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Abstract

This paper explores the quantum mechanics involving PT -symmetric Hamiltonians and an
application of it concerning Painlevé equations. It shows that under an additional condition
these Hamiltonians have real eigenvalues and unitary time-evolution, just like regular Hermitian
Hamiltonians. Using a WKB approximation we compute the energy spectrum of a class of PT -
symmetric Hamiltonians that is of the form H = p2 + a(ix)N . Next to that we investigate
special solutions of the first, second and fourth Painlevé equation using a method from Carl M.
Bender. It involves rewriting these equations to potentially PT -symmetric Hamiltonians and
calculating their energies. From these energies we find the relation that predicts the critical
values corresponding to these special solutions. The method is very accurate and the predicted
critical values of our resulting relation converge very quickly to the exact values.
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Chapter 1

Introduction

In conventional quantum mechanics observables like the Hamiltonian are always Hermitian,
because the hermiticity guarantees real expectation values and a unitary time-evolution. But
in 1998 Carl. M. Bender published together with his former grad student Stefan Boettcher a
paper [1] on Hamiltonians that were not Hermitian, but PT -symmetric. Bender calculated the
periodic orbits of particles under this Hamiltonian and even numerically computed the energy
levels. This spectrum appeared to be real and so Bender continued his investigation of PT -
symmetric Hamiltonians to what there was more to see. Now, 19 years later, PT -symmetric
quantum mechanics has become a field on its own with over two thousand papers published. The
subject has grown from a mathematical curiosity to a powerful theory with many applications.

The question that naturally arises is whether such Hamiltonians can be useful and if so why
do we normaly only restrict ourselves to Hermitian ones? For the physics part of this thesis we
want to see what changes if we swap the condition of Hermiticity of a Hamiltonian with the
condition of PT -symmetry. Does such a system still work and what are the differences we our
Hermitian one. We will review some basics and then investigate these new Hamiltonians.

Now one might also wonder if there is any need for these ’new’ Hamiltonians. Are there
any physical or mathematical applications where such a system would be helpful? For the
mathematics part of this thesis we will examine separatrix solutions of some Painlevé equations
using our knowledge of PT -symmetric Hamiltonians. We will see that our ability to calculate
the energies of such a PT -symmetric system, will aid us in finding these separatrices.
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Chapter 2

PT -Symmetric Quantum Theory

2.1 Symmetries and Hermiticity

In regular quantum mechanics all observables including the Hamiltonian are Hermitian. The
Hermiticity guarantees a number of features that are essential for a useful quantum theory.
First of all it guarantees that the eigenvalues of an observable are real, and so in the case of
a Hamiltonian it yields real energy levels. Secondly, the Hamiltonian also dictates the time
evolution of the states and assures that it is unitary: this implies that the probability of a state
will be conserved over time.

Is Hermiticity however absolutely necessary? No it is not. As it appears, one can construct
Hamiltonians that despite being non-Hermitian will still produce real and positive energy levels
and have a unitary time-evolution. These Hamiltonians share the characteristic of being ’PT -
symmetric’. Some examples will be discussed and more importantly this part of the thesis aims
to see whether a viable quantum theory can be build around PT -symmetric Hamiltonians. As
mentioned before, there are a number of sought-after properties that the new Hamiltonian must
guarantee, but before getting into that, we first look at what is means for a Hamiltonian to be
PT -symmetric?

Before answering that question we will briefly mention some essential definitions and char-
acteristics from quantum mechanics. In a quantum theory states live in a space H that is a
Hilbert space. It consists of all square-integrable functions, that is all ψ(x) for which:∫ b

a

|ψ(x)|2dx <∞. (2.1)

This space is endowed with the positive-definite inner product 〈·|·〉 : H×H → R defined as

〈φ|ψ〉 =

∫ b

a

φ∗ · ψdx, (2.2)

and all operators act as linear transformations within our Hilbert space H. Our states can also
be represented by vectors in a complex vectorspace. In that case the innerproduct of two states
is simply the dot product with the complex conjugate: 〈φ|ψ〉 = φ∗ · ψ. An operator A will
always have a Hermitian adjoint A† that is defined by

〈Aφ,ψ〉 = 〈φ,A†ψ〉 (2.3)

If we have the equality A† = A then we say A is Hermitian.
A Hamiltonian will be symmetric under a transformation X if the operator X commutes

with the Hamiltonian: [H,X] = 0. This can easily be seen if one looks at the corresponding
eigenstates of the Hamiltonian. Let |ψ〉 be an eigenstate of H and let X be a time-independent
operator that transforms our state |ψ〉 like |ψ′〉 = X|ψ〉. Now the Schrödinger equation for the
new state |ψ′〉 can be written as

i~
d

dt
|ψ′〉 = i~

d

dt
X
∣∣ψ〉= XH|ψ〉 = XHX−1|ψ′〉 ≡ H ′|ψ′〉 (2.4)
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So H ′ = XHX−1 is the corresponding Hamiltonian of the new state. For the transformed
system to be equivalent to the old one H ′ must be equal to H and so writing H = XHX−1

implies [H,X] = 0. The Hamiltonians that this thesis considers will therefore all commute with
the PT operator.

This operator is the combination of parity transformation (P) and time-reversal (T ). The
first one mirrors the spatial coordinates (x 7→ −x) and the second one, as the name suggests,
reverses time (t 7→ −t). Both P and T therefore also map the momentum p to −p. Using the
commutation relation [x, p] we observe another property of the time-reversal operator:

T [x, p]T −1 = T xpT −1 − T pxT −1 = x(−p)− (−p)x = [p, x] = −i~. (2.5)

Because [x, p] = i~ our time-reversal operation T must transfrom i→ −i such that T i~T −1 =
−i~. We say that T is an ’antiunitary operator’: a bijective map on our Hilbert space H such
that

〈T ψ, T φ〉 = 〈ψ, φ〉∗, (2.6)

for all ψ, φ ∈ H. An example of a PT -symmetric Hamiltonian is given in [2]:

H1 =

(
reiθ s
s re−iθ

)
, (2.7)

where r, s and θ are real. Here states live in the complex vector space C2 and this Hamiltonian

is not Hermitian but does commute with the PT operator. To see this note that P =

(
0 1
1 0

)
in this space and it can be checked that H1 commutes with PT . An example of a Hermitian
Hamiltonian that is not PT -symmetric is:

H2 =

(
s a+ bi

a− bi t

)
, (2.8)

where r, s, a and b are real and s 6= t. If we would set t equal to s we would have a Hamiltonian
that is both Hermitian and PT -symmetric. So in a nutshell we can draw a Venn diagram like
in figure 2.1. For this thesis to be non-trivial we will look at Hamiltonians that are in section
2 of that figure.

Figure 2.1: Hamiltonians can be Hermitian, PT -symmetric, both or neither one of them. H1

is corresponds with 1 and H2 with 2. A real symmetric Hamiltonian would be an example of
3.

Another interesting kind of PT -symmetric Hamiltonians can be constructed by looking at
what the effect is of the PT operator. Momentum is invariant but the spatial coordinate x is
not. However the complex quantity ix is invariant and so we can construct a Hamiltonian

H = p2 − (ix)N , (2.9)

which is PT -symmetric for all N ∈ N (and as we will see later for N ∈ R).
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Let us briefly review why Hermitian quantum mechanics work so very well. Recall that
our states live in a Hilbert space endowed with a positive-definite inner product as defined in
(2.2) and so the inner product of a function with itself is always greater than zero, unless the
function is zero. A Hermitian operator A has A† = A and (2.3) which implies

〈Aψ|ψ〉 = 〈ψ|Aψ〉. (2.10)

This mathematically nice property brings a few small benefits with itself. Suppose we have the
eigenvalue a corresponding to our observable A for Aψ = aψ. Then note that

〈A〉 = 〈Aψ|ψ〉 = a∗〈ψ|ψ〉, (2.11)

but because A is Hermitian this is equal to

〈A〉 = 〈ψ|Aψ〉 = a〈ψ|ψ〉. (2.12)

Unless ψ itself is zero we conclude a = a∗ which means our Hermitian operator A has real
eigenvalues. Since the Hamiltonian itself is also a Hermitian operator this implies real energy
levels as we would like to have.

In quantum mechanics we often have a time-independent potential V (x) that allows for
separable solutions of the Schrödinger equation that have the form of ψ(x, t) = ψ0(x)e−iHt.
When we want to check the time-evolution of the system for a Hermitian Hamiltonian we see
that the norm evolves like:

d
dt 〈ψ(x, t)|ψ(x, t)〉 = 〈 ddtψ(x, t)|ψ(x, t)〉+ 〈ψ(x, t)| ddtψ(x, t)〉

= 〈iHψ(x, t)|ψ(x, t)〉+ 〈ψ(x, t)| − iHψ(x, t)〉
= i〈Hψ(x, t)|ψ(x, t)〉 − i〈Hψ(x, t)|ψ(x, t)〉
= 0.

(2.13)

So the norm of our states is conserved.
There can be a dispute about what qualifies as a ’viable’ quantum theory, because there

seem to be applications in physics where for instance complex eigenvalues are very common.
For this thesis however we will look for the following two properties

1. Real energy levels

2. Unitary time-evolution

Both of them are guaranteed by Hermiticity as we just saw, but what happens if we now drop
this condition and our Hamiltonian is no longer Hermitian?

2.2 Real energy levels

Now let us make the switch to PT -symmetric Hamiltonians and start with the energy levels.
One very important demand we just stated is that our PT -symmetric Hamiltonian produces
energy levels that are real. The trick we performed earlier does no longer work here, but there
is a different approach that will work. Suppose we have a PT -symmetric Hamiltonian, then we
can easily prove the existence of real energy levels under one additional condition:

The eigenstates of the Hamiltonian H are simultaneously eigenstates of the PT operator

Given this extra condition it can easily be proven that the energy eigenvalues of the PT -
symmetric states are real.

Lemma 1. If a PT -symmetric Hamiltonian H has the same eigenstates as the PT operator,
then the eigenvalues of that Hamiltonian are real.

Proof. Assume H is a PT -symmetric Hamiltonian that shares its eigenstates with the PT
operator. Let ψ be one of these eigenstates, then we have the following eigenvalue equations

Hψ = Eψ and PT ψ = λψ, (2.14)
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Where λ is the eigenvalue of ψ corresponding to our PT operator. Multiplying the second
identity with PT from the left u yields

(PT )2ψ = PT PT ψ = PT λψ = λ∗PT ψ = λ∗λψ. (2.15)

As mentioned before the PT operator is antilinear, which is the reason why this complex
conjugate of λ emerges. Now (PT )2 must equal unity because P2 = T 2 = 1, and so λ∗λ = 1
which leads to the solution λ = eiα, where α can be any real number. If we replace our
eigenstate ψ by a new eigenstate ψ′ = eiα/2ψ we get

PT ψ′ = PT eiα/2ψ = e−iα/2PT ψ = eiα/2 = ψ′ (2.16)

Let us now replace our state ψ with ψ′ and the second equation of (2.15) becomes PT ψ = ψ
(we relabeled our new state back to ψ for notational convenience). If we now multiply the first
equation with PT and use the commutation relation [H,PT ] = 0 the left-hand side becomes

PT Hψ = HPT ψ = Hψ = Eψ, (2.17)

while the right-hand side becomes

PT Eψ = E∗PT ψ = E∗ψ. (2.18)

This means either ψ is zero (trivial) or E∗ = E which implies real energy levels.

Given this lemma the real problem lies in showing that the Hamiltonian and PT operator
share eigenstates. Unfortunately, this condition is not always satisfied, and so we distinguish
two cases:

1 Unbroken or exact PT -symmetry; all eigenstates of H are simultaneously eigenstates of
PT .

2 Broken PT -symmetry; not all eigenstates of H are necessarily also eigenstates of PT .

One might think that PT and H commuting would already imply that all their eigenstate are
joint and that this is a trivial condition. In conventional quantum mechanics we would have
had Hermitian (linear) operators X and H such that H(Xψ) = XHψ = XEψ = E(Xψ) which
would imply if

1. E non-degenerate: E has only one eigenvector so Xψ must be a scalar multiple of ψ.
That means Xψ = λψ.

2. E degenerate: There are multiple eigenvectors corresponding to E spanning a subspace.
In this subspace X is still Hermitian and therefore diagonalizable which enables us to find
eigenvectors of X that span the subspace corresponding with E. These eigenvectors of X
are also eigenvectors of H with energy E.

In both cases we conclude that if X and H commute we have shared eigenstates. But in our
PT -symmetric system this no longer works because the operator PT is anti-linear1. So we are
forced to make a distinction between broken and unbroken symmetry. To give an example that
illustrates this consider the Hamiltonian of (2.9) and its energy levels as seen in figure 2.2.

For N = 2 we have the familiar harmonic oscillator. If N ≥ 2 then there are infinitely
many real energy levels as was calculated by Bender. It is this region where the Hamiltonian
shares all its eigenstates with the PT operator and which we call unbroken PT -symmetry. For
1 < N < 2 this is no longer the case and we have only finitely many real energy eigenvalues
together with infinitely many complex ones as was established in [2], which is broken PT -
symmetry. As N drops below 2 more and more real eigenvalues disappear and become pairs
of complex eigenvalues. When N is almost 1 its groundstate energy starts to diverge and for

1Note that linearity is necessary for this argument, but not sufficient. In case of degenerate states we also
need to make sure we can diagonalize X, which can for instance be done by imposing Hermiticity
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Figure 2.2: The energy levels of (2.9) as funtion of N calculated by Bender in [2]. For N ≥ 2
there are infinitely many real eigenvalues, but for N < 2 there are only finitely many real ones
together with infinitely many complex ones. Source: [2], page 6

N ≤ 1 there are no more real eigenvalues. Note that the figure allows non-integer values of N
to have real energies.

Interestingly enough figure 2.2 also seems to implicate real energy levels for H = p2 − x4
which corresponds with N = 4. One might wonder how this is possible for a potential that is
not bound below. This can be explained by looking at the motion of a particle described by
this Hamiltonian. You would expect the particle to run off to ± infinity and that is to some
extent correct, namely when you start on the real axis. But with a (ix)N potential we are
forced to extend our particles motion to the complex plane. Why do we need to consider the
complex plane? Recall that normally we have a particle trapped in a potential well and that
the turning points of that potential are those points where the energy E and the potential V are
equal. The particle then classically seems to oscillate between those two points. The turning
points of our PT -symmetric potential lie no longer necessarily on the real axis. Instead they
are placed in the complex plane and so a particle obeying our N = 4 Hamiltonian will have a
periodic trajectory, only it will lie in the complex plane as figure 2.3 shows.

Figure 2.3: Trajectory of a particle in the complex plane described by H = p2−x4 with E = 1.
There are two periodic orbits that oscillate between two of the four turning points. Then there
are also closed orbits possible that enclose a pair of turning points. Note that all these orbits
have the same period [2]. Source: [1], page 6

In general it remains difficult to know beforehand if our Hamiltonian shares its eigenstates
with the PT operator and therefore whether we have real energies. Throughout the years many
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physicists however constructed tools to prove these real energies of PT -symmetric Hamiltonians.

For instance in [3] Zafar Ahmed analyzed Hamiltonians of the formH = (p+iβν(x))2

2m +V (x) where
ν(x) is an arbitrary function and was able to state under which conditions this Hamiltonian
has a real spectrum while being PT -symmetric. For our Hamiltonian from (2.9) it was proven
in [4] by P. Dorey, C. Cunning and R.Tateo in 2001 that its energy levels for N ≥ 2 are indeed
real.

2.3 Unitary time-evolution

Lemma 2. A Hamiltonian H that has unbroken PT -symmetry will have unitary time-evolution.
That is if ψ(t) is a state obeying the Schrödinger equation for H, then d

dt 〈ψ(t)|ψ(t)〉 = 0.

Proof. Let ψ(t) =
∑
n cn(t)ψn where ψn are all eigenstates of the (unbroken) PT -symmetric

Hamiltonian H with energy levels En such that Hψn = Enψn. Unbroken PT -symmetry guar-
antees (by lemma 1) that these energy eigenstates En are real. Along that Schrödinger tells us
that

i~
d

dt
ψ = Hψ,

Now we calculate the time evolution scaled with a term i~ (to make the math a bit nicer):

i~
d

dt
〈ψ|ψ〉 = 〈−i~ d

dt
ψ|ψ〉+ 〈ψ|i~ d

dt
ψ〉 (2.19)

Let us work out the first term of the right-hand side:

〈−i~ d
dt
ψ|ψ〉 =

∑
n

∑
m

〈−i~ d
dt

(cnψn)|cmψm〉 =
∑
n

∑
m

〈−cnHψn|cmψm〉 (2.20)

=
∑
n

∑
m

En〈−cnψn|cmψm〉 =
∑
n

−En|cn|2

In the same way we get for the second term
∑
nEn|cn|2 and so together they eliminate each

other:

i~
d

dt
〈ψ|ψ〉 =

∑
n

En|cn|2 −
∑
n

En|cn|2 = 0 (2.21)

This implies d
dt 〈ψ|ψ〉 = 0, so our time-evolution is unitary.

But what now if we have broken symmetry? Computing the time-derivative of a states norm
as we just did goes more or less the same, but the difference is that our energies are no longer
necessarily real. For the same eigenvalue equations with En = an + bni the result looks like
this:

i~
d

dt
〈ψ|ψ〉 =

∑
n

(En − E∗n)|cn|2 =
∑
n

2bni|cn|2. (2.22)

Again this shows that for the unbroken case we get zero because all bn’s are zero, but with a
broken symmetry our norm is no longer conserved.

2.4 WKB approximation

The last section of this chapter is concerned with actually calculating the energy eigenvalues
of a PT-symmetric Hamiltonian. Knowing that the energy eigenvalues of our Hamiltonian are
real and positive, we now must find a way to calculate them. In this section we will find these
energies for our PT-symmetric Hamiltonian from (2.9). The computations are only complicated
by the fact that our Hamiltonian has a complex potential. It is however possible using the well-
known WKB method. This method can be very helpful in computing the energy levels of
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complicated potentials. The technique uses a clever approximation in the classical region of the
potential well, that is the region where E > V . If we assume the potential is flat in this region
we would get solutions like[5]:

ψ(x) = Ae±ikx, (2.23)

where k =
√

2m(E − V )/~. Unfortunately our ’complicated’ potential V (x) is not flat in this
region, but if it changes very slowly compared with the particles wavelength, then we can say
it is practically flat. This approximation works best if n is large such that the amplitude of the
particles wave function is minimally influenced by changes in V (x).

To increase the usefulness of our calculations, the approximation will be applied to a more
general case of our Hamiltonian: H = p2 + a(ix)N , where a is an arbitrary constant. The
approximation leads to the following statement [5]:

(n+
1

2
)π =

∫ x2

x1

√
En + a(ix)Ndx, (2.24)

Where x1 and x2 are the two turning points beaor solutions to the equation E − a(ix)N = 0.
For a real potential V (x) these would be the two edges of the classically allowed region, the
space in which E > V . For this potential we will see that these two points lie in the complex
plane which makes the problem a bit more difficult. Solving the equation for x gives the two
possible points

x1 = (
E

a
)

1
N eiπ(

3
2−

1
N ) and x2 = (

E

a
)

1
N eiπ(

3
2+

1
N ). (2.25)

They lie on a circle with radius (E/a)
1
N in the complex plane, both displaced an equal distance

from the imaginary axis. The integral will be calculated over a contour going in a straight line
from x1 to the 0 and then in a straight line from 0 to x2 to assure that it remains real. First
we split the integral into two parts:

∫ x2

x1

√
En + a(ix)Ndx = −

∫ x1

0

√
En + a(ix)Ndx+

∫ x2

0

√
En + a(ix)Ndx. (2.26)

Applying the substitution x = x1s to the first term produces the following

−
∫ 1

0

√
En + a(ix1s)N (x1ds) = −x1

∫ 1

0

√
En + (−En)sNds = −x1E

1
2
n

∫ 1

0

√
1− sNds.

(2.27)

In the exact same manner the second term of (2.26) can be rewritten to x2E
1
2
n

∫ 1

0

√
1− sNds

and adding these together results in

(x2 − x1)E
1
2
n

∫ 1

0

√
1− sNds. (2.28)

Both points share as we know the same amplitude of (E/a)1/N but have a different phase. Writ-
ing the phase part in sine and cosine form will give −i cos(π/N)+sin(π/N)−(−i) cos(−π/N)−
sin(−π/N) = 2 sin(π/N) and so we end up with

a
1
N E

1
2+

1
N 2 sin(

π

N
)

∫ 1

0

√
1− sNds (2.29)

Now the problem is reduced to an integral over the real axis from 0 to 1. Despite looking so
nice, it is not easily integrated, but luckily

√
1− sN can be written as a special function:∫ 1

0

√
1− sNds =

∫ 1

0
2F1(−1

2
, 1, 1, sN )ds, (2.30)

where 2F1(a, b, c, x) is the ’hypergeometric function’. Using Wolfram Alpha [6] the antiderivative
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of this function is found to be:∫
2F1(−1

2
, 1, 1, sN )ds =

sN · 2F1( 1
2 ,

1
N , 1 + 1

N , 1) + 2s
√

1− sN

N + 2
(2.31)

Filling in the values of s = 0 and s = 1 to solve the integral leads to

N

N + 2
2F1(

1

2
,

1

N
, 1 +

1

N
, 1)− 0 =

N

N + 2
·
√
πΓ(1 + 1

n )

Γ( 1
2 + 1

n )
. (2.32)

Then finally using the identity Γ(x+ 1) = xΓ(x) for the denominator yields

N

N + 2
· N + 2

2N
·
√
πΓ(1 + 1

n )

Γ( 3
2 + 1

n )
=

√
πΓ(1 + 1

n )

2Γ( 3
2 + 1

n )
(2.33)

This result can be is inserted into (2.29) which is the left-hand side of (2.24). Solving it for En
gives the (approximate) energy levels:

En = a
2

N+2

(
(n+ 1/2)

√
πΓ(3/2 + 1/N)

sin(π/N)Γ(1 + 1/N)

) 2N
N+2

. (2.34)

If we encounter a Hamiltonian like this with a constant c in front of the p2 term, we will always
be able to scale it back to 1

cH = p2 + a
c (ix)N and solve it with (2.34). Now to check the validity

of this result let us use it to compute the energies of the harmonic oscilator. For the quantum
harmonic oscillator H = 1

2p
2 + 1

2x
2 we know from [5] that the energy En = n + 1

2 . So for a
Hamiltonian H = p2 + x2, which corresponds to out N = 2 potential we expect an energy of
En = 2n+ 1. Filling in N = 2 yields

En = 1 · (n+ 1/2)
√
πΓ(2)

sin(π/2)Γ(3/2)
= 2n+ 1, (2.35)

which exactly matches our expectation.
Equation 2.9 is therefore a perfect example of how PT symmetric Hamiltonians work. The

condition of PT -symmetry itself does not meet our demands, but if we look at a specific subset
of these Hamiltonians for which we have unbroken symmetry, then we do get real eigenvalues
and the desired unitary time-evolution. It is also possible as we just saw to compute these
energy levels and in the next chapter we will see how this result can be used for a different
problem.
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Chapter 3

Separatrix solutions of Painlevé
equations

3.1 Introduction to Painlevé equations

Differential equations appear everywhere when we try to describe real-world phenomena. From
thermodynamics to quantum physics, differential equations play an important part in many
physical theories. They are in a nutshell simply equations that relate functions to their own
derivatives. Solutions to these differential equations can sometimes easily be calculated using
analytical methods, but some are too complicated to solve exactly. In that case we are left
with two options: Using a computer to solve them numerically or make an attempt at solving
it analytically using some clever approximation. This part of the paper will be concerned with
using such an analytical approximation to find a certain set of solutions. But before defining
the problem, we first must briefly discuss a few properties of differential equations.

Often solutions of differential equations will have so-called ’singularities’. These are points
of the solution that are ill-defined. These singularities can for instance be poles, points where
the solution goes to infinity, but there are also other types of singularities. Solving differential
equations often involves integration constants popping up, and these might have influence on
where these singularities are. If a singularity is indeed influenced by such an integration constant
we say that is a ’movable singularity’. Lazarus Immanuel Fuchs studied first-order differential
equations with non-movable singularities [7] and showed they are all of the form

dy

dt
= A(t) +B(t)y + C(t)y2. (3.1)

After that it was Paul Painlevé that started to look at second order differential equations. He
examined those equations whose only movable singularities are poles, which is now known as
the Painlevé property. He managed to collect 50 canonical second-order differential equations
that satisfied this property and they are of the form

d2y

dt2
= F (

dy

dt
, y, t). (3.2)

Of those 50 equations, 44 could be simplified to known functions and so he ended up with
six non-linear second-order differential equations that we now know as the Painlevé equations.
Their solutions are called the Painlevé transcendents, because these solutions are transcenden-
tial functions; i.e., functions that cannot be written in terms of elementary functions.
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In this second part of the thesis Painlevé equations I, II and IV will be studied and in
particular their solution curves that either go through the origin (y(0) = 0) or whose slope
when crossing the y-axis equals zero (y′(0) = 0). The parameters b and c will be used to denote
y′(0) and y(0) respectively which will describe two distinct initial value problems for each of
the three Painlevé equations:

Painlevé I, II or IV1 with y(0) = 0 and y′(0) = b (3.3)

Painlevé I, II or IV with y(0) = c and y′(0) = 0 (3.4)

When looking at these solutions sudden changes in their behaviour will be observed when the
parameter crosses certain values. For parameters b and c these ’critical values’ are be called
eigenvalues and will be denoted by bn and cn. Their corresponding solutions will be unstable
separatrices; raising or lowering the parameter with an infinitesimal amount causes drastic
changes in the solution curve and draws completely different graphs. Finding these eigenvalues
will be the goal of this chapter and doing so will be possible in two different ways. One option
is using a computer to numerically compute the solutions curves for several values of b (or c),
plot them and try to narrow down the possible eigenvalues. One can however also find these
values using an analytical procedure. Along the way certain approximations will be required,
but the result is very accurate and even more compelling is the fact that our method will involve
PT -symmetric Hamiltonians. This second method was applied by Carl M. Bender in [8] to the
first and second Painlevé equation and here we will try to do the same. Next to that the fourth
Painlevé equation will also be tackled using this approach.

Using some basic calculus and a clever approximation the differential equations will be
reduced to a (possibly PT -symmetric) Hamiltonian of which the energy levels can be related to
y(0) and y′(0). Using (2.34) these energy levels can then be computed and will enable us to find
bn or cn. Bender also numerically established the asymptotic behaviour of these eigenvalues as
n goes to infinity in [8]. This behaviour looks like

bn ∼ B · nx for n→∞, (3.5)

where x is a rational number. For all eigenvalues we strive to calculate these coefficients B, find
the exponent x and check with Bender if they match his numerical result. We will also compare
some numerically calculated eigenvalues with the ones that our analytical method predicts to
get a feeling of how good this approximation really works.

3.2 Painlevé I

3.2.1 Behaviour of the solutions

Let us start by stating the first Painlevé equation and its initial conditions:

y′′(t) = 6y(t)2 + t where y(0) = c and y′(0) = b. (3.6)

First note that there are two so-called ’asymptotic behaviours that we can spot. These are the
curves −

√
−t/6 and +

√
−t/6 as proposed in [9] that are only defined for t ∈ (−∞, 0]. Before

plotting the solutions we can show that former is a stable curve and the latter an unstable
curve, that is they attract and repel the solutions repectivly. To see this we examine points
near these curves. If at some point t < 0 in time we are just slightly above the curve

√
−t/6,

let us say a distance δ, then we assume y =
√
−t/6 + δ and calculate y′′:

y′′ = 6(
√
−t/6 + δ)2 + t = 12δ

√
−t/6 + 6δ2 ≈ 12δ

√
−t/6. (3.7)
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If we assume δ � 1 then we can drop the squared term. This shows us that if we are just
above the curve (δ > 0) the solution is pushed upward and when we are just beneath the curve
(δ < 0) then the solution is pushed downward. Therefore the

√
−t/6 repels solutions and with

an equally simple trick one can show that the other asymptote −
√
−t/6 attracts solutions.

Because the domain of these two curves is restricted to negative values of t we will examine
solutions as t→ −∞.

Figure 3.1: Solutions to Painlevé I with y(0) = 0 and y’(0) = b. On the left the solution with
b = 2.5040 and on the right the solution with b = 3.504. Source: [8]

Figure 3.2: Solutions to Painlevé I with y(0) = 0 and y’(0) = b. On the left the solution with
b = 4.583 and on the right the solution with b = 4.783. Source: [8]

When we look at the (numerically found) solutions that start at the origin with variable
slope y′(0) = b we observe extreme changes when the parameter b passes certain values. Figure
3.1 shows two of those solutions. When b equals 2.5040 the solution shows an endless sequence
of poles. Every time it comes down the unstable curve

√
−t/6 seems to push our solution away.

If we increase the parameter b we eventually cross the (found by Bender) critical value of 3.004
and observe completely different behaviour: After hitting a pole it comes down and starts to
oscillate around the stable curve −

√
−t/6 while slowly decaying to it. Increasing b further will

eventually make the curve jump back to an endless sequence of poles (see the left panel of figure
3.2), which it will continue to do until we once more pass a critical value for b (leading to the
right panel of figure 3.2. Figures 3.1 and 3.2 show these types of behaviour and challenge us to
find these critical values.

Before doing so we also want to examine solutions with y(0) = c and a flat slope y′(0) = 0.
These solutions seem to show very similar behaviour like we saw in figures 3.1 and 3.2. For
these too we are interested in when exactly these solutions so abruptly change.
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3.2.2 Calculating the eigenvalues

We start with rewriting the first Painlevé equation by multiplying both sides with y′(t) and
then integrating the whole thing from 0 to x which looks like∫ x

0

y′(t)y′′(t)dt = 6

∫ x

0

y(t)2y′(t)dt+

∫ x

0

ty′(t)dt. (3.8)

The left-hand side is easily recognized as a known derivative of 1
2y
′(t)2 which saves us from

doing the integral. A similar trick can be done for the first term on the right-hand side yielding

1

2
y′(t)2

∣∣x
0

= 2y(t)3
∣∣x
0

+

∫ x

0

ty′(t)dt. (3.9)

The remaining term that still has an integral sign in front of it will be called I(x) and after
reordering we have

1

2
y′(x)2 − 2y(x)3 =

1

2
y′(0)2 − 2y(0)3 + I(x). (3.10)

This is the place where our approximation comes in. As argued in [8] the I(x) term becomes
very small compared to the left-hand side when we look for higher eigenvalues, or equivalently
as n → ∞. This only seems to apply when y(x) is one of the solutions that corresponds to
an eigenvalue. Now we can treat y(x) as a one-dimensional variable of a Hamiltonian system
where we set m = 1 and ~ = 1 which looks like

H =
1

2
(y′)2 − 2y3 = En, (3.11)

with spectrum En = 1
2y
′(0)2 − 2y(0)3. The initial conditions imply that either y(0) or y′(0)

was fixed, which means that if one calculates the energy levels of this Hamiltonian the other
quantity can easily be computed. To do so the potential is rotated into the complex plane2

(multiplied by −i) and after renaming some variables the following PT -symmetric Hamiltonian
emerges:

H =
1

2
p2 + 2ix3. (3.12)

This is the ’cubic’ (N = 3) PT -symmetric Hamiltonian that is part of the class of Hamiltonians
in (2.9). It is a very fortunate result because the energy levels have been proven to be real (for
N ≥ 2) and can even be calculated using our WKB calculation in (2.34). A small adjustment
must be made, because the momentum term carries a factor 1

2 . This is solved by defining a
new Hamiltonian H ′ = 2H = p2 + 4ix3 which is solved for a = 4 and N = 3 in (2.34)

E′n = 4
2
5

(
(n+ 1/2)

√
πΓ(11/6)

1
2

√
3Γ(4/3)

)6/5

≈ 4.3771 · (n+
1

2
)6/5. (3.13)

Our energy level E′n = 2En = y′(0)2 − 4y(0)3 can now be used to find the eigenvalues bn for a
fixed c = 0 and eigenvalues cn for a fixed b = 0. Rewriting this equality gives for y(0) = 0 and
a variable slope

bn = y′(0) =
√
E′n ∼ 2.092 · n3/5 for n→∞. (3.14)

The ”+ 1
2” term is omitted because in the case of n becoming really large its contribution is

insignificant. For a flat slope (b = 0) but a variable c we get

cn = y(0) = (−1

4
E′n)1/3 ∼ −1.030 · n2/5 for n→∞ (3.15)

2Doing this leaves En unchanged, see [8] and [10]
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3.3 Painlevé II

3.3.1 Behaviour of the solutions

The second Painlevé equation is best known in the form3 of

y′′(t) = 2y(t)3 + ty(t) where y(0) = c and y′(0) = b. (3.16)

For this equation we again plot solutions for t → −∞ and we can already spot a few curves
that describe asymptotic behaviour. We can see that the t-axis is a stable asymptote and the
curves ±

√
−t/2 form unstable asymptotes. This was done in the same way as with Painlevé

I, looking at soltution in a δ-neighbourhood around these curves. Now plotting the solutions
and tweaking the parameter b produces interesting graphs seen in figures 3.3 and 3.4. Again
passing a certain eigenvalue will drastically change the behaviour of the solution. They seem
to switch between covering endless poles to stable oscillations around the t-axis and back again
which also confirms our assertion that the t-axis is a stable asymptote and the curves ±

√
−t/2

are unstable.

Figure 3.3: Solutions to Painlevé II with y(0) = 0 and y’(0) = b. On the left the solution with
b = 1.029 and on the right the solution with b = 2.029. Source: [8]

Figure 3.4: Solutions to Painlevé II with y(0) = 0 and y’(0) = b. On the left the solution with
b = 2.601 and on the right the solution with b = 2.801. Source: [8]

3Wikipedia and other sources also add an arbitrary constant α at the end of the equation

21



3.3.2 Calculating the eigenvalues

Deriving the Hamiltonian that corresponds to the second Painlevé equation goes in a similar
way as we did for the first painlevé equation. Multiply both sides with y′(t) and integrate from
0 to x and we will get

1

2
y′(t)2

∣∣x
0

=
1

2
y(t)4

∣∣x
0

+

∫ x

0

ty(t)y′(t)dt. (3.17)

Evaluating the functions at t = 0 and t = x and after some reordering leads to

1

2
y′(x)2 − 1

2
y(x)4 =

1

2
y′(0)2 − 1

2
y(0)4 + I(x) (3.18)

where I(x) =
∫ x
0
ty(t)y′(t)dt. Here again as stated in [8] the I(x) term vanishes just like with

the derivation for Painlevé I. The left-hand side then is our new PT -symmetric Hamiltonian H
and the right-hand side (without I(x)) is the corresponding energy level. After multiplication
by two and rewriting it in a more familiar notation we have

H = p2 − x4, (3.19)

where En = y′(0)2 − y(0)4. We immediately recognize the PT -symmetric Hamiltonian (2.9)
with N = 4 and that is why we multiplied it by two, so we can use our WKB result (2.34) for
this problem. With parameters N = 4 and a = 1 the energy levels are computed:

En =

(
(n+ 1/2)

√
πΓ(7/4)

1
2

√
2Γ(5/4)

)4/3

≈ 3.4686 · (n+
1

2
)4/3. (3.20)

For fixed c = 0 the eigenvalues bn =
√
En are now easily calculated:

bn ∼ 1.8624 · n2/3 for n→∞. (3.21)

When we fix the slope at y′(0) = 0 we get a negative energy En = −c4n. This problem is resolved
in a similar way as we did for Painlevé I: we rotate the potential over the complex plane to get
the new Hamiltonian

H = p2 + x4. (3.22)

This Hamiltonian no longer belongs to our family of Hamiltonians described in (2.9) but is a
regular Hermitian one. However we can still compute its eigenvalues using (2.34) only with a
slight modification. Somewhere along the derivations that lead to this equation a ”sin(π/N)”
term popped up due to the complex integration. With our Hermitian Hamiltonian we now
no longer need to integrate over the complex plane (but along the real axis) and so this term
disappears in (2.34). The resulting energy now is

En =

(
(n+ 1/2)

√
πΓ(7/4)

Γ(5/4)

)4/3

≈ 2.1851 · (n+
1

2
)4/3, (3.23)

and taking the one-fourth power of this energy delivers the desired relation for cn

cn ∼ 1.2158 · n1/3 for n→∞. (3.24)
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3.4 Painlevé IV

3.4.1 Behaviour of solutions

Now we arrive at the fourth Painlevé equation:

y(t)y′′(t) =
1

2
y′(t)2 + 2t2y(t)2 + 4ty(t)3 +

3

2
y(t)4 where y(0) = c and y′(0) = b. (3.25)

In figure 3.5 and 3.6 we see solutions of this equation for the initial conditions y(0) = 1 and
y′(0) = b. The reason for picking y(0) = 1 instead of 0 as we did previously is because the
math will fail us at some point later if we take y(0) = 0. In [11] Bender supplies us with the
answer for the case y(0) = 1, so we pick the same value in order to later check our result with
his. The solutions show two unstable asymptotes that seem to repel solutions and one stable
line that attracts them. We once more have these behavioural changes for particular values of
b when the solution suddenly succeeds to cross the the upper asymptote. This looks more or
less the same for the case y(0) = c and y′(0) = 0.

Figure 3.5: Solutions of Painlevé IV with y(0) = 1 and y’(0) = b: values of b are unknown
but the left panel shows the first mode of behaviour and the right panel the second mode of
behaviour. Source: [11]

Figure 3.6: Solutions of Painlevé IV with y(0) = 1 and y’(0) = b: values of b are unknown
but the left panel shows the thrid mode of behaviour and the right panel the fourth mode of
behaviour. Source: [11]
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3.4.2 Calculating the eigenvalues

Finding the Hamiltonian of the fourth Painlevé equation is a bit trickier as we will see. The
fourth equation starts on the left-hand side with a y(t)y′′(t) term. So first we simplify the
equation by dividing by y(t) which looks like

y′′(t) =
y′(t)2

2y(t)
+ 2t2y(t) + 4ty(t)2 +

3

2
y(t)3. (3.26)

Clearly our method of multiplying by y′(t) and integrating from 0 to x creates an undesirable
first term on the right-hand side. To circumvent this problem we use a substitution y = u2.
Some simple derivatives and quantities are calculated

y′ = 2uu′ y′′ = 2(u′)2 + 2uu′′

(y′)2 = 4u2(u′)2 (y′)2

2y = 2(u′)2,
(3.27)

and plugging these into (3.26) gives us

2(u′)2 + 2uu′′ = 2(u′)2 + 2tu2 + 4tu4 +
3

2
u6. (3.28)

There are two terms that eliminate each other and after dividing both sides by 2u we are left
with a more useful equation

u′′ = t2u+ 2tu3 +
3

4
u5. (3.29)

Here we finally can follow our regular procedure of multiplication by u’ and then integration
from 0 to x which leads to

1

2
(u′)2

∣∣x
0

=
1

8
u6
∣∣x
0

+ I(x), (3.30)

where I(x) =
∫ x
0
t2uu′dt+

∫ x
0

2tu3u′dt. Once more the I(x) term will vanish for n→∞ because
of similar reasons as before. Evaluating these functions at t = 0 and t = x, multiplying by two
and reordering gives our final Hamiltonian

H = p2 +
1

4
x6, (3.31)

with energy levels En = u′(0)2 + 1
4u(0)6. From our substitution we can derive that u = y

1
2

and that u′ = (y′)2

4y so the energy levels in terms of y(0) and y′(0) are En = y′(0)2

4y(0) + y(0)3

4 .

This shows exactly the reason why we examine solutions passing y(0) = 1 instead of the origin.
That is because for the origin the energy levels En blow up to infinity which would render this
method useless.

Computing the energy levels in (2.34) with parameters N = 6 and a = 1
4 yields

En = (
1

4
)2/8 ·

(
(n+ 1

2 )
√
πΓ(10/6)

1
2Γ(7/6)

)3/2

≈ 4.5302 · (n+
1

2
)3/2. (3.32)

Now if we fix y(0) = 1 and look for eigenvalues bn we will write out energy equation to
bn =

√
4En − 1. As we are interested in the asymptotic behaviour of the eigenvalues bn as

n→∞ we can drop the −1 term under the square root (and the + 1
2 term in (3.32) as before)

and we get

bn ≈
√

4En ∼ 4.2568 · n3/4 for n→∞. (3.33)

What remains are the eigenvalues cn, the initial conditions for the separatrix solutions having
a flat slope when crossing the y-axis. Our equation for the energy levels is rewritten using
y′(0) = 0 to cn = (4En)1/3 which results in

cn ∼ 2.6266 · n1/2 for n→∞. (3.34)
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3.5 Discussion of the results

Our goal was to find the coefficients B and the rational numbers x in (3.5) that predicted the
eigenvalues for large n. Although there are no exact answers to compare them with, Bender did
find them numerically to a very high accuracy for Painlevé I and II in [8] and for Painlevé IV
in [11]. He collected a number of eigenvalues that he had found and then applied Richardson
extrapolation to discover the asymptotic behaviour. This algorithm spat out relations like (3.5)
with the following coefficients:

Eigenvalue Our result Bender Error
Painlevé I bn 2.0924674 2.09214674 ±10−8

cn 1.0304844 -1.0304844 ±10−7

Painlevé II bn 1.8624128 1.8624128 ±2 · 10−7

cn 1.21581166 1.21581165 ±10−8

Painlevé IV bn 4.256843 4.256843 ±10−6

cn 2.626587 2.626587 ±10−6

Table 3.1: All the coefficients that were calculated using our WKB method, only now in more
digits compared to Benders numerical result. Last column is the Error in Benders results.

As is very clear, the WKB method seems to be very accurate. Looking at the results one
can say with certainty that the assumptions that were made are valid for n→∞ as the result
is surprisingly good. They approximation is right for most cases until the last digit of Benders
values. Only for Painleé II eigenvalues cn do we spot a small deviation. The Richardson
extrapolation that Bender applied also gave the exponent x that described the relation between
the eigenvalues and n. If we compare the results of our method with these in [8] and [11] we
find exactly the same exponents.

So the method seems to find the coefficients of our eigenvalue relation very well, but how
accurate is this relation itself? We know that as n→∞ the eigenvalues get arbitrarely close to
the ones our relation predicts, but we also want to know how quickly they converge. Computing
the eigenvalues with equation (3.14) and comparing them with the by Bender numerically found
eigenvalues from [8] we get table 3.2.

Bender Method Relative error
b1 1.852 2.092 0.130
b2 3.004 3.171 0.056
b3 3.905 4.044 0.036
b4 4.683 4.806 0.026
b5 5.383 5.495 0.021
... ... ... ...
b10 8.245 8.328 0.010
b11 8.738 8.819 0.009

Table 3.2: The numerically found critical values of Bender compared with the ones equation
(3.14) predicts and the relative error.

The eigenvalues converge quite well to our asymptote as the table shows. b3 already has a
relative error under 5% and once you pass b10 we are under 1%. Unfortunately Bender does
not supply more eigenvalues of the other Painlevé equations, but if this kind of convergence is
normal we can be very content.
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Chapter 4

Conclusion

In this thesis we reviewed some properties of Hermitian Hamiltonians and attempted to see if
the condition of PT -symmetry lead to the same features. In conclusion we must say that this is
not the case: we require an additional condition to ensure a real spectrum and a conserved norm.
With this condition however we do have these properties and using the WKB approximation it
is possible to compute the spectrum. We also examined special solutions of Painlevé equations I,
II and IV. The method links our Painlevé equations to Hamiltonians of which we then calculate
the energies using ou WKB result. The resulting eigenvalue relations are very precies and give
good predictions.

We have seen that PT -symmetric Hamiltonians under certain cirmcumstances do satisfy the
two conditions we imposed and it challenges us to find more classes of Hamiltonians that might
be useful. As it happens PT -symmetry is just of the many symmetries one can construct. The
proofs we gave for these unbroken symmetries can be extended to other anti-linear operators
A for which A2 = I.

Interestingly enough when adressing the time-evolution Bender has a different approach [2].
He creates a operator C that together with PT forms a new ’CPT’ innerproduct in which we
do have unitary time-evolution. The theory seems to solve the problems non-Hermiticity gives
but is however slighly more complicated (see [12] and [13] for a mathematical background).

The Painlevé equations were a nice example of how these PT -symmetric Hamiltonians can
be applied in a different field. The method works very well and so there must be many more
differential equations that can be analysed using this procedure. Maybe the other three Painlevé
equations can also be examined in a similar way or as Bender suggested in [8] one can learn
more about the Thomas-Fermi equation.
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