groningen

university of

faculty of science
and engineering

LEARNING TO PLAY AN AERIAL COMBAT GAME WITH
REINFORCEMENT LEARNING

Bachelor’s Project Thesis

Jan Willem de Wit, s2616602, j.w.de.wit@student.rug.nl
Supervisor: Dr M.A. Wiering

Abstract: Reinforcement learning has been used previously to let agents learn to play games. We
have created a game environment with planes, that have to learn to fly from rewards. They were
successful in learning this using the Continuous Actor-Critic Learning Automaton (CACLA).
We have extended the planes with the ability to shoot each other. The agents are unable to learn
this very well, because the reward from shooting is delayed which makes it difficult to credit the
actions leading to the reward correctly. Furthermore, we have explored different configurations
of CACLA in a multiagent environment. We have tested configurations that we have named
Personal, Shared and Team. They are all successful in learning to fly in the busier environment,
learning approximately the same strategy for flying.

1 Introduction

Reinforcement Learning (RL) has been used to
learn to play many different games. It has been
applied to arcade games like Ms. Pac-Man (Bom,
Henken, and Wiering), 2013), Atari games (Mnih,
Kavukcuoglu, Silver, Graves, Antonoglou, Wier-
stra, and Riedmiller, [2013)), board games like Oth-
ello (Van Der Ree and Wiering}, 2013)), but also first
person shooters (McPartland and Gallagher, 2011)),
Capture the Flag (Ivanovic, Zambetta, Li, and
Rivera-Villicanal, [2014), the Prisoner’s Dilemma
(Gao, 2012)), and it has been used to aid humans in
playing games (Taylor, Carboni, Fachantidis, Vla-
havas, and Torreyl, 2014)). However, one of the chal-
lenges that still remains is the application of RL in
continuous state-action game environments. When
states and possible actions are limited, it is rela-
tively easy for an agent to find the optimal policy.
But when the state space and action space become
larger or even infinite, it becomes impossible to try
out all possibilities, so we need different ways to
deal with this.

In this thesis we will apply reinforcement learn-
ing in a game with continuous states and actions.
We have created an aerial combat game environ-
ment with planes, where throttle and steering are
controlled by continuous values. In reinforcement
learning, an agent is placed in an environment,
where it has to take actions in order to receive the
highest rewards. In our game, the difficulty lies in

the large amount of possible states and actions.

We will use the Continuous Actor Critic Learn-
ing Automaton (CACLA) algorithm (van Hasselt
and Wiering, 2007) with a multi-layer perceptron
to see if it can be used to teach planes how to fly
in the game environment. We then extend this to
a multiagent setup, to see if planes can learn to
fly in a more busy environment, without crashing
into each other. We will experiment with different
setups of the algorithm to see if we can improve
learning when multiple planes are part of a team.

Additionally, we will explore shooting. We have
given the planes the ability to shoot, and they will
receive a reward for a bullet hitting a plane. How-
ever, this reward is delayed, making it very difficult
for the action leading to the reward being reinforced
properly. This is known as the temporal credit as-
signment problem (Kaelbling, Littman, and Moore,
1996). The continuous nature of our game makes
this extra difficult, because of the large amount of
states leading up to a reward in the case of shoot-
ing.

Our research questions are: (1) Can agents learn
to fly and shoot in a continuous game environment
using the CACLA algorithm? (2) How can we con-
figure CACLA to maximise performance in a multi-
agent setup?

Outline of this thesis. In section[2] we describe

the game environment we developed. In section
we discuss the relevant reinforcement learning algo-

rithms. Section [explains the experiments we have
run and shows the results. We discuss the results
in section B

2 Game environment

We developed a 2D game environment in which
multiple planes can fly. The planes can control
throttle, steering and firing of bullets. Both throttle
and steering are continuous actions. We have imple-
mented physics that simulate gravity and air pres-
sure. This is set up in such a way that the height
planes can reach is limited, due to the increased
air pressure. When a plane flies out of the environ-
ment on the left, it reappears on the right. When
a plane reaches the bottom of the environment, it
counts as crashing into the ground, and the plane
is destroyed.

The environment has a size of 1000 x 1000 pix-
els. The planes are initialised at a random position
in the environment, with a random angle. As their
initial velocity is zero, they are falling down at first,
and have to recover from this. The planes have a
starting health of 5, of which one is subtracted ev-
ery time it is hit by a bullet.

The game is updated 60 times per second in nor-
mal speed. The game is reset when all the planes
are destroyed. The game is also reset after a cer-
tain amount of frames, even if one or more planes
are still alive. This is done to save time, and to let
planes learn from more different starting positions
to increase the amount of exposure they get to dif-
ferent situations.

Figure[2.1|shows a screenshot of part of the game
environment, with two planes flying in it. Bullets
that have been shot are also visible. The numbers
(5) on the planes indicate the amount of health left.

In the game environment gravity is simulated, so
that a plane will fall down if no or little throttle
is applied. Additionally, we simulate the effect of
altitude-dependent air pressure. This prevents the
planes from flying too high, and confines them to a
limited amount of space. This is important because
we want to teach the planes how to avoid other
planes, which would be too easy if the environment
was infinitely large. In practice, we have seen that
the planes were sometimes able to fly higher than
the originally intended environment height of 1000,
getting up to around 1200 as well. This makes them

Figure 2.1: Two planes flying in the environment

disappear from the visible environment, but it has
no consequences for the planes and their learning.
When planes fly out of the left or right side of the
game environment, they reappear on the other side.
This makes it easier for the planes to fly, while keep-
ing the environment space managable.

3 Reinforcement Learning

In reinforcement learning, an agent has to take ac-
tions in an environment in order to maximise the
sum of received rewards (Sutton and Bartoj [1998)).
In each time step, an agent can use a policy to map
the current state to an action. The policy describes
for each state what the best action is. Alternatively,
a value function can be used. The value function
approximates the expected sum of future rewards
from a certain action in a certain state. In the next
time step, the actual received reward and the value
of the next state are used to adjust the policy or the
value function, so that the policy or value function
becomes closer to the optimal one.

One important aspect of reinforcement learning
is exploration. If an agent always executes the ac-
tions that it thinks are best, it can never discover
different actions that might have an even better
outcome. For successful learning, the agent needs
to select actions for which the exact outcome is un-

certain every now and then.

3.1 Actor-Critic Methods

Actor-critic methods differ from other reinforce-
ment learning algorithms, by using both a policy
and a value function (Sutton and Barto, [1998). In
actor-critic methods, the actor determines what ac-
tion to take in a certain state, making it equivalent
to the policy. The critic evaluates the action taken
in a specific state, making it equivalent to the value
function.

The Temporal-Difference error (TD-error) is
used in actor-critic algorithms to determine
whether the action selected at time ¢ improved the
situation. It is defined as follows:

5t = Tt+1 + ’YV(St_H) — V(St)

where 7141 is the received reward in the state
after selecting the action, «y is the discount factor,
V' is the value function, and s; is the state at time
step t.

The TD-error contrasts the expected change in
value going from state s; to state s(41) to the ac-
tual received reward, and therefore describes the
discrepancy between the expected value and the ac-
tual received reward. If the TD-error is positive, the
outcome was better than expected, so the selected
action will be strengthened in the actor, so that it
will be selected in this situation more often. If the
TD-error is negative, the outcome was worse than
expected, so the action should be made less likely
to be selected in the future.

Actor-critic methods aim to combine the strong
points of algorithms that only use an actor or only
use a critic (Konda and Tsitsiklis| 2000)). They have
been used in, for example, playing games (Sundar
and Ravikumar, 2014) and robot navigation tasks
(Muse and Wermter, 2009)), and it can produce be-
haviour similar to humans and animals in certain
tasks (Sakai and Fukai, [2007)).

3.2 Continuous Actor Critic Learn-
ing Automaton

The Actor Critic Learning Automaton (ACLA) is
a type of actor-critic algorithm (van Hasselt and
Wiering, 2007). It only uses the sign of the TD-
error for determining the update to the actor, and

not the actual value. This algorithm is the basis for
the Continuous Actor Critic Learning Automaton
(CACLA), which is an adaptation to ACLA that
allows for continuous actions. This is done by using
function approximators.

In our game, the game state includes inputs like
position, velocity, and rotation, which are continu-
ous. To map these inputs to a value, we need to use
a function approximator. For this, we use a stan-
dard multilayer perceptron (MLP) with one hidden
layer. The critic MLP approximates the value func-
tion. It uses a linear activation function as its out-
puts values can become large. Another policy MLP
is used to output the actions. It uses a sigmoid acti-
vation function as the actions are numbers between
0 and 1. Using the value output by the critic, we
can calculate the TD-error. We do this using the
temporal difference (6;):

O = e +YVi(se41) — Vi(se)
At the end of the game, this becomes:

0p =17 — Vt(st)

The value of the critic is then updated by back-
propagating the following target value through the
MLP:

T(St) = ‘/t(st) + (St

For this we use (s, T(s¢)) as a training example
and we backpropagate with a learning rate a to
update the weights.

The actor is only updated if the TD-error is posi-
tive. Then the MLP is trained to output the target:

T(St) = Qt

If the executed action a; led to a better outcome
for state s; than expected, the action output by the
actor is moved in the direction of this action.

3.3 Action Selection

In actor-critic methods, the actor sometimes needs
to select actions other than the preferred action in
the current situation, in order to explore. This can
be done using e-greedy exploration. In e-greedy ex-
ploration, the agent takes a random action with a
probability of €, otherwise it selects the best ex-
pected action.

An alternative is to use Gaussian exploration.
In Gaussian exploration, a random value is added
to the action value proposed by the actor. Instead
of selecting a completely random action, like in e-
greedy, an action is selected that is slightly different
than the expected best action. This way, the learnt
actions are not discarded completely in exploration,
but used as a basis for improvement.

We use Gaussian exploration, with a standard
deviation that slowly decreases. The high standard
deviation at the beginning allows for actions that
are very different from the action that the actor
selects. When the standard deviation of the noise
becomes low, only slight changes are made to the
action selected by the actor, which allows for the
actions to be refined.

3.3.1 Smoothing

We have constructed an exploration method that
smoothens the noise over multiple time steps. In
our game, a single action has relatively little effect
on the state. Because the average noise added to
the action over time is zero, the small impact of
the noise will result in very little overall change.
By smoothening the noise, about the same amount
of noise is effectively used in a number of frames, al-
lowing flying behaviour to change in a more consis-
tent way. We use the following formula to smoothen
the noise:

z=2z-1%5+y *(1—3)

where z is the noise added to the action, s is the
smoothing parameter, and y; is noise sampled from
a Gaussian distribution. Effectively, it adds some
new noise on top of the old noise, instead of using
random noise in every time step.

4 Experiments and Results

The game is set up in such a way that it automat-
ically restarts after all planes have been destroyed.
To prevent games from running forever when planes
have learnt how to fly perfectly, we also reset the
game after a while regardless of how many planes
are still alive. We do this after 1200 frames, which
equals 20 seconds when run in real-time. When the
program is running, the amount of noise added to
the actions for exploration is slowly reduced. This

way, after a certain amount of games is played,
no significant amount of noise is added anymore.
For getting our test results, we alternate between
training and testing modes. In training mode, noise
is added to the action for exploration. In testing
mode, no noise is added to the actions. This way,
the planes can demonstrate what they have learnt.
During testing, the total scores for each game are
saved. The random initialisation of the positions of
the planes has a lot of influence on performance; if
planes are placed low to the ground or too close to a
different plane, it might simply be impossible for it
to recover. To not let these outliers affect the data
too much, we average over these games to give a
performance score at this time in training. We run
this entire simulation until the amount of noise gets
low; we vary the exact amount of games played in a
simulation per setup. Then, the neural networks for
CACLA are initialised again with weights between
—0.5 and 0.5, and the simulation is run again. In
total, the results are averaged over 20 simulations.

4.1 Single Agent Experiment: Flying

To evaluate the way planes learn to fly, we use a
setup with two teams, both teams having one plane.
So in total, there are two planes in the environment.
The planes receive a small positive reward if they
fly high, and a small negative reward when they fly
low, according to the following formula:

re =1 — (Y/1000) — 0.2

where 74 is the height-based reward at time ¢ and
Y is the y-position of the plane (note that Y = 0
is at the top of the environment and Y = 1000 at
the bottom).

Additionally, the agents receive a strong nega-
tive reward (-100) when they crash, either into the
ground or into the other plane. The planes do not
have an action for shooting in this experiment, and
therefore do not get any rewards related to shoot-
ing.

4.1.1 Network inputs and outputs

We use the following inputs for the networks in the
single agent setup.
From the plane’s own information:

e rotation

e x-position

e y-position

e angular velocity
e x-velocity

e y-velocity

e absolute speed

The following information is added from other
planes in the environment:

e rotation

e x-position

e y-position

e x-velocity

e y-velocity

e team identifier

e health status (alive/dead)

To limit the scale of the inputs, the position val-
ues are divided by 1000 (the size of the environ-
ment), and the velocities are divided by 10. The
rotation is a value between —m and 7.

The actor outputs two values: throttle and rota-
tion. Both are values between 0 and 1. The rotation
is then scaled so that an output close to 0 results in
a sharp turn to the left, an output close to 1 results
in a sharp turn to the right, and at a value of 0.5,
the plane does not change direction.

4.1.2 Parameters

We performed preliminary experiments to tune the
hyperparameters. We start the standard deviation
of the noise at a value of 0.7. Every update, this
value is multiplied by 0.999999. This way, it takes
about 3000 games for the standard deviation to be-
come less than 0.1. The noise smoothing parame-
ter is 0.9. We used a discount factor of 0.98. For
the actor, we used 25 neurons in the hidden layer.
For the critic, we used 15 hidden units. We will
compare different learning rates, but keep these the
same between the actor and the critic. For testing,
we test performance every 100 training games. We
then test for 25 games without noise added, and

average this score to calculate the average perfor-
mance at this time in learning. We reset the game
if all the planes have died, or if 1200 frames have
passed.

The learning rates we will compare are:

e 0.0001
e 0.0005
e 0.001

e 0.005

4.1.3 Results

1500
|

1000
|
1

Average reward per game

500
|

T T T T T T T
1000 1500 2000 2500 3000

Games played

Figure 4.1: Different learning rates compared for
single agent flying experiment

Figure shows the performance of a single
agent learning to fly with different learning rates.
With a very low learning rate of 0.0001, there is
very little improvement after 3000 games. Setting
the learning rate higher at 0.0005, the average re-
ward increases a lot more. Increasing the learn-
ing rate to 0.001 yields another improvement. The
agent learns quicker, and ends up at a higher aver-
age reward after 3000 games. When we increase the
learning rate even further to 0.005, the performance
increases even faster at first, but stagnates later,
yielding less average reward than learning rates of
0.001 and 0.0005 after about 3000 games played.

4.2 Single
Shooting

Agent Experiment:

To evaluate shooting performance, we compare two
CACLA agents. They have been trained to fly ac-
cording to section We then turn off height-
based rewards for the agents. For one plane, we
enable rewards from bullets hitting the other plane.
We will let the agent train using this reward, to see
if it can learn to consistently hit the other plane
by shooting. We do not give an agent that is hit
by a bullet a negative reward, as there is little a
plane could do to avoid being hit by a bullet. The
amount of bullets that can be shot in succession
is limited. After each shot, the next shot can only
occur 4 frames later. Also, a maximum of 8 bul-
lets can be shot right after each other. Every bullet
shot is added to the counter, but every time the
plane does not decide to shoot, the counter is decre-
mented. If the maximum of 8 is reached, 30 frames
(half a second in real-time) need to pass before the
plane can fire again. This is done to prevent the
planes from firing continuously to increase possible
rewards. This counter is not part of the input.

4.2.1 Network inputs and outputs

We use the same inputs as in the non-shooting
setup, as described in section [£.1.1] We have added
an output to the actor for shooting. It outputs a
continuous value just like the throttle and steering,
that we interpret as the willingness to shoot. If the
value is above 0.5, a bullet will be shot, and if it is
below 0.5, the plane will not shoot.

4.2.2 Parameters

For shooting, we decrease the speed at which the
standard deviation of the noise changes. We use
a multiplier of 0.9999995. This way, there is more
time for the planes to learn. We set the learning rate
to 0.0005. This value is on the low side to avoid neg-
ative forgetting effects from having a learning rate
that is too high. For testing, we vary the discount
factor.
The discount factors we will compare are:

e (0.9
e 0.99
e 0.999

4.2.3 Results

20
|

Average reward per game
-10
|

-30
1

T T T T T T T
0 1000 2000 3000 4000 5000 6000

Games played

Figure 4.2: Different values for discount factor
compared for single agent shooting experiment

Figure shows the performance of an agent
that was trained to fly previously, but now only re-
ceives rewards for bullets hitting an opposing plane,
tested for different values of the discount factor. It
shows that after 6000 games played, with none of
the discount factors the agent was able to improve
its performance. Looking at the data, agents some-
times manage to get some successful bullet hits, as
indicated by the total reward received in a game
being above 0. But the average score is always be-
low zero, caused by the negative reward (-100) the
agents receive from crashing. The performance for
a discount factor of 0.9 decreases a lot after about
3000 episodes, to the point where the agent crashes
much more often than at the beginning of training,
and more than for the other two discount factor
values. The difference in performance between dis-
count factors of 0.99 and 0.999 is very small.

4.3 Multi-Agent Experiment

The game allows for multiple planes to be part of
one team. This makes the game more complicated,
as there are more planes that one plane needs to
avoid hitting. We add a second plane to each team,
for a total of 4 planes in the environment. We will

compare flying performance for three different con-
figurations. Because of the poor results from the
shooting experiments with one plane per team, we
have disabled shooting for this experiment.

4.3.1 Network inputs and outputs

We use the same network inputs as in the single
agent setup, as described in section[4.1.1] Addition-
ally, we have added the team identifier and health
status to the information about the plane being
controlled. This means that there are now 9 inputs
for the plane being controlled, and 7 inputs for ev-
ery other plane, for a total of 94+ 7+ 7+ 7 = 30
inputs. In one of our configurations, two planes are
controlled by the same actor and critic; this config-
uration has 9 + 9 inputs for the two planes that it
controls, and 7+ 7 inputs for the two planes on the
other team, for a total of 32 inputs. The outputs by
the actor are the throttle and steering. But for the
configuration where two planes are controlled by
the same actor and critic, actions for both planes
are output at the same time; this means that there
is a total of 4 outputs from the actor.

4.3.2 Parameters

For the multi-agent setup, we increase the amount
of neurons to 50 for the actor, and 30 for the critic.
We also decrease the speed at which the standard
deviation of the noise changes, to a multiplier of
0.9999999. This way, it takes about 25,000 games
for the standard deviation to drop below 0.1.

We will compare the following architectures for
CACLA:

e Personal CACLA Each plane has its own ac-
tor and own critic, and therefore its own pol-
icy and value function. This data is not shared
between planes of the same team. Planes get a
personal reward, which is used to update their
own actor and critic.

e Shared CACLA Each team has one actor and
one critic. Both planes update the same actor
and the same critic, and they use their personal
reward for the update. This means that the
actor and critic are updated twice for every
frame. Because two planes on the same team
have the same interests, the increased amount

of updates per game update might cause this
configuration to learn quicker.

e Team CACLA Each team has one actor and
one critic. Instead of having inputs and out-
puts for one plane at a time, the actor and
critic in this configuration have inputs and out-
puts for all planes on a team at the same time.
This means that for the actor, the input con-
sists of the full information for the planes on
the team, and basic inputs for all planes on op-
posing teams. The output consists of controls
for each plane on a team. For the critic, the
input is the same as for the actor: full infor-
mation for the planes on the team, and basic
inputs for all planes on opposing teams. It only
outputs a value for the entire team, as there is
no way to credit rewards to individual planes.
This also means that for updating CACLA, the
summed time-step reward for all the planes is
used.

4.3.3 Results

1500
|

—— Shared
- Personal

1000
1

Average reward per game

T T T T T T
10000 15000 20000 25000

Games Played

Figure 4.3: Performance of multi-agent architec-
tures

Figure [£.3] shows the performance of the three
different multi-agent configurations. After about
25,000 games, all three configurations have very
similar performance; none of the three configu-
rations is better than the rest. From observing

the planes in normal speed after they have been
trained, they all show rather good evasive be-
haviours. In fact, the flying behaviour seems very
similar overall between the three configurations;
they have likely found the same strategy for flying.
However, they do not always succeed in avoiding
other planes; especially in difficult starting condi-
tions, where two planes are initialised close to each
other, they are not always able to avoid each other.

5 Discussion

We have shown that CACLA can be applied to a
2D game in which planes need to learn how to fly.
Agents can quickly learn to adjust their actions to
prevent crashing into the ground. They also learn
to fly as high as possible, gaining what is practi-
cally the maximum reward. While avoiding other
planes is not always successful, they learn evasive
behaviours as well.

We have experimented with learning rates of
0.0001, 0.0005, 0.001, and 0.005. The results were
best with 0.001, but when we increased it further
to 0.005, performance in the end is worse. Because
it takes relatively long to teach planes how to fly
in this environment, especially in the multi-agent
setup, we would like to use a learning rate that is
as high as possible, but there is the risk that the
agent will not be able to learn the optimal policy.

We have tested flying with different learning
rates. However, we use the same learning rate for
the actor as we use for the critic. It is possible
that having different learning rates for the actor
and critic could yield even better performances.

When we expand the game with shooting, the
agents do not manage to consistently hit planes
from the opposing team. We have experimented
with different discount factors, but none of them re-
sults in consistently good performances. A discount
factor that is too low actually decreases gained re-
ward over time, which indicates that planes are de-
stroyed more often than they used to. In our case,
that happened with a discount factor of 0.9. Be-
cause the reward of a bullet hit is delayed, it may
be the case that the agent associates possible bullet
hits with flying close to the other plane, increas-
ing the likelihood of crashing into this plane. The
reason why shooting is so difficult, is due to the
complexity of the game and the fact that the re-

ward is delayed. A bullet hitting the other plane is
a relatively rare occurence in the game, as a limited
number of bullets can be shot in quick succession.
This is done to prevent planes from just shooting all
the time in the hope of hitting something. But this
also means that the amount of successful bullet hits
to learn from is limited. Besides that, a bullet hit is
dependent on many different factors. For example,
the position of the opponent is important, but out
of control for the attacking plane. This makes it
hard for the plane to learn a generalisable strategy
for shooting from a limited number of bullet hits.

Shooting is the most challenging part of the
game. Considering the time it takes for planes to
learn how to fly, it is plausible that simply much
more training time is needed to increase the amount
of bullet hits the plane can learn from. Alterna-
tively, we could increase the amount of bullets a
plane can shoot in a limited amount of time, but
this will make it even more difficult to assign credit
to the right actions.

Because the events and states before shooting
are crucial for a bullet hit, there may be a need
for putting more focus on previous states. Perhaps
it would work to save all previous states, and put
more focus on the events leading up to successful
bullet hits, putting the plane in a more favourable
situation for learning.

In a multi-agent setup, we have seen that the con-
figuration of the network does not matter too much.
Having a shared actor and critic, where the actor
and critic are updated by both planes sequentially,
slightly increases learning speed in early games, but
falls behind in the middle of training, to catch up
again in the end. In the case of having one network
with inputs and outputs for two planes at the same
time (the Team configuration), the fact that the
reward of both planes combined is used for updat-
ing CACLA does not seem to hinder performance.
Because there is only one update per team in ev-
ery time step, instead of one update per plane, this
method requires less computational power.

However, the Team configuration has more in-
puts and outputs for the actor and the critic. It is
likely that it needs more hidden neurons, while the
Personal and Shared configurations could do with
fewer. We have kept the amount of hidden neurons
the same for each configuration. We also chose a
relatively large amount of hidden neurons. Because
a larger amount of neurons increases the compu-

tation time needed, experiments could be done to
determine the lowest amount of neurons possible
without performance decrease. Additionally, test-
ing could be done with more hidden layers. This
can improve performance in certain problems (Son-
tag), |1992)). This could determine if having multiple
layers improves performance in our case or allows
for a lower total amount of neurons.

The fact that the Team configuration performs
very well, despite the fact that rewards are com-
bined for all the planes, is interesting. This config-
uration means that when one plane flies exception-
ally well while the other performs badly, the actions
for both planes are reinforced. While this does not
prevent the agents in our game from keeping up
with the other configurations, it is very likely that
this approach will cause much slower learning in
other tasks, or that it will simply not work at all.
It might also be less successful in a configuration
with more than two planes.

We have observed that flying in the multiagent
setup is not completely optimal yet, but the planes
do show evasive behaviour. From observing the
planes, it seems like the strategy they learn is very
similar. It might be that this is a local optimum,
that each of the configurations learns successfully.
It is possible that the relatively low learning rate
simply limits the speed at which either of the con-
figurations can learn. Perhaps the Personal and
Shared configurations can benefit from a higher
learning rate more than the Team configuration
can.

In future research, experiments could be done to
optimise parameter settings. Besides that, different
approaches need to be developed to improve per-
formance in tasks in continuous environments in
which the reward is delayed.

References

Luuk Bom, Ruud Henken, and Marco Wiering. Re-
inforcement learning to train Ms. Pac-Man us-
ing higher-order action-relative inputs. In Adap-
tive Dynamic Programming and Reinforcement
Learning (ADPRL), 2013 IEEE Symposium on,
pages 156-163, 2013.

Y. Gao. A reinforcement learning based strategy

for the double-game prisoner’s dilemma. CEUR
Workshop Proceedings, 918:317-331, 2012.

J. Ivanovic, F. Zambetta, X. Li, and J. Rivera-
Villicana. Reinforcement learning to control a
commander for capture the flag. In 2014 IEEE
Conference on Computational Intelligence and
Games, pages 1-8, August 2014.

Leslie Pack Kaelbling, Michael L. Littman, and An-
drew W. Moore. Reinforcement learning: A sur-
vey. Journal of artificial intelligence research, 4:
237-285, 1996.

Vijay R. Konda and John N. Tsitsiklis. Actor-critic
algorithms. In Advances in neural information
processing systems, pages 1008-1014, 2000.

M. McPartland and M. Gallagher. Reinforcement
Learning in First Person Shooter Games. IEEE
Transactions on Computational Intelligence and
Al in Games, 3(1):43-56, March 2011.

Volodymyr Mnih, Koray Kavukcuoglu, David Sil-
ver, Alex Graves, loannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari
with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

David Muse and Stefan Wermter. Actor-Critic
Learning for Platform-Independent Robot Nav-
igation. Cognitive Computation, 1(3):203-220,
September 2009.

Yutaka Sakai and Tomoki Fukai. The Actor-Critic
Learning is Behind the Matching Law: Matching
Versus Optimal Behaviors. Neural Computation,
20(1):227-251, November 2007.

E. D. Sontag. Feedback stabilization using two-
hidden-layer nets. IEEE Transactions on Neural
Networks, 3(6):981-990, November 1992.

D. Krishna Sundar and K. Ravikumar. An
actor—critic algorithm for multi-agent learning in
queue-based stochastic games. Neurocomputing,
127:258-265, 2014.

Richard S. Sutton and Andrew G. Barto. Reinforce-
ment learning: an introduction. Adaptive com-
putation and machine learning. The MIT press,
Cambridge, MA, 1998.

Matthew E. Taylor, Nicholas Carboni, Anestis
Fachantidis, Ioannis Vlahavas, and Lisa Torrey.
Reinforcement learning agents providing advice

in complex video games. Connection Science, 26
(1):45-63, March 2014.

Michiel Van Der Ree and Marco Wiering. Rein-
forcement learning in the game of othello: learn-
ing against a fixed opponent and learning from
self-play. In Adaptive Dynamic Programming and
Reinforcement Learning (ADPRL), 2013 IEEE
Symposium on, pages 108-115, 2013.

Hado van Hasselt and Marco A. Wiering. Rein-
forcement learning in continuous action spaces.
In Approximate Dynamic Programming and
Reinforcement Learning, 2007. ADPRL 2007.
IEEE International Symposium on, pages 272—
279, 2007.

10

	Introduction
	Game environment
	Reinforcement Learning
	Actor-Critic Methods
	Continuous Actor Critic Learning Automaton
	Action Selection
	Smoothing

	Experiments and Results
	Single Agent Experiment: Flying
	Network inputs and outputs
	Parameters
	Results

	Single Agent Experiment: Shooting
	Network inputs and outputs
	Parameters
	Results

	Multi-Agent Experiment
	Network inputs and outputs
	Parameters
	Results

	Discussion

