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1

Introduction

�Just as what exists is ordered and harmonious, what comes into being betrays an

order too. Not a mere sequence, but an astonishing concordance.�

� Marcus Aurelius Antoninus, Meditations IV.45

The Epoch of Reionisation (EoR) was a period of dramatic change in cosmic history. It
marks the end of the cosmic Dark Ages, before the formation of the �rst stars, when the
Universe contained only dark energy, dark matter, and a pristine mixture of neutral hydro-
gen and helium gas. By contrast, we observe today a rich and complex local Universe of
planets, stars, galaxies, and clusters interspaced by a highly ionised Intergalactic Medium
(IGM). The Epoch of Reionisation is therefore postulated as a transitionary period, charac-
terised by the formation of the �rst objects capable of producing ionising radiation: stars
or possibly quasars. The radiation emitted from these luminous objects �rst ionised the
immediately surrounding gas, forming localised bubbles of ionised material. These reioni-
sation bubbles expanded, overlapped, and eventually covered the entire Universe, thereby
irrevocably changing its nature.

One aspect of the Epoch of Reionisation that has received a lot of attention in recent years
is the morphology and topology of reionisation bubbles (McQuinn et al., 2007; Cohn and
Chang, 2006; Choudhury et al., 2009; Furlanetto et al., 2004). However, the word topology
is often used rather informally. This thesis is a �rst attempt to capture the topology of
ionisation bubble networks in more formal terms. To this end, we turn to the powerful tool
set of computational topology.

First, we will make use of the notion of Betti numbers, which can be used to count
the topological features of a space. Intuitively, the zeroth Betti number β0 describes the
number of connected components, the �rst Betti number β1 the number of tunnels, and
the second Betti number β2 the number of voids. Together, the Betti numbers contain
strictly more information than the Euler characteristic χ = β0 − β1 + β2 − . . . , which is
often used as a description of topology in cosmology. To describe the topology of a set P
of discrete points, such as dark matter halos, one can make use of the concept of α-shapes
(Edelsbrunner et al., 1983). These are families of geometric constructions closely related to
the Delaunay triangulation (see the dotted triangles on the front cover) that make it possible
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4 CHAPTER 1. INTRODUCTION

Figure 1.1: An expanding bubble network in various stages of development. Time progresses
from the left to the right. Note also that the domain is periodic in the up/down direction.

to capture the shape of the point set P over a range of scales. The scales are determined
by the value of α. We use α-shapes to model networks of spherical reionisation bubbles.
Each point p ∈ P is a centre of an ionisation bubble and α is the radius of these bubbles.
There are e�cient algorithms for computing the Betti numbers of α-shapes (Del�nado and
Edelsbrunner, 1993) and we use them to study our bubble networks. Finally, we make use
of the notion of persistence (Edelsbrunner et al., 2000; Zomorodian and Carlsson, 2004).
Persistence allows one to distinguish topological features that are in some sense signi�cant
from features that are not. Topological features that exist only over a very small range of
scales are deemed insigni�cant. Using the algorithm of Zomorodian and Carlsson (2004), we
can create persistence diagrams, describing the births and deaths of topological features at
every scale. Persistence diagrams contain even more information than Betti numbers, which
only count the numbers of topological features.

All of these concepts have recently been applied in the cosmological context by van de
Weygaert et al. (2013) and Pranav et al. (2016) to describe the topology of the cosmic
matter distribution. The �twist� in our application of these concepts is that the parameter
α is associated not just with a scale, but with the radius of a typical spherical ionisation
bubble. Thus, we are able to describe simultaneously the global ionisation history and the
topology of the ionisation bubbles. This opens up new opportunities for the study of the
topology of reionisation.

The outline of this thesis is as follows. In chapter 2, we study the Epoch of Reionisation
and we derive the concepts necessary for modelling networks of ionisation bubbles. Subse-
quently, in chapter 3, we brie�y discuss the geometric and topological notions mentioned
above. In chapter 4, we then discuss our methods and results. Finally, in chapter 5, we o�er
some concluding remarks.
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Reionisation

Until recently, the most direct evidence of the EoR was the presence of Gunn-Peterson
troughs in the spectra of quasars at reshifts z ≈ 6 (Gunn and Peterson, 1965; Becker et al.,
2001; Fan et al., 2006b). Even small amounts of neutral hydrogen in the intervening IGM
appear in the spectra of quasars in the form of so-called Gunn-Peterson troughs (�gure
2.1). These troughs had been absent in the spectra of quasars observed at redshifts z < 6,
but were discovered in the spectra of quasars at z > 6, starting in 2001 with a quasar at
z = 6.28 (Becker et al., 2001). This sudden change indicates that the process of reionisation
ended around z ≈ 6. A secondary clue is the Thomson scattering of Cosmic Microwave
Background (CMB) photons o� free electrons in the IGM. Recent observations by the Planck
Collaboration (Adam et al., 2016) are consistent with reionisation occurring between redshifts
6 . z . 9. Only in the last few years have we seen the �rst detections of galaxies at these
redshifts. For the �rst time, our sensors are directly probing the objects responsible for
reionisation. Moreover, the latest radio telescopes such as LOFAR are poised to detect the
21 cm signal of EoR neutral hydrogen itself (Patil et al., 2017). We are thus at an exciting
point in the study of this important stage in cosmic history.

In this chapter, we will review the theoretical background necessary for the study of
reionisation, starting with a description of the cosmological model in section 2.1 and leading
up to a discussion of the formation of the �rst reionisation bubbles in section 2.6. Our
emphasis will be on the structure formation concepts used later on in chapter 4, but we will
also touch on other interesting aspects of this era, such as the nature of the �rst stars. For
a more detailed review of the theoretical background, we refer to Barkana and Loeb (2001);
Ciardi and Ferrara (2005); Fan et al. (2006a); Loeb and Furlanetto (2013). For a review of
recent observational breakthroughs, see Mesinger (2016); Stark (2016).

2.1 Cosmology

Let us start with a brief description of Big Bang cosmology. Two excellent textbooks covering
this topic are Dodelson (2003) and Peacock (1999). Carroll (2004) is an accessible introduc-
tion to General Relativity, which is where we begin. In General Relativity, spacetime is
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Figure 2.1: Spectra of two quasars at z > 6 and two quasars at z < 6. Notice the absence of
any emission in the wavelength range 8400−8900 Å for the z = 6.42 quasar and 8400−8750 Å
for the z = 6.28 quasar. These are Gunn-Peterson troughs. By contrast, the two z < 6
quasars have no such feature (Fan et al., 2006b).

described as a manifold, which is a space that locally resembles �at space. In principle,
there are in�nite possibilities for such a manifold, but observations of large-scale structure
and the CMB show that at the largest scales, the Universe looks the same in every direction.
Thus, assuming that we do not occupy some privileged vantage point, we are led to a space-
time that is homogeneous and isotropic in space, though not in time. A metric that describes
manifolds of this type is the Friedmann-Lemaître-Robertson-Walker (FLRW) metric:

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)]
, (2.1)

where ds is the spacetime interval, dt the time interval, k the curvature parameter that
determines whether the Universe is open, closed or �at, and a(t) the scale factor that de-
scribes the expansion of space. The distance D(t) from Earth to an object at �xed comoving
coordinates (r, θ, φ) will grow proportional to a(t). Thus, the observed velocity of a nearby
object will be

Ḋ(t) = ȧ(t)D(t0) =
ȧ(t)

a(t)
D(t) := H(t)D(t),

where H(t) is the Hubble constant at time t. This is the famous Hubble law v = HD.
Empirically, we observe that the wavelength λ of light from distant sources is redshifted by a
factor 1 + z := λobs/λemit = a−1. See for instance �gure 2.1. For nearby objects, the Doppler
shift is approximately z ∼= v = HD, which motivates our usage of redshift z as a measure of
distance.

Now, cosmology is the study of the origin, evolution, and fate of the universe, so we
would like to derive the time evolution of the scale factor a(t). To do this, one assumes
that the Universe is �lled with a perfect �uid. In a frame in which the �uid is at rest, its
four-velocity Uµ and energy-momentum tensor T µν are given by

Uµ = (1, 0, 0, 0) and T µν = diag(−ρ, p, p, p), (2.2)
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where ρ is the density and p the pressure of the �uid. Solving the time-component of the
conservation of energy equation ∇µT

µ
0 = 0, and using the equation of state p = wρ for some

constant w, one obtains the solution ρ ∝ a−3(1+w). Depending on the type of �uid that �lls
the Universe, we �nd three solutions:

matter: p = 0, w = 0, ρ ∝ a−3,
radiation: p = ρ/3, w = 1/3, ρ ∝ a−4,
vacuuum: p = −ρ, w = −1, ρ ∝ a0.

As the scale factor increases, the Universe undergoes subsequent radiation-dominated, matter-
dominated, and vacuum-dominated stages.

By manipulating the metric (2.1) and the energy-momentum tensor (2.2), one can now
solve the Einstein �eld equations and derive the Friedmann equation:

H2 =
ȧ2

a2
=

8πGρ

3
− k

a2
. (2.3)

There is also an important second Friedmann equation, which we do not discuss. The �rst
Friedmann equation (2.3) admits an intuitive classical interpretation in terms of an expanding
sphere of radius a, density ρ, and mass M . Multiplying through by 1

2
ma2, we see on the

left-hand side the kinetic energy 1
2
mȧ2 of a moving shell of mass m. On the right-hand side,

we see the gravitational potential energy 4
3
πGmρa2 = GmM/a. Finally, we see a constant

term that determines whether the sphere is gravitationally bound (k > 0), implying eventual
collapse, or unbound (k < 0), implying eternal expansion. The value k = 0 corresponds to
the �at case in which gravitational and kinetic energy balance. We can associate a critical
density

ρcrit :=
3H2

8πG

with the �at case. This is usually written in terms of a density parameter

Ω :=
ρ

ρcrit
=

8πG

3H2
ρ.

Thus, as shown in �gure 2.2, the eventual fate of the Universe depends on its energy content.
Using the relations ρ ∝ a−3(w+1) for the three types of �uids introduced above, we write the
total density parameter in terms of its various contributions:

Ω = ΩΛ + Ωma
−3 + Ωra

−4,

where ΩΛ,Ωm,Ωr are the vacuum, matter, and radiation contributions, respectively. In the
ΛCDM model, the value today is Ω = ΩΛ + Ωm ' 0.7 + 0.3 = 1, pointing to an almost
�at spacetime curvature1. This actually poses a challenge, because Ω can be shown to move
away from unity if the expansion of space is decelerating, as it was in the early Universe

1Recent values based on CMB observations by the Planck Collaboration are Ωm = 0.3089 ± 0.0062,
ΩΛ = 0.6911± 0.0062 (Ade et al., 2016).



8 CHAPTER 2. REIONISATION

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.5

1

1.5

2

H0(t− t0)

a
(t

)

Figure 2.2: Evolution of the scale factor for three universes: (Ωm,ΩΛ) = (0.3, 0.7), (1.0, 0.0),
(4.0,0.0) in decreasing order of age. Note the scale factor in the oldest Universe (bold line)
is accelerating at present time t0.

according to standard Big Bang cosmology. Thus Ω must have been unnaturally close to
one in the past. This is known as the �atness problem.

As mentioned above, the fate of the scale factor a(t) depends on Ω, but a(t) always starts
out small. The initial phase of the Universe is therefore characterised by an extremely high
energy density, which is the régime in which an as of yet unknown theory of high-energy
physics could come into play. Here, the theory of in�ation emerges as a potential solution to
the �atness problem. In�ation was introduced by Sato (1981) and Guth (1982) and revised
by Linde (1982) and Albrecht and Steinhardt (1982). We refer to Tsujikawa (2003) for an
introductory review. Essentially, the solution is to propose some scalar �eld φ called the
in�aton �eld, with a Lagrangian density

L = 1
2
∂µφ∂

µφ− V (φ),

where V (φ) is the potential. According to Noether's theorem, there is a conserved quantity

Tµν = − ∂L

∂ (∂νφ)
∂µφ+ gµνL ,

which is of course the energy-momentum tensor. With the simplifying assumption ~∇φ = 0,
one derives the density and pressure components of Tµν :

ρ = −p = 1
2
φ̇2 + V (φ).

Plugging this into the Friedmann equation (2.3), we �nd a relation between the expansion of
the Universe and the in�aton potential V (φ). In models of in�ation, the very early Universe
undergoes a period of intense expansion, driven by this potential energy. Appropriately
chosen parameters ensure that Ω− 1 is su�ciently small at the end of in�ation, solving the
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�atness problem. In�ation also addresses a number of other outstanding issues, most notably
the horizon problem associated with the puzzling homogeneity of the CMB. Potential candi-
dates for the in�aton are supersymmetric partners of Standard Model particles, which have
thus far eluded detection. Another salient feature of in�ationary theories is the prediction
that tiny �uctuations in φ are in�ated many times beyond the Hubble radius, thereby freez-
ing them into the gravitational potential perturbations that eventually seed the large-scale
structure formation process. These perturbations are predicted to be almost scale-invariant.
We will return to this point in the next section.

After in�ation, the Universe enters a period of reheating in which the in�aton decays
into Standard Model particles and in which the temperature returns to its pre-in�ationary
value. At this point, we enter the realm of known physics. The Universe is still radiation
dominated and temperature and density are su�cient for even the most massive Standard
Model particles to be in thermal equilibrium. During an initial quark epoch, quarks co-
exist in a hot plasma with photons, electrons, and neutrinos. As the Universe expands and
cools, the quarks are then bound into the �rst protons and neutrons. As the temperature
drops further, the neutrinos are next to decouple from the plasma. This is soon followed
by the formation of the �rst atomic nuclei. The end of the radiation dominated era occurs
at the point of matter-radiation equality at z ≈ 3500. This is followed by an epoch of
recombination at z ≈ 1100, in which the free electrons and protons combine to form the
�rst neutral hydrogen atoms. At this point too, the photons decouple leading to the highly
redshifted CMB radiation observed today. In the next section, we will continue our discussion
with a description of the �rst stages of large-scale structure formation.

2.2 Linear structure growth

At the time of photon decoupling, the CMB o�ers a glimpse of a Universe that is extremely
smooth with inhomogeneities of the order 10−5. As the Universe expands, these small �uctu-
ations grow whilst being subjected to gravity and pressure forces. Fortunately, the �uctua-
tions are small enough to be treated as linear perturbations in the governing hydrodynamical
equations. For excellent discussions of this linear growth phase, we refer to Peebles (1980);
Peacock (1999); Martinez and Saar (2001); van de Weygaert and Bond (2008), as well as
the theoretical sources on reionisation referenced earlier. Our discussion is largely based on
Peebles (1980); Martinez and Saar (2001).

Small density perturbations are conveniently expressed in terms of a dimensionless quan-
tity δ(x), called the density contrast:

δ(x) =
ρ(x)− ρ̄

ρ̄
,

where the background density ρ̄ = ρ̄(t) depends only on coordinate time t. Our aim is to
describe the evolution of δ(x) by deriving the relevant hydrodynamical and gravitational
equations. In general, this is a complicated a�air because of the intracies of relativity and
the ultimately non-linear processes involved. Fortunately, we can get a long way with a
simple Newtonian treatment. The reason is that the scales R at which which clusters and
galaxies are formed are small compared to the Hubble radius H−1, such that velocities of
the order ∼ HR are nonrelativistic.
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We could start by writing down the governing hydrodynamical equations in full generality
and linearising them in terms of δ, but we use a more direct and insightful approach due
to Peacock (1999). Following Peebles (1980); Peacock (1999), we will treat matter as an
ideal pressureless �uid. We shall make use of comoving coordinates x, which are related to
physical Eulerian coordinates r through

r = a(t)x. (2.4)

The gradient in comoving coordinates is denoted ∇ and is related to the Eulerian gradient
through ∇ = a∇r. We will also make use of a convective derivative operator in comoving
coordinates:

d

dt
:=

∂

∂t
+ ẋ ·∇.

Dots are used to denote application of this operator. Di�erentiating (2.4), we �nd

ṙ = ȧx + aẋ = Hr + v. (2.5)

This equation shows that the velocity ṙ in Eulerian coordinates is a sum of a Hubble expan-
sion term and a peculiar velocity v := aẋ.

Now, matter is conserved in any coordinate system, so in particular in comoving coordi-
nates. This is expressed as a continuity equation: ρ̇ = −∇ · (ρẋ) . Substituting ρ = ρ̄(1 + δ)
and subtracting the perturbationless equation, we �nd

δ̇ = −∇ · [(1 + δ)ẋ] .

This is the continuity equation in terms of the density contrast. Next, we wish to derive the
equation of motion. We start with the Euler equation r̈ = −∇rΦ in Eulerian coordinates,
relating acceleration to the gravitational potential Φ. Di�erentiating (2.5) again, we then
�nd

r̈ = äx + 2ȧẋ + aẍ = −∇rΦ. (2.6)

In the pertubationless scenario ẋ = 0. Hence, äx = −∇rΦ̄. Here, Φ̄ is a solution to the
background Poisson equation

∇2
rΦ̄ = 4πGρ̄.

Subtracting the perturbationless Euler equation from (2.6) and rewriting, we arrive at the
perturbed Euler equation

ẍ + 2
ȧ

a
ẋ = −1

a
∇rΦ

′,

where Φ′ is the perturbation in Φ, which satis�es a Poisson equation of its own:

∇2
rΦ
′ = 4πGρ̄δ. (2.7)
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Finally, to complete our description of the density contrast in comoving coordinates, we
convert the Eulerian background density ρ̄E to a comoving background density ρ̄C = a3ρ̄E.
Using ∇ = a∇r, we then summarise our results in terms of the following equations:

δ̇ = −∇ · [(1 + δ)ẋ] , (2.8)

ẍ + 2
ȧ

a
ẋ = − 1

a2
∇Φ′, (2.9)

∇2Φ′ = 4πGa−1ρ̄δ. (2.10)

Over small enough scales and for small enough densities (e.g. far away from black holes),
these equations are accurate. To obtain an analytical solution, we need to assume that the
perturbations are very small, allowing us to neglect terms such as ∇ · δẋ. In this régime, the
convective derivative is simply a partial time derivative and it becomes possible to combine
equations (2.8), (2.9), and (2.10) into one di�erential equation for the density contrast δ(x):

δ̈ + 2
ȧ

a
δ̇ − 4πGρ̄δ = 0, (2.11)

which has a general solution

δ(x, t) = A(x)D1(t) +B(x)D2(t).

In an Einstein-de Sitter Universe with ΩM = 1 and ΩΛ = 0, one has 4πρ̄ = 2
3
t−2 and

ȧ/a = 2
3
t−1. We then �nd the solution D1(t) = a(t) = t2/3 and D2(t) = t−1, called the

growing and decaying modes. Over longer time scales, the decaying mode can be ignored.
In the general case with Ω = ΩM + ΩΛ, an accurate approximation for the growing mode is
(Lahav and Suto, 2004)

D1(t) =
5
2
a(t)Ω(t)

Ω(t)4/7 − ΩΛ(t) +
[
1 + 1

2
ΩM(t)

] [
1 + 1

70
ΩΛ(t)

] . (2.12)

Both solutions are plotted in �gure 2.3.

Jeans instability

We have thus far ignored the role of pressure. We can include pressure in our current
treatment by adding a pressure force term a−1∇p = c2

sρ̄a
−1∇δ in equation (2.9). Here we

have de�ned the sound speed c2
s := dp/dρ of the gas. The resulting Euler equation is

ẍ + 2
ȧ

a
ẋ = − 1

a2
∇Φ′ − c2

s

a
∇δ. (2.13)

This addition works its way through into di�erential equation (2.11), yielding

δ̈ + 2
ȧ

a
δ̇ − 4πGρ̄δ − c2

s

a2
∇2δ = 0.

Writing the density contrast as a Fourier series δ(x, t) =
∑

k δ(k, t)e
ik·x, the di�erential

equation can be written in terms of the amplitude δk = δ(k, t):

δ̈k + 2
ȧ

a
δ̇k −

(
4πGρ̄− k2c2

s

a2

)
δk = 0. (2.14)
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Figure 2.3: Evolution of densitity perturbations during the linear growth phase. The bold
curve is the growing mode in equation (2.12) for (Ωm,ΩΛ) = (0.3, 0.7). The gray curve is
the mode D1(t) = a(t) = t2/3 for an Einstein-de Sitter Universe (Ωm,ΩΛ) = (1.0, 0.0).

Figure 2.4: A Gaussian random �eld with power spectrum P (k) = k + 1, smoothed over
increasing length scales R = 0.001, R = 0.01, and R = 0.1.

The pressure and gravitational terms in (2.14) cancel if the wavenumber is equal to

kJ =

√
4πGρ̄a

cs
.

This is more usually expressed in terms of the Jeans wavelength λJ = 2πak−1
J and the

corresponding Jeans mass MJ = (4/3)πρ̄(λJ/2)3 of a sphere of radius λJ/2. If we restrict
ourselves to wavelengths longer than λJ , then gravity outpaces the speed of sound and the
pressure term in (2.13) can be safely ignored.
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2.3 Statistics of primordial perturbations

In the previous section, we have discussed how perturbations in the density �eld evolve during
the linear growth phase. We ignored the issue of the origin of the primordial perturbations.
As explained in section 2.1, the leading explanation is that the perturbations are quantum
�uctuations in the in�aton �eld that were magni�ed during in�ation. In that case, the
perturbations are almost universally predicted to be Gaussian and scale-invariant. We will
explore what this means in detail below. However, an alternative explanation (less popular
today) is that the perturbations are due to topological defects, such as cosmic strings. In this
scenario, the perturbations are predicted to be strongly non-gaussian (Vilenkin and Shellard,
2000). Regardless, we will proceed on the more common assumption that the perturbed
density �eld is a Gaussian random �eld (GRF). Let us see what that means precisely. The
following discussion is based in large part on Martinez and Saar (2001).

In general, a real-valued random �eld Φ is a set {Φx ∈ R | x ∈ X} of random variables
Φx indexed by points x ∈ X in a topological space. The properties of the �eld are speci�ed
in terms of a joint distribution function F (φ1, φ2, . . . ) = P(Φ1 ≤ φ1,Φ2 ≤ φ2, . . . ). We will
always take X = R3 and write more conventiently Φx = Φ(x). Furthermore, we will restrict
ourselves to homogeneous and isotropic random �elds. A homogeneous random �eld is a
�eld whose �rst moment is

m(x) = 〈Φ(x)〉 = constant.

Here, 〈Y 〉 denotes the expectation of Y . We will assume for simplicity that m(x) = 0. The
second central moment ξ(x1,x2) is the covariance between the variables at x1 and x2. If the
�eld is isotropic and we write r = x2 − x1, then it makes sense to de�ne

ξ(r) := ξ(x1,x2) = 〈Φ(x1)Φ(x2)〉.

In practice, often the Fourier transform of the autocorrelation function ξ is used. This is the
power spectrum P (k), related to the autocorrelation function through

ξ(r) =

∫
dk

(2π)3
P (k)e−ik·r.

Here, P (k) depends only on k = ||k|| because the random �eld is isotropic. In the general
case, the phase of the power spectrum contains valuable information as well.

Now, most theories of in�ation predict that the density perturbation �eld will be a Gaus-
sian random �eld. This is simply a random �eld whose joint distribution is a multivariate
Gaussian distribution. Writing Φ = Φ(x1, . . . ,xn), we have the usual probability density

∼
exp

(
−1

2
Φ ·Σ−1Φ

)√
|2πΣ|

,

where Σ is the covariance matrix with Σij = ξ(xi,xj). By the statement that the potential
perturbations Φ′(x) are scale-invariant is meant that its power spectrum scales as PΦ′(k) ∝
k−3. Such a spectrum gives equal weight to small-scale and large-scale waves, because

d 〈Φ′2〉
d ln k

=
4πk3

(2π)3
PΦ′(k) = constant.
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Let us see what this implies for the power spectrum of the density perturbations. Recall the
perturbed Poisson equation (2.7):

∇2
rΦ
′ = 4πGρ̄δ.

Writing δ(x) and Φ′(x) as Fourier series yields

−k2Φ′k = 4πGρ̄δk.

Now, because PΦ′(k) ∝ (Φ′)2
k and Pδ(k) ∝ δ2

k, we �nd that

Pδ(k) ∝ δ2
k ∝

(
Φ′kk

2
)2 ∝ PΦ′(k)k4 ∝ k1.

So in�ation predicts that the power spectrum of the density perturbations scales linearly.
Evidently, sampling a Gaussian random �eld is no trivial a�air. Because this is something

that we wish to do in chapter 4, we spend some time discussing this issue here. The process
is greatly simpli�ed in Fourier space. Suppose that we wish to generate a periodic GRF in
a cube of physical dimensions L3 at discrete points in a grid of N3 points, where necessarily
N = 2n for some n. The grid consists of vectors

x =
L

N
(a1e1 + a2e2 + a3e3) ,

where ei is the standard basis and ai ∈ {1, . . . , N}. The corresponding grid in Fourier space
consists of wave vectors

k =
2π

L
(b1u1 + b2u2 + b3u3) ,

where ui is the standard basis in Fourier space and bi ∈ {−N/2, . . . , N/2}. Now the discrete
Fourier transform of Φ reads

Φ(x) =
∑
k

Φ̃(k)

(2π)3
e−ix·k.

What enables us to sample the Gaussian random �eld is that the complex-valued Fourier
amplitudes Φ̃(k) are indepedently normally distributed with mean zero and variance

σ2 =

(
2π

L

)3
P (k)

2
.

Hence, we need only generate N3 independent normal random variables to obtain a realisa-
tion of the random �eld in Fourier space and this is easily done. An inverse Fourier transform
will then yield the desired realisation of our GRF, for any power spectrum P (k). See for
instance �gure 2.4.

It may occassionally also be desirable to smooth out extreme peaks and valleys in the
random �eld. This can be done through a convolution of Φ(x) with a smoothing window
W (r;R). The random �eld smoothed over a length scale R is

Φ(x;R) =

∫
Φ(x′)W (x− x′;R)dx′.
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A particularly convenient choice of �lter is the Gaussian �lter W (r;R) ∼ exp(−r2/R2). To
smooth a Gaussian random �eld with a Gaussian �lter, we make use of the fact that the
discrete Fourier transform of Φ(x;R) is then

Φ(x;R) =
∑
k

Φ̃(k)

(2π)3
e−k

2/R2

e−ix·k.

In other words, we can simply multiply the Fourier amplitude Φ̃(k) by exp(−r2/R2) and
transform back to x-space.

2.4 Excursion set formalism

The following discussion is based on Zentner (2007); van de Weygaert and Bond (2008). We
know from section 2.2 that the density contrast is initially expected to grow like

δ(x, t) = D1(t)δ(x).

Of course, this linear growth phase is only valid as long as δ � 1. What happens during
the subsequent non-linear phase can generally only be studied with numerical N -body sim-
ulations. One of the few exact solutions is the simple spherical collapse model. This model
describes the collapse of a self-gravitating sphere of radius R and mass M using Newtoninan
mechanics. The model can be connected to the linear theory, yielding a critical value δcr such
that when the linear theory predicts an overdensity of δ(x, t) > δcr, collapse or virialisation
occurs in the spherical collapse model. In a matter-dominated universe with Ωm = 1 and
ΩΛ = 0, this critical value is δcr = 1.686. In general, the critical value depends weakly on
Ωm and ΩΛ (Eke et al., 1996). It is convenient to move the time dependence of δ(x, t) to the
critical value δcr. In that case, collapse occurs whenever the critical value drops below the
time-independent overdensity at x.

One di�culty with this approach is that the density contrast is de�ned at a point x,
whereas the spherical collapse model considers a sphere of �nite radius R and mass M . To
connect the two concepts, we use a technique from the previous section: we consider the
density �eld smoothed over a distance R, which is given by the convolution

δ(x;R) :=

∫
δ(x′)W (x− x′;R)dx′.

As before, W is the Gaussian �lter W (r;R) ∼ exp(−r2/R2). As discussed in the previous
section, δ(x;R) is also a Gaussian random �eld. We can thus associate with each �ltering
radius R not only a mass scale M ∼ R3, but also a mass variance

S := σ2(R) = 〈δ2(x;R)〉.

The mass variance S is a decreasing function of M and R. Indeed, if we consider larger
structures over greater distancesR, any erratic behaviour of the density �eld will be smoothed
out. It follows that δ(x;R) → 0 as R → ∞, or equivalently S → 0. Another way to look
at this is that the smoothed density �eld at a �xed point x will perform a random walk
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starting at zero, as we increase S from zero to larger values. This is represented in �gure 2.5.
The dashed line represents the critical overdensity δcr(t). At �rst glance, it is reasonable to
assume that there will be a halo of scale S wherever δ(x;S) exceeds the threshold. This is
the essence of the Press-Schechter formalism.

Press and Schechter (1974) proposed that the probability that δ(x;R) > δcr is equal to
the fraction of mass that is encapsulated in dark matter halos with mass exceeding M . As
δ(x;R) is a Gaussian random �eld, there is a simple expression for this probability:

P (δ > δcr) =
1

2

[
1− erf

(
δcr

2
√
S

)]
,

where erf is the error function. Because δ is a Gaussian �eld with zero mean, the probability
that δ is positive is precisely 1

2
. Hence, the Press-Schechter assumption implies that only half

of all the mass in the Universe could ever be captured in dark matter halos. This problem
was solved by introducing a fudge factor of two. A related problem with the Press-Schechter
assumption is that it does not account for the fact that even if the overdensity δ(x;M1) < δcr
at a mass scale M1, it is still possible that δ(x;M2) > δcr at some larger scale M2 > M1.
Hence, the Press-Schechter model simultaneously predicts that there is and is not a halo
of mass exceeding M1. This occurs for the bottom path in �gure 2.5 and is known as the
halo-in-halo problem.

These problems are resolved in the excursion set formalism of Bond et al. (1991). For-
mally, their explanation requires the use of a sharp k-space �lter rather than our Gaussian
�lter W . The sharp k-space �lter ensures that the random walk is Markovian, as is the
illustrative random walk in �gure 2.5. The resolution lies in the fact that for each random
walk that crosses the threshold density δcr(t), there is an equally likely path (by the Markov
property) that does not cross the threshold. Compare the top and bottom paths in �gure
2.5. Bond et al. (1991) were able to solve the problems of the Press-Schechter model by
instead considering the �rst upcrossing of the random walk. Thus, in the excursion set for-
malism, the point x is contained in a halo of scale S, where S is the smallest value for which
the random walk δ(x, S) crosses the threshold δcr(t). Because the critical overdensity δcr(t)
decreases over time, we see that the typical mass variance of new halos decreases over time.
In other words, the more massive halos are more likely to be created at later times.

Despite its weaknesses (Zentner, 2007), the excursion set model has been very popular
and it has been extended in a number of ways. First of all, models have been developed that
replace the rather simplistic spherical collapse assumption and allow for ellipsoidal collapses
(Bond and Myers, 1996; Sheth and Tormen, 2002). The formalism has also been extended
to model the formation of voids in the Cosmic Web (Sheth and Van De Weygaert, 2004).
For our purposes in chapter 4, the most interesting extensions are those that predict the
formation times of halos (Lacey and Cole, 1993). We will return to this issue in chapter 4.

2.5 The �rst stars and galaxies

We now turn to a discussion of the formation of the �rst stars and galaxies. For details, we
refer the reader to Ciardi and Ferrara (2005). In the preceding sections, we have already seen
how the �rst gravitationally bound structures formed out of the evolving density �eld. These
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S

δ(x;S)

Figure 2.5: The smoothed overdensity δ(x;S) at a point x performs a random walk as the
mass variance S is increased. In the excursion set formalism, a halo is born at the �rst
upcrossing of δ(x) above the dashed line representing the critical overdensity δcr(t).

structures consisted of dark matter, which could move and cluster unimpeded by pressure
or radiation. The primordial plasma meanwhile, through Compton scattering of photons by
free electrons, stayed in thermal equilibrium with the CMB until after recombination. The
plasma eventually decoupled from radiation and recombined into a hydrogen and helium
gas, which then entered a phase of adiabatic cooling. This allowed the gas to settle into the
troughs of the dark matter potential and form the �rst gravitationally bound gas clouds.
These clouds cooled, contracted, and ultimately fragmented, leading to the formation of the
�rst stars. Clearly, pressure plays an essential role in this process. We brie�y considered
pressure in section 2.2, where we derived the Jeans mass MJ . Collapse of a gas cloud is
only possible if the mass of the cloud exceeds the Jeans mass. However, the Jeans mass
itself is temperature-dependent and will decrease over time as the gas cools. Hence, at large
redshifts only the most massive clouds are able to contract.

Once a bound object has been formed, further cooling is required for collapse and frag-
mentation. In the absence of metal-producing stars, the most e�cient cooling channels are
unavailable. In halos with temperatures T < 104 K, cooling is then dominated by molecular
hydrogen: when H2 is excited rotationally or vibrationally by collision with H or other H2

molecules, the molecule de-excites by emitting a photon. If the photon can escape, energy
is lost and the gas cools. The formation of the �rst galaxies thus depends critically on the
fraction of molecular hydrogen that is present. Once the halo has cooled to 200 K, molec-
ular hydrogen cooling is prohibited and further cooling must occur through atomic or HD
(hydrogen deuteride) cooling.

If the cloud has su�ciently cooled, fragmentation may occur at scales RF ≈ λJ ∼ cst�,
where t� =

√
3π/32Gρ is the free-fall time and cs =

√
RT/µ is the sound speed (with R

the gas constant). We again see that RF decreases as the gas cools. The fragmentation
process stops when cooling becomes ine�cient or when the fragment becomes optically thick
to its cooling radiation. The latter occurs if the mass of the gas fragment exceeds the Jeans
mass, in which case the clump collapses and forms a proto-stellar core. The protostar may
then acquire a higher mass by accretion of gas from the surrounding cloud. Depending on
the speci�cs of the cooling and accretion mechanisms, the �rst stars acquire masses of order
10− 100 M�.
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Because the �rst stars form out of gas clouds with primordial composition, they are com-
pletely metal free. For this reason, they are referred to as Population III stars to distinguish
them from the later low metallicity Pop II and high metallicity Pop I stars. This lack of
metals a�ects not only the cooling and accretion processes that determine the formation of
Pop III stars, but also their life and ultimate fate. For example, the absence of metals means
that the CNO cycle is initially unavailable, so that stars are restricted to the pp-chain for
their hydrogen fusion. This, in combination with the higher stellar masses discussed above,
implies that Pop III stars burn much hotter and produce far more ionising radiation than
Pop II and Pop I stars. Additionally, this means that the lifetimes of Pop III stars are much
shorter. Eventually, Pop III stars will contract to a point where the �rst metals are produced
in the triple-α process, enabling for the �rst time the CNO cycle. Those stars with the lowest
masses 10 M� < M < 40 M� will then pass through various stages of nuclear fusion, ending
with a supernova and, if M > 30 M�, the formation of a black hole. Stars with masses
40 M� < M < 100 M� may proceed directly to black hole formation without a supernova.
Stars with even higher masses M > 100 M� may form black holes during helium burning or
even before the onset of hydrogen fusion. The most massive stellar remnants may become
quasars, who play a role of as of yet unknown signi�cance in cosmic reionisation, although
current evidence points towards a relatively minor role (Fontanot et al., 2012; Parsa et al.,
2017).

Due to a lack of observations, there is still much uncertainty about the physics of Pop
III stars. One thing that is certain is that feedback from the environment is very important.
Radiation from the �rst stars could destroy molecular hydrogen, delaying or preventing
further star formation. Additionally, the stars may eject streams of hot gas or otherwise
deposit mass or enriched metals in the local area. These processes a�ect the formation
of subsequent generations of stars, which makes modelling the Epoch of Reionisation a
complicated a�air. In the next section, we will study the � for our purposes � most important
feedback mechanism: cosmic reionisation.

2.6 Reionisation

Both quasars and Pop III stars produce photons with energies hν > 13.6 eV and are thus
capable of ionising hydrogen atoms. Let us study this process in greater detail. Ionisation
is the process

H + hν −→ H+ + e−. (2.15)

Recombination, the reverse of (2.15), also plays an important role because the densities near
these �rst objects are very high. To see why, let ne and np be the number densities of protons
and electrons. We then write the recombination rate per unit volume as

αAnenp, where αA = 4.2× 10−13 cm3 s−1

is the case A recombination rate. This is the sum over all possible electronic states of the
resulting H atom. Usually, it is better to ignore recombination events that produce a ground
state atom because the accompanying emission of a > 13.6 eV photon often leads to another
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photoionisation. We therefore use the case B recombination coe�cient

αB = 2.6× 10−13 cm3 s−1,

which ignores ground state recombinations.
We can gain some more insight by considering a simple model of a spherical ionisation

bubble (Shapiro and Giroux, 1987; Barkana and Loeb, 2001). Assume that a source has
turned on some time in the past and has produced a total of Nγ ionising photons. The
comoving radius of the ionisation bubble is R. Hence, accounting for cosmological expansion,
its volume is V = 4

3
π(aR)3. It follows that

V̇ = 3V

[
H +

Ṙ

R

]
. (2.16)

If we are dealing with a steady source of ionising photons, i.e. Ṅγ = constant, and if
ionisations and recombinations are in balance, then we simply have the steady-state Strömgen
sphere solution:

Ṅγ − αB〈n2
H〉V = 0,

where 〈n2
H〉 is average squared number density of hydrogen.

The non-steady state version of the problem can be solved by introducing a jump con-
dition at the boundary of the expanding bubble (Shapiro and Giroux, 1987). We let
A = 4π(aR)2 be the surface area and v = aṘ the velocity of the ionisation front relative to
the background gas. The jump condition is then given by

vn̄H =
(
Ṅγ − αBn2

HV
)
A−1. (2.17)

Here, n̄H is the background number density of hydrogen atoms. This equation states that the
number of hydrogen atoms that the front encounters per unit area per unit time is equal to
the number of ionising photons that are produced, net of recombinations within the bubble,
divided by the total surface area of the bubble. By combining (2.16) and (2.17), we �nd

n̄H

[
V̇ − 3HV

]
= Ṅγ − αB〈n2

H〉V. (2.18)

If we assume a constant value for the so-called clumping factor C := 〈n2
H〉/n̄2

H and note that
n̄H = n̄H,0 a

−3 with n̄H,0 the present day value, then we can write (2.18) as follows:

V̇ =
Ṅγ

n̄H,0
− αBC

n̄H,0
a3

V. (2.19)

By specifying a source function Ṅγ, we can solve for the bubble volume. As an example, we
choose the step function

Ṅγ =

{
0 if t < tb or t > td,

1 if tb < t < td,
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Figure 2.6: Volume of the ionisation bubble of a step source Ṅγ that turns on at H0(tb−t0) =
−0.9 and o� at H0(td − t0) = −0.8.

where tb and td are the birth and death times of the source. For a more realistic speci�cation,
see Barkana and Loeb (2001). For simplicity, we set αBC = n̄H,0 = 1 and use the scale factor
a(t) from a ΛCDM Universe with Ωm = 0.3 and ΩΛ = 0.7. The resulting bubble volume is
plotted in �gure 2.6. We see that the bubble survives for a long time after the source has
turned o�. This also holds true for more realistic models.

When the bubbles are far separated, equation (2.19) can easily be turned into a di�erential
equation for the global ionisation fraction Q(t). However, once the bubbles start to overlap,
the process becomes much more interesting. Gnedin (2000) described reionisation as a three-
stage process. During the initial �pre-overlap stage�, galaxies are formed in the dark matter
halos with the highest densities. The fraction of ionising radiation that escapes from these
galaxies �rst ionises the immediately surrounding high density medium, forming localised
bubbles of plasma in a sea of neutral gas. The ionisation front expands slowly through the
high density material, leaving behind dense pockets of neutral gas where the recombination
rate is too high for complete reionisation to occur. Eventually, the front pierces into the low
density voids of the Cosmic Web, at which point the front expands much more rapidly.

When the bubbles are large enough, they eventually start to overlap, sounding in the
�overlap stage� of reionisation. Points in the intersection of overlapping bubbles can now
be reached by multiple sources of ionising radiation. Hence, the ionisation intensity rises
rapidly during this stage. Of course, the expansion and overlapping of existing bubbles is
concurrent with the birth of many new galaxies, which compounds this e�ect.

The �post-overlap stage� follows when the IGM is almost completely ionised, barring some
neutral regions that persist even at this time. This occurs around redshift z ≈ 6, which con-
ventionally marks the end of reionisation. The surviving neutral regions are regions that are
both extremely dense and lie far away from ionising sources. As time moves on, the ionising
intensity increases further and the remaining neutral regions shrink and �nally disappear.
This is where we �nd ourselves today. However, while the IGM has been completely ionised,
there remain of course neutral gas clouds within galaxies.
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Fig. 16. Evolution of the integrated optical depth for the tanh functional
form (with δz = 0.5, blue shaded area). The two envelopes mark the
68% and 95% confidence intervals. The red, black, and orange dashed
lines are the models from Bouwens et al. (2015), Robertson et al.
(2015), and Ishigaki et al. (2015), respectively, using high-redshift
galaxy UV and IR fluxes and/or direct measurements.

have existed at z >∼ 11 (e.g., Kuhlen & Faucher-Giguère 2012;
Ellis et al. 2013; Cai et al. 2014; Ishigaki et al. 2015).

The Planck results, both from the 2015 data release and
those presented here, strongly reduce the need for a significant
contribution of Lyman continuum emission at early times. In-
deed, as shown in Fig. 16, the present CMB results on the
Thomson optical depth, τ = 0.058 ± 0.012, are perfectly consis-
tent with the best models of star-formation rate densities derived
from the UV and IR luminosity functions, as directly estimated
from observations of high-redshift galaxies (Ishigaki et al. 2015;
Robertson et al. 2015; Bouwens et al. 2015). With the present
value of τ, if we maintain a UV-luminosity density at the max-
imum level allowed by the luminosity density constraints at
redshifts z < 9, then the currently observed galaxy popula-
tion at MUV < −17 seems to be sufficient to comply with all
the observational constraints without the need for high-redshift
(z = 10–15) galaxies.

The Planck data are certainly consistent with a fully reion-
ized Universe at z ' 6. Moreover, they seem to be in good agree-
ment with recent observational constraints on reionization in the
direction of particular objects. The H i absorption along the line
of sight to a distant γ-ray burst, GRB-140515A (Chornock et al.
2014), suggests a Universe containing about a 10% fraction of
neutral hydrogen at z = 6–6.3. At even higher redshifts z ' 7, ob-
servation of Ly-α emitters suggests that at least 70% of the IGM
is neutral (Tilvi et al. 2014; Schenker et al. 2014; Faisst et al.
2014). Similarly, quasar near-zone detection and analysis (in-
cluding sizes, and Ly-α and β transmission properties) have been
used to place constraints on zend from signatures of the ioniza-
tion state of the IGM around individual sources (Wyithe & Loeb
2004; Mesinger & Haiman 2004, 2007; Wyithe et al. 2005;
Carilli et al. 2010; Mortlock et al. 2011; Schroeder et al. 2013).
However, interpretation of the observed evolution of the near-
zone sizes may be complicated by the opacity caused by ab-
sorption systems within the ionized IGM (e.g., Bolton et al.
2011; Bolton & Haehnelt 2013; Becker et al. 2015). Similarly,
it is difficult to completely exclude the possibility that damped
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Fig. 17. Reionization history for the redshift-symmetric parameter-
ization compared with other observational constraints coming from
quasars, Ly-α emitters, and the Ly-α forest (compiled by Bouwens et al.
2015). The red points are measurements of ionized fraction, while black
arrows mark upper and lower limits. The dark and light blue shaded ar-
eas show the 68% and 95% allowed intervals, respectively.

Ly-α systems contribute to the damping wings of quasar spectra
blueward of the Ly-α line (e.g., Mesinger & Furlanetto 2008;
Schroeder et al. 2013). Nevertheless, most such studies, indicate
that the IGM is significantly neutral at redshifts between 6 and 7
(see also Keating et al. 2015), in agreement with the current
Planck results, as shown in Fig. 17.

Although there are already all the constraints described
above, understanding the formation of the first luminous sources
in the Universe is still very much a work in progress. Our new
(and lower) value of the optical depth leads to better agreement
between the CMB and other astrophysical probes of reioniza-
tion; however, the fundamental questions remain regarding how
reionization actually proceeded.

7. Conclusions

We have derived constraints on cosmic reionization using Planck
data. The CMB Planck power spectra, combining the EE polar-
ization at low-` with the temperature data, give, for a so-called
“instantaneous” reionization history (a redshift-symmetric tanh
function xe(z) with δz = 0.5), a measurement of the Thomson
optical depth

τ = 0.058 ± 0.012 (lollipop+PlanckTT), (24)

which is significantly more accurate than previous measure-
ments. Thanks to the relatively high signal-to-noise ratio of the
low-` polarization signal, the combination with lensing or data
from high-resolution CMB anisotropy experiments (ACT and
SPT) does not bring much additional constraining power. The
impact on other ΛCDM parameters is only significant for the
amplitude of the initial scalar power spectrum As and (to a lesser
extent) on its tilt ns. Other parameters are very stable compared
to the Planck 2015 results.

Using Planck data, we have derived constraints on two mod-
els for the reionization history xe(z) that are commonly used in
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Figure 2.7: Constraints on reionisation history based on recent Planck data (light blue: 95%
allowed interval, dark blue: 68% interval), quasars, Ly-α emitters, and Ly-α forest. Up and
down arrows correspond to lower and upper limits (Lewis et al., 2016; Bouwens et al., 2015).

The picture of reionisation sketched above is con�rmed by the simulations of Choudhury
et al. (2009). Using their terminology, the reionisation process initially occurs �inside-out�,
with bubbles expanding outward into the neutral IGM, but eventually transitions to a more
�outside-in� process in which the remaining neutral regions are attacked by ionising radiation
from the outside. The picture is further supported by Castellano et al. (2016), who have
recently found observational evidence for overlapping ionisation bubbles in a high-density
region, in accordance with the theory.

Cosmic reionisation is an active �eld and there are many interesting developments, both
on the observational side and the theoretical side. Key observations include the Gunn-
Peterson troughs in quasar spectra (Gunn and Peterson, 1965; Becker et al., 2001; Fan et al.,
2006b), shown in �gure 2.1, and constraints on the Thomson optical depth τ resulting from
CMB measurements (Adam et al., 2016). These were already discussed in the introduction.
Other observations are detections of Lyman-α emission lines from galaxies and quasars at
redshifts up to z ≈ 7 (Dressler et al., 2015; Santos et al., 2016) and observations of metal
enrichment which use the fact that the �rst ionising sources also produced the �rst metals
(Ferrara, 2016). Additionally, the prospects of observing the 21-cm line of neutral hydrogen
against the CMB look promising (Furlanetto, 2016). All of these clues can be used to piece
together a picture of the evolving ionisation fraction Q(t). See �gure 2.7 for an overview of
recent constraints.

On the theoretical side, the theory describing the formation of the �rst dark matter halos
seems relatively certain. However, the real di�culty lies in understanding the physics of
the �rst galaxies and the subsequent stages of cosmic reionisation. Despite these di�culties,
many analytical models of the EoR have emerged (Zahn et al., 2007; Furlanetto et al., 2006).
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A huge e�ort has also gone into creating computer models of both the formation of Pop III
stars (Bromm and Loeb, 2004; Yoshida et al., 2006; Smith et al., 2009) and of the EoR as
a whole (Iliev et al., 2006; Mesinger and Furlanetto, 2007; Shin et al., 2008; Dayal et al.,
2010). A typical slice of reionisation maps produced by such models is shown in �gure 2.8.

Finally, as mentioned in the introduction, there is also a lot of interest in the morphol-
ogy and topology of reionisation bubbles (McQuinn et al., 2007; Cohn and Chang, 2006;
Choudhury et al., 2009; Furlanetto et al., 2004). However, the word topology is often used
rather informally. This thesis is aimed as a �rst step towards a more formal understanding
of the topology of reionisation. In the next chapter, we therefore describe a number of useful
concepts from algebraic and computational topology. In chapter 4, we will then apply these
concepts to the study of reionisation.

Figure 2.8: Slices through a simulation of the reionisation fraction during the EoR. Black
areas are highly ionised, whereas white areas are not (Shin et al., 2008).
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Computational Topology

3.1 Filtrations

In this section, we describe a number of basic concepts from computational geometry and
topology, including α-shapes. We refer the reader to de Berg et al. (2008); Vegter (2004);
Dey et al. (1999) for textbooks on these topics.

Convex hull

Let X be a vector space. Then, a convex combination of points x1, . . . , xn ∈ X is a sum

λ1x1 + · · ·+ λnxn with λ1, . . . λn ∈ R,

if λi ≥ 0 for all i and
∑n

i=0 λi = 1. Given two points x1 and x2, we can write any point
on the line between x1 and x2 as a convex combination of x1 and x2. A convex set Y ⊂ X
is a subset of X that is closed under convex combinations. It follows that any line drawn
between two points in Y must be contained in Y . Finally, the convex hull of a set of points
y1, . . . , ym is the smallest convex set Y that contains all of y1, . . . , ym. See �gure 3.1.

Figure 3.1: Convex hull of four points in R2.

Simplicial Complex

We now restrict ourselves to the vector space Rd. If 0 ≤ k ≤ d, then a k-simplex σ is the
convex hull of k + 1 a�nely independent points. These points are the vertices of σ. Any
subset of r + 1 of these vertices de�nes an r-simplex σ′ ⊂ σ. We call these σ′ the faces of σ
and we call σ the coface of its faces. For instance, in d = 3 dimensions, a 3-simplex is called

23
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(a) 0-simplex (b) 1-simplex (c) 2-simplex

Figure 3.2: Simplices in dimensions zero to two.

a tetrahedron and has 14 faces: four 2-simplices (triangles), six 1-simplices (lines), and four
0-simplices (vertices). The possible faces of a tetrahedron are illustrated in �gure 3.2.

A simplicial complex K is a set of simplices that �t together. Formally, this means that
if σ ∈ K, then its faces belong to K as well. And if σ1, σ2 ∈ K, then their intersection σ1∩σ2

is either empty or a face of both σ1 and σ2.

Triangulations

A triangulation of a point set P is a simplicial complex that contains the convex hull of
P . An example is the Delaunay triangulation, which is dual to the notion of a Voronoi

tesselation. If P consist of n points, then the Voronoi tesselation of P is a subdivision of
Rd into n regions such that every point in the region containing p ∈ P is closer to p than to
any other point in P . The Delaunay triangulation can be de�ned as the dual graph of the
Voronoi tesselation, meaning that the Delaunay triangulation has a vertex for every face of
the Voronoi tesselation and vice versa. See �gure 3.3. It can be shown that a triangulation
T is a Delaunay triangulation if and only if the circumcircle of every triangle of T does not
contain a point of P in its interior.

(a) Voronoi tesselation (b) Delaunay triangulation

Figure 3.3: Voronoi tesselation and Delaunay triangulation of a point set P ⊂ R2. The
Voronoi tesselation is the dual graph of the Delaunay triangulation.

Alpha-shapes

Next, we describe the notion of α-shapes due to Edelsbrunner et al. (1983). Throughout, we
assume that α ≥ 0 is a real number. Given a set of points P , the corresponding α-complex is
a simplicial complex that is constructed as follows. First, let T be a Delaunay triangulation
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Figure 3.4: An α-complex for a set of �ve points in R2. The radius of the circles is α.

of P . Then, we draw a d-ball (disk, ball, etc.) of radius α around each point p ∈ P . Those
simplices of the Delaunay triangulation that are contained within the union of all d-balls
belong to the α-complex. The α-shape is the union of all simplices in the α-complex.

See �gure 3.4 for an illustration. The dotted lines constitute a Delaunay triangulation of
the �ve points in the plane. The �gure is drawn for a value of α, such that the only simplices
that are contained within the union of disks are the �ve vertices and the four solid edges
connecting them. As α grows larger, more and more simplices will snap in place and the
α-shape will get �lled in. In our application in chapter 4, we make use of the Computational
Geometry Algorithms Library CGAL to create our desired α-complexes (The CGAL Project,
2017; Jamin et al., 2017).

Filtration

A �ltration of a simplicial complex K is a nested sequence of m + 1 simplicial complexes
∅ = K0 ⊆ K1 ⊆ · · · ⊆ Km = K. See �gure 3.5 for an example. Notice that we can construct
a �ltration of a Delaunay triangulation T of a point set P by iterating through all values
of α for which the corresponding α-complex changes and adding those α-complexes to the
�ltration. The α-complex only changes at discrete values of α when the balls are suddenly
large enough to contain one or more new simplices.

a b

c

a b

c

a b

c

a b

c

a b

c

Figure 3.5: A �ltration of a triangle.

3.2 Simplicial Homology

In this section, we take a whirlwind tour through the concepts necessary to get a basic idea of
simplicial homology groups. Readers who are familiar with or uninterested in these concepts
may skip to section 3.3. Familiarity with linear algebra and group theory is assumed. We
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refer the interested reader to Munkres (1984); Hatcher (2001) for introductory textbooks
that cover these topics.

Free Abelian Groups

Given a set of objects S = {x, y, . . . }, not necessarily �nite or countable, a formal sum of
such objects is just an expression∑

s∈S

ass with as ∈ Z,

with only �nitely many as 6= 0. The as are the coe�cients of the sum. Two sums are equal
if and only if their coe�cients are equal. We omit any terms with coe�cient 0 and simply
write 0x = 0 and 1x = x. Two formal sums can be added by adding the coe�cients:∑

s∈S

ass+
∑
s∈S

bss =
∑
s∈S

(as + bs) s. (3.1)

For every formal sum with coe�cients as, there is an inverse with coe�cients −as. Fur-
thermore, 0 is the identity. Using the properties of Z, we also see that this operation is
commutative and associative. With operation (3.1), the set of formal sums is evidently an
Abelian group G(S). Furthermore, S ⊂ G(S) and every element in G(S) can be written
uniquely as a �nite sum of elements in S. In other words, S is a basis of G(S). This makes
G(S) a free Abelian group.

We write Zn = Z × · · · × Z as the product of n copies of the group Z of integers under
addition. This is a free Abelian group with the basis {e1, . . . , en}, where e1 = (1, 0, . . . , 0),
etc. It is easy to see that if S is �nite, then G(S) ∼= Z|S|, where |S| is the cardinality of S.
In that case, we say that |S| is the rank of G(S).

Chains

A k-simplex σ can be given an orientation by writing its vertices as an ordered sequence. An
oriented k-simplex is written as [σ] = [x0, . . . , xk]. Two orientations are equivalent if they
di�er by an even number of transpositions. Hence, there are only two possible orientations.
We write [σ] = −[τ ] if σ = τ and σ and τ have opposite orientations:

= − .

Given a �nite simplicial complex K, we now de�ne a k-chain as a formal sum of oriented
k-simplices. The free Abelian group of these chains is the k-th chain group Ck. An example
of a 2-chain is [a, b, c] + 2[d, e, f ].

Boundaries and cycles

The boundary of a k-chain is a (k − 1)-chain, which is de�ned as follows. First, if [σ] is a
k-simplex, then its boundary is denoted by ∂k[σ] and given by the formula

∂k[v0, . . . , vk] :=
k∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vk], (3.2)
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where v̂i means that vi does not appear in the sequence. Notice that the [v0, . . . , v̂i, . . . , vk]
are precisely the k+ 1 (k− 1)-dimensional faces of [σ]. For instance, the three 1-dimensional
sides of a 2-dimensional triangle. Indeed, ∂2[a, b, c] = [a, b] − [b, c] + [c, a]. Next, if [σ] + [τ ]
is a sum of oriented k-simplices, then its boundary is

∂k
(
[σ] + [τ ]

)
= ∂k[σ] + ∂k[τ ],

which de�nes the boundary for any k-chain. The boundary of a boundary is always zero,
because the signs in (3.2) of successive boundary operators cancel. A cycle is a chain whose
boundary is zero. Hence, all boundaries are cycles, but the opposite is not true.

Running Example I: Cycles

Consider �gure 3.6, which consists of the triangle abc (with its interior) glued to the square
bedc (without its interior) along the side bc. There are 12 simplices: the 2-simplex [a, b, c],
six 1-simplices [a, b], [b, c], [c, a], [b, e], [e, d], [c, d], and �ve 0-simplices [a], [b], [c], [d], [e]. These
simplices together form a simplicial complex K.

a b

c d

e

Figure 3.6: There are 12 simplices in this �gure.

We can construct a path between any two 0-simplices in the �gure as a formal sum
of connected line segments. A path is closed if its starting and end points coincide. For
instance, a path between [a] and [d] is the 1-chain

[a, b] + [b, c] + [c, d].

The boundary of a path is the di�erence of its endpoints. For example,

∂1

(
[a, b] + [b, c] + [c, d]

)
= ∂1[a, b] + ∂1[b, c] + ∂1[c, d]

= [a]− [b] + [b]− [c] + [c]− [d]

= [a]− [d].

We thus see that if the path were closed, then its boundary would be zero. Hence, a closed
path is a 1-cycle. There are two linearly independent 1-cycles in K, namely the path around
the triangle and the path around the square. The path around both is also a 1-cycle, but it
is the sum of the other two paths. An even simpler example of a cycle is a 0-chain, because
the boundary of a 0-simplex is zero.

Boundary, cycle, and homology groups

Recall that k-chains are formal sums of oriented k-simplices and constitute a free Abelian
group Ck called the chain group. We now de�ne two additional groups: the boundary group
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Bk and cycle group Zk as

Bk := im ∂k+1, Zk := ker ∂k.

In other words, the k-th boundary group Bk consists of those k-chains chains that are
boundaries of (k + 1)-chains and the k-th cycle group Zk consists of those k-chains whose
boundaries are zero. Clearly, Bk ⊂ Zk ⊂ Ck, because every boundary is a cycle and every
cycle is a chain. Because sums of boundaries and cycles are boundaries and cycles, these are
subgroups: Bk ≤ Zk ≤ Ck. And because Ck is Abelian, these are in fact normal subgroups.
This is what allows us to de�ne the k-th homology group Hk as the factor group Zk/Bk. The
rank of the k-th homology group is the k-th Betti number βk. Intuitively, this number tells
us the number of k-dimensional holes in the simplicial complex K. In d = 3 dimensions, β0

is the number of components, β1 is the number of tunnels, and β2 the number of voids.

Running Example II: Groups

We return to our running example. See �gure 3.6. Let us �rst construct the chain groups.
The 2nd chain group C2 is isomorphic to Z. Indeed, it is generated by the only 2-simplex
[a, b, c]. Similarly, C1

∼= Z6, being generated by the six 1-simplices. Finally, C0
∼= Z5 as it is

generated by [a], [b], [c], [d], [e]. There are no k-simplices with k < 0 or k > 2, so all other
chain groups are trivial. By extension, their boundary and cycle subgroups are also trivial.

Now, we turn to the boundary groups. There are no 3-chains and so there are no 2-
boundaries: B2 is trivial. All 1-boundaries must be constructed as boundaries of 2-chains, but
the only 2-chains are multiples of [a, b, c]. Hence, B1 consists only of multiples of ∂2[a, b, c] =
[a, b] − [b, c] + [c, a]. In other words, B1

∼= Z. The boundary group B0 is generated by
expressions of the form ∂1[a, b] = [a] − [b] for each of the six 1-simplices. Because C0

∼= Z5,
these expressions cannot be linearly independent. It turns out that four of them, for example
∂1[a, b], ∂1[b, c], ∂1[b, e], ∂1[c, d], will form a basis of B0. Hence, B0 = C0

∼= Z4. This can be
checked by writing the elements of C1 in terms of the basis

[a] =


1
0
0
0
0

 , [b] =


0
1
0
0
0

 , [c] =


0
0
1
0
0

 , [d] =


0
0
0
1
0

 , [e] =


0
0
0
0
1


and using linear algebra. This technique is often very useful.

Finally, we take a look at the cycle groups. There are no 2-cycles, because ∂2[a, b, c] 6= 0.
Hence, Z2 is trivial. We already found two linearly independent 1-cycles earlier, namely
the paths around the triangle and square. To see whether there are any other 1-cycles that
cannot be written as a linear combination of these two, notice that it is impossible to create
a linear combination of [a, b], [b, e], [e, d], [d, c] that is a 1-cycle. Because C1

∼= Z6, the group
of 1-cycles has at most rank two. We therefore have Z1

∼= Z2. Finally, any 0-chain is a
0-cycle, so Z0

∼= C0
∼= Z5.

Using what we learned about the boundary and cycle groups, we can determine the
homology groups and the corresponding Betti numbers. We �nd that H2 = Z2/B2

∼=
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0/0 ∼= 0. Hence, β2 = 0. Furthermore H1 = Z1/B1
∼= Z2/Z ∼= Z, so β1 = 1. Finally,

H0 = Z0/B0
∼= Z5/Z4 ∼= Z, such that β0 = 1. This means that we have no voids, a single

hole, and one connected component, which is precisely what we expected.

Homology of a filtration

In applications, it may be desirable to determine the homology group of each simplicial
complex Ki in a �ltration of some complex K. In that case, cycles and boundaries can either
be created or destroyed as simplices are added to the complex. Hence, the associated Betti
numbers may increase or decrease at each step in the �ltration.

To make this more clear, consider the 2-dimensional simplicial complexes in �gure 3.7.
We look at the �rst homology group, whose rank β1 is equal to the number of 1-dimensional
holes. These are gaps enclosed by the �gure. Only panel 3.7d has such a gap. This is
re�ected in the Betti number β1 as follows. First, notice that there are no 2-simplices in
panels 3.7a-3.7d. Hence, the number of 1-boundaries is zero: B1 = 0. Furthermore, there
are no 1-cycles in panels 3.7a-3.7c, so for these panels the homology group is H1

∼= 0/0 = 0
and β1 = 0. In panel 3.7d, there is one 1-cycle [a, b] + [b, c] + [c, a]. Hence, Z1

∼= Z and
H1
∼= Z/0 ∼= Z. It follows that β1 = 1: there is a 1-dimensional hole. Finally, in panel 3.7e,

there is a 2-simplex and therefore a 1-boundary, so B1
∼= Z. Hence, H1

∼= Z/Z = 0 and
β1 = 0 again. The hole has been �lled up.

a b

c

(a)

a b

c

(b)

a b

c

(c)

a b

c

(d)

a b

c

(e)

Figure 3.7: A �ltration of a triangle.

3.3 Computational Homology

In practice, we may be dealing with thousands of points and triangulations consisting of a
multitude of simplices. We will thus have to use techniques from computational topology
to determine the Betti numbers. Del�nado and Edelsbrunner (1993) developed an elegant
algorithm to compute the Betti numbers of a �ltration of α-complexes, using the duality
between 2-cycles and 1-cycles that exists in d = 3 dimensions. A discussion of their algorithm
is unfortunately beyond the scope of this thesis. We have implemented their algorithm in C++

for our application in chapter 4. Plotting the Betti numbers of a �ltration of α-complexes
as a function of α produces a Betti diagram. An example is shown in �gure 3.8a. The solid
line labelled Betti-0 is the zeroth Betti number β0, representing the number of components.
Notice that as α increases and the α-shape gets �lled, the number of independent components
drops. The other lines represent the �rst and second Betti numbers, giving the numbers of
tunnels and voids, respectively. We will have much more to say about these diagrams in
chapter 4.
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Figure 3.8: Example Betti and persistence diagrams based on a triangulation of 1 000 ran-
domly placed points in the unit box [0, 1]3. The results are averaged over 15 realisations.

We can go even further and ask not only how many k-cycles and k-boundaries there are
at a given stage in the �ltration, but also when these features were �born� and when they
�died�. Associating an α value with the birth and death of each topological feature, we de�ne
their persistence as the di�erence αdeath − αbirth. Edelsbrunner et al. (2000); Zomorodian
and Carlsson (2004) developed algorithms to compute these (birth, death) pairs of a given
�ltration, which we also implemented in C++ and use for our application in chapter 4. For an
example of the resulting persistence diagrams, see �gures 3.8b and 3.8c. On the x-axis, we
plot the moment of creation and on the y-axis the moment of destruction of each topological
feature. The distance with the diagonal represents the persistence. Thus, features close to
the diagonal are short-lived and features far from the diagonal are very persistent.
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Persistent topology of reionisation

bubbles

4.1 The Poisson Model

In this �rst section, we will introduce a basic Poisson Model. This will allows us to explore
the di�erent types of features and properties of Bubble Networks that can be extracted
using our methodology. The Poisson Model will then serve as a benchmark for the more
complicated models considered later on.

We will consider Bubble Networks in d dimensions. Because we can only simulate �nite
boxes, we will need to use a periodic domain, lest we introduce artefacts at the boundaries.
Throughout this chapter, we will assume that our Bubble Network lives in a d-torus Td,
represented as the unit box [0, 1]d ⊂ Rd with opposite walls glued together. To construct
our model, we need a set of N centres which will then seed the Bubble Network. A centre

is a point x ∈ Td together with a continuous real function α(t) that speci�es the radius of
the bubble centred at x at all times t ≥ 0. We assume that α(0) = 0. A prescription for
generating the centres completely speci�es the model.

In the Poisson Model, the locations of the centres are generated through a Poisson point
process with rate N . Equivalently1, we may sample the d coordinates of each location xi for
i = 1, . . . , N from a uniform distribution U(0, 1). This method results in a homogeneous and
essentially featureless point distribution. See the middle row in �gure 4.7. In the Poisson
Model, we choose for each centre the same bubble radius α(t) = t. Regardless of the model,
once the centres have been chosen, we use two di�erent methods for generating the Bubble
Networks and for extracting valuable and complementary information.

The Monte Carlo method

TheMonte Carlo method is based on the theory of Voronoi Tesselations (Okabe, 1992), which
dates back at least to Descartes and was formally studied by Direchlet and Voronoi. Spatial

1Formally, the use of a Poisson point process also implies a small variation in the actual number Ñ of
points, although 〈Ñ〉 = N . If N is large enough, this variation is negligible.

31
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Figure 4.1: The Poisson Model in d = 2 dimensions, visualised using the Monte Carlo method
at times t = 0.0, 0.03, 0.08, 0.13, 0.19, and 0.41. All bubbles are born at t = 0.0 and expand
at the same rate: α(t) = t. We used M = 100 000 points and N = 40 centres.

tesselations were �rst applied in the astronomical context by Icke and van de Weygaert
(1987). In the present context, the method works by sampling a set of M � N points
through a secondary Poisson point process. We call these points to contrast them with the
centres. At t = 0, the points are distributed homogeneously throughout the domain. The
number of points per unit volume is therefore ρ(x, t) ≈M in any volume around x. We now
de�ne the local ionisation fraction as

Q(x, t) :=
M − ρ(x, t)

M
.

We see that Q(x, 0) = 0. In other words, the Universe is completely neutral at t = 0. The
Monte Carlo method now involves �nding all points that are contained within the bubble
radius of each centre. These points are then moved to the boundary of the bubble, so that
the bubble interior is empty. Hence, within each bubble we have Q(x, t) = 1, justifying
the name ionisation bubbles. Points on the boundary are removed from consideration for
the ionisation fraction. During each successive time step, the bubbles expand and sweep up
any surrounding points, increasing the global ionisation fraction. When bubbles overlap, the
points on their border are frozen, producing the typical Voronoi tesselation pattern seen in
�gure 4.1. At each time, we can compute any quantity of interest, such as local ionisation
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(a) Ionisation maps of a 2D slice (b) 3D Projection

Figure 4.2: Visualisations of the Poisson Model in d = 3 dimensions. All bubbles are born
at t = 0.0 and expand at the same rate: α(t) = t. We used N = 500 centres. On the left, we
show a slice through the model, visualised as an ionisation map (white = neutral, black =
ionised) at times t = 0.02, 0.06, 0.10, 0.14. While all bubbles have the same size, they pierce
through the 2D slice at di�erent times resulting in di�erent apparent sizes. On the right is
a 3D projection produced with the Monte Carlo method using M = 100 000 points.

fractions and bubble surface areas or volumes, by taking suitable averages over the point
distribution. In the limit M → ∞, these estimates converge to the exact values. The
algorithm can be summarised as follows:

1. Set t = 0.

2. For each point i:

a) Add i to the list of non-frozen points.

b) Find the nearest centre j and record c[i] = j.

3. While t < T :

a) For each point i in the list:

i. Find the distance d(i, j) to the nearest centre j.
ii. If d(i, j) < αj(t):

A. Move i away from j in a straight line until d(i, j) = αj(t).
iii. If j 6= c[i]:

A. Remove i from the list.

b) Set t = t+ ∆t.
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Figure 4.3: Geometric properties of the Poisson Model obtained using the Monte Carlo
Method. We used M = 100 000 and N = 100, N = 500, and N = 1 000.

The α-shape method

This method is based on the notion of α-shapes (Edelsbrunner et al., 1983; Dey et al., 1999)
and persistent homology (Edelsbrunner et al., 2000; Zomorodian and Carlsson, 2004), which
were discussed in chapter 3. See also van de Weygaert et al. (2013); Pranav et al. (2016) for
recent cosmological applications. Whereas the Monte Carlo method is used to compute all
manner of geometric properties of the Bubble Network, the α-shape method is used to study
the topology of the Bubble Network. For each t, we set α = t and proceed by computing
the α-shape from the set of centres using the computer package CGAL (The CGAL Project,
2017; Jamin et al., 2017). The topological properties of the network can then be computed
using the e�cient algorithms discussed in chapter 3.

It is clear that the use of α-shapes introduces a number of limitations compared to the
Monte Carlo method. Most importantly, we are restricted to a single global value of α
for all bubbles. This poses no problems for the Poisson Model, but it severely restricts
the types of models that can be studied using this method. For the model considered in
section 4.2, we will instead use weighted α-shapes, which partly solves this problem. A great
advantage of the α-shape method is that we need only one point per bubble, which means
that the α-shapes can be computed very quickly. A second attractive feature is the model's
conceptual simplicity. Because there is a single α value at each time t, we can capture the
entire reionisation history in a single Betti diagram.

Table 4.1: Reionisation times for the Poisson Models.

N tion relative

100 0.341± 0.023 2.1
500 0.199± 0.004 1.2
1 000 0.163± 0.004 1.0

Geometric Results

We restrict ourselves to the most interesting case d = 3 and consider the Poisson Model with
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M = 100 000 points and three values for the number of centres: N = 100, N = 500, and
N = 1 000. We average over three realisations per model. The N = 500 model is visualised
in �gure 4.2. The results are very sensitive to the choice of N . Indeed, considering that
the mean distance between bubble centres scales as N1/3, we expect that the bubble radius
at the time of full reionisation should be 101/3 = 2.2 times larger in the N = 100 model
compared to the N = 1 000 model. Because α(t) = t, this means that reionisation should
take more than twice as long.

We �rst discuss the results obtained with the Monte Carlo method. The average ion-
isation fraction Q(t) is plotted in �gure 4.3a. As expected, reionisation takes longest for
the N = 100 model and shortest for the N = 1 000 model. The power law tion ∝ N−0.322

provides an excellent �t (R = 0.99). See table 4.1 for details. The ionisation fraction Q(t)
is also a measure of the average bubble volume, because it is proportional to the number of
points swept up by the expanding bubbles. This means that the ionisation fraction grows
proportional to α3 = t3 for small t. For large t, the curve �attens o� because the remaining
neutral islands are harder to reach.

The ionisation rate Q̇(t) is plotted in �gure 4.3b. Where the ionisation fraction Q(t) is
a measure of the bubble volume, the ionisation rate Q̇(t) is a measure of the bubble surface
area. This relationship only holds true during the pre-overlap stage when the bubbles can
expand freely in every direction so that the number of points swept up per unit time is
proportional to the surface area. We also clearly see that reionisation occurs much more
rapidly for the N = 1 000 model.

Finally, we plot the e�ective bubble radius for each of the three models in �gure 4.3c. This
is determined by computing the average bubble volume Vavg and setting Re� = (3Vavg/4π)1/3.
The dotted line is the line Re� = t. We see that initially, during the pre-overlap stage, the
bubbles grow proportional to α(t) = t. However, the growth �attens o� when there is no
more room for expansion due to overlap. Again, the duration of the pre-overlap stage is
longest for the N = 100 model and briefest for the N = 1 000 model.

Topological Results

We now focus our attention on the N = 1 000 model and study the topology of the resulting
Bubble Network using the α-shape method. We average over 15 realisations. The resulting
Betti tracks are shown in �gure 4.4a, superimposed on the ionisation fraction Q(t). The
number of components β0 starts out at N = 1 000 and decreases as bubbles start to overlap
and merge. We can therefore use β0 as a measure for the degree of overlap. Notice that the
ionisation fraction Q(t) only starts to incline appreciably once the number of components
has decreased by 10% at t = 0.02. This could be chosen as the end of the pre-overlap stage.

We know from the Monte Carlo results that the ionisation rate reaches a maximum at
t = 0.054 (see �gure 4.3b). At this point, β0 has decreased to a measly 0.5% of its initial
value, so this could reasonably be chosen as the end overlap stage. During the subsequent
post-overlap stage, the remaining neutral islands are attacked from the outside. Interestingly,
most of the higher dimensional structure only appears past this point. First, the number
β1 of tunnels increases as bubbles begin to overlap that were already connected, forming 1-
cycles. When these tunnels begin to be �lled up, β1 decreases whilst β2 increases as bubbles
start to enclose an increasing number of voids. After t = 0.089, the voids outnumber the
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Figure 4.4: Topological properties of the Poisson Model obtained using the α-shape method
for N = 1 000. Betti-0 is the number of components, Betti-1 the number of tunnels, and
Betti-2 the number of voids. The results are averaged over 15 realisations. Because all
bubbles are born at t = 0, the Betti-0 persistence diagram is omitted.

tunnels. Finally, the voids get �lled up as well and the Betti numbers reach their �nal values:
β0 = 1, β1 = 3, β2 = 3.

Looking at the persistence diagrams in �gure 4.4b and 4.4c, we see that the majority
of features are short-lived (close to the diagonal). Nevertheless, a large number of tunnels
that are born around t = 0.06 survive until t = 0.08, although none live past t = 0.10.
Furthermore, most of the voids that are born before t = 0.10 die very young, but a large
number of voids that are born at t = 0.10 survive until t = 0.13. We can thus identify two
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Table 4.2: Di�erent epochs in the N = 1 000 Poisson Model.

Epoch Criterion Time

Pre-overlap Until 10% of bubbles are overlapping. t < 0.019
Overlap Until 99.5% of bubbles are overlapping. 0.019 ≤ t < 0.055
Tunnel Until the voids outnumber the tunnels. 0.055 ≤ t < 0.089
Void Until complete reionisation. 0.089 ≤ t < 0.163

additional topologically signi�cant epochs past the pre-overlap stage and the overlap stage,
which may rightly be called the �tunnel stage� and �void stage�. These topological features
are not apparent from the geometry or ionisation history Q(t). We summarise our criteria
for the four stages in table 4.2.

4.2 Variable birth times

We now introduce a �rst generalisation of the Poisson Model by allowing for variable birth
times. We call this the Demographic Model. The locations of the centres are still chosen
with a Poisson point process, but the prescription for generating the bubble radii is now to
sample a number τi for each centre i from a uniform distribution U(0, T ), where T is a model
parameter. We then set

αi(t) =

{
0 if t < τi,

t− τi otherwise.
(4.1)

This means that the average bubble radius at times t < T will be

〈α(t)〉 =

∫ t

0

t− τ
T

dτ =
t2

2T
, (4.2)

whereas the average bubble radius for later times t ≥ T will be

〈α(t)〉 =

∫ T

0

t− τ
T

dτ = t− 1
2
T. (4.3)

Hence, the bubble expansion rate slowly increases up to t = T , after which it is constant.
This is more realistic than the constant α(t) = t trajectory, because the reionisation process
accelerates during the overlap stage when points in the intersection of bubbles can for the
�rst time be ionised by multiple sources (Gnedin, 2000).

Di�erent trajectories of 〈α(t)〉 can be e�ected by sampling τi from di�erent distributions.
However, our methodology means that we have to use the piecewise linear function (4.1).
Implementing the Demographic Model poses no issue for the Monte Carlo method (which
could also handle variable death times), but the problem lies with the global α value in the
α-shape method. The solution is to switch to weighted α-shapes. Unfortunately, CGAL has
presently not implemented weighted α-shapes in periodic domains. A workaround is to simu-
late such a domain by making periodic copies of the point distribution, but this theoretically
introduces inaccuracies into the obtained Betti numbers (Robins, 2006). Experiments with
the unweighted α-shapes show that the di�erences are negligible. We therefore proceed with
the results and ignore this distinction.
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Figure 4.5: Geometric properties of the Demographic Model (bold line) obtained using the
Monte Carlo Method. We used M = 100 000, N = 1 000, and T = 0.10. The results are
compared with the Poisson Model (gray line).

Results

The Poisson Model is a limiting case of the Demographic Model with T = 0, so for small T
there are few di�erences. The most interesting Demographic Models with N = 1 000 have
T values in the range 0.05− 0.15, where the birth of new bubbles interferes with the higher
dimensional structures that typically form during the post-overlap stage. We consider in
greater detail the Demographic Model with N = 1 000 centres and T = 0.10.

Figure 4.5 shows the geometric results (averaged over three realisations) obtained with
the Monte Carlo method for M = 100 000 points. The results resemble the N = 1 000
Poisson Model, although the full reionisation time tion = 0.206± 0.01 is a factor 1.26 longer,
on the scale of the N = 500 Poisson Model. The reason is of course that the Demographic
Model starts out with fewer bubbles. The e�ective bubble radius is plotted in �gure 4.5c
against the analytical prediction in equations (4.2) and (4.3). The match is very good up to
about t = 0.10, where the curve �attens o� due to overlap.

The topological results obtained with the α-shape method are shown in �gure 4.6. We
average over 15 realisations. The di�erences with the Poisson Model (�gure 4.4) are conspic-
uous and many. The number of components β0 starts at zero and increases linearly as new
bubbles are being born. Shown is the line 104t, corresponding to the expected number of
bubbles that have been born at time t. At t = 0.034, the fraction β0/(104t) of living bubbles
that do not yet overlap reaches 90%, which we take as the end of the pre-overlap stage. This
stage lasts considerably longer for the Demographic Model.

During the overlap stage, β0 reaches its maximum. Indeed, β0 never reaches far above
300 because any newborn bubbles are immediately fed into larger existing structures. Fur-
thermore, because new bubbles are being born at a constant rate up to t = 0.10, the β0 curve
is skewed very much to the right and has a long and fat tail. The numbers of tunnels and
voids are somewhat smaller compared to the Poisson Model, but they appear much later.
The tunnel and void stages are delayed by about 0.2 units of time. This is because the
overlap stage lasts much longer.

By contrast to the Poisson Model, we now also have a persistence diagram for β0 (�gure
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(a) Betti tracks superimposed on the ionisation history Q(t). The dotted line is the line 104t, giving
the expected number of bubbles that have been born at time t.
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Figure 4.6: Topological properties of the Demographic Model obtained using the α-shape
method for N = 1 000 and T = 0.10. Betti-0 is the number of components, Betti-1 the
number of tunnels, and Betti-2 the number of voids. The results are averaged over 15
realisations.

4.6b), which shows that the longest-living components emerge at t = 0, although even
at t = 0.10 some bubbles are born that survive for a relatively long time before being
absorbed into larger structures. The persistence diagrams for β1 and β2 (�gures 4.6c and
4.6d) con�rm the picture sketched above with the onset of the tunnel and void stages being
delayed compared to the Poisson Model.

4.3 Clustering

Instead of varying the birth times, we now describe two di�erent prescriptions for generating
the bubble locations. The aim is to investigate the e�ects of clustering on the geometry
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Anti-Correlated

Figure 4.7: Snapshots taken at t = 0.04, 0.12, 0.16 of the three models in d = 2 dimensions
for N = 100 centres, made with the Monte-Carlo method withM = 100 000 points. We used
K = 12 and λ = 0.6 for the Correlated Model and λ = 0.08 for the Anti-Clustered Model.

and topology of the Bubble Networks. Following van de Weygaert (1994), we describe a
Correlated Model using a Neyman-Scott process and an Anti-Correlated Model based on a
minimum distance requirement.

Correlated Model

The centres in the Correlated Model are placed with a Neyman-Scott process. The model
is described by two parameters K and λ in addition to the number of centres N . We
assume that N/K is integer. Initially, K centres are generated with a Poisson point process.
Subsequently, N/K−1 centres are placed with another Poisson process in a sphere of radius
λK−1/d around each of the K initial centres. In this way, K clusters of N/K bubbles are
created. The bubble radius is α(t) = t for all centres.

Anti-Correlated Model

The Anti-Correlated Model is described by two parameters: the number of centres N and
the minimum centre distance λ. Bubbles are generated with a Poisson point process and
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Figure 4.8: Geometric properties of the Correlated, Poisson, and Anti-Correlated Models
obtained using the Monte Carlo Method. We used M = 100 000 and N = 1 000.

rejected if they fail the minimum distance requirement until N centres have been produced.
All centres have the radius function α(t) = t.

Results

A visual inspection of the Bubble Networks is quite revealing. This is easiest in d = 2
dimensions. Refer to �gure 4.7. We see that the Poisson Model is an intermediate case
between two extremes. The Bubble Network produced by the Correlated Model resembles a
two-phase medium consisting of large clusters of bubbles and gaping bubble-less voids. As a
result, the clustered regions are rapidly ionised, but the voids remain neutral for a long time.
At the other extreme, the Anti-Correlated Model produces bubbles appearing in an almost
crystal-like pattern. For a long time, these bubbles can freely expand in every direction and
when the bubbles �nally overlap, the Universe is almost completely ionised.

We now discuss the results of the N = 1 000 models in d = 3 dimensions. As for the
d = 2 case, we choose rather extreme model parameters. For the Correlated Model, we
choose K = 125 and λ = 0.6. For the Anti-Correlated Model, we choose λ = 0.8. The
geometric results appear in �gure 4.8. As we saw in the d = 2 case, the Anti-Correlated
Model has the shortest reionisation time tion = 0.135, which is a factor 0.83 shorter than
the Poisson Model. The reason is that the overlap stage is delayed for a long time so that
the ionisation volume keeps growing at the rate α3 = t3. On the other hand, the Correlated
Model has a much longer ionisation time of tion = 0.213, which is 1.31 times longer than
in the Poisson Model. Here, the opposite happens as the bubbles quickly enter the overlap
stage. See table 4.3 for the reionisation times of the models discussed so far.

The topological results are shown in �gure 4.9. The di�erences are now much more
obvious. First, consider the Betti diagrams in the third column. In �gure 4.9a, we see that
the void stage is seemingly absent in the Correlated Model. At the height of the void epoch,
there are only β2 = 28.5 voids on average, compared to β2 = 84.5 voids in the Poisson
Model. This is because during the void epoch, the clustered regions are completely �lled
up and lack any tunnels or voids. The only remaining voids are the huge empty bubble-less
regions, which are few in number but large in size. The latter is a geometric property that
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is however not visible in the Betti diagram. Considering the Betti diagram in isolation can
therefore be deceiving.

In �gure 4.9c, we see that the Anti-Correlated Model has a very long pre-overlap stage
during which the number β0 of components plateaus. Because the minimum bubble sepa-
ration λ = 0.08 was set rather high, most centres have a closest neighbour at a distance
of roughly λ. Therefore, the Bubble Network goes through a swift phase transition at
t = 1

2
λ = 0.04, when the bubbles start to overlap. We also see that the Anti-Correlated

Model has a more signi�cant void epoch and a brief but extreme tunnel epoch. The number
of tunnels even reaches above 1 000. Compare with the bottom middle panel in �gure 4.7.

Looking at the persistence diagrams in the �rst two columns, we see that although the
Correlated Model has fewer higher-dimensional structures, they are far more persistent and
appear over a much wider time interval. For the Anti-Correlated Model, we see that there are
many more tunnels and voids, but they exist only during a very short period of time. Again,
we �nd that the apparent intensities of the tunnel and void epochs in the Betti diagrams
are deceiving: the Correlated Model does have a void epoch, but there are fewer yet more
signi�cant voids. The opposite is true for the Anti-Correlated Model. The Poisson Model in
�gure 4.9b is once more an intermediate case.

Table 4.3: Reionisation times for the basic model classes.

Model N tion relative

Poisson 100 0.341± 0.023 2.09
Poisson 500 0.199± 0.004 1.22
Poisson 1 000 0.163± 0.004 1.00
Demographic 1 000 0.206± 0.010 1.26
Correlated 1 000 0.213± 0.008 1.31
Anti-Correlated 1 000 0.135± 0.005 0.83

4.4 Halo excursions

Thus far, we have been dealing with a few simple models, which nevertheless allowed us to
investigate the e�ects of varying birth times and the degree of clustering on the topology of
Bubble Networks. In this section, we take �rst step towards a more realistic model of the
Epoch of Reionisation using our α-shape approach. The model that we describe below is
called the Halo Model, because it �rst simulates the formation of dark matter halos before
the ionisation bubbles are generated. To accomplish this, we use a greatly simpli�ed version
of the methods used by Mesinger and Furlanetto (2007), which are based on the peak-patch
model of Bond and Myers (1996). It is important to note that this is still a toy model and
no physical quantities are involved, although such an extension is feasible.

The Halo Model

For the bubble radius α(t), we use the piecewise linear function used in the Demographic
Model of section 4.2. The birth times and locations of the centres are generated as follows.
First, a density �eld δ(x) is simulated by generating a Gaussian Random Field (see section
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Figure 4.9: Topological properties of the Correlated, Poisson, and Anti-Correlated Models
obtained using the α-shape method for N = 1, 000. Betti-0 is the number of components,
Betti-1 the number of tunnels, and Betti-2 the number of voids. The results are averaged
over 15 realisations.

2.3) with a user-speci�ed power spectrum P (k) on a 1283 grid. The �eld is smoothed on
a logarithmic hierarchy of scales starting at half the box width down to the resolution of
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the grid with ∆R/R = 0.064. At each scale, the peaks of the density �eld are identi�ed as
potential halos and recorded. For each potential halo, looking backwards at smaller scales,
a determination is made at which time t at least half of the halo mass had collapsed using
the excursion barrier criterion described in section 2.4:

δ(x;M) ≥ δcr/D(t),

where δcr and D(t) are speci�ed by the user. This time t is recorded as the formation time
of the halo. Halos with formation times t > tmax are discarded. All formation times are then
normalised so that the �rst halo is born at t = 0. Finally, the halos are sorted by formation
time in ascending order. Starting at the �rst halo, a bubble is generated with the same
location and formation time of each halo, unless the bubble would be completely contained
in an already existing bubble at the time of its creation. Bubbles are allowed to overlap at
birth. In order to make comparisons between models with di�erent numbers of bubbles, we
randomly select N bubbles which guarantees an unbiased sample.

Results

We use the simple prescriptions tmax = 0.15, δcr = 1.686, and D(t) = 103 · t. Our primary
application of this model is investigating the e�ect of the power spectrum P (k) of the density
�uctuations on the topology of the resulting Bubble Network. To that end, we test �ve power
law power spectra P (k) = kn with n = −3,−2,−1, 0, 1. See the �rst column in �gure 4.10
for slices of the resulting Gaussian Random Fields smoothed at the �nest scale considered.
We see that even at this �nest scale, the bottom k−3 �eld primarily features large hills and
sweeping valleys, some of which cover over a �fth of the box. By contrast, the k1 �eld shows
�nely detailed peaks and troughs. The halo locations are therefore quite evenly spread out
in the k1 and k0 models, whereas they are increasingly clustered as we go down in exponent.

Let us now look at the resulting halo distributions for each of the �ve models. These are
shown in the centre column of �gure 4.10, as a function of the formation times of the halos.
In the k1 model and less so in the k0 model, the masses are correlated with the formation
times. This follows from our implementation of the excursion set formalism, where the
decreasing critical overdensity δcr/D(t) over time allows halos to be formed at larger scales.
This relationship barely holds for the k−1 and k−2 models and completely breaks down for
the k−3 model. The reason can be gleaned from the third column in �gure 4.10, where we
have pictured the running of the global maximum of the smoothed density �eld δ(x;M) with
mass scale M . As expected, we see that the peaks in the density �eld are smoothed out over
larger scales. However, the slope of this relationship is very minimal for the k−3 and k−2

models. As a result, as soon the critical density drops low enough (below ∼ 10−6 for the
k−3 model), halos can be formed at all scales. On the other hand, for the k1 and k0 models,
the slope is steep enough to di�erentiate between small and large scales. Note also that the
halos are born at much earlier times in the k1 model compared to the k−3 model. However,
this is not visible due to the normalisation of formation times.

We now turn to the topology of the Bubble Networks. The results obtained with the
α-shape method are plotted in �gure 4.11. We used N = 500 bubbles2 and averaged over 5

2The bottleneck here is the k−3 model, which generates far fewer halos due to a lack of peaks that exceed
the excursion barrier at any time.
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realisations. As before, the Betti diagrams are shown in the third column on the right. All
models except for the k−3 model look relatively similar and distinct from any other model
considered. The most obvious di�erence with earlier models is the distinctive β0 curve, which
reaches a maximum around t & 0 and declines rapidly until t = 0.002 where the curve hits
a kink. The initial rapid decline can be explained by the fact that many clusters of small
bubbles are born at t = 0. As these bubbles expand, they almost immediately merge up
into larger bubbles, decreasing the number of components. This e�ect is stronger as we
go down in exponent and the degree of clustering increases. After t = 0.002, the small
bubbles have all merged and the number of components decreases much more slowly as new
bubbles are continuously being fed into the network. In the k1, k0, and k−1 models, a second
in�ection point can be seen around t = 0.05 when the supply of new halos slows to a halt and
the β0 curve decreases faster once more. This does not occur for the k−2 and k−3 models,
where almost no halos are born after t = 0.02. Compare with �gure 4.10. The number of
components declines further until the start of the tunnel epoch at around t = 0.09, when
99.5% percent of bubbles are overlapping.

The persistence diagrams in the �rst two columns show quite clearly that the k−3 model
is a degenerate case. Comparing the other diagrams with those of earlier models, we see
that the k1 model most closely resembles the Demographic Model. Both models have a
similar degree of clustering as the Poisson Model and both models have delayed tunnel and
void epochs due to varying birth times. As we go down in exponent, the Bubble Networks
become increasingly clustered and this is re�ected in the fact that the tunnels and voids are
more persistent and are created over longer intervals of time. From the Betti diagrams, we
also see that the less clustered models have more tunnels and voids, albeit less persistent,
con�rming what we saw in section 4.3.

In summary, the power spectrum a�ects the bubble topology in at least two ways. First,
through its in�uence on the halo formation times as predicted by the excursion set formalism.
If the height of the peaks of the random �eld varies little with the smoothing scale over the
relevant range, then all halos will be born around the same time. This lack in variation of
birth times clearly a�ects the bubble topology. Secondly, through the degree of clustering of
the peaks in the random �eld and thereby the clustering of the ionisation bubbles.
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Figure 4.10: Snapshots of smoothed Gaussian Random Fields for each of the �ve tested power
spectra (left) and halo mass distributions as a function of the age αbirth of the associated
ionisation bubble (middle). The results are averaged over 5 realisations. Also shown (right)
is the running of the global minimum of the density �eld with smoothing scale M ∝ R3.
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Figure 4.11: Topological properties of the Halo Models obtained using the α-shape method
for N = 500. Betti-0 is the number of components, Betti-1 the number of tunnels, and
Betti-2 the number of voids. The results are averaged over 5 realisations.
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Conclusion

In this manuscript, we have discussed and analysed the topology of networks of reionisation
bubbles using the tool set of persistent homology (Edelsbrunner et al., 2000; Zomorodian
and Carlsson, 2004). We have demonstrated that a wealth of information on the devel-
opment of ionisation bubble networks can be obtained using a combination of Mote Carlo
methods and methods based on the concept of α-shapes known from computational topology
(Edelsbrunner et al., 1983; Dey et al., 1999).

Our α-shapes based approach works by identifying each bubble with a single point.
Each bubble then grows at the same rate with the radius given by a global function α(t).
For simplicity, we have used α(t) = t, but this is not required. The model can easily be
generalised to allow for variable birth times. Because each bubble is associated with only
a single point, the α-shapes can be generated very quickly. The number of bubbles could
easily be taken orders of magnitude larger than we have done. A secondary advantage is the
model's conceptual simplicity. Because there is only a single α value at each time, beautiful
diagrams such as �gure 4.6 can be generated that capture simultaneously the ionisation
fraction at each time, the birth and mergers of ionisation bubbles, and the creation and
destruction of higher-dimensional topological structures. Nevertheless, the global α value
limits the applicability of the model.

A possible alternative route to study the persistent topology of cosmic reionisation would
be to �rst generate realistic ionisation maps and then study the superlevel sets of the ionisa-
tion �eld. In contrast to our methods, this would have to be done separately at each redshift,
but it would allow for more realistic (for instance non-spherical) HII regions. It would be
interesting to see how the results of such a study would compare with ours.

Despite the shortcomings of our approach and the relatively simple prescriptions used
for generating the Bubble Networks, we have identi�ed a number of interesting features.
Possibly the most interesting �nding is the identi�cation of two separate �tunnel� and �void�
stages in the development of Bubble Networks. As a �rst approximation, the process of
cosmic reionisation is often described as a three-stage process consisting of a pre-overlap
stage, an overlap stage, and a post-overlap stage (Gnedin, 2000). Our �ndings suggest that
most of the topologically interesting structure occurs after the overlap stage when more
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than 99.5% of ionisation bubbles are overlapping. During the �rst half of this post-overlap
stage, the topology of the Bubble Network is dominated by 2-dimensional tunnels and during
the latter half by 3-dimensional voids. Clearly, the topology during the post-overlap stage
is much more intricate and therefore harder to study compared to the preceding stages.
Applying persistent homology to more realistic models of reionisation could prove to be of
great value in our e�orts to understand this stage better.
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