are two example lines of light cone
coordinates, where u ≡ t− x and v ≡ t+ x.
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We write equation (16) in a more intuitive form by observing that ωk = |k| for the massless scalar
field, and write it as

φR(ū, v̄) =
∫ ∞

0

dωk

(2π) 1
2

1√
2ωk

(b†ke
iωkū + bke

−iωkū + b†−ke
iωkv̄ + b−ke

−iωkv̄) (17)

where we have introduced light cone coordinates in the Rindler frame:

ū ≡ τ − ξ, v̄ ≡ τ + ξ.

In these coordinates, the Klein-Gordon equation takes on the form ∂2φ

∂ū∂v̄
= 0, and this invites

us to write the solution as a sum of two independent parts; a left-moving wave along v̄ and a
right-moving wave along ū. This is clearly seen from equation (17), where we have creation and
annihilation operators for both left- and right-moving parts (creation/annihilation operators for
±k).

Since the left- and right-moving waves do not interact with each other, we write φ as

φ(ū, v̄) = φ−(ū) + φ+(v̄) (18)

where φ− are the right-moving waves and φ+ are the left-moving waves. These do not interact so
we can do our calculations for only one part. The complete set of left-moving modes are then

φ+(v̄) =
∫ ∞

0

dωk

(2π) 1
2

1√
2ωk

[Θ(v̄)(bR†−ke
iωkv̄ + bR−ke

−iωkv̄) + Θ(−v̄)(bL†−ke
iωkv̄ + bL−ke

−iωkv̄). (19)

where Θ(x) is the heaviside function:

Θ(x) =
{

1 if x > 0
0 if x < 0

The creation and annihilation operators satisfy

[bRk , b
R†
k’ ] = [bLk , b

L†
k’ ] = δ(k− k’) (20)

with all others vanishing, and we define the Rindler vacuum |0〉R as

bRk |0〉R = bLk |0〉R = 0 ∀k. (21)

Θ(±v̄) are actually integrals, which can be solved by finding the Bogoluibov coefficients, which we
will not calculate in this thesis, but the results will be discussed in the next section.

3.3 The Unruh effect

An interesting result occurs when we want to describe the annihilation operator of the Rindler
observer (bk) in terms of creation/annihilation operators for the inertial observer in the Minkowski
vacuum (a±k ). To do this, we need to perform a Bogoluibov transformation, which is a rather
involved calculation. It is qualitatively done in [4], and we will not go over the details here.
The result that follows from the calculation is, that the Rindler annihilation operator is a linear
combination of annihilation and creation operators of the inertial observer, such that bR,Lk |0〉M 6= 0.
This means that the Rindler observer will see particles when measuring the Minkowski vacuum,
whereas the inertial observer sees none!

These kind of particles which are frame-dependent, are called virtual particles. They are responsible
for the Unruh effect, which can be calculated as follows. The integrand in (19) is proportional
to

f(v̄)[bRk − e
−πω
a bL†k ] + f̄(v̄)[bLk − e

−πω
a bR†k ] + Hermitian conjugate

where the functions f(v̄) and f̄(v̄) are positive frequency solutions in Minkowski space. Therefore,
their corresponding operators annihilate the Minkowski vacuum:

(bRk − e
−πω
a bL†k ) |0〉M = 0 & (bLk − e

−πω
a bR†k ) |0〉M = 0. (22)
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These two equations, together with their commutation relations, allow us to solve for the expecta-
tion value of the particle number operator in Minkowski space. We discretize the energy levels of
the oscillators and arrive at the following equation:

M
〈0| bR†ωi b

R
ωi |0〉M =

M
〈0| bL†ωi b

L
ωi |0〉M = 1

e
2πωi
α − 1

(23)

The last part of this equation is recognized as a Bose-Einstein distribution:

〈nBE〉 = 1
e
E
T − 1

with E = ωi and T = α
2π (α the constant proper acceleration). So when an accelerating observer

measures the vacuum |0〉M , it actually sees particles of energy ωi and measures a temperature
of

TUnruh = α

2π . (24)

This result was first obtained by W. G. Unruh [22] and will be used in the next section to calculate
the temperature of a black hole.

Another important result from (23), is the observation that the number of ωi particles in the right
Rindler wedge, equals the number of ωi particles in the left Rindler wedge (which is still in the
Minkowski vacuum). This implies that we can write the Minkowski vacuum as

|0〉M =
⊗
ωi

Cωi

∞∑
ni=0

e
−niπωi

α
1
ni!

(bR†ωi b
L†
ωi )

ni |0〉R . (25)

A remarkable result: the Minkowski vacuum is a specific, entangled state. Modify the state in
equation (25) and you are no longer in the Minkowski vacuum. It is probably more obvious from
a following expansion for a certain ωi:

|0〉M = |0〉R + e
−πωi
α bR†ωi b

L†
ωi |0〉R + 1

2!e
−2πωi
α (bR†ωi b

L†
ωi )

2 |0〉R + 1
3! ... (26)

= |0〉R + e
−πωi
α |1, R〉 ⊗ |1, L〉+ 1

2!e
−2πωi
α |2, R〉 ⊗ |2, L〉+ 1

3! ... (27)

where in the last line we have used notation |n,R〉 ⊗ |n,L〉 for n ωi particles in the right and left

Rindler wedges respectively. Equation (26) consists of creation operators bR†ωi ,b
L†
ωi , which always

come together, and hence the ωi particles in the left and right Rindler wedge are necessarily
entangled.

This result is also important for understanding the Firewall in section (4.3). If we leave out a term
in equation (26), we are no longer in the lowest energy state, the Minkowski vacuum, but we are
in an excited state of the Minkowski vacuum.

3.4 Hawking radiation

To go to Hawking radiation from the Unruh effect is a small step. We will arrive there by means
of the equivalence principle, but it can be derived without mentioning the Unruh effect or the
equivalence principle. The equivalence principle is a local statement, it states that inertial mass and
gravitational mass are equivalent; there can be made no distinction between a uniform accelerated
frame and a frame "feeling" a constant gravitational force, locally. "Feeling" implies that the
observer is not in free-fall, since then an observer would measure no gravitational effects (which
would be the weak equivalence principle).

From equation (24), we can solve for the temperature of a black hole. Assuming acceleration and
gravity can be thought of as the same thing, we solve for the acceleration near the horizon. The
corresponding gravitational acceleration at the horizon is

α = 1
4M
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as seen by an observer at infinity, where M is the mass of the black hole. Hence for an observer
at infinity (substituting α in equation (24)), we arrive at a Hawking temperature of a black hole
(restoring the SI-units) of:

TH = ~c3

8πGMkb
. (28)

The Hawking radiation emitted from a black hole is then the same as radiation emitted from a
blackbody with a temperature TH . One can directly observer the strange relationship between the
temperature and mass of a black hole: as a black hole gets more massive, the temperature drops.
This feels counter-intuitive; one would expect that energy falling into a black hole would raise the
temperature, but instead, it drops.

With result of Hawking (equation 28), we can set up a thought experiment. Consider an observer
hovering just outside the event horizon, with acceleration α = 1

4M . Then this observer will see
a thermal bath with a temperature corresponding to (28). These particles are actually virtual
particles, just as for the Rindler observer, but for an inertial observer, they on average annihilate
with each other just as quickly as they form. we can also see from equation (27) that as α → 0,
the factors in front of the states |ni, R〉⊗ |ni, L〉 become zero, hence a non-accelerating observer in
Minkowski space sees no particles.

But now let’s consider that there is an entangled qubit pair produced near the horizon, where one
of these pairs crosses the event horizon, and the other one escapes to infinity. The entanglement
is necessary since they are created from the vacuum, as we can also see from equation (25). These
particles will never be able to annihilate with each other again, and hence they are no longer virtual
particles. This is the toy model mechanism behind Hawking radiation. Because of the separation
of the qubit pairs by the black hole, the virtual particles become real particles, and even free-falling
observers would have to measure one part of the pairs. Since the particles are created from the
vacuum, and by conservation of energy, one of these particles must have a "negative energy". If
we assume we can measure the outgoing particle, which necessarily always has positive energy, the
negative energy particle is swallowed by the black hole and in this way the black hole loses mass,
and eventually evaporates.

4 The Paradox

So why do we care about this radiation? A star also radiates thermal radiation, why don’t we
worry about information loss in a star then?

Well to be precise; thermal radiation from a star isn’t exactly thermal. If we consider a star in a
pure state, and we throw something into the star, the radiation coming from the star is dependent
on what fell into the star, there are small correlations between them. Therefore, a star together
with its radiation in a pure state, will remain in a pure state, and no information is lost, even
though the information is lost to us for all practical purposes. The difference with the calculation
from Hawking is, that in his semi-classical approach, there are no correlations between the outgoing
radiation; the radiation is exactly thermal, or more formally; the density matrix is in a fully mixed
state. This means that if we considered our star in a pure state, which then collapsed to a black
hole, and in turn evaporated again until all that’s left is exactly thermal radiation, a pure state
has evolved into a fully mixed state. This violates an essential principle of quantum mechanics:
time evolution is unitary.

In this section we will first look at what we expect if we assume that unitarity is not violated, which
comes with another apparent contradiction from the strong subadditive properties of entanglement
entropy. To find a resolution, the paradox was shaped into a new form: the Firewall.

4.1 The Page curve

So if we forget about Hawking’s calculation for a minute, what do we expect then if time evolution
is unitary. A useful way to look at this is by means of entropy of the (sub-) system(s). An analysis
is done by Don N. Page in [14], where an entropy curve is plotted for a black hole, assuming
unitarity is not lost. The curve is plotted in figure 3.
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Figure 3: Page’s suggestion for the black hole evaporation process (black dotted curve). Radiation
entropy is plotted versus number of radiation quanta emitted. The red dotted line is the calculation
done by Hakwing, as one can see SH keeps increasing until it reaches it maximum where all the
quanta are emitted from the black hole. In Page’s analysis [15], the maximum entropy occurs at
the "Page time", where half of the total number of particles of the black hole is radiated. After the
Page time, the entropy decreases to zero by Page’s analysis.

In this toy model for a black hole, we look at each quanta emitted from the black hole, and calculate
the entanglement entropy of the subsystems. The state starts out in a pure state (black hole), and
ends in a pure state (all the radiation emitted until black hole is completely evaporated) if we
assume unitarity. From section (2.5) we know the entropy of a pure state is zero, so the entropy at
the start where no quantum is radiated (complete black hole), equals the entropy of the complete
set of radiated quanta at the end, which is equal to zero. In the stages in between, we can only
calculate the entanglement entropy by the reduced density matrix, since we only have access to
the part of the system which is no longer inside the black hole (the radiation).

If we assume that at each step one qubit falls into the black hole and the other escapes to infin-
ity, we can calculate the reduced density matrix for the radiation escaping the black hole, with
corresponding entanglement entropy Sr, treating the black hole and the radiation as a bipartite
system. It can be shown3 that this entropy equals the entanglement entropy of the black hole at
each step, so Sbh = Sr for every step in the process. This is why the Page curve must be symmetric
in the line N/2, where N is the total number of particles emitted by the completely evaporated
black hole. If we assume the emitted particles are qubits, the entropy of n emitted particles is
Sn = n log(2). Therefore the Page curve scales in the beginning (and thus also at the end) as
Sn = n log(2), but it is expected that there are exponentially small corrections to this. These
corrections, for which an example is calculated in appendix C, are expected to play a significant
role near the peak of the curve, and would cause the curve to decrease to zero after the point of
N/2 emitted particles.

4.2 Strong subadditivity

In 1973, Elliot H. Lieb showed [10] that the entanglement entropy of quantum mechanical systems
obeyed the strong subadditivity property. We will make use of this proof, and come to another
contradiction, considering our assumptions were correct.

3A simple proof is done in Appendix A
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Figure 4: The process of Hawking radiation visualized. B,C represent a qubit pair created near
the horizon. "A" represents all of the Hawking radiation emitted in the earlier stages. If we
consider strong subadditivity to be true, and the page curve to be true, we come to an apparent
contradiction.

From (25) we have learned that the Minkowski vacuum is filled with quantum fluctuations (virtual
particles), which on average cancel for an inertial observer. If we imagine a qubit pair (B,C, figure
4) is created near a black hole, the pairs can be separated by the black hole to never annihilate
again. One part of the system falls into the black hole, and the other escapes to infinity as Hawking
radiation. In the following example we will denote all the radiation emitted by the black hole until
the point of consideration by A, and define B,C to be the qubits produced near the horizon, which
are in an entangled state.

Strong subadditivity states that

SAB + SBC ≥ SABC + SB , (29)

where we have used the notation that SABC ≡ S(ρABC). If we assume our qubits B,C to be in
our previously discussed Bell state |Ψ〉 = 1√

2
(|00〉+ |11〉), we know from section (2.5) that

SBC = 0. (30)

From this follows that SABC = SA, and we also have SB = log(2), so this leaves us with the
following equation for the entropy of the subsystems:

SAB ≥ SA + log(2). (31)

4.3 The Firewall

A proposal was made in 2013, that assuming the weak equivalence principle4 holds, and conserving
unitarity together, led to a so called "Firewall" [2]. With the two previous sections in mind we will
discuss the main point of this argument.

If we look at figure 3, we can set up an equation for the two subsequent points at the end of the
curve. Since we know the slope of the curve at those two points is ≈ log(2), the equation reads as
follows:

Sn+1 − Sn = −log(2). (32)

If we now look at the meaning of the two entropies, we come to the conclusion that Sn+1 is the
entanglement entropy of the black hole radiation with one qubit more than Sn. If we phrase it in
terms of systems A and B, Sn = SA and Sn+1 = SA+B = SAB . This gives us the relationship

SAB = SA − log(2), (33)
4The weak equivalence principle states that a freely falling observer measures no gravitational effects, locally
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a contradiction with (31)!

The only thing we’ve assumed for arriving at (31), was that B and C were entangled with each
other, and that the Hilbert spaces of A,B,C can be treated as separable subsystems. Yet when
assuming unitarity is conserved in our black hole, we come to a contradiction.

To be more precise, we believe that from the creation of B and C out of the vacuum, they are
nearly maximally entangled. This means that these two systems are most highly entangled with
each other. Now from AdS/CFT correspondence, we have strong evidence suggesting that unitarity
is conserved, so we believe that the Page curve is indeed correct. Perhaps our assumption that
B and C are nearly maximally entangled with each other was incorrect, and let’s inspect this
further.

To see what happens when we alter the entanglement we start by calculating what in QFT is called
the correlation function:

〈φ(x, t)φ(y, t)〉 − 〈φ(y, t)〉〈φ(x, t)〉. (34)

Here we have used short-hand notation for the expectation value in the Minkowski vacuum 〈0|φ(x, t) |0〉 =
〈φ(x, t)〉. This function provides information on the entanglement between separate points of the
field: if the value of the function is equal to zero, no entanglement exist between the points, other-
wise, the function measures the amount of entanglement between the points. We can evaluate the
value of the function for two space-like separated points in spacetime. Consider two points x,y at
time t = 0. It is easily shown that 〈φ(x, 0)〉 = 〈φ(y, 0)〉 = 0. After some calculation, one can show
that the other part of the correlation function satisfies

〈φ(x)φ(y)〉 ∝ 1
‖x− y‖2

(35)

where we have omitted the time component. From this equation we can see that nearby points
in space are highly entangled with each other, whereas points further away are less entangled. In
fact this entanglement is necessary to keep the vacuum "smooth", i.e. there are no large gradients
in the field when translating through the Minkowski vacuum.

When these systems B,C are maximally entangled with each other, they can not be entangled
with another system. This is called the monogamy of entanglement. It is a proven law of quantum
mechanics which states that if two systems are maximally entangled with each other, they can not
be entangled to a third system at all. But to have B and C maximally entangled gives unwanted
effects, because we also need the Hawking radiation to be entangled with each other and the
black hole to restore the purity of the Hawking radiation. If B and C are maximally entangled,
they can not be entangled anymore with the earlier radiation emitted from the black hole or the
black hole itself, and hence can’t restore the purity of the state (and hence does this not conserve
unitarity).

If we assume that the maximal entanglement between B and C is somehow destroyed, equation
(31) might not be violated. But the absence of entanglement of B and C comes again with another
problem: a "Firewall". In the absence of entanglement, we are no longer in the Minkowski vacuum
but rather in a state of excitation (also clear from equation (25)). To see this in another way,
suppose we unentangle the points near the horizon of the black hole. Then, neighboring points of
the field are no longer correlated, and can have a large gradient at the horizon. These gradients
can lead to high energies at those points. We can see this from the Hamiltonian of the scalar field
φ:

H =
∫

d3x
1
2 φ̇

2 + 1
2(∇φ)2 + m2

2 φ2. (36)

The Hamiltonian will increase proportional to the gradient of the field squared. So if we destroy
the entanglement between B and C, the gradient of the field φ at the horizon becomes large,
and it is calculated that this will create an enormous amount of energy located at the horizon.
Any observer passing through the horizon will be incinerated. This violates the weak equivalence
principle, which states that a free falling observer will measure Minkowski space (locally), and we
have arrived at another paradox: the Firewall.

To summarize: we expect that B and C are nearly maximally entangled with each other. For the
purity of the state of the black hole to be restored, we need them to also be highly entangled with
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the earlier radiation of the black hole. This violates the monogamy of entanglement. But if B
and C would not be maximally entangled with each other, there will be an enormous amount of
energy located near the horizon, and anything passing through will be burned to a crisp, violating
the weak equivalence principle.

5 A promising resolution

In the next section we will discuss a big step towards a solution with its roots lying in AdS/CFT
correspondence and black hole complementarity. It is shown by [14] [16] that exponentially small
corrections to the density matrix of the black hole radiation can restore the purity of the state.
Also, they advocate that the Hilbert spaces of the previously discussed systems A,B,C may not be
treated as independent subsystems, meaning the strong subadditivity theorem is invalid for use in
the previous discussion.

5.1 Black hole complementarity

Black hole complementarity, or simply BHC, is a conjectured solution by Leonard Susskind and
Larus Thorlacius, building on ideas of Gerard ’t Hooft and John Preskill [18] [20] [21]. It was
proposed before the Firewall proposal, but we will see that adjusting BHC, giving up locality, may
dismiss the (Firewall) paradox.

BHC can be formulated by a set of three postulates. They are formulated as follows:

P1. The process of formation and evaporation of a black hole, as viewed by a distant observer,
can be described entirely within the context of standard quantum theory. In particular, there
exists a unitary S-matrix which describes the evolution from infalling matter to outgoing
Hawking-like radiation.

P2. Outside the stretched horizon of a massive black hole, physics can be described to good ap-
proximation by a set of semi-classical field equations.

P3. To a distant observer, a black hole appears to be a quantum system with discrete energy levels.
The dimension of the subspace of states describing a black hole of mass M is the exponential
of the Bekenstein entropy S(M).

These postulates, which can be found in [18], are synonymous to stating that for a black hole: (P1)
Purity is conserved by the Hawking radiation, (P2) Outside the horizon, semi-classical gravity is
valid and (P3) Black hole thermodynamics is valid. One can argue that there is also a fourth
postulate, since it is believed that the weak equivalence principle holds: the global event horizon
of a very massive black hole does not have a large curvature, energy density, pressure, or any
other invariant signal of its presence: an observer crossing the horizon doesn’t notice anything
unusual.

The idea of black hole complementarity is that you can talk about the interior of a black hole, or
the exterior of a black hole, but not about both at the same time. To the outside observer, the
event horizon would look like a "hot membrane", where information is encoded onto the horizon and
would come out, scrambled, with the Hawking radiation. For the infalling observer, it would look
like the information is just passing the horizon without "drama"5, and will eventually (unavoidably)
hit the singularity.

According to BHC, information is passing through the horizon, and gets reflected at the horizon.
More formally this means that the Hilbert spaces of the bit falling into the black hole and going
out with the radiation should not be treated as separate subsystems, but are rather the same
Hilbert space. This at first glance seems to violate the no-cloning theorem, which states that
information can not be copied at a fundamental level, and is a consequence of the linearity of
quantum mechanics. However, since there exists no observer which can detect both copies of the
information on the inside of the black hole, and on the outside, there is not a contradiction they
propose (it is shown in [11] that one can construct "nice slices" (time slices), where the information

5"No drama" is synonymous to saying the weak equivalence principle holds when crossing the event horizon
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would be present at two places at the same time. However, to construct an observer that is able to
see both copies of the information, requires exactly a breakdown of effective field theory6).

5.2 AdS/CFT correspondence

The set of BHC postulates, were under first assumptions shown to be mutually inconsistent (the
Firewall) [2], but the ideas were still intriguing. In 1997, before the Firewall proposal, another
important discovery was made largely from trying to solve the information paradox: Juan Malda-
cena discovered AdS/CFT correspondence. AdS/CFT correspondence describes gravity in a sort
of spacetime box, namely Anti-de Sitter (AdS) space, which is a space with negative curvature.
Maldacena showed [12] that the description of this "box", with gravity and which lives in d + 1
dimensions, is equivalent to a description of a Conformal Field Theory (CFT) in d dimensions,
without gravity. The dual picture between the two is then holographic; the CFT projection on
the boundary describes the bulk of spacetime in the interior (see figure 5); locality is extremely
violated. For an introduction on the AdS/CFT correspondence we refer the reader to [1].

The CFT which lives on the boundary of the surface looks like Quantum Chromodynamics; a
strongly interacting theory with bound states. Each bound state on the surface corresponds to a
particle in the interior space, only instead of the three "color flavors" of QCD, we now have N � 1
color flavors. It is approximated that for the boundary of our universe, one needs N ≈ 1060 color
flavors.

Figure 5: A visualization of the holographic duality between the CFT states on the boundary and
the equivalence with states on the interior. Strings of the same thickness interact strongly with
each other compared to strings of different thicknesses. There are N � 1 different colors on the
boundary which can be found in bound states, corresponding to particles in the interior. The
figure was taken from [13].

There is both analytical evidence from supersymmetric theories, as well as simulative evidence
6Effective field theory (EFT) is a type of approximation, where degrees of freedom at a lower length (higher

energy) scales are ignored
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for the AdS/CFT correspondence. For example, what in the CFT corresponds to a Quark Gluon
Plasma (QGP), is believed to correspond to a black hole in the AdS interior. From [3] we know
that a black hole of surface area A has an entropy of S = A

4 , and indeed calculation and simulation
show that the QGP in CFT has exactly the same entropy, a really strong result. One can argue
that the current universe we live in does not correspond to an Anti-de Sitter universe, but rather
a de Sitter universe. We consider this not to be a conflict, since the curvature of the universe is
a global feature, and black holes are local objects which do not depend on the global curvature of
the universe7. Especially since our universe has a very small positive curvature, and we can let
the negative curvature of the AdS space go to (very close to) zero, leaving just a tiny difference in
(global) curvature.

5.3 A step towards the final words of the paradox

S. Raju and K. Papadodimas [16] show in their paper a possible way to construct the interior and
exterior of a black hole without dealing with the previously discussed conflicts with entanglement,
the Firewall or the weak equivalence principle. The results are based on black hole complementarity
and extensive calculation in AdS/CFT correspondence. The entanglement between the infalling
and outgoing bit is of the form we need for the weak equivalence principle to hold (for the horizon
to be "smooth"), and is also able to restore the purity of the total state of the black hole.

More precisely they showed that exponentially small corrections to the density matrix of the
Hawking radiation can restore the unitarity. In formal terms, this can be expressed as

ρpure = ρmixed + e−Sr ρcorr (37)

where Sr is the entropy of the black hole radiation and the correction matrix has entries of at most
order one. This implies that a pure state is just an exponentially small inch away from a totally
mixed state.

For the entanglement between the infalling and outgoing bit to be correct the correct one to satisfy
(25), they construct a state dependent operator in the interior of the black hole, which is dependent
on the microstate of the corresponding black hole. For a black hole one has possible microstates
on the order of eSBH where SBH = A

4 = πR2
s, leaving

Ω ≈ e2·1045R2
s (38)

microstates, an enormous number for the amount of configurations of a black hole with radius
Rs. Assuming this thermodynamic approach to a black hole is valid, these microstates will have
random entanglement between them if we assume the total black hole to be in a pure state (or
equivalently: we can look at the pure state CFT quark-gluon plasma in thermal equilibrium on
the boundary, which also has random entanglement between the different parts). How then can
all these different microstates, with different entanglements, lead to the exact entanglement of
the vacuum in equation (25)? The answer, according to Raju and Papadodimas, lies in a state
dependent operator. This operator is dependent on the specific state of the black hole, and will
always produce the entanglement necessary for (25) to be true.

Also, they show that in their construction it is invalid to assume the Hilbert spaces of the outgoing
radiation and the black hole can be treated as independent subsystems, just as in black hole
complementarity. This means that the interior and exterior of a black hole are not completely
independent systems, hence the strong subadditivity conflict vanishes, and leaving the Page curve
to be a possible option for the system to restore its unitarity.

7There are, however, black holes possible in AdS which are not possible in a de Sitter universe (e.g. eternal black
holes), but we will not go into the details of that here, and can be safely disregarded for our research purposes
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6 Conclusions

We have discussed two versions of the black hole information paradox: the loss of information and a
Firewall. Hawking’s semi-classical calculation of thermal black hole radiation has been shown to be
inconsistent with the calculations from AdS/CFT correspondence: exponentially small amounts of
information can be carried out by the outgoing radiation. This insight together with the postulates
of black hole complementarity seemed to give rise to another inconsistency, a Firewall, which was
the result of the monogamy of entanglement, and violates the weak equivalence principle. Then,
in 2012, it was shown that combining black hole complementarity and AdS/CFT correspondence
could solve this entanglement problem by constructing a state dependent operator in the interior
of a black hole, dismissing the paradox.

There are however still questions remaining to be solved about black holes and their interiors.
For example the intriguing question: what exactly happens at the singularity? Solving these will
probably give us new insights, just as the information paradox has given us. Perhaps if we can
understand better how the CFT translates to the AdS picture (in AdS/CFT correspondence), we
can solve these intriguing questions. This looks like an important development to be made in the
future, and will probably not only help us understand black holes better, but also cosmology (the
big bang), quantum gravity, and probably more as well.
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A Proof SA = SB, bipartite pure state

The following theorem is a very useful tool for analyzing pure state systems and their subsystems’
entanglement entropies, and follows directly from what is called Schmidt decomposition. We start
with a system AB in a pure state |ψ〉AB . Then the theorem says that for any bipartite system in
a pure state, we can write |ψ〉AB as

|ψ〉AB =
∑
i

λi |ui〉A ⊗ |vi〉B (39)

where |ui〉A and |vi〉B are orthonormal states of subsystems A and B respectively. The λi sat-
isfy ∑

i

λ2
i = 1,

where λi ∈ [0, 1]. The sum is at most the dimension of the smallest Hilbert space HA or HB , which
can intuitively be seen from regarding subsystem A as a small system: we pick a basis |ui〉A, and
each of these states will be correlated to a specific state in subsystem B.

Proof:
We fix an arbitrary orthonormal basis

∑
i |i〉A for subsystem A and

∑
j |j〉B for subsystem B. In

this basis we can express |ψ〉AB as

|ψ〉AB =
∑
i,j

ci,j |i〉A ⊗ |j〉B (40)

where ci,j are matrix elements of some matrix which we will call C. These elements can be written
(by singular value decomposition) in some basis u′k,v′k as

ci,j = 〈i|C |j〉 = 〈i| (
∑
k

αk |u′k〉 〈v′k|) |j〉 =
∑
k

αk 〈i| |u′k〉 〈v′k| |j〉 . (41)

Filling this in in equation (40) gives us the result:

|ψ〉AB =
∑
i,j

(
∑
k

αk 〈i| |u′k〉 〈v′k| |j〉) |i〉 ⊗ |j〉 (42)

=
∑
k

αk(
∑
i

〈i|u′k〉 |i〉A)⊗ (
∑
j

〈v′k|j〉 |j〉B) (43)

=
∑
k

|αk| eiθk |u′k〉A ⊗ |v
′∗
k 〉B (44)

=
∑
k

λk |uk〉A ⊗ |vk〉B . (45)

This completes the proof, where |uk〉A = eiθk |u′k〉A, |vk〉B = |v′∗k 〉B and λk = |αk|. The reduced
density matrices ρA and ρB then take on the form

ρA =
∑
i

λ2
i |ui〉 〈ui| ρB =

∑
i

λ2
i |vi〉 〈vi| (46)

and from these equations we can see that the reduced density matrices of A and B have the same
non-zero eigenvalues. This leads to the corresponding entanglement entropies of:

SA = −Tr(ρA log ρA) = −λ2
i log λ2

i = −Tr(ρB log ρB) = SB (47)

which is what we wanted to show.

19



B Comparing the black hole metric with the Rindler met-
ric

In section (3.1), we discussed uniform acceleration. According to the equivalence principle, this was
equivalent to a gravitational field (locally). We will show this more mathematically by analyzing
the metric of a black hole near the horizon. The black hole metric (1) was given by

ds2 = (1− 2M
r ) dt2 − (1− 2M

r )−1 dr2 − r2 dΩ2.

To study the near horizon effects, we start by making a substitution ξ = r − 2M such that as
r → 2M , ξ → 0. We focus on the (near horizon) points ξ << 2M . The metric (1) then takes on
the form

ds2 = ξ

ξ + 2M dt2 − ξ + 2M
ξ

dξ2 − (ξ + 2M)2dΩ2 (48)

= ξ

2M dt2 − 2M
ξ

dξ2 + (2M)2dΩ2 (49)

up to first order corrections of 1
2M . We make another substitution ρ2 = 8Mξ, and leave out the

2-sphere (of radius 2M) factor. The resulting metric is

ds2 = ρ2

16M2 dt2 − dρ2. (50)

Comparing this with the equation of an accelerated observer in Minkowski space (equation (13),
restoring dη2 = a2dτ2):

ds2 = ρ2a2dτ2 − dρ2

we see that the two metrics are in the (ρ,τ) factors locally equivalent to each other for an acceler-
ation a = 1

4M , the surface gravity of a black hole. From equation (50) it is clear that ρ measures
the geodesic radial distance for the Schwarzschild metric, but note however that there is no "ra-
dial distance" in Rindler coordinates, hence there ρ is only a valid measure along the direction of
acceleration, and we have no 2-sphere factor.

C Example calculation of corrections to the entanglement
entropy of black hole radiation

In section 4.1 we looked at the Page curve which gave insight into the entanglement entropy of
the Hawking radiation emitted by a black hole, assuming unitarity is conserved. Here we want
to show how the entanglement entropy of the subsystem of a system with N particles in a pure
state must have exponentially small corrections to the entanglement entropy of a maximally mixed
reduced density matrix. These corrections are only calculated in their magnitude, since the phases
of the corrections are random due to the random entanglement between the subsystems. We will
use the same toy model as in section 4.2, where we evaluate the first step in which the first qubit
is emitted from the black hole, and we assume the black hole to be in a typical pure state.

Consider the complete black hole to be in a pure state of N qubits. This means there are 2N
possible states for the black hole to be in. Possible states are:

|↑↑ ... ↑〉
|↓↑ ... ↑〉
|↑↓ ... ↑〉
|↓↓ ... ↑〉

.

.

.


2N states (51)
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where ↑ means spin up along our measurement axis. We fix a basis for the first qubit as fol-
lows

|↑, ...〉 = |+, j〉 (52)
|↓, ...〉 = |−, j〉 (53)

where j is a sum over all the possible combinations of the other qubits. A typical state for the
system will then be

|Ψ〉 =
2N−1∑
j

c+,j |+, j〉+ c−,j |−, j〉 (54)

where the coefficients have to satisfy
2N−1∑
j

|c+,j |2 + |c−,j |2 = 1. (55)

For a pure state, the typical entanglement between the subsystems is of the same order, hence
|c+,j | = |c−,j | = |c| ∀j. Combining this with equation (55), we can estimate the magnitude of the
coefficients, hence we have

2N∑
j

|c|2 = 1 (56)

which gives the result for |c|:
|c| = 2−N/2. (57)

Now we proceed to evaluate the elements of the reduced density matrix of the first emitted qubit.
From equation (9) we have:

ρA,ij =
∑
a

〈i, a|ψ〉 〈ψ|j, a〉 .

This gives for the off-diagonal terms of the typical state in (54):

〈↓| ρA |↑〉 = 〈↑| ρA |↓〉 =
2N−1∑
j

〈↑, j| |ψ〉 〈ψ| |↓, j〉 (58)

=
2N−1∑
j

c+,j c−,j (59)

=
2N−1∑
j

2−N (60)

= 2−(N+1)/2 (61)
where in the last step we have estimated the sum with a "random walk". The diagonal terms
satisfy:

〈↑| ρA |↑〉 =
2N−1∑
j

|c+,j |2 = 1
2 = 〈↓| ρA |↓〉 . (62)

Hence the reduced density matrix takes on the form

ρA =

 1
2 2−(N+1)/2

2−(N+1)/2 1
2

 . (63)

With this equation, we can finally calculate the corresponding entanglement entropy of qubit
A:

SA = −Tr(ρA logρA) = log(2) + ε (64)
where ε is of the order 10−12 for N = 100 qubits. Recall that we were only able to determine the
magnitude of the correction, but not the sign of the correction, meaning that the ε factor could be
negative as well. These corrections become more and more significant once there are a considerable
number of qubits analyzed.
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