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ABSTRACT

Employing the language of Lie Groups and Lie Algebras to describe confor-
mal transformations, we identify in a conformal invariant theory Noether charges
as the generators of these transformations. We establish the Goldstone theorem
and the rules for counting the number of indepedent Goldstone modes in general
for systems with and without Lorentz invariance, and discuss various theorems
regarding the counting of these Goldstone modes. We conclude with a discussion
on conformal invariance, relating the dilatation and special conformal transfor-
mation in systems for which translational invariance is not entirely broken.
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Introduction

In both mathematics and physics, the notion of symmetry can be a guid-
ance in the forming of the theory one is interested in. Varying from connections
between various algebraic structures to properties of thermodynamic systems, un-
derstanding a form of symmetry present can greatly help in describing a structure.

In this thesis, we will explore various notions of symmetry. We will discuss
continuous transformations acting on vector spaces represented by Lie Groups.
The notion of Lie Algebras will be used to study the angle-preserving conformal
transformations. We will identify the group corresponding to these transforma-
tions by identifying the corresponding Lie Algebra. A natural definition of sym-
metries in physical systems which admit a variational formalism will be found,
resulting in conserved quantities which generate these transformations.

Subsequently, we will introduce the notion of broken symmetries in the con-
text of Quantum Field Theory, resulting in massless modes known as Nambu-
Goldstone bosons, which are discussed with a focus on broken conformal invari-
ance.

Introduction - Mathematics

The mathematical basis underlying this thesis is developed in the first chap-
ter, where both Representation Theory and Lie Groups are discussed. However,
we will see that the formalism is used throughout the thesis. The first chapter
focuses on a formal development of both the language of representation theory
and Lie Groups, which explores the power of representing a group by a linear
operator on a vector space. We observe that the vague notion of a continuous
group is given a precise definition in the form of a Lie Group, unifying algebraic
and geometric aspects of symmetry transformations. The language of Lie Groups
allows us to define a transformation group in terms of tangent spaces on a man-
ifold and commutation relations of basis elements in this tangent space. The
results in chapter will be applied to the Conformal Group in the final section of
the first chapter.

Having developed the language of Lie Groups, we will apply their tools to
physical systems which admit a variational formalism in terms of the Lagrangian
and the action, leading to a natural notion of symmetry and specific Lie Algebra
through Noether’s Theorem. We will see that various forms of symmetries will
lead to Goldstone bosons in the language of Quantum Field Theory. Exploring
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relations between the various generators of the conformal group will translate in
theorems regarding the number of this type of bosons.

Introduction - Physics

The Lagrangian formalism, equivalent to the laws of Newton at the classical
level, is the most powerful tool when studying the dynamics of (quantum) field
theories. Symmetry is easily defined as invariance of the corresponding action
S =

∫
d4xL, leading to the celebrated theorem by Emmy Noether which relates

these symmetries to conserved currents and charges. We will see that precisely
these charges will generate the symmetry transformations. A formal treatment of
these transformations and their generators as manifolds equipped with a group
structure is given in terms of Lie Groups and Algebras in the first chapter.

In the second chapter we will see that symmetry breaking at vacuum states in
QFT will result in a particular massless boson (the Nambu-Goldstone) bosons.
We will review existing theorems on (the counting of) these bosons for both
Lorentz invariant and non-invariant theories.

The last chapter will be dedicated to the conformal symmetry group. This
group naturally arises as the symmetry group of a free (in the sense of no charges)
theory of electromagnetism and is an extension of the Poincaré group. The con-
formal symmetry is also of major importance in contemporary theories of gravity
and electroweak interactions.
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Chapter 1

Symmetry Groups, Actions and
Representations

In order to arrive at a thorough treatment of various symmetries, a motiva-
tion for and introduction to the language of representation theory of Lie Groups
is given in this chapter. Subsequently a classification of various symmetries and
their representations will be given. We will give an in-depth treatment of confor-
mal symmetry and scale invariance in the last section of this chapter.

Note: Throughout this and the following chapters, we assume an undergrad-
uate level of knowledge in group theory. For readers to whom this subject is
unknown, we refer to Appendix A, in which the required knowledge is summa-
rized, or to the extensive amount of literature available, for example Lang (2005,
Chapter 2).

1.1 Groups and Symmetries

The language of group theory comes quite natural to the notion of symmetries.
Consider for example a simple geometric figure as the square with corner points
labeled by A,B,C and D depicted in the following figure:

Figure 1.1: A square with undirected sides
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We may want to look at the rotational transformations which leave the square
invariant in this coordinate system.
As the corner points are indistinguishable (the labels are merely a tool, not a
property of the object) we may note that rotations of a multiple of 90 deg (coun-
terclockwise) around the x-axis leave the square invariant. We may denote these
rotations as c1 for a rotation of 90 deg, c2 for a rotation of 180 deg and so on. But
as we only want to consider rotation modulo 360 deg we conclude the relevant
rotations are c1, c2 and c3.

This does not yet identify all rotational transformations which leave this
square invariant. There are also the 180 deg rotations around AC and BD, as
well as the 180 deg rotations around the z- and y-axis. We may label the latter
as b and see we can obtain the other three as follows:

Rotation around Equivalent to
BD bc1

z-axis bc2

AC bc3

Table 1.1: Remaining invariant transformations in undirected square

The only rotational transformation left is the identity operation e. As sug-
gested by the previous table, the transformations indeed form a group, the sym-
metry group of the square. This particular group, usually denoted by D4, has
elements {e, c, c2, c3, b, bc, bc2, bc3}.
Here we used notation familiar in group theory by setting c1 = c and noting
ck=2,3 = ck if we define the group multiplication to be the successive application
of rotations. We can now check this is a group by simply writing out its mul-
tiplication table using geometric arguments. This group, D4 is an example of a
dihedral group Dn, the symmetry group of n−sided polygons.

Figure 1.2: A square with directed sides
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We will now consider a slightly modified version of our example, a square with
directed sides. As additional requirement for invariance of this object we demand
the direction of the line segments to be unchanged in the coordinate system. The
square is depicted in Figure 1.2.

The only rotations that are left leaving this square invariant are C4 = {e, c, c2, c3},
a proper subgroup of D4. This is an example of symmetry breaking, the symme-
try group of our system (which is just a square) breaks down to a subgroup when
requiring the sides to be directed.
Apart from identifying a subgroup of D4, we can work out its conjugacy classes
to be 1(e), (b), (c) and its generators {b, c} as familiar in group theory.

This example serves to illustrate the fundamental idea in representation theory
- we are able to write each element in the group C4 as a matrix. Denoting the
corner points by their position in the yz-plane, i.e.

A =

(
−1
−1

)
.

It is straightforward to see we can represent

c =

(
0 −1
1 0

)
, c2 =

(
−1 0
0 −1

)
, c3 =

(
0 1
−1 0

)
and c4 = e =

(
1 0
0 1

)
.

acting on the corner points. In fact, the group C4 is isomorphic to this set of
matrices as is clear when multiplying the matrix representations.

1.2 Representation Theory and Lie Groups

The example explored in the previous section is one regarding a discrete sym-
metry - only a finite number of transformations was possible. Clearly, this is only
a particular subset of all transformations one can think of. We could also rotate
the square around any axis by an angle θ which we may pick to be any number in
[0, 2π). These rotations can still be expected to form a group, with its elements
having a matrix representation, now depending on a continous parameter. A very
important class of such groups are the Lie Groups.

Whether these transformations form a symmetry group depends on our notion
of invariance. This can be adopted such that we are satisfied with any transfor-
mation that leaves the square a rigid square. This results in the group of all
translations, uniform rescaling and rotations as a symmetry group.

This section will serve as a formal exploration of the study of Lie Groups and
their representations, based on Jones (1998), Fulton and Harris (2005, Chapter
1-4, 7-10), Kirillov, Chapter 2 and 4 and Duistermaat and Kolk (2000, Chapter
1 and 4). The introduction in this section will be far from complete, and will

1In general, conjugacy classes are elements of the ”same type”. In this case we have a finite
group and we can thus compute every element of the form gxg−1, giving indeed the conjugacy
classes as stated.
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mainly serve as a reference for the remainder of these thesis. For more elaborate
introductions, one can follow these references.

1.2.1 Representation Theory

In the example of the square, it turned out the group of symmetry trans-
formations could be represented by matrices, thus linear mappings on a vector
space. This study of these representations is called representation theory. This
subsection will serve as a basic and formal introduction to this field. The content
of this subsection is based on [Jones (1998)] and [Fulton and Harris (2005)].

Definition 1.1 (Representation). A representation of a groupG on a n-dimensional
vector space V is a homomorphism ρ : G → GL(V ) of the group to the (group
of) automorphisms on V . The dimension of V is called the degree of the repre-
sentation.

Representations A and B are equivalent if there exists S ∈ GL(V ) such that
for all g ∈ G A(g) = SB(g)S−1.
A representation ρ is trivial when ρ(g)(v) = v for all v ∈ V and all g ∈ G. It is
faithful when G is isomorphic to ρ(G).

Remark. One may encounter various notations and terminology. The element in
GL(V ) corresponding to g ∈ G is called the representation of g (under ρ). Often
the map ρ is omitted from notation, denoting the action of a representation of
g ∈ G on v ∈ V as gv. We see a representation of G induces a structure on V
as a G-module (see Appendix A). In literature the vector space V (as in [Fulton
and Harris (2005)]) may be called the representation of G. In this section, so we
will refer to both V and ρ as a representation, the former only if no ambiguity is
present. The vector space V is, unless stated otherwise, assumed to be over the
field of complex scalars C.

Example (Representations on Rn and Cn). If we set V = Rn or Cn in the
previous definition, we see representations of any group to be elements of GL(Rn)
or GL(Cn) (called the general linear group) - the set of n× n invertible matrices
with real or complex entries. These will be the main examples of representations
encountered throughout this thesis.

The benefit of representing a group by its action on a vector space is the
additional structure one has on a vector space. One can form a basis, take an
inner product (which induces a norm and metric) and decompose a vector space
into subspaces. Precisely these properties are key in developing the theory in the
upcoming sections.

Reducibile and irreducible representations

Having obtained an orthonormal basis {ei}i=1,··· ,n for V we can write any
representation of an element g ∈ G as a matrix, i.e.,

ρ(g) =

(
A(g) C(g)
D(g) B(g)

)
(1.1)
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with A a k × k matrix, C of dimension k × n− k, D of dimension n− k × k
and B of dimension n−k×n−k. Such a representation is called reducible when
D = O (with O the appropriate null matrix). Note that A and B themselves
constitute representations of G. In the case of C = D = O, one can decompose
the n-dimensional representation ρ into the sum of two representations acting on
subspaces of V . This decomposition is the main idea of this subsection. To fully
develop the theory we need a couple of definitions.

Definition 1.2 (Subrepresentations and irreducible representations). Given a
representation ρ of a group G we say there exists a (proper) subrepresentation
if there is a proper linear subspace U ⊂ V such that U is closed (ρ(g)(u) ∈ U
whenever u ∈ U) under the action of the group, i.e. U is a submodule of V . A
representation is called irreducible if it has no subrepresentation.

The subrepresentation can, in principle, be constructed if one finds an or-
thonormal basis for the k-dimensional subspace U , extends this to a basis for V
and find the matrix notation for ρ as in (1.1). The subrepresentation will be of

the form ρU(g) =

(
A(g) 0

0 1

)
or simply by A(g) itself, where A(g) ∈ GL(Rk). It

is clear that in the notation of (1.1) for reducible representations a subrepresen-
tation is induced by B(g) as for D = O there is an invariant (n− k)-dimensional
subspace on which B(g) acts.

Definition 1.3 (Decomposable representations). For a group G with representa-
tion ρ, a reducible representation ρ(g) ∈ GL(V ) of g ∈ G is called decomposable
if there exists a proper submodule W ⊂ V for which both W and its orthogonal
complement, W⊥ are closed under ρ(g). The representation ρ is called decom-
posable if ρ(g) is decomposable for all g ∈ G.

Remark. In this definition we have assumed an inner product defined on the
vector space V , such that it makes sense to talk about W⊥ as the set
W⊥ := {v ∈ V | (w, v) = 0 ∀w ∈ W}. In fact, we have assumed this inner
product when introducing an orthonormal basis.

As we can write V = W ⊕W⊥ the argument made earlier can be reversed to
conclude a decomposable representation can be written in the form of (1.1) with
C = D = O for an appropriate basis of V .

Definition 1.4 (Unitary and Hermitian Transformations). Given an inner prod-
uct on a vector space V , we define a T ∈ GL(V ) to be unitary when (u, v) =
(Tu, Tv) for all u, v ∈ V . We define T to be Hermitian when (Tu, v) = (u, Tv)
for all u, v ∈ V .

In the case of V = Cn we see these definitions correspond precisely to the
n× n-matrices A for which A† := (A∗)T = A−1 and A† = A respectively.

So far we have introduced the notion of a reducible representation (in terms
of matrix notation) and given a formal definition of an irreducible representa-
tion. We will now show that for finite groups this terminology is justified, i.e,
the reducible representations are precisely those we can decompose into subrep-
resentations and as such are not irreducible. We will start with the following
proposition:
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Proposition 1.5 (Decomposability for unitary operators). Given a group G with
a representation ρ : G → GL(V ). For any unitary ρ(g) = U ∈ GL(V ) which is
reducible, U is decomposable.

Proof. We follow the proof as in [Jones (1998), pg. 53] Let ρ(g) be such a repre-
sentation. As noted before, we have an invariant submodule W (upon which B(g)
in the matrix notation (1.1) acts). Now let W⊥ be its orthogonal complement.
We have, as U(g) unitary for all x, y ∈ V :

(Ux, y) = (x, U−1y) (as U−1x ∈ V )

Let w ∈ W , z ∈ W⊥. We have:

(Uz,w) = (z, U−1w) but W is an invariant submodule,

so U−1w := w̄ ∈ W

Now (Uz,w) = (z, w̄) = 0 follows directly, so W⊥ is also an invariant submodule.
This shows any unitary representation is decomposable.

Remark. From Definition 1.1 it is clear U−1 exists and is given by ρ(g−1), as ρ
is a homomorphism.

Having established our desired result for unitary rrepresentations, we carry
on to extend this to an arbitrary representation. There are multiple ways to
do this, the most common and easy is to introduce the group-invariant inner
product. This inner product is constructed from an original inner product (·, ·)
by {x, y} = 1

|G|
∑

g∈G(ρ(g)x, ρ(g)y) where we adopted our usual notation with
x, y ∈ V .

Theorem 1.6 (Maschke’s Theorem). For a finite group G with reducible rep-
resentation ρ : G → GL(V ), (V being a finite-dimensional vector space) ρ is
decomposable, i.e. there exists a proper submodule W of V such that both W and
W⊥ are invariant under ρ.

Proof. A proof of this Theorem may be found in [Fulton and Harris (2005),
Chapter 3]. It follows from working out the group-invariant inner product which
is unitary and invoking Proposition 1.5.

Corollary 1.7. Any representation of a finite group is a direct sum of irreducible
representations.

Proof. This follows directly from the previous theorem. As we can decompose
reducible representations into subrepresentations, irreduciblity is the negation
of reducibility for finite groups. So either our representation is irreducible (in
which the direct sum is trivial) or we can decompose it into a direct sum of
subrepresentations, which are:

• Reducible, in which case we can decompose it further until irreducibility
(note that one-dimensional subrepresentations will always be irreducible) is
achieved

• Irreducible, in which case the claim clearly holds.
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The property as stated above is often referred to as complete reducibility or
semisimplicity. As we ended the introduction of this section with a discussion on
continuous transformations, results regarding finite groups might not seem to get
us very far. However, the results obtained also hold for the very important class
of compact groups. As it turns out the - to be discussed - conformal group allows
for a compactification which makes these results relevant.

So far we have established the existence of a decomposition into irreducibile
components. We will now establish uniqueness (in a sense which will become
evident shortly) of this decomposition following from a famous lemma (as adapted
from [Fulton and Harris (2005), Chapter 1.2]):

Lemma 1.8 (Schur’s lemma). Given ρV : G → GL(V ) and ρW : G → GL(W )
representations of a group G and a G-module homomorphism φ : V → W . Then
we have:

1. Either φ is an isomorphism or φ = 0.

2. When V = W , φ = λ · I for some λ ∈ C with I the identity mapping

Proof. To prove 1. we note that for v ∈ V we have φ(v) 6= 0 if v 6= 0. So Im φ
is a non-zero submodule of W and since W is irreducible, it follows Im φ = W .
Furthermore we have ker φ 6= 0 and by the same argument kerφ = {0}.

As for the second statement, we note C is algebraically closed so φ will have
an eigenvalue. In other words, there exsist a λ such that ker(φ− λI) nonempty.
But since φ is an isomorphism this implies φ = λI.

This lemma has a very nice consequence, stated in the following proposition:

Proposition 1.9 (Uniqueness of decomposition). Given a representation ρ : G→
GL(V ) of a finite group G there is a decomposition

V = ⊕ki=1V
⊕ai
i (1.2)

where we introduced a common notation of ai denoting the multiplicities of the
irreducible Vi. One may also encounter V =

∑k
i=1 aiVi or even a1V1 + . . . akVk.

where each Vi are invariant submodules corresponding to irreducible subrepresen-
tations. This decomposition is unique in the sense of the invariant submodules Vi
and corresponding multiplicities ai being unique.

Proof. This follows from Schur’s Lemma and considering a different representa-
tion W with corresponding decomposition W = ⊕kj=1W

⊕bj
j . For a full derivation,

see [Fulton and Harris (2005), chapter 1.2].

Characters

Having established the main results regarding reducibility and decomposition
of representations, we will now define the notion of a character. This notion
is a natural way to identify a particular representation and distinguish between
equivalent and non-equivalent representations.
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Definition 1.10 (Character). Let ρ be a representation of a group G. The
character of ρ is the set {χ(g) : g ∈ G} where χ(g) = Tr ρ(g). χ(g) is called the
character of ρ(g).

An important motivation for this definition is the fact that any two equiva-
lent representations will have the same character, as conjugacy with respect to an
element in GL(V ) leaves the trace invariant. By the same logic, characters will
identify conjugacy classes as conjugate elements will have the same trace. Fur-
thermore, for a unitary representation U(g) the character will have the property:

χ(g−1) = Tr (U(g)−1) = Tr (U(g)†) = χ∗(g) (1.3)

which is quite a powerful statement in light of Theorem 1.6.

We will now embark upon a journey which will lead us to finding an explicit
form of (1.2) using characters. First, we will need a couple of results.

Theorem 1.11 (Fundamental orthogonality theorem). Let ρµjk be a family of
inequivalent irreducible representations of a finite group G (Here µ is an index
identifying the representation, jk denotes a matrix element of this representa-
tion). Then the following result holds:∑

g∈G

ρµjk(g)ρνrs(g
−1) =

|G|
nµ

δµνδjsδkr (1.4)

where nµ denotes the number of indices ρµ runs through (i.e., its dimension).

Proof. A proof, as obtained from Jones (1998)[Chapter 4.2, pg. 62-63], is given
in Appendix B.

Corollary 1.12 (Number of irreducible representations). From the previous the-
orem, we obtain the following restriction on the number of inequivalent irreducible
representations for a finite group G:∑

µ

n2
µ = |G| (1.5)

Proof. We will prove the ’≤’ relation in this equation. Proof of this inequality
follows directly from (1.4), as we can (again, in light of Theorem 1.6) restrict
ourselves to unitary representations. Now applying µ = ν and ρrs(g

−1) = ρ∗sr(g)
in (1.4) results in: ∑

g∈G

ρjk(g)ρ∗sr(g) =
|G|
nµ

δjsδkr

For given j, k the left hand side of this equation is a scalar product in C|G|, with
both (ij) and (sr) ranging over 1 to nµ. In other words, we have an equation
regarding n2

µ vectors. Now we may range over all possible values of µ to obtain
the same equation. The δµν term in (1.4) ensures all of these vectors will be
orthogonal, thus we have found

∑
µ n

2
µ orthogonal vectors. As this number cannot

exceed the dimension of the group, the inequality is obtained. The direct equality
follows from considering characters.
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We now have treated most material needed to find an explicit form for decom-
positions. One more result on the orthogonality of characters will be necessary.

Corollary 1.13 (Orthogonality of characters). Given a family of inequivalent
representations ρµ with characters {χ(g)} we have:

1

|G|
∑
g∈G

χµ(g)χν(g−1) = δµν (1.6)

Proof. This is a direct application of the fundamental orthogonality theorem,
using the definition of a character (thus tracing over appropriate indices in (1.4))

We are now ready to return to the decomposition as in (1.2). As each Vi is an
invariant submodule corresponding to some irreducible representation ρi acting
on Vi, we can write any representation as

ρ =
⊕
i

aiρi (1.7)

where ai denotes multiplicity of the irreducible ρi. From this equation we directly
see that for the characters of ρ:

χ(g) =
∑
µ

aµρ
µ(g) (1.8)

Here i→ µ and raising of indices is nothing but relabeling to obtain a familiar
form. Multiplying both sides with χµ(g−1) and using (1.6) results in:

aµ =
1

|G|
∑
g∈G

χ(g)χµ(g−1) (1.9)

which is the desired explicit expression for multiplicity of irreducible represen-
tations. Note that this formula is very similar to a familiar expression of finding
coefficients of a vector with respect to a basis if we define the inner product
〈χ1, χ2〉 = 1

|G|
∑

g∈G χ1(g)χ2(g−1) which indeed has all the properties of an inner
product.
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1.2.2 Lie Groups

Having obtained some principal results in the field of representation theory, we
will now consider an important class of groups - the Lie Groups. Their properties
and structure are vital when discussing various symmetries later on. One may
assume the results in the previous sections can be extended to the important class
of compact Lie Groups, although Lie Groups will not be finite. The following
discussion is based mainly on [Kirillov] and [Duistermaat and Kolk (2000)].

Definition 1.14 (Lie Groups). A Lie Group G is a group which is also a finite
dimensional real C∞-manifold such that

1. The group operation G×G→ G is a C∞ mapping.

2. ι : G→ G given by g 7→ g−1 is a C∞ mapping for g ∈ G

Remark. In the definition of Lie Groups it is often assumed mappings are C∞,
but one may also encounter a definition which requires a weaker degree of conti-
nuity. Throughout this thesis we will assume the former. A complex Lie group is
easily defined by replacing real with complex in this definition.

Example (The general linear group). By GLn(R) we denote the set of n × n
invertible matrices/linear mappings with real coefficients. This is a group as the
product of invertible matrices will again be invertible. The fact that the group
multiplication is differentiable is easy to see using the obvious representation in
Rn×n. This group and its complex counterpart are among the most prominent
examples we will encounter.

To discuss Lie Groups properly we will introduce a couple of notions. We will
not provide an explicit definition as a minimal treatment of the subject is sufficient
for our purposes. We will remark that most terminology regarding Lie Groups
is referring to either its group structure or its manifold structure without much
ambiguity. Abelian, n-dimensional, connectedness are among the non-ambiguous
notions when discussing a structure which is both a group and manifold. The
notion of a subgroup however, is not so obvious, as we can talk about both a
subgroup and a submanifold. A (closed) Lie subgroup is usually defined to be a
subgroup which is also a (closed) submanifold. Justification for these brackets
will follow shortly. There are different (equivalent or slightly different) definitions,
one of which we will introduce later on, but this one serves best for our purposes
for now.

A map between Lie groups is a group homomorphism which is differentiable
on its entire image. We also note that there is a very straightforward notion
of a compact Lie group (that is, a Lie group is compact when the manifold it
represents is compact). Compact Lie Groups (that is, Lie Groups which are also
compact manifolds) allow for a nice and simple generalization of the results we
have shown for finite groups. Essentially one can replace summations by integrals
is (i.e.

∑
g∈G by

∫
dg) due to the differentiable structure we now have on our

group, and these are well-behaved for compact groups. We will give an example
of how this works in practice in the next subsection.
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We will now state and prove some basic but important results in the theory
of Lie Groups.

Theorem 1.15 (Closed subgroups are Lie subgroups). For a Lie group G;

1. Any Lie subgroup is closed

2. Any closed subgroup is a Lie subgroup

Proof. The former can be proven by considering the closure of this subgroup.
One can show this is a subgroup, and all of its cosets to be open and dense in H.
The latter is beyond the scope of this thesis. There is extensive literature, how-
ever, regarding this theorem known as the Closed subgroup theorem. To avoid
confusion - we should recall that following our definitions earlier, a subgroup will
also be a submanifold.

Corollary 1.16. Let G1, G2 be Lie groups with the latter being connected. Let
U be a neighborhood of the identity element 1 in G2 and f∗ : T1G1 → T1G2 (T1

denoting the tangent space at the identity element) the push-forward of a map
f : G1 → G2. We then have:

1. U generates G2

2. If f∗ is surjective, f will also be surjective

Proof. 1. U generates a subgroup H. Take any element h ∈ H. We can now
form a neighborhood around h by taking the coset hU , so H is open and thus a
submanifold. Now by (1.15) it is closed and hence H = G, which completes the
proof.
2. This is a consequence of the inverse function theorem, from which we can infer
there is some neighborhood around 1 for which f is surjective (indeed, any group
homomorphism will map identity elements to identity elements). As U generates
G2, f is surjective.

In our discussion on representation theory for finite groups, we encountered
conjugacy classes as a very important type of equivalence classes. For Lie groups,
we will define equivalence classes in terms of cosets of some appropriate subgroup
H.

Theorem 1.17 (Cosets of Lie subgroups are manifolds). Let G be a Lie Group
of dimension n and H be a Lie subgroup of dimension k. Then:

1. G/H is a n − k dimensional manifold with tangent space TH(G/H) =
T1G/T1H. Note that H is the identity element in G/H.

2. If H is normal, G/H is a Lie group.

Proof. See Kirillov, Theorem 2.10

To prove some of the most principal results in Lie group theory we will in-
troduce another definition of a subgroup. This is because we want to distinguish
between (a) a subset of our manifold with the structure from this manifold (this
is the (closed) Lie subgroup) we have already seen and (b) an immersed Lie sub-
group, i.e. the immersion of a manifold into our Lie subgroup. It is clear the
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latter is a more general statement. A very simple example (although not the
standard one of a line with irrational slope on the torus) is the following figure
which represents a particular immersion (as obtained from [Fulton and Harris
(2005), pg. 94]).

Figure 1.3: An R→ R2 immersion of a line segment

We see the immersion from this line segment in R into a manifold in R2

does not preserve topological structure. We will now introduce a more general
definition.

Definition 1.18 (Immersed subgroup). Let G be a Lie group. An immersed Lie
subgroup is an immersed submanifold which is also a subgroup.

Remark. From now on we will simply use Lie subgroup whenever we mean im-
mersed Lie subgroup, unless ambiguous.

Introducing this definition allows us to recover a very familiar result in group
theory (known as the first isomorphism theorem):

Theorem 1.19 (First isomorphism theorem for Lie groups). Let f : G1 → G2 be
a map of Lie groups. Then ker f is a normal Lie subgroup. Furthermore, Imf is
a Lie subgroup, with f inducing a injective map G1/ ker f → Imf . The latter is
an isomorphism in case Imf is a submanifold of G2. Then Imf is a closed Lie
subgroup.

Proof. See Kirillov, Corollary 3.30 for a proof. (Note this is a proof based on Lie
algebras, a concept we will only touch upon in this thesis.)

Having obtained a basis in the theory of Lie groups we are now ready to
introduce the concept of an action. We encountered this in the previous section
(Definition 1.2) but here it will be formally introduced in a more general setting.

Definition 1.20 (Action of a Lie group). Let G be a Lie group and M a manifold.
An action of G on M is a function which assigns to each g ∈ G a diffeomorphism
ρ(g) on M , with ρ(1) = id and ρ(gh) = ρ(g)ρ(h) such that:
G×M →M : (g,m) 7→ ρ(g)(m) is smooth.

An obvious example of an action is GLn(Rn) acting on Rn. The notion of an
action gives rise to a ”natural” structure for a group to act upon. For example,
the group of n−dimensional rotations which leave the origin fixed acts naturally
on the sphere Sn−1.
One immediately notes there is a special class of actions - the actions of G onto
itself. Due to our definition of a Lie group we can easily see the following examples
are actions:

15



Example (Left, right and adjoint action). Given a Lie group G with g, h ∈ G
we subsequently define

1. The left action Lg : G×G→ G : g × h 7→ gh (i.e. Lg(h) = gh)

2. The right action Rg : G×G→ G : g × h 7→ hg

3. The adjoint action Adg : G×G→ G : g × h 7→ ghg−1

We may note that Ad identifies conjugacy classes and in particular Adg pre-
serves the identity elements. Therefore Adg also defines an action on the vector
space T1G (a vector space we have already encountered in 1.16 and 1.17). In our
discussion on representation theory, we let our groups act on vector spaces. We
will see that exploring these tangent spaces is helpful in connecting Lie groups
and our previous discussion on representation theory. A well-known connection
between tangent spaces of manifolds and manifolds themselves is the exponential
map (in fact, this is a well-known concept from Riemannian geometry), a notion
we will look to explore for Lie groups.

First let us define the exponential map for Lie groups. From now on we will
call g := T1G to be the Lie algebra corresponding to a Lie group G.

Proposition 1.21 (One-parameter subgroups). Let G be a Lie group and v ∈
g. Then there exists a unique map of groups: γv : (R,+) → G : t 7→ γv(t)
corresponding to v with d

dt
γv(0) = v. γv is called the one-parameter subgroup

corresponding to v.

To prove this result, we will need a very useful definition and theorem.

Definition 1.22. A vector field w on G is called left-invariant if (Lg)∗w =
w ∀g ∈ G. Similarly, it is right-invariant if (R−1

g )∗w = w ∀g ∈ G.

Theorem 1.23. The map defined by w 7→ w(1) is an isomorphism between the
space of left-invariant vector fields and g.

Proof. We will construct from a given y ∈ g a left-invariant vector field as fol-
lows: y(g) = (Lg)∗y. It is clear that y(1) = y. Furthermore, if we denote the
pushforward as a differential (this because the derivation will be more intuitive):

y(gh) = (dLgh)1(y) (i.e, evaluated at the identity)

= (dLg ◦ dLh)1(y)

= (dLg)h((dLh)1(y))

= (dLg)h(y(h))

Remark. It is clear the same argument can be applied to right-handed vector
fields.

Proof of Proposition 1.21. We will prove this for real Lie groups.
Uniqueness - We note that we know in the case of γ : R→ R, simply γv = etv will
do. For etv we have d

dt
etv = [γ̇v(0) := d

dt
etv|t=0]·etv = γ̇v(0)·γv(t) = γv(t)·γ̇v(0). We
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can use a variation of this identity by defining (commutativity is, in general not
true) γ(t) · γ̇(0) = (Lγ(t))∗(γ̇(0)) and equivalently for multiplication on the right.
As such, we are left with a differential equation for γ: γ̇v(t) = (Lγ(t))∗(γ̇(0)). So
if w is a left-invariant vector field such that w(1) = v ∈ g, γ will be its integral
curve. This proves uniqueness as left-invariance is not a restriction due to (1.23).
Existence - Let w be the left-invariant vector field corresponding to v. We will use
the notion of flow 2 of our vector field w. Denote γ(t) = ψt(1). Now this is only
well-defined for small enough t as of now (manifolds are locally homeomorphic to
Euclidean space). We note:

γ(t+ s) = ψt+s(1)

= ψs(ψt(1)) = ψs(γ(t) · 1)

= γ(t) · ψs(1) = γ(t) · γ(s)

The last line is justified as the flow has to be left-invariant when the vector field is.
Note that our requirement of t being small also drops due to γ(t+ s) = γ(t)γ(s).

We can now formally define the exponential map, which will not come as a
surpise in light of the preceding proof:

Definition 1.24 (The exponential map). The exponential map: exp : g→ G is
defined to be:

exp(v) = γv(1) (1.10)

Here we used the notation of 1.21.

As follows from the previous discussion this is a well-defined map. We also
have the familiar scalar multiplication identity γv(λt) = γλv(t) as can be easily
checked. We will now state a series of useful identities which we will not prove
(proofs are easily checked or can be found in Kirillov[Chapter 3.2], amongst oth-
ers):

Proposition 1.25 (Some useful identitites). Throughout this proposition, t, s ∈
K (the relevant scalar field, which was R so far) and x, y ∈ TG.

1. Given a left-invariant vector field w on a Lie group G, the time flow of
this vector field is given by ψtw(g) = g · exp(tw(1)) and equivalently for a
right-invariant vector field.

2. exp(x) = 1 + x+ 1
2
x2 + . . .. I.e., the familiar Taylor expansion is valid. In

particular, exp(0) = 1 and hence exp∗(0) is the identity map.

3. exp((t+ s)x) = exp(tx) exp(sx)

4. Given a map of groups φ : G1 → G2, we have φ(exp(x)) = exp(φ∗(x))

2Formally a flow assigns to a parameter t a diffeomorphism ψt : G → G. The flow of a
vector field w is defined to be the value of an integral curve of w on G at time t starting at a
point g ∈ G and can be denoted as ψtw(g), g ∈ G. As it is clear in our discussion we are talking
about a flow induced by our vector field w, we drop this subscript.
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Theorem 1.26 (G is locally isomorphic to g). Given a Lie group G, the expo-
nential map defines a local diffeomorphism of g and G between neighborhoods of
1 in G and 0 in g.

Proof. We will only sketch this proof. Differentiability of exp is a consequence
of the way it has been constructed in 1.21 while invertibility is a consequence of
the validity of the Taylor expansion, with differentiability of this inverse being a
consequence of the inverse function theorem.

The inverse as guaranteed from this Theorem is denoted as log. From the
discussion so far, it is clear that g is in fact a very important vector space.
Indeed, if we return to 1.16, we see we can in fact generate G from g for connected
manifolds. Even more so, we know how to construct the required diffeomorphism.
Having obtained these results, it is natural to ask which operation in g corresponds
to the group operation in G. Precisely this question will lead us to the subject
of Lie algebras. In fact, let’s pick x, y ∈ g in a neighborhood of 0. As g and G
are locally diffeomorphic there should be a smooth mapping µ such that we can
associate the group multiplication exp(x) · exp(y) with some exp(µ(x, y)) with
µ(x, y) ∈ g.

Lemma 1.27 (Taylor expansion of µ). In the notation as above, we have:

µ(x, y) = x+ y + λ(x, y) + . . . (1.11)

Where higher order terms are of order ≥ 3 and λ is a bilinear antisymmetric
mapping.

Proof. As µ is a smooth mapping, it has a Taylor expansion with linear terms in
both x and y, quadratic terms in both x and y and a bilinear term λ(x, y) and
other terms of higher order, which we assume to be negligible. Now setting y or
x equal to 0, noting µ(x, 0) = x and µ(0, y) = y we see quadratic terms should
drop, while linear terms should just be x and y. So µ(x, y) = x+y+λ(x, y)+ . . ..
Now µ(x, x) = 2x = x+ x+ λ(x, x), so λ is antisymmetric.

We can now define what is known as the commutator : [, ] : g×g→ g : [x, y] =
2λ(x, y). We will now encounter a series of important results which will help us
to form an intuition about what the commutator is.

Proposition 1.28 (Commutator invariance). We have for a mapping of Lie
groups φ : G1 → G2 the following identity (denoting the Lie Algebra of G1 by g1):

φ∗([x, y]) = [φ∗(x), φ∗(y)] ∀x, y ∈ g1 (1.12)

Proof. This follows from the fact that φ is a diffeomorphism and the last identity
in Proposition 1.25.

Example (The adjoint operator). If we set Adg = φ in (Prop. 1.28) we get the
identity:

[Adg.x,Adg.y] = Adg.[x, y] (1.13)

where we denoted (Adg)∗(x) = Adg.x. In other words, the commutator is pre-
served by the adjoint operator.
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Before heading any further, we will note an identity, following directly from
our definition of the commutator (assuming converge for now):

exp(x) exp(y) = exp(x+ y +
1

2
[x, y] + . . .) (1.14)

Succesfully applying this identity we find:

exp(x) exp(y) exp(−x) exp(−y) = exp([x, y] + . . .) (1.15)

from which we directly see that for an Abelian group [x, y] has to be zero. So the
commutator is an invariant property of conjugacy classes which, in some sense,
measures the failing of a group to be commutative.

Example (The general linear group). Let’s consider as an example GLn(R).
Expanding the right hand side of (1.15) we get (1 + x+ . . .)(1 + y + . . .)(1− x+
. . .)(1− y + . . .) = 1 + [x, y] from which follows [x, y] = xy − yx.

There are a couple of very useful identities we will introduce before heading
to a conclusion on this subject. First of all, we note that we can associate each
g ∈ G with an element in GL(g) in a diffeomorphic way (as the adjoint operator
is a diffeomorphism, as well as the exponential map in a suitable neighborhood).
We could in fact, say that this association Ad : G→ GL(g) defines the operator.
As such, the following alternate definition makes sense: ad := Ad∗ : g → gl(g).
This leads to the identity:

ad(x)(y) = [x, y] (1.16)

The proof follows from definition of the adjoint operator in terms of exponen-
tial maps.

Theorem 1.29 (Jacobi identity). A Lie group satifies the identity:

ad([x, y]) = ad(x)ad(y)− ad(y)ad(x) (1.17)

Proof. This follows from (1.16), when noting [x, y] = xy − yx in gl(g). But ad
should preserve commutator as it is a diffeomorphism, so this identity will also
hold in g and the result follows. This identity is usually denoted as

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, (1.17b)

which is equivalent.

We have, for now, introduced most of the necessary notions and identities.
What will follow is an informal discussion which justifies part of our discussion
on conformal symmetry. In notation as in the previous discussion, one can find
an explicit expression µ(x, y) = x + y + 1

2
[x, y] + 1

12
[x, [x, y]] + . . . where higher

order terms consist of higher-order nesting of commutators in commutators with
smaller coefficients. When in a neighborhood of 1, this allows one to recover the
group law from the commutator in g. We will now introduce one more definition
and state an extremely important result.

Definition 1.30 (Lie algebra). A Lie algebra is a vector space g with a bilinear
anti-symmetric operation [, ] : g×g→ g which satifies the Jacobi identity (1.17b).
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From this definition it becomes clear what the following theorem states:

Theorem 1.31. For any Lie algebra (g, [, ]) there is a unique simply connected
(up to isomorphism) Lie group G with this Lie algebra.

Proof. We have not gone through enough theory to state the proof of this theo-
rem. However, the literature on this subject is extensive, see for example any of
the books Fulton and Harris (2005),Duistermaat and Kolk (2000) and Kirillov.
The statement is generally known as Lie’s Third Theorem.

It is time to conclude this section and evaluate what to take with us. Suppose
we want to identify a (connected) symmetry group G which will probably be a
subgroup of GLn(R). We now understand to, in order to do so we can identify
conjugacy classes of G, find generators of these and establish Lie brackets. This
will completely determine our group structure. Quite powerful indeed.

1.2.3 SO(3,R)

We will now consider a common example to illustrate our theory of represen-
tations and Lie groups - the special orthogonal group in three dimensions (this
terminology will be clear shortly). This is the group of rotations in three dimen-
sions and naturally acts on the sphere S2. The fact that this constitutes a group
seems natural enough and we will assume it for now.

We will start of by considering what should define a group of rotations. Ob-
viously it should preserve distance to the origin and, in fact, distance between
points on the sphere. These considerations lead to the requirement that for
A ∈ SO(3,R) and x, y ∈ R3 we have 〈Ax,Ay〉 = 〈x, y〉 with 〈, 〉 the usual inner
product. One can write out this requirement and will see that it equivalent to
requiring ATA = I. We now note det(A) = ±1. When det(A) = −1, however, we
have not preserved our orientation of axis and as such performed an improper ro-
tation. Therefore we define: SO(3,R) = {A ∈ R3×3|ATA = I and det(A) = 1}.

Now for our Lie algebra. We want to find generators of so(3,R) but do
not, a priori, know what this space will look like. We know we can write an
element in SO(3,R) as exp(x) with x ∈ so(3,R). Exploring this we find ATA =
exp(AT ) exp(A) = (1+AT+. . .)(1+A+. . .) = (1+AT+A+ATA). Considering this
equation up to first order, we have ATA = 0. Matrices satisfying this equation
are antisymmetric. A basis is obtained as follows:

A1 =

0 0 0
0 0 −1
0 1 0

 ,A2 =

0 −1 0
1 0 0
0 0 0

 ,A3 =

 0 0 1
0 0 0
−1 0 0


It is easy to check these span the antisymmetric 3× 3 matrices. They can be

considered as infinitesimal generators for small θ1,2,3, because for instance:

I + θ1A1 +
1

2
θ2

1A
2
1 =

1 0 0
0 1− 1

2
θ2

1 −θ1

0 θ1 1− 1
2
θ2

1


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which is precisely the second-order Taylor expansion of1 0 0
0 cos(θ1) − sin(θ1)
0 sin(θ1) cos(θ1)

 = exp(θ1A1)

where the latter identity can easily be verified. One immediately recognizes
this matrix as a rotation of an angle θ1 around the x-axis. The other matrices will
give very similar expressions, corresponding to a rotation about the y- and z-axis.

This particular example has a nice Lie algebra, given by [A1,A2] = A3,
[A3,A1] = A2 and [A2,A3] = A1. We remark that this relation is precisely of
the same nature as the cross-product in R3. In fact, one may define the cross-
product in <3 as v × w = (vT1 A1 + vT2 A2 + vT3 A3)w.

The example of SO(3) serves to introduce the important notion of an adjoint
representation. The adjoint representation of a n-dimensional group is a repre-
sentation acting on its n-dimensional Lie algebra as a vector space. For GLnR for
example, we have its Lie algebra all n× n matrices on which GLnR acts by con-
jugation. In the case of SO(3,R) we have seen we can simply identify an element
of R3 with an element in the Lie algebra. The actions on R3 and so(3,R) are
equivalent in this way, so the adjoint representation coincides with the irreducible
representation given by the group itself acting on R3.

We will now examine a representation of SO(3,R). It is quite natural to
simply pick R3 as a vector space and let ρ : SO(3,R) × R3 → R3 : g × v 7→ gv.
As we have only given formal definitions and proven results for finite groups, it
is not immediately clear how to use representation theory in this case. Therefore
we will use this continuous group as an example on how to do so. Let’s consider
an element in SO(3) (we will drop the R for now) infinitesimally close to the
identity. This element, which we will denote by dR is given by I +A1 +A2 +A3.
Multiplying this with a rotation of θ around the x-axis gives:

R(θ)dR =

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 1 −θ2 θ3

θ2 1 −θ1

−θ3 θ1 1


=

 1 −θ3 θ2

θ3 cos θ + θ2 sin θ cos θ − θ1 sin θ −θ1 cos θ − sin θ
θ3 sin θ − θ2 cos θ sin θ − θ1 cos θ −θ1 sin θ + cos θ

 (1.18)

which can be considered to be a volume element around the rotation of an
angle θ around the x-axis. Notions of volume element and corresponding den-
sity are precisely the ones necessary to replace the 1

[g]
in Theorem 1.11, amongst

others. The subsequent discussion will be valid for any element in SO(3), as
equivalence classes are precisely rotations with same angle around different axis,
which is clear from geometric arguments.

We will now determine the angle and axis of rotation in (1.18). Note that
exp(A1,2,3) all are matrices with traces 1 + 2 cos θ1,2,3. In the same way we derive

21



the angle θ′ of R(θ)dR;

1 + 2 cos θ′ = 1 + 2 cos θ − 2θ1 sin θ

⇒ cos θ′ = cos θ − θ1 sin θ

⇒ θ′ = θ + θ1

here the latter identity follows from noting the right hand side is the first-
order expansion in θ1 of cos(θ + θ1) = cos θ cos θ1 − sin θ sin θ1. We can find an
expression for axis of rotation by noting it will be both an eigenvector of R(θ)dR
and (RdR)T (RdR). We obtain after normalization:

n = {1,−1

2
θ3 +

1

2
θ2

1 + cos θ

sin θ
,
1

2
θ2 +

1

2
θ3

1 + cos θ

sin θ
} (1.19)

Transforming the neighborhood of the origin (I) to the neighborhood around
R(θ)dR is done by (n1θ

′, n2θ
′, n3θ

′), where n = (n1, n2, n3) from (1.19). The
density (of points in SO(3)) transformation corresponding to n is given by its
Jacobian Jij = det |∂niθ′

∂θj
|. Its explicit form is given by:

det J = det

1 0 0
0 θ 1+cos θ

2 sin θ
−1

2
θ

0 1
2
θ θ 1+cos θ

2 sin θ

 =
θ2

2(1− cos θ)
(1.20)

which is a function of a similar role as [g] in 1.11, so 1
[g]

will now correspond

to ω = 2(1−cos θ)
θ2

.

In our discussion, we used the fact we can identify each element in SO(3) with
a unit axis and scalar corresponding to the rotation performed. As n is a unit
vector we can rewrite: θn = (θ cosφ sinψ, θ sinφ sinψ, θ cosψ), the usual repre-
sentation in polar coordinates. Let Ω denote our parameter space corresponding
to the orentation of n (consisting of φ, and ψ) with area element dΩ. We may
now integrate a function F (θ,Ω) over SO(3):∫ ∫

ω(θ)F (θ,Ω)θ2dθdΩ

We can now rewrite our theorem on orthogonality of characters, in the form
of 1.13: ∫ ∫

2(1− cos θ)χµ(θ)χν(θ)dθdΩ = δµ,ν
∫ ∫

2(1− cos θ)dθdΩ

note that the trace of a rotation matrix is a function of the rotation angle θ
only. The integral on the right hand side can explicitly be calculated (θ ranges
from 0 to π, φ from 0 to 2π and ψ from 0 to π) to be δµν · 8π. Integrating out
dΩ, we obtain the orthogonality theorem:

1

π

∫ ∫
(1− cos θ)χµ(θ)χν(θ)dθ = δµ,ν (1.21)

For continuous groups, the procedure is usually very similar to this example.
One has to introduce some density function (which can very well depend on more
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parameters) and integrate over characters. Quite often, one will resort to special
properties of the group considered rather than following general steps.

One more remark regarding the use of this particular group. This group is
very important in the context of quantum mechanics. Acting with it upon the
space of polynomials for it to act on, the 2-dimensional spherical harmonics (’the
angular part of’ solutions to the Schrödinger equation). It naturally leads to
the conservation of l(l+ 1) as an eigenvalue under rotational symmetry, amongst
others.
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1.3 Conformal Symmetry

So far we have developed the language to describe a symmetry at the very
heart of this thesis - conformal symmetry. Before using this language to be able
to describe the group corresponding to conformal symmetry, we will introduce it
informally.

In the previous section we have defined what Lie groups and representations
of groups are. We have seen that a particular group, SO(3), corresponded to
rotational transformations of points around a certain axis. In the same way,
we may define the conformal group to be the group of transformations which
preserves angle between vectors. We will try to give an intuitive basis for what
this would mean by imagining our space to be vectors in two dimensional space
starting at the origin. What transformations would leave angles between these
vectors invariant? Well, our previous example of the special orthogonal group will
definitely do this and should thus be contained in this example of a conformal
group. Furthermore, moving our vectors through their embedding space does not
change angles. Also, we might rescale our sphere uniformly. In fact, we may even
perform rescaling locally, i.e. multiply the vectors with a scalar depending on
their positions. What is left are the so-called special conformal transformations
- inversions of vectors (i.e. ~r 7→ ~r/|~r|2) followed by translations and again an
inversion. The intuition for this transformation is less obvious. Let us show,
however, angles are again preserved here. A vector will be transformed as

~r 7→ ~r/r2 + ~a 7→ ~r/r2 + ~a

(~r/r2 + ~a) · (~r/r2 + ~a)
=

~r + r2~a

1 + 2~a~r + a2
(1.22)

where the latter identity is easily verified. Now if we consider a transformation
of two such vectors, ~x and ~y their relative angle will indeed be conserved, as can be
checked by (an ugly) computation. These are, in fact, all types of transformations
in the conformal group (of this example and in general). For a derivation of the
full conformal group, see section 1.3.2.

1.3.1 An example from complex analysis

We will now give a nice example of conformal symmetry arising in the field of
complex analysis. Let us look at the functions in the complex domain. First let
us formally define what a conformal transformation in this case is.

Definition 1.32 (Directed angle). Let w, z ∈ C. The directed angle from w to z
is θ ∈ [0, 2π) such that z/|z| = eiθw/|w|.

Using this definition we can define a conformal transformation f : C → C
without ambiguity.

Definition 1.33 (Conformal transformation). A map f : C→ C is a conformal
transformation if for any curves γ : [a, b] → C and γ1 : [c, d] → C with γ(a) =
γ(c), the directed angle between γ′(a) and γ′1(c) is equal to the angle (f ◦ γ)′(a)
and (f ◦ γ1)′(c).

Proposition 1.34. Any holomorphic function f : C → C is a conformal trans-
formation for any z with f ′(z) 6= 0.
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Proof. By computation in notation as in the previous definition:

(f ◦ γ)′(a) = f ′(z) · γ′(a) and (f ◦ γ1)′(c) = f ′(z)γ′1(c)

From which:
(f ◦ γ)′(a)

|(f ◦ γ)′(a)|
/

(f ◦ γ1)′(c)

|(f ◦ γ1)′(c)|
=

γ′(a)

|γ′(a)|
/
γ′1(c)

|γ′1(c)|

In fact, this connection between holomorphic functions and conformal invari-
ance is one of the reasons conformal symmetry is of great importance in complex
analysis. For a discussion which one can follow at the undergraduate level, see
[Garrett].

Let us slightly extend this discussion. For more context and elaboration, one
can view [Schottenloher (2008)] amongst others.

Definition 1.35. On the extended complex plane Ĉ, the Möbius transformations
are the holomorphic functions φ given by(

a b
c d

)
∈ SL(2,C)

such that φ(z) = a+bz
c+dz

. The group operation is given by matrix multiplication. 3

One can show (again, a full derivation beyond our scope) that these transfor-
mations are precisely the transformations that exhibit global conformal invariance
- that is, the property of being injective and holomorphic. This definition makes
sense due to Proposition 1.34. It allows us to identify the group of conformal
transformations with a compact manifold, in this case the connect component
of SL(2,C), thus SL(2,C)/{±1} which is isomorphic to SO(3, 1) in R3+1. This
sort of embedding of the conformal group into a compact manifold allows us to
use Lie Algebras to define the conformal group, and will be revisited in the next
section.

1.3.2 The conformal group

We will now introduce the conformal group in a way familiar to the language
of the previous sections. Our discussion on Lie groups ended with the conclusion
that in order to determine a Lie group, we solely have to define generators of the
Lie algebra and their commutation relations. The fact that conformal transfor-
mations form a group is unsurprising. It is not directly clear that it should be
a compact manifold, however, a fact we will ignore for now. Let us start with a
formal definition.

Definition 1.36 (Conformal equivalence). Let M be a manifold equipped with
metrics g, h. These metrics are called conformally equivalent if there exists a
smooth function λ : M → R such that g(x) = λ2(x)h(x) for all x ∈M .

3The special linear group of dimension 2 in the complex numbers is indeed a group. It is
defined by the matrices of determinant 1 and is the normal subgroup of the general linear group.
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Note that conformally equivalent metrics form an equivalence class. A man-
ifold equipped with such an equivalence class is called a conformal manifold,
denoted by (M, [g]) (thus a manifold with an equivalence class). We can now also
define a conformal mapping :

Definition 1.37 (Conformal mapping). Let (M, [g]) and (N, [h]) be conformal
manifolds. A conformal mapping between these manifolds is a smooth mapping
F : M → N such that:

F ∗h = λ2g, (1.23)

for a smooth function λ : M → R.

It may not be clear what is meant by this equation. We recall a met-
ric h on a manifold N is a map taking vector fields X, Y on N to R. Now
F ∗h = h(F∗X,F∗Y ).

From now on, we will, with an eye on the use of this paragraph in the next
chapter work in notation familiar in field theories (i.e. with coordinates xµ,
implicit summation and metrics of the form gµν etc.). Most of the discussion
which follows is still valid or easily generalizable to arbitrary manifolds. However,
not adapting this notation would lead us to the undesirable situation in which
we would have to repeat our theory multiple times. The discussion that follows
is based on Di Francesco (1997). We will start by rewriting 1.23 in coordinates:

hij(F (xρ))∂µF
i(xρ)∂νF

j(xρ) = λ2(xρ)gµν(x
ρ) (1.24)

We will now look at conformal maps F : Rd ⊇ M → Rd, as vector spaces
over the real (or complex, but most results will generalize) numbers will be of
our main interest for our conformal maps to act upon. The nice feature of Rd

is its ready-made tangent space. We may simply expand our transformations up
to first order (as we have seen before) to find the generators for our Lie algebra.
Note that this procedure is justified as long as we are working with infinitesimal
transformations and similar to the procedure for SO(3). Expanding x′µ = F (xµ)
and λ(xµ) in (1.24) up to first order gives:

x′µ = xµ + εαµ and λ(xµ) = 1 + εf(xµ) (1.25)

where αµ is a vector and f(xµ) a function. The metric gµν transforms as:

δgµν = −(∂µεαν + ∂νεαµ) (1.26)

As is clear both intuitively and by explicit first-order expansion. For F to be
conformal we should have the proportionality relation:

− δgµν = f(xρ)gµν (1.27)

The identity follows from h = g in (1.24). We now look to investigate what we
can say about this function f . We take the trace of (1.27) to find:

f(xρ) =
2

d
δσε

σ (1.28)
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We will now drop the argument of f . We may rewrite (1.27) as −δgµν =
f(xρ)gµν + f(xρ)gµν − fxρ)gµν . Substituting (1.26) and applying an extra deriva-
tive ∂ρ gives after relabeling:

2∂µ∂vεµ = ηµρ∂νf + ηνρ∂µf − ηµν∂ρf (1.29)

where we assumed our conformal transformation is only infinitesimally differ-
ent from the standard Minkowski metric ηµν =. If we subsequently contract with
ηµν we find:

2∂2εµ = (2− d)∂µf

we now apply another derivative. Note that the expression obtained will be
equal to (1.27) up to two derivatives. We therefore have:

(2− d)∂µ∂νf = ηµν∂
2f (1.30)

which, when contracted with ηµν leads to:

(d− 1)∂2f = 0 (1.31)

The case d = 1 does not put any constraints on f . And indeed, in one di-
mension the notion of angles is not present, so we would expect this to be the
case. From (1.30) we observe d = 2 to be a special case. Let us first consider
d ≥ 3. It is clear from the last two equations that f may only be linear in xµ,
i.e. f(xµ) = A + Bµx

µ. If we substitute this expression in (1.29) we can infer
that εµ may at most be quadractic in xµ, i.e. εµ = aµ + bµνxv + cµνρx

νxρ. As we
have no constrains on xµ, we may pick it such that all but one term vanishes and
evaluate the equations as obtained in the discussion above. As the aµ vanishes
for any derivative, there are no constraints on this term. It may be clear that aµ
corresponds to (infinitesimal) translations.

Now let us look at the higher order terms. Substituting f = bµνx
ν and (once

again) (1.26) into (1.27) to obtain:

bµν + bνµ =
2

d
bσσηµν (1.32)

As ηµν = 0 for µ 6= ν, bµν will be asymmetric but with nonzero trace. De-
composing it in this way, denoting mµν to be a traceless antisymmetric matrix
we get:

bµν = kηµν +mµν , (1.33)

where the first term corresponds to an infinitesimal scale transformation, and
the right hand side (our discussion of SO(3) should ring a bell) an infinitesimal
rotation. Now for the last term, which we will substitute in (1.29) we obtain:

cµνρ = ηµρb̄v + ηµν b̄ρ − ηνρbµ where b̄ =
1

d
cσσµ (1.34)

The corresponding transformation is of the form:

x′µ = xµ + 2(xlb
l)xµ − bµxlxl (1.35)
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Table 1.2: Generators of the conformal group

Transformation Generator

aµ Pµ = −i∂µ
kηµν D = −ixµ∂µ
mµν Lµν = i(xµ∂ν − xν∂µ)
cµνρ Kµ = −i(2xµxν∂ν − xνxν∂ν)

corresponding to the expression (1.22). We have now categorized all transforma-
tions constituting the conformal group. All that is left is to find the corresponding
generators and commutations relations. These are:

where we defined the generators slightly differently and as follows - let φ
be a state (or element of a vector space, whichever one prefers) on which the
group acts. To each infinitesimal transformation xµ → xµ + εµ there is a first-
order expansion of some operator Oε such that φ(x) → φ(x) + Oεφ(x) for eacht
transformation. The generators are multiplied by a factor of i to ensure them to
be Hermitian. A derivation of the last generator, as this will be least familiar,
will be given shortly. We recover the commutation relations [A,B] = AB − BA
by letting it act on some arbitrary function in Rd:

[D,Pµ] = iPµ (1.36)

[D,Kµ] = −iKµ (1.37)

[Kµ, Pν ] = 2i(ηµνD − Lµν) (1.38)

[Kρ, Lµν ] = i(ηρµKν − ηρνKµ) (1.39)

[Pρ, Lµν ] = i(ηρµPν − ηρνPµ) (1.40)

[Lµν , Lρσ] = i(ηνρLµσ + ηµσLνρ − ηµρLνσ − ηνσLµρ) (1.41)

Note that one may also state other commutation relations, as they can be
inferred from one another by the use of 1.29 and direct inspection. These com-
mutation relations will be the final result in this chapter. We have learned that,
upon specifying the commutation relations of the generators of its Lie algebra, we
have specified the group. In the next chapter we will see the application of this
conformal group in physics. Here we will also find representations of our group,
referring to the first section of this chapter.

Before ending this section, let us justify the postulation of the Lie Algebra as
a definition of the conformal group. We will work in the context of Minkowski
space as this is the framework we will usually be working in. However, extensions
to other (pseudo) Riemannian metrics are possible.

Definition 1.38 (Conformal compactification). A conformal compactification of
a (Lorentzian)4 manifold which is non-compact is an embedding of this manifold
into a compact manifold as a dense and open subset, such that the embedding is
a conformal mapping.

4A Lorentzian manifold is a manifold equipped with a metric of the form diag (1,−1, . . . ,−1),
i.e. a generalization of R3+1 Minkowski space.
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This definition allows us to use our language of Lie Algebras for the conformal
group (which is clearly non-compact from the previous definition). One can
derive as in [Nikolov-Todorov] the compactification of Rn+1 space-time to be the
Sn × S1/{±1}.

A derivation of the special conformal generator

Having gone through an entire discussion on Lie groups, we will show how
the language of Lie groups and algebras leads to the generator of the special
conformal transformation. In spirit of the discussion in 1.21 and onwards, we will
start by considering some flow, parametrized by t arounds some x0 ∈ G. We will
show both why the definition of generator makes sense in this context and how
to apply this to special conformal transformations. We find (locally):

ψt(x0) = x0 + tψ1(x0) +O(t2)

(again we have the property of ψt+s = ψt ◦ψs and G being locally homeomorphic
to Rn). Now let us consider a neighborhood of 1 inG. We now have the expansion:

ψt(1) = 1 + tG̃(1) +O(t2)

where ψ1 := G̃. We will show this G̃ to be appropriately named the generator.
Defining γ(t) = ψt(1) as in our discussion leading to the exponential map we see:

d

dt
γ(0) =

d

dt
ψt(1)

∣∣∣∣
t=0

=
d

dt
(1 + tG̃(1) +O(t2))

∣∣∣∣
t=0

= G̃(1)

so we see G̃(1) ∈ g. Furthermore we have:

d

dt
γ(t) =

d

dα
γ(t+ α)

∣∣∣∣
α=0

=
d

dα
φα+t(1)

∣∣∣∣
α=0

=
d

dα
φα(φt(1))

∣∣∣∣
α=0

=
d

dα
(φt(1) + αG̃(φt(1)) +O(α2))

∣∣∣∣
α=0

= G̃(φt(1)) = G̃(γ(t))

so we see that the generator, initially an element in the Lie algebra of G will
remain the first order expansion of the one-parameter group γ(t) as discussed
previously. This derivation shows (once again) the power of the discussion on the
exponential map and Lie algebras. It allows for a unambiguous definitions of a
generator in a connected Lie group. We will now focus on the special conformal
transformations. In (1.22) we noted the form of a special conformal transforma-
tion to be:

~x 7→ ~x− x2~a

1− 2~a~x+ a2

where we applied ~a 7→ −~a to arrive at a sign convention as common in literature
and in accordance with Table 1.2. Now we introduce a flow corresponding to this
transformation:
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ψt(~x) =
~x− x2(t~a)

1− 2(t~a) · ~x+ (ta)2
(1.42)

expansion around t = 0 gives:

ψt(~x) = ~x+ t(2(~x · ~a)~x− x2~a) +O(t2) (1.43)

as such, we see G̃~a = 2(~x ·~a)~x−x2~a. The difference with the notation in Table 1.2
is due to these generators being derived from conformal transformations acting
on fields φ. Suppose we have some transformation ~x 7→ A~x (we will not switch
to index notation throughout the derivation, only using vectors and dot products
as this prevents a very messy computation. However, vectors may be understood
to be space-time coordinates if one pleases) under which the field is transformed
as φ(~x) 7→ φ′(~x) = φ(A−1~x). We will now investigate how the field transforms
after an infinitesimal special conformal transformations. We have (dropping the
~a subscript):

φ(~x) 7→ φ((ψε(~a))−1~x) = φ((ψ−ε(~a))~x)

= φ(~x− εG̃(~x) +O(ε2))

= φ(~x)− εG̃(~x) · ~∂φ+O(ε2)φ(~x)

= (1− εG̃(~x) · ~∂ +O(ε2))φ(~x) (1.44)

which shows −G̃(~x) · ~∂ = −(2(~x · ~a)~x − r2~a) · ~∂ is the generator associated with
an infinitesimal conformal transformation acting on a field. As the ”direction”
~a is arbitrary it is usually not included in the expression. Applying a factor i
yields the desired expression in Table 1.2. The other generators for the conformal
transformations can be obtained in the exact same way.
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Chapter 2

Symmetry Groups in Physics

So far we have given a thorough background on Lie groups and their rep-
resentations acting on certain manifolds or vector spaces. Defining a group to
be a symmetry group, however, required an explicit definition of a certain in-
variance (in the case of the conformal group relative angles) which translated
into a mathematical definition of the group. It is clear that in physical systems
exact symmetry (the system reducing precisely to itself after a nontrivial trans-
formation) is hardly ever attained. One can, however, work with the notion of
symmetries quite well, as we will establish in this chapter.

2.1 Noether’s Theorem

It is a remarkable fact that many (partial) differential equations admit a
variational formalism. That is, one can find the solution to be the function that
minimizes a certain functional - i.e. it is the critical point of some action:

S(φ) =

∫
Ω

L(ω, φ, ∂φ)dω

with Ω being some domain space. The important feature here is that only first-
order derivatives of the function have to be considered. Now suppose we can
describe a physical system by such a principle. We will try to see what properties
the Langrangian will satisfy. It is natural to work in the context of field theories,
as our discussion on conformal symmetry was also written in language known to
field theories. In field theories it is natural to assume we have a Langrangian
density, i.e. our action will be of the form:

S =

∫
dt

∫
d3xL (2.1)

where the integration variables are evident as we want to consider a theory de-
pending on space-time coordinates. Now as we consider a critical point of S we
expect δS to be vanishing in first order. Furthermore we will keep our end points
fixed (i.e. δφ(x, t1) = δφ(x, t2)) if we integrate from t1 to t2. If there is no explicit
coordinate dependence of L (only through the field φ, which we take to be a scalar
for now), so L = L(φ, ∂µφ) we get (in space-time coordinates dtd3x = d4x):

31



δS =

∫
d4x

[
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)

]
=

∫
d4x

[(
∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

))
δφ+ ∂µ

(
∂L

∂(∂µφ)
δφ

)]
=

∫
d4x

(
∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

))
δφ (2.2)

where the second line is obtained the product rule and noting δ(∂µφ) = ∂µ(δφ).
The term on the right hand side is a total derivative, which under the imposed
constraints together with the assumption of decay at spatial infinity (which is
reasonable for any physical field) vanishes due to Stokes when integrated over.
We obtain the Euler-Lagrange equation:

∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)
= 0 (2.3)

We will stress the significance of this equation by examining the Klein-Gordon1

equation as an example:

L = ηµν∂µ∂νφ−
1

2
m2φ2

=
1

2
φ̇2 − 1

2
(∇φ)2 − 1

2
m2φ2 (2.4)

If we identify kinetic energy T = 1
2
φ̇2 and potential energy V = (∇φ)2 + 1

2
m2φ2

as familiar to field theories we have L = T − V and the Euler-Lagrange equation
(2.3) becomes:

∂µ∂
µφ+m2φ = 0

Denoting the potential depending on φ (thus 1
2
m2φ2) as V (φ) we can rewrite this

equation as:

∂µ∂
µφ = −∂V (φ)

∂φ
(2.5)

which looks quite familiar. In fact, the above statement is true for any V (φ).
We therefore see we can identiy the Euler-Lagrange equation as the equation of
motion. This is, in fact a general statement if we set L = T − V . Having this
Lagrangian formalism, we have a very natural way of talking about a symmetry.
It is obvious the Lagrangian for a particular equation of motion is not unique. We
may add or multiply by a constant to get the same equations of motion. In fact
we could add a term ∂µF

µ, motivated by our derivation of (2.2). Again we vary
S while keeping endpoints fixed (i.e. δφ(t1, x) = δφ(t2, x) = 0 when integrating
from t1 to t2.) Following the same procedure as in (2.2) and requiring the original
equations of motion to be satisfied (thus we have only a contribution from ∂µF

µ)
we obtain:

1The Klein-Gordon equation is a equation of a quantum (although φ here is not defined to
be an operator) scalar field, describing massive bosons. Here we have used natural units, thus
c = ~ = 1 and are working in Minkowski space, thus ηµν = diag(1,−1,−1,−1)
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δS =

∫
d4x

[
∂(∂µF

µ)

∂φ
δφ+

∂(∂µF
µ)

∂(∂µφ)
δ(∂µφ)

]
=

∫
d4x

[
∂(∂µF

µ)

∂φ
δφ+

∂F µ

∂φ
∂µ(δφ)

]
=

∫
d4x

(
∂µ
∂F µ

∂φ

)
δφ−

(
∂µ
∂F µ

∂φ

)
δφ+ ∂µ

(
∂F µ

∂φ
δφ

)
= 0 (2.6)

where the last term vanishes due to the same application of Stokes’ theorem
and our boundary conditions as before. We have shown that the insertion of a
total derivative does not change critical points of our functional, and hence the
equations of motion indeed are the same in this case. Therefore we can consider
Lagrangians to be equivalent when they differ by a total derivative. Indeed this
defines an equivalence relation and it makes sense to define the group of trans-
formations which leave the Lagrangian invariant to be the relevant symmetry
group of our theory. We will now arrive at a very important theorem known as
Noether’s theorem in the context of symmetry transformations. Let us take a
transformation of fields δφ = X(φ) which gives rise to δL = ∂µF

µ(φ). We now
get:

δL =
∂L
∂φ

δφ+
∂L

∂(∂µφ)
∂µ(δφ)

=

(
∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

)
δφ+ ∂µ

(
∂L

∂(∂µφ)
δφ

)
= ∂µ

(
∂L

∂(∂µφ)
δφ

)
(2.7)

whenever the equations of motion are satisifed. As we had δL = ∂µF
µ(φ), this

results in:

∂µj
µ = 0 where jµ =

∂L
∂(∂µφ)

X(φ)− F µ(φ) (2.8)

This jµ is called the Noether current. With this conserved current we can identify
a conserved charge Q, as for the time component j0 we have again using Stokes
and the fact that the current is conserved:

d

dt

∫
R3

d3xj0 =

∫
R3

−∇ ·~j d3x = 0 (2.9)

which proves we have a conserved charge. A few remarks regarding Noether’s
theorem:

• Noether’s theorem is a statement regarding continuous symmetries, as only
in that context our derivation makes sense. There is no current corre-
sponding to parity transformation, for example. Note that the infinitesimal
character suggests an application of Lie algebras.
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• The fact of having a conserved current is a much stronger statement than
having a conserved charge, as the former is local in nature, thus holds
everywhere in space-time.

• Our derivation is constructive, i.e. it gives an explicit formula for conserved
charge and conserved current. If we consider for example infinitesimal time
and spatial transformations, we get conserved energy and momentum. See
for a derivation Tong[Chapter 1.3].

• If we consider the formulation of quantum mechanics, any operator A com-
muting with the Hamiltonian gives rise to a symmetry with conserved A
itself.

2.1.1 The Energy Momentum Tensor

In (2.8) we obtained an explicit general expression for the conserved current
jµ. Let us now briefly consider the case of an infinitesimal translation. In this
case (see [Tong, Chapter 1] for a reference), we have:

(jµ)ν =
∂L

∂(∂µφ)
∂ν − δµνL (2.10)

known as the Canonical Energy Momentum Tensor (CEMT), which we will
denote by tµν . Here µ labels entries of the current, while ν labels the translations
in spacetime. One can from this tensor construct a symmetric energy momentum
tensor (SEMT):

T µν = tµν − 1

2
∂ρΓ

ρµν (2.11)

where Γρµν is required to be antisymmetric in the first two indices such that
this new tensor will be conserved. One can construct the tensor Γ from what
is known as the Spin tensor (see [Weinberg (1995a)] amongst others for a refer-
ence). We will for now not concern ourselves with the precise restrictions for the
symmetric tensor to exist. One can show, however (as done in [Tong, Chapter 1]
amongst others), that the conserved tensor for infinitesimal rotations is given by
(up to a spin tensor):

Lµνρ = xµT νρ − xνT µρ (2.12)

Comparing the relation between these tensors with the generators of the con-
formal group in Table 1.2 we see there is a direct relation between generators
and corresponding conserved tensors, a relation we will seek to explore when
discussing the Goldstone modes for the conformal group in Chapter 4.

2.2 Symmetry breaking

In the remainder of this thesis, we will encounter various forms of the notion
of symmetry breaking. We will now explore terminology of various symmetries
and symmetry breaking. From now on, we will define and explore operators in
terms of commutator brackets. The relevant physical theories discussed admit a
notation in terms of Lagrangians L or Hamiltonian H which define the mechanics
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of our theory. We can define the terminology in either one, but will opt to define
it in terms of the Lagrangian, as this is the formalism already introduced in the
previous sections.

Exact symmetry This kind of symmetry is obtained for some operator A
when the commutator [L,A] = 0. Physically, this means there is no difference in
establishing the Lagrangian and acting with the operator on it our acting with
the operator on a state and then acting with the Lagrangian operator. An obvi-
ous example is a rotation for an angular symmetric Lagrangian. It is clear there
is invariance of equations of motion upon such transformations.

Explicit symmetry breaking An explicit symmetry breaking is an operator
transformation such that [A,L] 6= 0. Now consider for an example L → L + L2

with L the Lagrangian of an electron in a hydrogen atom, which wil be rota-
tionally symmetric. Introducing an external magnetic field and corresponding
Lagrangian term L2 with [A,L2] 6= 0 if A is a rotation.

Spontaneous symmetry breaking This form of symmetry breaking is char-
acterized by a Lagrangian which exhibits a symmetry, i.e. [A,L] = 0 for some
symmetry transformation A, but the ground state of the system (indeed, the
ground state has to be defined for a mathematical structure on which the trans-
formation acts but is often clear in the context of physical systems) does not
have this symmetry. We can for an example turn to fmerromagnetism. In a
ferromagnetic material, spins align randomly and thus any macroscopic quantity
such as magnetization will vanish and be rotationally symmetric. In particular,
the ground state will be disorder and thus have an expectation value for mag-
netization in the ground state will be zero. Now if we lower the temperature
under a certain temperarture TC (the Curie temperature) the ground state of
the system will be to completely align. The direction of alignment is random
(i.e. the Lagrangian has rotational symmetry), however, the expectation value of
magnetization is different than before lowering of temperature.

Anomalous symmetry breaking Anomolous symmetry breaking is sym-
metry breaking due to the appearance of quantum effects, i.e. a symmetry broken
at the quantum level.

2.3 The Goldstone Theorem

We will now introduce the celebrated Goldstone Theorem, which relates spon-
taneous symmetry breaking and the existence of a certain type of bosons in the
context of quantum field theory. There are multiple ways to arrive at equiva-
lent forms of this theorem. we will investigate two forms, as both of these are
frequently used in literature and translating from one to the other is not always
obvious or practical.
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2.3.1 On spontaneous symmetry breaking

Before we start proving the Goldstone Theorem, let us consider a field φ and
some potential V (φ)

Figure 2.1: A potential symmetric under φ 7→ −φ

which is of the form V (φ) = µ2φ2 + λ2φ4 with µ imaginary and λ real. Ob-
viously, this potential is symmetric under φ 7→ P−φ = −φ and we may also
expect [P−,L] = 0. The vacua, φ̄ and −φ̄ however, are not invariant under this
transformation and thus we have an example of (discrete) spontaneous symmetry
breaking. We should be careful, however, to assume that these are indeed the
vacua. Although these fields indeed minimize the potential, we cannot a priori
exclude 1√

2
(
∣∣φ̄〉+

∣∣−φ̄〉) for instance, a state which is clearly symmetric under the
operator P− and thus resulting in no spontaneous symmetry breaking. We will
discuss this issue shortly as it will give us a more thorough understanding on the
Goldstone Theorem and introduces some notation we will use later on. Assuming
[H, P−] = 0 implies: 〈

−φ̄
∣∣H ∣∣−φ̄〉 =

〈
φ̄
∣∣H ∣∣ φ̄〉 = a〈

φ̄
∣∣H ∣∣−φ̄〉 =

〈
−φ̄
∣∣H ∣∣ φ̄〉 = b

with a and b real numbers. This implies
∣∣φ̄〉 ± ∣∣−φ̄〉 to be eigenstates of the

Hamiltonian with energies a±|b|. The a has the interpretation of the energy of the
system in a minimum of the potential and b corresponds to a tunneling term from
|φ̄〉 to

∣∣−φ̄〉. It is proportional to some tunneling factor of the form exp(−CV )
with V being the characteristic volume involved and thus will be very small for
any macroscopic volume. Therefore

∣∣φ̄〉± ∣∣−φ̄〉 will be essentially degenerate (as
their energy difference is very small). If we introduce a small perturbation H′
as in the following figure, these states will therefore be strongly mixed. Much
stronger, in fact, than the ground states

∣∣±φ̄〉. We conclude vacuum eigenstates
of the Hamiltonian will be very close to the latter states. And for sufficiently
small perturbation (the states are related by a transformation leaving the orginal
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Hamiltonian invariant) we will not be able to tell which is the ”true” vacuum
state. This reasoning justifies viewing perturbations as breaking the symmetry of
a system. A formal exploration of this reasoning is given in [Weinberg (1995b),
Chapter 19].

Figure 2.2: A potential symmetric under φ 7→ −φ with small perturbation

2.3.2 Effective action formalism

Let us consider a proof for the existence of Goldstone bosons in terms of
the action, a concept we already encountered in a previous section. We will be
working in the context of a relativistic field theory, while considering internal
symmetries (thus acting on the fields, not the coordinates). If we continuously
transform some scalar field φ→ φ′ such that the action is preserverd, i.e. δS = 0,
we have a notion of symmetry equivalent to one in Section 2.2. Now in quantum
mechanics, there is no well-defined path and dynamics and the correct notion
is the effective action, taking into account the quantum effects corresponding to
amplitudes of various paths. For an in-depth discussion on this effective action
Γ[φ] and associated effective potential V (φ), see for instance the volumes of Wein-
berg (1995b).

We will consider a set of labeled scalar fields φn with corresponding Hermitian
operators φ̂n and a linear infinitesimal transformation 2 as follows:

φn(x)→ φn(x) + iε
∑
m

tnmφm(x) (2.13)

with tnm purely imaginary to make it Hermitian. We had δS = 0 as a notion
of our symmetry. One can show that together with the metric being invariant
the effective action Seff will also be invariant (a calculation beyond the scope of

2For infinitesimal transformations, the assumption of the transformation being linear is not
a restriction as higher-order terms will vanish in a Taylor expansion
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this thesis), i.e.: ∑
n,m

∫
δSeff

δφn(x)
tnmφm(x)d4x = 0 (2.14)

Imposing translational invariance, this requirement translates to a require-
ment in terms of the potential as follows (again see [Weinberg (1995b), Chapter
16] for a detailed explanation):∑

n

∂V (φ)

∂φn
tnl +

∑
n,m

∂2V (φ)

∂φn∂φl
tnmφm = 0 (2.15)

Now let us consider φn = φ̄n such that V (φ) is minimal, thus φ̄n being the

vacuum. Here ∂V (φ)
∂φn

∣∣∣∣
φ=φ̄

vanishes up to first order and we may conclude:∑
n,m

∂2V (φ)

∂φn∂φl

∣∣∣∣
φ=φ̄

tnmφ̄m = 0 (2.16)

Now if a symmetry is broken, meaning tnmφ̄m is non-vanishing it must be an

eigenvector of this ∂2V (φ)
∂φn∂φl

∣∣∣∣
φ=φ̄

with eigenvalue zero and we identify tnmφ̄m to be

a massless Goldstone boson. This boson being massless follows from the usual

interpretation of ∂2V (φ)
∂φn∂φl

∣∣∣∣
φ=φ̄

as the mass matrix, being very close to diagonal

following our previous discussion. We conclude that for all generators of the
symmetry which are linearly indepedent we find a massless Goldstone boson tφ̄.

Let us illustrate the interpretation of this boson as a massless boson by con-
sidering a Lagrangian of the following familiar form:

L = −1

2

∑
n

∂µφn∂
µφ− M

2

2

∑
n

φnφn −
g

4
(
∑
n

φnφn)2 (2.17)

we note that the potential (with usual interpretation of L = T − V ) in this
Lagrangian is precisely the n-dimensional form of the potential in 2.1 in case
M2 negative and g positive. Note that we can view this to be a perturbation of
the ”standard” Lagrangian, with a perturbation term ∝ g. So we have V (φ) =
M2

2

∑
n φnφn + g

4
(
∑

n φnφn)2.
As in our previous discussion, we will look at minima of this potential. If g

is positive (and only then our interpretation of it as a perturbation makes sense)
we have minima φ̄ = 0 which is not of great interest to us here, and a minimum
given by: ∑

n

φ̄nφ̄n = −M
2

g
(2.18)

we obtain a mass matrix

Mmn =
∂2V (φ)

∂φn∂φm

∣∣∣∣
φ=φ̄

=M2δmn + gδmn
∑
k

φ̄kφ̄k + 2gφ̄nφ̄m

= 2gφ̄nφ̄m (2.19)
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where the last equality follows directly from inserting (2.18). A diagonal mass ma-
trix implies the latter has one eigenvector φ̄n with eigenvalue m2 = 2g

∑
n φ̄nφ̄n.

Suppose the number of scalar fields was N , then there are N −1 fields φ̄m 6=n with
eigenvalue zero - the Goldstone bosons. The reason why there should be N −1 of
these is that the relevant symmetry group, O(N) is broken down to a O(N − 1)
symmetry group leaving φ̄ invariant, as we had one eigenvector with eigenvalue
nonzero, and dim(O(N))− dim(O(N − 1)) = N − 1.

It is time to recap on what we have (and maybe more importantly) haven’t
done. We have shown that for a continuous global internal symmetry (our tmn
were not coordinate-dependent) we have a well-defined set of vacua and for each
generator of a spontaneous symmetry breaking there is an associated massless
Goldstone boson. More formally, if we have a symmetry group G of our Hamilto-
nian of which a subgroup H leaves the vacua invariant, there are dimG− dimH
associated Goldstone bosons. We should strongly emphasize that our discussion
was in the framework of Quantum Field Theory, and thus no conclusion about
a non-relativistic case can be given. Furthermore, we might suspect a similar
derivation to hold for spacetime symmetries rather than internal ones, but how
this should hold exactly is to be investigated. In particular, we want to discuss
the conformal symmetry group.
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Chapter 3

Nambu-Goldstone bosons: a
review

The theory we have discussed is not easily generalizable to any transforma-
tion in the sense that the statement ”For any symmetry transformation there
is a Goldstone mode” is not true. A clear example arises when discussing the
Heisenberg model for ferromagnets and antiferromagnets.1 It is known that for
a ferromagnet the number of broken generators (2, corresponding to rotations in
3-dimensional space) give rise to only one Goldstone boson, whereas in the case
of the antiferromagnet there are two distinct Goldstone modes. For a discus-
sion which does not assume a readily developed theory of Goldstone bosons, see
[Fjaerestad] amongst others.

The correct counting of the number of (Nambu-)Goldstone bosons (nNG) cor-
responding to the number of broken generators (nBG) was first developed in a
paper by H.B. Nielsen and S. Chadha [Nielsen and Chadha (1976)] which con-
siders theories which are not Lorentz invariant and gives several inequalities.
Generalizations, giving conditions for which equalities rather than inequalities
hold were developed fairly recently in [Schäfer (2001)], [Watanabe and Brauner
(2011)] and [Watanabe and Murayama]. A discussion on spontaneously broken
spacetime symmetries can be found in [Low and Manohar], while the case of bro-
ken translational invariance is investigated in [Watanabe and Brauner].

In this chapter, we will start by considering a broader discussion of symmetries
which should help to clarify the terminology in the to be reviewed papers in sec-
tion 3.1.1. In 3.1.2, we will re-establish Goldstone’s theorem in the same context
as the previous section, thus for relativistic internal symmetries. In 3.1.3 we will
review papers establishing the counting of Goldstone bosons in non-relativistic
setting. In section 3.2 we will switch to the discussion of space-time symmetries,
naturally leading to a discussion of conformal symmetry in Chapter 4.

1The antiferromagnet is a form of magnetism in which spins align opposite to those of their
neighbours at lower temperatures
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3.1 Nambu-Goldstone bosons in (non)relativistic

theories

The discussion presented in this section follows subsequently the initial the-
orems by Nielsen and Chadha in their 1976 paper while also following papers of
Schäfer et al., Watanabe and Brauner and Watanabe and Murayama to establish
a contemporary understanding of the number of Nambu-Goldstone bosons. We
start by reviewing what is a more common version of the Goldstone theorem than
the one given in section 2.3.2. We will start by formulating our assumptions and
discussing them, after which we will prove the Goldstone theorem in this new set-
ting. Up to now, we have proven Noether’s theorem for a reasonably well-defined
notion of symmetry. We will now consider a quantized field theory for which we
will first introduce some preliminaries. This is necessary to understand what the
specific context is of the Goldstone theorem.

3.1.1 Symmetry transformations and operators

We will start with a quantized field theory with states |φ〉 living in a Hilbert
space. From Noether’s Theorem we have established that for a Lie symmetry
group G leaving the action invariant one has a conserved current jµ and corre-
sponding conserved charge Q, given by the space integral of this current. We will
now proceed to associate this charge with the transformation itself.

In quantum mechanics, one can establish another notion of a symmetry trans-
formation f : |φ〉 → |φ′〉 to be a transformation which preserves inner products
(interpreted as transition probabilities), i.e. | 〈φ|ψ〉 | = | 〈φ′|ψ′〉 |. It has been
shown (see [Griffiths (2005)], amongst others) that these symmetry transforma-
tions are those generated by linear and unitary operators. In order to unify both
of these natural notions of a symmetry transformation, one thus needs to have
a linear and unitary operator leaving the action invariant, i.e. δS = 0. Now
let us consider the charge operator Q̂ of an internal symmetry with correspond-
ing unitary operator Û = exp(iηQ̂), of which the significance will become clear
shortly.

Theorem 3.1 (Fabri-Picasso). Following the discussion above (thus Q̂ being a
charge operator induced by an internal symmetry transformation of the action)
and a translationally invariant vacuum state |0〉, the following cases exhaust the
possibilities:

1. Q̂ |0〉 = 0, thus |0〉 is an eigenstate of this operator with eigenvalue 0.

2. There is no element in the Hilbert space corresponding to Q̂ |0〉, i.e.
|Q̂ |0〉 | =∞.

Proof. Naturally, our internal symmetry will commute with P̂ µ, the four-momentum
operators. This, and translational invariance of the vacuum results in:

〈0|J0(x)Q̂|0〉 = 〈0|eiP̂ ·xJ0(0)Q̂e−iP̂ ·x|0〉 = 〈0|J0(0)Q̂|0〉 (3.1)

where we denoted Jµ to be the operator corresponding to the current jµ. We are
now ready to evaluate the norm of Q̂ |0〉:
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〈0|Q̂Q̂|0〉 =

∫
V

d3x 〈0|J0(x)Q̂|0〉 =

∫
V

d3x 〈0|J0(0)Q̂|0〉 (3.2)

which is divergent as V →∞ and thus there cannot be a unitary transforma-
tion between the states |0〉 and Q̂ |0〉.

It is clear that the former case is one of exact symmetry, and the latter strongly
hints at spontaneous symmetry breaking. Often, the latter statement is (some-
what imprecisely, as we will see in this section) denoted by Q̂ |0〉 6= 0.

We will now examine the validity of charges being generators of symmetry
transformations. First, let us consider an element g of our symmetry group,
which is represented as a unitary operator acting by conjugation on states by
g 7→ Tg = exp(tX) with t an (infinitesimal) parameter and X the corresponding
parameter. In language familiar to us, we expand to find:

(g |φ〉)(y) = exp(−tX) |φ〉 (y) exp(tX) = (1 + [X, ·] +O(t2)) |φ〉 (y)

if we want this equation to have the form g |φ〉 (y) = (1 + t δφ̂
δt

(y) + O(t2)) |φ(y)〉
we should have

[X,φ] =
δφ

δt
(3.3)

Now let us consider how the charge commutes with φ. We will examine a
simplified example of a (charged) scalar field φ with action S = d4x∂µφ∂

µφ∗ with
corresponding canonical momenta π = ∂L

∂(∂µφ)
and π∗ = ∂L

∂(∂µφ∗)
. From (2.8) we

have:

jµ = π(x)δφ(x) + π∗(x)δφ∗(x)

so

Q =

∫
d3xj0(x) =

∫
d3x[π(x)δφ(x) + π∗(x)δφ∗(x)]

and it follows from the general commutator relations (see Appendix B):

[Q, φ(x)] = −iδφ(x) (3.4)

which in first order differs from (3.3) by a factor of −i, which ensures a Her-
mitian transformation and corresponding unitary exp(tX). For a more general
proof, see Weinberg (1995a)[Chapter 7].

In fact, the ”converse” is also true:

Theorem 3.2 (Coleman’s Theorem). Let G be a symmetry group and Qα be
the generators of this symmetry group. If Qα =

∫
d3xj0

α(~x, t) for some (not
necessarily conserved) current j0 and Qα annihilates the vacuum, the Hamiltonian
of the system will be invariant under G and jµ will be conserved.

Proof. We have:

Qα(t) |0〉 =

∫
d3xj0

α(~x, t) |0〉 = 0
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Considering a state 〈n| with vanishing 3-momentum, one has:

〈n|
∫
d3xj0

α(~x, t) |0〉 =

∫
d3x 〈n| j0

α(~x, t) |0〉 = 0

and from the requirement of 3-momentum to vanish corresponding to transla-
tional invariance we establish:

〈n| j0
α(~x, t) |0〉 = 0

from which follows:
〈n| ∂µjµα(~x, t) |0〉 = 0.

For Lorentz invariant systems, this equation will hold in any reference frame
and thus also be valid for non-vanishing 3-momentum states and thus we have
∂µj

µ = 0. We conclude Qα(t) to be independent of time and therefore:

dQα

dt
= i[Qα,H] = 0 (3.5)

which proves the theorem.

So far so good. We have established charges as the generators of symmetry
transformations for exact symmetries. But for the case of spontaneously broken
symmetries we found |Qα |0〉 | =∞ and we can not view them as the generators of
our unitary group. Indeed, if we have a charge corresponding to a spontaneously
broken symmetry it does not generate the symmetry transformation and the
states in this system will not transform as an irreducible transformation.

3.1.2 The Goldstone Theorem for internal symmetries

Let us consider a conserved current jµ(x) (with x = (~x, t)). We will define an
operator:

QV (t) =

∫
V

d3~xj0(~x, t) (3.6)

in some volume V we are considering and redefine the condition for spontaneous
symmetry breaking to be:

lim
V→∞

〈0|[QV (t), φ]|0〉 6= 0 (3.7)

Again, we will assume |0〉 to be the translationally invariant vacuum. The QV (t)
is known as a broken charge when this equation holds. It is clear this definition
of spontaneous symmetry breaking implies a non-vanishing vacuum expectation
value QV (t) |0〉. This observation and the notion of a spontaneous symmetry
breaking to be one which does not leave the ground state intact suggests the
existence of a degenerate vacuum state generated by this charge operator - in the
case of a continuous transformation, one expects infinitely many of these.

Let us restate this in a more formal way. As the operator QV (t) has finite
norm, it induces a finite symmetry transformation UV (θ, t) = exp(iθQV (t)) giving
a ”rotated” ground state |θ, t〉V = U †V (θ, t). Now defining the operator Q(t) =
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limV→∞QV (t) and corresponding U(θ, t) = exp(iθQ(t)) seems logical but fails
due to Theorem 3.1. What can be proven is:

lim
V→∞

〈0|θ, t〉V = lim
V→∞

〈0| exp(−iθQV (t))|θ, t〉V (3.8)

showing that the vacuum states are orthogonal to each other. The same
holds for excited states and therefore (in the case of continuous transformations)
there is no separable Hilbert space to store all these vacuum states. Physical
observables, however, are unaffected in the sense that they can unambiguously
defined in the following sense. Let A be an operator. We find (for a justification
of this expression, see Prop. 1.28 and onwards):

Aθ,t;V := UV (θ, t)AU †V (θ, t) = A+ iθ[QV (t), A] +
(iθ)2

2
[QV (t), [QV (t), A]] + . . .

(3.9)
where we defined [QV (t), A] =

∫
d3x[j0(x), A]. If our operator A is nonvanish-

ing in a finite domain, this expression will be finite and thus Aθ,t;V will have a
well-defined limit and allows us to connect expectation values of A in |θ, t〉V and
Aθ,t;V in |0〉.

Let us now state and prove Goldstone’s theorem. We assume the following:

1. The (degenerate) vacuum is invariant under a subgroup F of the symmetry
group G of the Hamiltonian

2. Our theory is Lorentz covariant

Theorem 3.3 (Goldstone’s Theorem, relativistic case). In the notation and ter-
minology of the previous section, if a symmetry generated by a charge (labeled as
there may be a multiple) Qα =

∫
d3xj0,α, thus limV→∞[Qα, H] = 0 and sponta-

neously broken in the sense of (3.7) with operator A (non-vanishing for a finite
region), there is a massless mode in the energy spectrum.

Following our assumptions we have;

lim
V→∞

[
d

dt
QV (t), A] = 0 (3.10)

In fact, we have the stronger statement to hold:

0 =

∫
V

d3~x[∂µj
µ(~x, t), A] =

d

dt

∫
V

d3[j0(~x, t), A] +

∫
S

d~S · [j0(~x, t), A] (3.11)

with S the surface corresponding to the volume V we are considering. Now in
the spirit of our derivation in terms of an effective action, we may expect the last
commutator to vanish for very large space-like intervals. Therefore the quantity∫
V
d3~x[j0(~x,A] is conserved as well as the corresponding charge. Now let us

consider a set φi(x) of local operators not invariant under a continuous symmetry
generated by Qα. We have:

lim
V→∞

〈0|[Qα
V (t), φi(x)]|0〉 6= 0 (3.12)
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where the left hand side of the first equation is known as the order parameter.
Let us examine this quantity.

〈0|[Qα
V (t), φi(x)]|0〉 = y 〈0|

∫
V

d3y[j0,α(y), φi(x)]|0〉

=

∫
V

d3y 〈0|[j0,α(y), φi(x)]|0〉

=
∑
n

∫
V

d3y 〈0|[j0,α(y), φi(x)]|0〉

=

∫
V

d3y[〈0|j0(y)|n〉 〈n|φi(x)|0〉 − 〈0|φi(x)|n〉 〈n|j0(y)|0〉]

where we introduced an orthonormal set of states |n〉 (thus
∑

n |n〉 〈n| = 1 ). We
subsequently find (3.12) to be:

lim
V→∞

∑
n

∫
V

d3~x[〈0|j0(0)|n〉 〈n|φi(y)|0〉 e−iPn·x − 〈0|φi(0)|n〉 〈n|j0(0)|0〉 e+iPn·x]

=
∑
n

(2π)3δ3(~Pn)[〈0|j0(0)|n〉 〈n|φi(y)|0〉 e−iEn·t − 〈0|φi(0)|n〉 〈n|j0(0)|0〉 e+iEn·t]

(3.13)

Here we used translation invariance of the ground state and j0,α(x) = eipxj0,αe−ipx,
while dropping the α superscript for convenience. We established in (3.11) time-
independence of the quantity which was evaluated at the vacuum in (3.12) and
(3.13). Now we impose both (3.13) and time-independence. Taking the time-
derivative of (3.13), we find:

∑
n

Enδ
3(~Pn)[〈0|j0(0)|n〉 〈n|φi(0)|0〉 e−iEn·t + 〈0|φi(0)|n〉 〈n|j0(0)|0〉 e+iEn·t] 6= 0

(3.14)
up to a factor of −i(2π)3. The only way to have this equation be time-

independent and (3.13) nonvanishing is the existence of a state |n〉 such that

〈0|j0(0)|n〉 〈n|φi(0)|0〉 6= 0 for a vanishing Enδ
3(~Pn). We thus have a state with a

energy (or dispersion) relation of the form

lim
~Pn→0

En = 0

which indeed corresponds to a massless particle. What can we say about this
particle? Well, it should have the quantum numbers equal to those of j0 and φi.
For scalar theories, it should therefore be a boson.

3.1.3 Non-relativistic Goldstone bosons

In this section we will follow the paper by [Nielsen and Chadha (1976)] to de-
velop the ”counting” of Nambu-Goldstone bosons, and will review recent progress
made in [Schäfer (2001)], [Watanabe and Brauner (2011)] and [Watanabe and
Murayama].

We will start by assuming the following:
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1. There is a symmetry group G of the theory, with m labeled generators Qα

spontaneously broken in the sense of (3.7). This requirement is usually
restated as:

det 〈0|[φi, Qα]|0〉 6= 0 α, i = 1, . . . ,m

for operators φi.

2. For any two local operators A(x), B(x) we have:

| 〈0|[A(~x, t), B(0)]|0〉 ||~x|→∞ → e−τ |~x|

3. Translational invariance is not entirely broken in the sense of translational
invariance of the vacuum and j0,α(x) = eipxj0,alphae−ipx as encountered ear-
lier.

We will discuss the necessity and meaning of these assumptions through-
out our derivation. Let us consider again a Fourier transform of the quantity
〈0|[φi, jµα]|0〉 := Mµ

iα and will define 〈0|[φi, Qα]|0〉 = Miα. Even though our theory
is non-relativistic, we will conveniently embed it in a framework where we intro-
duced a time-like vector nµ = (1,~0). Following our assumptions we have once
again:

〈0|[Qα
V (t), φi(x)]|0〉 = y 〈0|

∫
V

d3y[j0,α(y), φi(x)]|0〉

=

∫
V

d3y 〈0|[j0,α(y), φi(x)]|0〉

and thus upon a Fourier Transformation:

〈0|[φi, Qα]|0〉 =
1

2π

∫
dke−ik

0x0δ(k)FT (M0
iα) 6= 0 (3.15)

Where FT denotes ”Fourier transformation of”. We will denote FT (Mµ
iα) = Jµiα.

In its most general form:
Jµiα = Aiαk

µ +Biαn
µ (3.16)

Again we impose current conservation, which in the Fourier transform amounts
to:

kµJ
µ
iα = k2Aαi + (kµn

µ)Biα = 0 (3.17)

Now we find a general expression of the Fourier transform, denoting nµkµ = n ·k:

Aiα = δ(k2)χiα(n · k)− (n · k)ρiα(k2, n · k) (3.18)

Biα = δ(n · k)∆iα(k2) + k2ρiα(k2, n · k) + Ciαδ
4(k) (3.19)

We note that through the inverse Fourier transform we have:

Mµ
iα =

1

(2π)4

∫
d4keik·xJµiα (3.20)

which has a contribution nµCiα from the last term in (3.18), corresponding to
a state with kµ = 0, an isolated energy state we want to avoid and indeed, our
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second assumption prevents this term to make a contribution. We may note that
δ(n · k)∆iα(k2) to make a contribution would imply a whole set of vacua with

k0 = 0 and different ~k, as these are precisely the states with zero energy (thus
n · k = 0) but non-vanishing momenta. Fortunately this is also prevented by our
third assumption - translational invariance may not be entirely broken.
Eliminating these two terms, we are left with two contributions, the former giving
rise to dispersion relations of the form E~p ≈ |~p|, the latter to more general
relations.

Let us now proceed to establish the counting of Nambu-Goldstone bosons in
a non-relativistic setting. We will again introduce a complete set of orthonormal
states:

Mµ
iα =

l∑
n=1

e−iEkt 〈0|φi|nk〉 〈nk|j0
α|0〉 − e+iE−kt 〈0|j0

α|n−k〉 〈n−k|φi|0〉 |k=0 (3.21)

with |nk〉 a momentum eigenstate of a particle labeled by n. We know that for k →
0, non-vanishing contributions will only be attained when E → 0 simultaneously.
We assumed in the notation above there will be l such states.

We will define a m×m matrix ṽiα =
∑l

n=1 〈0|φi|n0〉 〈n0|j0
α|0〉 and can write,

as is clear from (3.21) in the limit of k → 0:

Miα = 2i Im ṽiα (3.22)

in the case of spontaneous broken symmetry, this implies rank(Imṽ) = m. We
note that the columns ṽa are linear combinations of the l column vectors:

An =


〈0|φ1|n0〉
〈0|φ2|n0〉

...
〈0|φm|n0〉

 (3.23)

which could be linearly dependent, and thus we establish rank(ṽ) ≤ l. We
may write:

va =
l∑

n=1

γanAn (3.24)

with γan = 〈n0|j0
α|0〉. It follows immediately that we have:

Im va =
l∑

n=1

Re γanIm An +
l∑

n=1

Im γan Re An (3.25)

which expresses every column in Im Ṽ as a linear combination of 2l columns.
And as we had established rank(Im ṽ) = m before, we must have m ≤ 2l. This
gives us a lower bound for the number of Goldstone bosons by 1

2
m.

We will now show that for 1
2
≤ l ≤ m there is at least one Goldstone boson

which has, in the limit k → 0, an energy proportional to an even power of

47



momentum. Denote p = rankṽ ≤ l. We see there must exist m− p independent
linear relations among the vectors va:

m∑
a=1

Cα
a va = 0 α = 1, . . . ,m− p (3.26)

with Cα
a not all zero. Now this implies

m∑
a=1

Cα∗
a va 6= 0 (3.27)

This is because if this equality would hold, we would have a contradiction
with our requirement rank( Im ṽ) = m. (Take the real part of the coefficient and
the imaginary part of the vector).

We will consider the quantity

〈0|[φi,
m∑
a=1

Cα
a j

0
a(x)]|0〉 (3.28)

=
m∑
a=1

Cα
a

∑
f

∫
d3p

(2π)3
[eipx 〈0|φi|fp〉 〈fp|j0

α|0〉 − e−ipx 〈0|j0
α|fp〉 〈fp|φi|0〉]] (3.29)

where we yet again introduced an intermediate set of states. We obtain a
Fourier transform:

2π
∑
f

〈[δ(k0 − Ek)
m∑
a=1

Cα
a 〈0|φi|fk〉 〈fk|j0

α|0〉

−δ(k0 + E−k)
m∑
a=1

Cα∗
a 〈0|φi|f−k〉 〈f−k|j0

α|0〉
∗〉]

To fullfill the requirement of broken symmetry, the evaluated quantity should
be non-vanishing for at least one φi for each α. Again, only states with E → 0
for ~k → 0 can contribute. Let us examine the precise form of the dispersion law,
by considering a neighborhood of k = 0, which boils down to dropping the first
term in the previous equation to obtain:

− 2π
l∑

n=1

δ(k0 + E−k)
m∑
a=1

Cα
a 〈0|φi|n−k〉 〈n−k|j0

α|0〉 |k'0 (3.30)

We observe that (as E ≥ 0) we should have k0 < 0 for this to be non-vanishing.
As we consider the region k ' 0 and thus k0 ' 0, we conclude that the Fourier
expansion around k ' 0 is a surface below and tangent to the plane k0 = 0 and
thus for k → 0 is of the form E ∝ k2n, the dispersion relation for the corre-
sponding Goldstone boson. To recap: we have shown there is at least one such
Goldstone boson for l < m.

We will now show there are precisely (m − p) Goldstone bosons of this par-
ticular type. This follows from the fact that it is impossible to find non-trivial
constants βα such that:
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m−p∑
α=1

βα

m∑
a=1

Cα∗
a va = 0 (3.31)

as this would imply

m∑
a=1

〈[
m−p∑
α=1

(βαC
α∗
a + β∗αC

α
a )〉] Im va = 0 (3.32)

which is once again a contradiction with rank(Imṽ) = m. Therefore we have
(m− p) linearly independent vectors qαi given by:

m∑
a=1

Cα∗
a (va)i =

l∑
n=1

〈0|φi|n0〉 〈n0|
m∑
a=1

Cα∗
a j0

a|0〉 (3.33)

and we therefore will end up with (m − p) Goldstone bosons of this type,
coupling to

m∑
a=1

Cα
a j

0
a α = 1, . . . ,m− p (3.34)

To summarize: we have established the following result for the number of
Goldstone bosons, denoting the bosons with a even power dispersion relation by
nII and the other (thus with odd power dispersion relation by nI):

Theorem 3.4 (Nielsen-Chadha). Following the assumption as stated in this sec-
tion, for m spontaneously broken generators we have the following inequality:

nI + nII ≥ m (3.35)

where nI denotes the number of Goldstone modes with an odd dispersion relation
E ∝ k2n+1 for k → 0, while nII denotes the number of Goldstone modes with
even dispersion relation as k → 0.

Proof.
nI + 2nII ≥ l − (m− p) + 2(m− p) ≥ m (3.36)

Let us now examine present literature on conditions for this bound. We will
start by a theorem due to [Schäfer (2001)].

Theorem 3.5. If Qi, with i = 1, . . . ,m is the full set of broken generators and
for any pair (i, j) we have 〈0|[Qi, Qj]|0〉 = 0, the number of Goldstone bosons is
equal to the number of broken generators.

Proof. Let us assume, for contradiction, there to be less thanmGoldstone bosons.
In that case, we can find ai such that:∑

i

aiQi |0〉 = 0 (3.37)

As discussed previously, it is not necessarily true
∑

i aiQi is a Hermitian generator
of a symmmetry transformation. We can, however, take real and complex parts
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to obtain such generators. Let Qa denote the real part of the previous expression,
while Qb denotes the imaginary part. Now (3.37) yields that both Qa |0〉 6= 0 and
Qb |0〉 6= 0. In fact, we have directly from (3.37):

(Qa + iQb) |0〉 = 0 (3.38)

and hence Qa |0〉 = |b〉 and Qb |0〉 = −i |b〉, defining the state |b〉. Now
we observe the commutator 〈0|[Qa, Qb]| |0〉〉 6= 0 which contradicts the initial
assumption.

In [Watanabe and Brauner (2011)] this relation was explored further, arriving
at the inequality:

nNG − nBS ≤
1

2
rankρ (3.39)

when nNG is counted as in (3.36), with

iρab = lim
V→∞

1

V
〈0|[Ga, Qb]|0〉 (3.40)

The inequality in (3.37) was shown to hold for internal symmetries and conjec-
tured to be an equality. A proof of the equality to hold for internal, not neces-
sarily Lorentz invariant theories was given in a subsequent paper [Watanabe and
Murayama] invoking an approach based on effective Lagrangians.

3.2 Spacetime Symmetries

So far, we have established a framework which is very useful for internal sym-
metries, in both a relativistic (here the number of Goldstone bosons is precisely
the number of broken generators) and non-relativistic setting, where we estab-
lished specific counting rules [(3.39) and (3.36)] and theorems [3.5]. For spacetime
symmetries however, the situation is more complicated and case-dependent. We
will follow a paper by [Low and Manohar] to formulate a theory in this case.
Let us start by examining a continuous symmetry group G, with charges QA of
dimG = m+n which spontaneously breaks down to a subgroup H with unbroken
charges with dimH = n labeled by α and thus having m broken charges, labeled
by a.

We will proceed in a way as we did when establishing inequalities in a non-
relativistic setting (from equation (3.21) and onwards). We thus have n generators
such that (following notation in [Low and Manohar] 2):

Qα(x) 〈φ(~x)〉 = 0 (3.41)

and m generators such that:

Qa(x) 〈φ(x)〉 6= 0 (3.42)

2In section 3.1.3 we introduced a complete set of orthonormal momentum eigenstates as a
basis to evaluate φ, here we will evaluate directly. It may be clear that the same argumentation
holds in the context of our previous derivation but may be quite cumbersome in notation.
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Note that the generators here explicitly depend on coordinates, as we are con-
sidering spacetime transformations (for an example we may again refer to the
conformal generators in Table 1.2) The Goldstone modes correspond to fluctua-
tions of the order parameter in the limit of long wavelengths (thus k → 0):

δφ(x) = cA(x)QA(x) 〈φ(x)〉 (3.43)

We noted that the number of Goldstone bosons will be equal to the number of
linearly independent broken generators, thus we have to subtract the number of
linearly independent nontrivial solutions of the form: caQ

a 〈φ(x)〉. However, as
suggested in the notation of (3.43), we may now have functions of spacetime cA(x)
rather than constants. As only the broken generators contribute, our goal will be
to find the number of linearly independent solutions to:

caQ
a 〈φ(x)〉 = 0 (3.44)

In [Low and Manohar] an example of an infinitely long string is discussed.
For the formal derivation we refer to this paper, however the reasoning why such
solutions to (3.44) may exist is quite helpful. Consider the string with a ground
state as in this figure:

Figure 3.1: A string under both local and global translations and rotations. While
the global rotation is distinct from the global translation, a local translation can
be equivalent to a local rotation

We have the three dimensional Poincaré group being broken down to the two
dimensional Poincaré group, thus having two spontaneously broken generators.
The transformations corresponding to these broken generators, rotation in the
xy-plane and translation on the x-axis, will globally lead to a different orienta-
tion of this string. However, if we allow for a local translation in the sense of the
string being translated as a function of position as in the figure on the right, we
see that this effect can be compensated by a local rotation and there is reason to
expect a nontrivial solution to (3.44) to exist.
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Let us conduct a more general discussion, starting with (3.44). Assuming
unbroken translational invariance under Pµ (thus caQ

aPµ 〈φ(x)〉 = 0 ) we find:

0 = Pµca(x)Qa 〈φ(x)〉 = [Pµ, ca(x)Qa] 〈φ(x)〉
= −i(∂µca(x)Qa − fµabca(x)Qb) 〈φ(x)〉 (3.45)

where we wrote the commutator in a general form (in terms of all generators of
the original symmetry group):

[Pµ, Q
a] = ifµabQb + ifµaβQβ (3.46)

where unbroken generators are labeled by β and broken generators by b. If there
are some non-vanishing fµab a non-trivial solution to (3.45) will satisfy:

(∂µca(x)− cb(x)fµab)Qa 〈φ(x)〉 = 0 (3.47)

which associates the Goldstone modes corresponding to Qa and Qb. The key
observation is a one-to-one correspondence between solutions of (3.47) and (3.44).
We will see how this applies to conformal transformations in the next chapter.
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Chapter 4

Nambu-Goldstone bosons and
Conformal symmetries

In this chapter, we will elaborate on how conformal symmetry induces Nambu-
Goldstone modes, following the results on spacetime symmetries in the previous
chapter. We will see the relation between the number of broken symmetries and
Nambu-Goldstone bosons to be non-obvious, and will attempt to arrive at an
intuitive explanation for this fact.

4.1 Scale-invariant theories

It is a known fact that for a large class of theories, scale invariance im-
plies invariance under the special conformal generators, see [Coleman and Jackiw
(1971),Callan and Jackiw (1970)] amongst others. We will look to explore this
relation further on in this chapter, but will for now focus on the study of theories
which exhibit scale-invariance. Let us start by a scale transformation (known as
a dilatation) on space-time coordinates:

x 7→ lx (4.1)

Now in the context of an action:

S =

∫
ddxL(x) (4.2)

The measure ddx 7→ ddx′ = ldddx changes (denoting d the dimension of the
theory we are considering). In order to have δS = 0, we require the Lagrangian
to transform as:

L(x′) = L(lx) = l−dL(x) (4.3)

Let us consider a simple example:

L =
1

2
∂µφ∂

µφ (4.4)

a free particle. Note that the derivatives transform as ∂µ 7→ l−1∂µ under a
scaling transformation. As L needed to have scaling dimension l−d, the field φ
should transform as:
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φ′(x′) = φ(lx) = l−(d−2)/2φ(x) (4.5)

Let us take an infinitesimal scaling transformation l = 1 + ε. We find subse-
quently:

φ(x′) = φ((1 + ε)x) = (1 + ε)−(d−2)/2φ(x) (4.6)

and hence:

δφ = φ(x′)− φ(x)

= (1 + ε)(d−2)/2φ((1 + ε)x)− φ(x)

= ε[
d− 2

2
+ xµ∂µ]φ+O(ε2) (4.7)

which allows us to identify [d−2
2

+ xµ∂µ] as the generator of our symmetry
transformation. Similarly, we can find:

∂µδφ = ε(d/2 + xν∂ν)∂µφ (4.8)

From which (δL = δL
δφ
δφ+ δL

δ∂φ
δ∂φ) we have:

δL = −ε∂µφ(d/2 + xν∂ν)∂µφ = ε∂µ(xµL) (4.9)

which vanishes in the integral of the action under appropriate boundary condi-
tions, and we can associate a current ∂µj

µ = 0. In the case of an extra mass term
in the Lagrangian of the form −1

2
m2φ2, (4.9) will be:

δL = ∂µ(xµL) + (
d− 2

2
)m2φ2 (4.10)

which does not vanish in the integral, except for the case d = 2, where mass
terms are allowed in a scale-invariant theory. Having established this, and the
kinetic term to be scale-invariant as well, we seek to explore more general prop-
erties of scale-invariant theories, with a particular interest in those of dimension
d = 4. We will restrict ourselves to the study of the interaction terms possible
in scalar (thus bosonic) theories. A general interaction term will be of the form
−αn 1

n!
φ(x)n where αn is a scalar, so from (4.5) we find this term to scale under

x→ lx as:

− αn
1

n!
→ −αn

1

n!
l−n(d−2)/2φn (4.11)

Recall form (4.3) we need this term to scale as l−d in a scale-invariant theory, so
we have:

n(d− 2)/2 = d (4.12)

which has solutions
1

n
+

1

d
=

1

2
(4.13)

which allows solutions of n = 6 for d = 3 and n = 4 for d = 4, amongst others.
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Let us return to the Noether current. We have from (4.10) for a scalar theory
with a mass term a conserved current up to this mass term (vanishing in d = 2),
thus

∂µs
µ = ∆ (4.14)

denoting the mass-dependent quantity in the previous expression by ∆ (in general,
this ∆ may have additional terms and is a measure for the theory to be scale
invariant). This current is the object we want to examine in our further discussion.

4.2 Scale invariance and conformal invariance -

a first relation

Let us continue the discussion as initiated in section 2.1.1. We will revisit
Table 1.2. As we can associate the energy-momentum tensor with the trans-
lational generator −i∂µ and the generator of scale-invariance with a conserved
sµ = xνθ

µν (we denoted the tensor by θ as its direct relation to the canonical
energy-momentum tensor is unclear for now) it is natural to associate the special
conformal generator with a tensor of the form:

Kλν = x2θλµ − 2xλxρθ
ρµ (4.15)

we evaluate:
∂µK

λµ = 2xµθ
λµ − 2xρθ

ρλ − 2xλθρρ (4.16)

which vanishes whenever the scale current is conserved, and thus scale invariance
implies the conservation of currents induced by special conformal invariance. We
should ask, however, under which conditions these relations are justified.

Let us explore these conditions a little bit. We thus have a current associated
with dilatations sµ

sµ = xνθ
µν (4.17)

In case ∂µsµ = 0 we have:

∂µsµ = θµµ = 0 (4.18)

We can give a more precise requirement for the existence of a tensor satisfying
this equation by considering a Lorentz transformation:

δµνφ = [xµδν − xν∂ν + Σµν ]φ = ∂νσ
µν (4.19)

where Σµν is known as the spin matrix, which we mentioned earlier. The nec-
essary and sufficient condition for the existence of our desired tensor is [Coleman
(1971), Chapter 3]:

∂L
∂(∂νφ)

[gµνd+ Σµν ]φ = ∂νσ
µν (4.20)

which we will state without providing proof. Here σµν is a tensor function of
(derivatives of) fields. In [Coleman (1971), Weinberg (1995a)] conditions for such
a tensor are explored further and are satisfied for a large class of renormalizable
theories.
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4.3 Dilatations and Goldstone bosons

It is time to pick up where we left of at the end of the third Chapter, of which
the last section will serve as a basis for this discussion. In Table 1.2 we arrived
at the commutation relation (1.38):

[Kµ, Pν ] = 2i(ηµνD − Lµν) (4.21)

thus in the case of Lorentz invariance:

[Pν , Kµ] 〈φ(x)〉 = −2iηµνD 〈φ(x)〉 (4.22)

which, in light of (3.47) guarantees the existence of a fµab required and thus
leads us to conclude we can eliminate the Goldstone mode of special conformal
transformations in favour of the Goldstone mode associated with dilatation in
the case of invariance under rotations and translations.

4.4 Conformal transformations, a final discus-

sion

We will now review a paper [Guillen] which should clarify the discussion in
sections 4.1 and 4.2 which were somewhat less rigorous of nature and will conclude
this chapter. The main purpose is to derive the existence of conserved currents
in terms of the Canonical and Symmetric Energy Momentum Tensors (CEMT
and SEMT) from the definition of a conformal transformation, clarifying the
somewhat vague results in previous sections. We start off with a definition of
conformal transformations (see Definition 1.36) of the metric:

gµν = λ(x)ηµν (4.23)

Infinitesimally λ(x) = 1 + Ω(x) and we find1:

δ̄ηµν := gµν(x)− ηµν = Ω(x)ηµν (4.24)

Under infinitisemal coordinate transformations

xµ
′
= xµ + δxµ(x) (4.25)

we find (4.24) to reduce to:

δ̄ηµν = −ηµρ∂νδxρ − ηνρ∂µδxρ (4.26)

and combining these equations we have:

ηµρ∂νδx
ρ + ηνρ∂µδx

ρ =
1

2
ηµν∂ρδx

ρ (4.27)

known as the conformal killing equation with Ω(x) = 1
2
ηµν∂ρδx

ρ. Solutions
to this equation are precisely the ones given by the conformal group, as derived

1As gµν is non-constant, we should remark we evaluate this metric at the point of transfor-
mation
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in Chapter 1. Let us now consider a theory with an infinitesimal transformation
of a field (4.25) inducing a transformation of the Lagrangian similar to (2.7), as
familiar but with an extra term corresponding to a change in metric:

δL = δ̄L+ δxµ∂µL (4.28)

where

δ̄L =
∂L
∂φ

δφ+
∂L

∂(∂µφ)
∂µ(δφ) + +

∂L
∂ηµν

δ̄ηµν (4.29)

The variation of the Lagrangian can be expressed in terms of the SEMT (2.11):

∂L
∂ηµν

= −1

2

√
det ηT µν (4.30)

Now let us consider an action invariant under transformations of coordinates
(4.25) and field:

δφ = φ′(x)− φ(x) + δxµ∂µφ (4.31)

giving (4.28):

∆L = L∂µδxµ + δ̄L+ δxµ∂µL = 0 (4.32)

in order for δS = 0 to hold. In very similar fashion to our derivation in Chapter
2 we find:

(
∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

)
δφ+ ∂µ

(
∂L

∂(∂µφ)
δφ

)
δ̄φ− ∂µju = − ∂L

∂ηµν
δ̄ηµν (4.33)

with the usual current

jµ = − ∂L
∂(∂µφ)

δ̄φ− Lδxµ (4.34)

when the equations of motion are satisfied, we arrive at a current which is con-
served up to the right-hand side of (4.33). For isometries such as translations
and Lorentz transformations we will arrive at the usual CEMT and Total An-
gular Momentum Tensor. The case of transformations which are not isometries
(thus dilatations and special conformal transformations) are the ones of particu-
lar interest to us, however and will be discussed here.

We already obtained an equation for infinitesimal dilatations in (4.7). To stay
in the language of the paper reviewed we will rewrite the relations obtained:

δ̄φ = −a(xµ∂µφ+ dφ) (4.35)

where d is now called the scale dimension, a notion familiar in QFT. If we sub-
stitute this equation in (4.29) using δ̄ηµν = −2aηµν under a dilatation δxµ = axµ

we find:

δ̄L = a(−xµ∂µL − d
∂L
∂φ

φ− (d+ 1)
∂L

∂(∂µφ)
∂µφ+ T µµ ) (4.36)

using translational invariance of the action, we are now ready to evaluate (4.32):
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∆L = a(4L − d∂L
∂φ

φ− (d+ 1)
∂L

∂(∂µφ)
∂µφ+ T µµ) (4.37)

Requiring ∆L = 0 implies:

4L = d
∂L
∂φ

φ+ (d+ 1)
∂L

∂(∂µφ)
∂µφ− T µµ (4.38)

substituting this equation in (4.36) gives:

δ̄L = −axµ∂µL − 4aL (4.39)

We will now subsitute δxµ = axµ, δ̄ηµν = −2aηµν , (4.30) and (4.35) in (4.28)
to find:

∂µs
µ = T µµ (4.40)

in suggestive notation, with

sµ = xνtµν + d
∂L

∂(∂µφ)
φ (4.41)

the dilatation current. We have thus identified the relation in (4.14) and
validated the somewhat imprecise argumentation in that section. One can carry
out a very similar analysis on the special conformal generator to find:

∂µK
µ
ν = 2xvT

µ
µ (4.42)

with

Kµ
ν = 2xνx

ρtµρ + 2dxν
∂L

∂(∂µφ)
φ− xρxρtµnu − 2xρSµνρ (4.43)

where the last term contains a tensor derived from the Spin tensor Σµν by:

Sρµν = i
∂L

∂(∂ρφ)
φΣµν

so for both sµ and Kµ
ν there exsists conserved currents only if the trace of the

SEMT vanishes, which is true for massless theories as we established earlier.

We may conclude that an early discussion in the first section of this chapter
on the theories exhibiting scale invariance indeed led to a proper conclusion on
the requirement of no mass terms. In fact, we may conclude the same thing
for special conformal transformations. Furthermore, we have established that
under the assumption of translational invariance the observations in section 4.2
are indeed valid. We should also emphasize the counting theorems in section 3.1
not to be applicable due to the non-trivial solutions of (3.43) which indeed are
dependent on coordinates, as we have seen in this section.
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Conclusion and Outlook

Let us recap on the results in thesis and examine the room for exploration
in further research. We introduced the language of (Lie) Group Theory as our
language to discuss symmetry transformations. In particular, establishing the
Lie Algebra as the generators for transformation turned out to be a powerful
framework to define elements in the conformal group.

In the second chapter we saw the existence of a variational equation for phys-
ical systems leading to a natural notion of symmetries in terms of the action and
Lagrangian. We derived Noether’s theorem, arriving at conserved currents and
charges. We established the latter to be the generators (thus the Lie Algebra) of
the corresponding transformations.

Furthermore, we established Goldstone’s theorem in various contexts (rela-
tivistic and non-relativistic, internal and space-time symmetries), relating the
number of broken charges to the number of Goldstone modes in a review of the
literature currently available.
We focused specifically on conformal symmetries and their Goldstone modes in
the last chapter, establishing subsequently the possible theories exhibiting con-
formal invariance, finding relations between dilatations and special conformal
transformations and counting of Goldstone bosons. A full justification of obser-
vations made in the preceding sections was given in the final section of this thesis.
We established a direct connection between the SEMT (Symmetric Energy Mo-
mentum Tensor), conformal invariance and conserved tensors corresponding to
dilatations and special conformal transformations as being locally indistinguish-
able.

For further research, we suggest exploring the connection between dilatations
and special conformal transformations for a theory in which translational invari-
ance is broken, disconnecting the two and thus their Goldstone modes. One could
start by examining theories which exhibit scale invariance without conformal in-
variance, as examined in [Jean-Franois Fortin] and [Nakayama] amongst others.
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Appendix A

Notation

Let us briefly review the notation used throughout this thesis.

As a rule, Latin indices i, j, k etc. will indicate spatial coordinates (running
through 1, 2, 3), while Greek indices µ, ν etc. indicate spacetime coordinates (and
will thus run through 0, 1, 2, 3) with x0 indicating the time coordinate.

Spatial vectors will be denoted ~x or x and spacetime vectors by x.

Repeated indices are summed over and may be omitted altogether when the
indexing is clear from the context, adapting a notation xµyµ = x · y.

The spacetime Minkowski metric ηµν is diagonal with elements η00 = 1,
η11 = η22 = η33 = −1.

Generally tensors are denoted with capital Latin or Greek letters. Vectors,
scalars and functions are usually denoted by noncapital letters.

Functions may be denoted either with or without arguments (i.e. f or f(x)),
the latter applying when arguments are clear from context.

The complex conjugate, transpose and adjoint of a matrix or vector A are
denoted by A∗, AT and A† = A∗T respectively.
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Appendix B

Group Theory

We will briefly state basic definitions and theorems necessary to follow its use
in the Chapters 2 through 4. This Appendix is based on [Lang (2005)], which
contains a more elaborate introduction.

Definition B.1 (Group). A group is a set equipped with an operation {G, ·}
such that;

1. a · b ∈ G for all a, b ∈ G

2. There is an element in G, denoted by 1 such that 1 · a = a · 1 = a for all
a ∈ G

3. For each element a ∈ G, there exists an element a−1 ∈ G such that a ·a−1 =
a−1 · a = 1

4. we have associativity, thus a · (b · c) = (a · b) · c for all a, b, c ∈ G

Definition B.2 (Abelian Groups). A group {A, ·} is called Abelian when it is
commutative, thus a · b = b · a for all a, b ∈ A.

In the following we will drop the · operator, thus denoting a group by G and
multiplication by ab. Now let us see how to define a group. For finite groups,
one may simply list the elements {1, a1, . . . , an} and write down a table of size
(n + 1) × (n + 1) with elements Mij = aiaj. One may also define it in another
way. Let us take the integers Z as an example, with group operation being ad-
dition. One can start off with the number one and construct all other elements
by addition or substraction (note 1−1 = −1). We may therefore define the group
(Z,+) by its generating element {1} and a rule of construction. For continuous
groups (a notion not well-defined here) like R we will see they may be generated by
infinitesimal generators, a notion very imporant in our discussion on Lie Algebras.

We will now discuss mappings between groups.

Definition B.3 (Homomorphism). A map f : N →M between groups is called
a homomorphism if for every a, b ∈ N :

f(ab) = f(a)f(b)

it is called an isomorphism when it is both a homomorphism and a bijection and
an automorphism when N = M .
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Intuitively, homomorphisms preserve group structure. It is easy to show that
f(x−1) = f(x)−1 for x ∈ N and it maps identity elements to identity elements.

Let us (without proof) establish some important basic results.

Theorem B.4. Let f be a homomorphism between groups f : G→ G′

1. If the kernel of f is trivial, then f is an isomorphism of G with its image
f(G).

2. If f is surjective and the kernel of f is trivial, then f is an isomorphism.

Corollary B.5 (Conjugation). Let G be a group and a ∈ G. The conjugation
mapping caG→ G given by ca(g) = aga−1 is an automorphism.

We will now proceed to find partitions of groups. First, let us define

Definition B.6 (Subgroups and cosets). A subgroup is a subset H of a group
G closed under the group operation. A coset aH of a subgroup H and element
a ∈ G is defined as the set {ah | h ∈ H}

the set of cosets induced by the subgroup H is denoted by G/H. note that
a coset may not be closed under the group operation and we thus cannot simply
state them to be groups. We can find a partition in terms of cosets however:

Theorem B.7. Let aH and bH be cosets of the subgroup H in the group G.
Either these cosets are equal, or they have no elements in common.

Let us now proceed to discuss a more specific class of subgroups, the normal
subgroups.

Definition B.8. A subgroup H of G is called normal when xHx−1 = H for all
x ∈ G.

it is clear what the set xHx−1 denotes. We will now list several theorems
regarding normal subgroups, which will stress their importance:

Theorem B.9. Let G be a group and H be a normal subgroup.

1. H is the kernel of a homomorphism between G and some other group.

2. The collection of cosets is, with the product (aH)(bH) also a group.

3. The map f : G→ G/H mapping each element into its corresponding coset
is a homomorphism with kernel H.

Corollary B.10. Let f : G → G′ be a homomorphism, and let H be its kernel.
Then the association xH 7→ f(xH) is an isomorphism of G/H with the image of
f .
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Appendix C

Quantum Mechanics

We will now review the basics of Quantum Mechanics (QM) and Quantum
Field Theory (QFT). This Appendix is based on both [Griffiths (2005)] and
[Tong], which serve as our references for further reading.

In QM, one has rather than a point with definite spacetime coordinates a
wavefunction describing the state of a system. This wavefunction may either
be composite or singleton and is governed by the famous Schrödinger equation,
which reads in one dimension:

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂x2
+ V ψ (C.1)

where ~ is the reduced constant of Planck and V the relevant potential. The
wavefunctions have a probabilistic interpretations in the sense that the probability
of finding a particle corresponding to ψ between a and b is given by

∫ b
a
dx|ψ|2.

For time-independent potentials one can rewrite the Schrödinger equation:

Hψ = Eψ (C.2)

where H is the Hamiltonian operator, given by identifying the righthand side
of the previous equation with Hψ and E is a constant, the energy of the state ψ.
Now QM is written in the language of Linear Algebra, i.e., the states are vectors
in a Hilbert space and may be denoted by |ψ〉, with inner product:

〈ψ|ψ〉 =

∫
dxψ†ψ (C.3)

Observables correspond to Hermitian operators and their quantities are given
by 〈ψ|O|ψ〉, often denoted simply as 〈O〉. Important examples are the momentum
operator, given by Px = −i ∂

∂x
and the Hamiltonian, H = − ~2

2m
∂2

∂x2
+ V .

When unifying special relativity (SR) and QM, one naturally arrives in QFT.
The fields are governed by equations of motion, which can be expressed in terms
of either the Lagrangian (see Chapter 2) or the Hamiltonian (as familiar in QM).
However, one usually prefers the former as this is a variational equation. In SR,
invariance of the Minkowski metric gives rise to a symmetry group known as the
Lorentz group, consisting of all rotations and boosts (in words - moving between
reference frames). Formally, these are all transformations such that ΛTηΛ = η.

64



An extension of this group is the Poincaré group, which includes translations.

A theory in QFT is a specific Lagrangian acting on a field (this may be scalar
valued, but also vector valued etc.). A probabilistic interpretation is obtained by
promoting the field and its conjugate momentum given by π = ∂L

∂ψ̇
and promoting

these to operators with commutation relations known from QM. See [Tong] for a
detailed discussion.
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T. et al. Schäfer. Kaon condensation and goldstone’s theorem. Physics Letters
B, 522:67–75, 2001.

M. Schottenloher. A Mathematical Introduction to Conformal Field Theory. Uni-
versitext. Springer, 2008.

D. Tong. Quantum field theory. http://www.damtp.cam.ac.uk/user/tong/

qft/qft.pdf. [Online; accessed May-2017].

H. Watanabe and T. Brauner. Spontaneous breaking of continuous translational
invariance. arXiv:1112.3890v2. [Online; accessed April-2017].

H. Watanabe and T. Brauner. Number of nambu-goldstone bosons and its relation
to charge densities. Physical Review D, 84, 2011.

H. Watanabe and H. Murayama. Unified description of nambu-goldstone bosons
without lorentz invariance. arXiv:1203.0609. [Online; accessed May-2017].

S. Weinberg. The Quantum Theory of Fields, Volume I. Cambridge University
Press, Cambridge, 1995a. ISBN 978-0-521-67053-1.

S. Weinberg. The Quantum Theory of Fields, Volume II. Cambridge University
Press, Cambridge, 1995b. ISBN 978-0-521-67054-8.

67

http://www.damtp.cam.ac.uk/user/tong/qft/qft.pdf
http://www.damtp.cam.ac.uk/user/tong/qft/qft.pdf


List of Figures

1.1 A square with undirected sides . . . . . . . . . . . . . . . . . . . . 4
1.2 A square with directed sides . . . . . . . . . . . . . . . . . . . . . 5
1.3 An R→ R2 immersion of a line segment . . . . . . . . . . . . . . 15

2.1 A potential symmetric under φ 7→ −φ . . . . . . . . . . . . . . . . 36
2.2 A potential symmetric under φ 7→ −φ with small perturbation . . 37

3.1 A string under both local and global translations and rotations.
While the global rotation is distinct from the global translation, a
local translation can be equivalent to a local rotation . . . . . . . 51

68



List of Tables

1.1 Remaining invariant transformations in undirected square . . . . . 5
1.2 Generators of the conformal group . . . . . . . . . . . . . . . 28

69


	Abstract
	Acknowledgments
	Introduction
	Introduction - Mathematics
	Introduction - Physics

	Symmetry Groups, Actions and Representations
	Groups and Symmetries
	Representation Theory and Lie Groups
	Representation Theory
	Lie Groups
	SO(3,R)

	Conformal Symmetry
	An example from complex analysis
	The conformal group


	Symmetry Groups in Physics
	Noether's Theorem
	The Energy Momentum Tensor

	Symmetry breaking
	The Goldstone Theorem
	On spontaneous symmetry breaking
	Effective action formalism


	Nambu-Goldstone bosons: a review
	Nambu-Goldstone bosons in (non)relativistic theories
	Symmetry transformations and operators
	The Goldstone Theorem for internal symmetries
	Non-relativistic Goldstone bosons

	Spacetime Symmetries

	Nambu-Goldstone bosons and Conformal symmetries
	Scale-invariant theories
	Scale invariance and conformal invariance - a first relation
	Dilatations and Goldstone bosons
	Conformal transformations, a final discussion

	Conclusion and Outlook
	Appendices
	Notation
	Group Theory
	Quantum Mechanics



