
Hierarchical reinforcement learning:

decision-making in real-time strategy games

Bachelor’s Project Thesis

Remi Niel, s2385481, r.f.niel@student.rug.nl,

Jasper Krebbers, s2585529, j.krebbers.1@student.rug.nl

Supervisor: Dr M.A. Wiering

Abstract: Real-Time Strategy (RTS) games can be abstracted to resource allocation, which is
a topic applicable in many fields and industries. Reinforcement learning can be applied to many
different aspects within RTS games and thus the resource allocation topic. In this thesis Q-
Learning and Monte Carlo learning algorithms are tested with individual and shared application
of the reward function against a random and a pre-programmed opponent. A simplified custom
RTS focused on mid-level combat was developed and the reinforcement learning algorithms were
combined with a multi-layer perceptron (MLP) that receives higher-order inputs to increase
speed and performance. The combination of Q-Learning and individual rewards yielded the
highest win-rate against both opponents. Against the random opponent it obtained a win-rate of
28.6% and a tie-rate of 61.5% for all games played resulting in a win-loss ratio of 3 to 1. Against
the pre-programmed opponent it obtained a win-rate of 19.5% and a tie-rate of 75.0% for all
games played resulting in a win-loss ratio of 3.5 to 1.

1 Introduction

In this thesis we will focus on the real-time strat-
egy (RTS) genre, which as the name suggests is
played in real-time where both players make moves
simultaneously. Moves in RTS games can generally
be seen as actions such as move to a certain posi-
tion, attack a specific unit, construct this building
etc. These actions can be performed by units which
are semi-autonomous agents. These agents usually
come in different types with their own attributes
and actions they can perform. The player can con-
trol all agents that are on his/her team via mouse
and keyboard. The game environment is often seen
from above with an angle to show depth and teams
are indicated by color, in Figure 1.1 there is a blue
team attacking a red team base. The AI opponents
in today’s games work mostly via finite state ma-
chines (FSMs) which cannot develop new strategies
and are thus predictable. A higher difficulty is usu-
ally modeled by increasing gather-, attack- and hit-
point modifiers for the AI (Buro et al., 2007). The
FSM behaviour is solely based on state transition
tables and while dynamic scripting can optimize

performance and therefore the challenge (Spronck
et al., 2006), it is however still dependent on a pre-
programmed rule-base. The AI will behave more
dynamically, but in the end it will still be script-
based.

Figure 1.1: Command & Conquer: Generals, a
popular RTS game

Games are a thriving area for reinforcement
learning (RL) which have a long and mutually ben-

1



eficial relationship (Szita, 2012). While the RTS
genre in particular seems to be a hard nut to crack
for RL, there are success stories. Evolution Cham-
ber for example uses an evolutionary algorithm
to find build-orders in the game of Starcraft 2.
Temporal-difference learning, Monte Carlo learn-
ing and evolutionary RL (Wiering and Van Ot-
terlo, 2012) are among the most popular techniques
within the RL approach to games (Szita, 2012). An
important framework on which a lot of RL research
is based is the Markov decision process (MDP),
which is a sequential decision making problem for
fully observed worlds where the Markov property
is assumed (Markov, 1960). The Markov property
assumes that future states depend only on the cur-
rent state and not on the events that occurred be-
fore it. Many RL techniques use MDPs as learning
problems due to their stochastic nature, but they
work under the assumption that the environment
is stationary which is not the case in multi-agent
systems (Littman, 1994).

Hierarchical reinforcement learning (HRL) is a
framework that allows RL to scale up to more com-
plex problems (Barto and Mahadevan, 2003), which
playing an RTS undoubtedly is. In RTS games
the game-play consists of many different game-play
components like resource gathering, unit building,
scouting, planning and combat, which have to be
handled in parallel in order to win (Marthi et al.,
2005). Hierarchical learning even allows these com-
ponents to have their own MDPs or be copies of
the same component to allow for a divide and con-
quer strategy (van Seijen et al., 2017). However now
we face the problem that the MDPs towards the
top of the hierarchy consist of macro actions that
take more than a single time step. HRL therefore
depends on the Semi-Markov decision processes
(SMDP) theory, which allows for actions that last
multiple time steps (Puterman, 1994). In this the-
sis we will focus on the sub-process of mid-level
combat strategy. Neural network implementations
of low-level combat behaviour have already shown
to be possible (Patel, 2009; Buro and Churchill,
2012). In previous research agents in the game of
Counter Strike were given a single task and a neural
network was used to optimize performance accom-
plishing this task.

We constructed a similar approach, but with task
selection. Instead of giving the neural network a
single task for which it has to optimize, our neu-

ral network will need to optimize task selection for
each unit. This simulates giving an order, like de-
fend the base or attack that unit. The implementa-
tion of the order will then be executed via an FSM.
An analogy can be found in the example of Hengst’s
four-room task (Hengst, 2012). Our neural network
will take the place of the parent-task (which rooms
to move through) and low-level combat behaviour
can be seen as the child-task (how to exit a room).
This allows the parent-task to choose from abstract
actions, which are then accomplished by the child-
tasks. Abstract actions reduce the state space and
the number of time steps before rewards are re-
ceived, this is advantageous in RTS games due to
the many options and real-time nature which re-
quires fast decision-making (Hengst, 2012).

For learning to play RTS games we propose to
use HRL with a multi-layer perceptron (MLP). The
combination of RL and MLP has been already suc-
cessfully applied to game-playing agents (Ghory,
2004; Bom et al., 2013). The MLP receives higher-
order inputs, an approach where only a subset of
(processed) inputs is used that has been success-
fully applied to improve speed and efficiency in the
game Ms. Pac-man (Bom et al., 2013), we suspect
this would also apply to RTS games. Two RL meth-
ods, Q-learning and Monte Carlo learning (Wiering
and Van Otterlo, 2012), will be used to find opti-
mal performance against a pre-programmed AI and
a random AI. Since winning in an RTS game is a
team effort we are curious if sharing the rewards
between the whole multi-agent system is beneficial
for performance compared to rewarding units on an
individual basis.

A simple custom RTS was developed in such
a way that every aspect can be controlled in or-
der to reduce unwanted influences or effects. The
game contains two bases, one for each team. A base
spawns one of three types of units until it is de-
stroyed, the goal of these units is to defend their
own base and and destroy the enemy base. The dif-
ferent types of units have a rock, paper, scissor type
of strengths and weaknesses. All decision-making
components are handled by FSMs except for the
component that assigns behaviours to units, which
is the subject of our research.

Contributions There are a number of contribu-
tions to RL in this thesis. First we show the possi-
bility of playing RTS games using higher-order in-
puts. Secondly we determine that the combination

2



of RL and higher-order inputs learns to play the
game surprisingly fast. Finally we show that differ-
ent applications of the reward function impacts risk
taking in neural networks.

This thesis will attempt to answer four research
questions:
(1) Is hierarchical reinforcement learning with neu-
ral networks a viable approach to complex planning
problems (SMDPs) in the form of RTS games?
(2) Which reinforcement learning approach be-
tween Q-Learning and Monte Carlo learning per-
forms best?
(3) Is there any performance difference when using
shared versus individual application of the reward
function?
(4) Can RTS games be played well with the use of
higher-order inputs?

2 Methods

2.1 RTS Game

The game is a simple custom RTS game pro-
grammed in the object-oriented programming lan-
guage Java. Since we focus on the mid-level com-
bat behaviour a lot of RTS game-play features
such as building construction and resource gather-
ing are omitted, while other aspects are controlled
by FSMs and algorithms to reduce unwanted influ-
ences and effects. An example is the A* search al-
gorithm which is used for path finding, while unit
building is done by an FSM that builds the unit
that counters the most enemies for which there is
not a counter already present. A visual representa-
tion of the game can be found in Figure 2.1.

The game itself consists of a n×n tiles, black tiles
are walls and can’t be moved through while white
tiles are open space. Since units can only move in 4
directions we use the Manhattan distance to deter-
mine the distance between 2 points, although units
do not steps as large as a tile, our path finding al-
gorithms find a path from tile to tile to make them
faster. When a unit is within a tile of the target it
simply moves directly towards it.

The goal of the game is to destroy the opponent’s
base and defend your own base (indicated by large
blue and red squares in Figure 2.1), which is similar
to most RTS games. The game is finished when
the hit-points of a base reach zero, which can be

Figure 2.1: Visual representation of the custom
RTS game

achieved by units attacking it. Depending on the
unit type a base has to be attacked at least 4 times
before it is destroyed. The base is also the spawning
point for new units of a team, the spawning time
depends on the cool-down time of the previously
produced unit.

There are three different types of units: archer,
cavalry and spearman. Each unit has different
statistics (stats) for attack, attack cool-down, hit-
point, range, speed and spawning time. Spearmen
are the default units with average stats, archers
have a ranged attack but move and attack speed is
lowered, cavalry units are fast and have high attack
power but take longer to build. All units also have
a multiplier that doubles their damage against one
specific type, the archer has a multiplier against the
spearman, the cavalry has a multiplier against the
archer and the spearman has a multiplier against
the cavalry. This results in a rock, paper, scissors
approach (countering mechanism) which is com-
monly applied in the strategy genre.

The most basic action a unit can perform is mov-
ing. Every frame it can move up, down, left, right
or stand still. If it is within attacking range of an
enemy building or enemy unit after moving, it will
deal damage to all the enemies that are in range.
The damage dealt is determined by the unit’s at-
tack power and the unit-type multiplier. When a
unit is damaged its movement speed is halved for

3



25 frames (0.5s in real-time), which prevents units
rushing the enemy base while enemy units cannot
stop them in time. To make sure units do not die
immediately they also have an attack cooldown af-
ter each attack, which make it so they cannot attack
for a few turns after attacking.

2.2 Behaviours

Players do not directly control their units in our
game, instead they give the units orders in the
form of behaviours (goals). Four such behaviours
are available: evasive invade, defensive invade, hunt
and defend base. Units that are currently using a
specific behaviour will follow rules that correspond
to that behaviour to determine their moves. All be-
haviours make use of an A* algorithm to either find
the optimal paths to other assets/locations, or to
find the distance between locations. There is also an
”idle” behaviour which means the unit does noth-
ing. This behaviour is used when the unit is await-
ing an order, unless a player is unable to give orders
fast enough the unit should receive the next order
the following frame.

2.2.1 Defend Base

When starting this behaviour the unit will select
a random location within 3 tiles of its base as its
guard location. This makes sure not all guards stay
at the same spot. If an enemy comes close to the
base (within 3 tiles) it will move towards and attack
that enemy. If no enemies have come close to the
base for 100 frames (2s in real time) the unit will
stop this behaviour and go to the idle state awaiting
a new order. The repeating part of the behaviour
can be found in Algorithm 2.1.

2.2.2 Evasive Invade

The unit will take a path to the enemy base that is
at most a map length longer than the shortest path.
It then chooses the path with the least enemy re-
sistance of all the possible paths. Note that while
moving along the path it will also attack everything
in range including the enemy base. The idea is to
find a weakness in the enemy defence and to exploit
it. If the unit is damaged while in this behaviour
the unit returns to ’idle’ until a new order is re-
ceived. This is because if the unit was damaged it

Algorithm 2.1 Defend Base

if not within 3 tiles of the base then
move back to its random guard location

else
minDistance = 3;
target = NULL
for enemy in list of enemy units do

distance=distance(base,enemy)
if distance < minDistance then

minDistance = distance
target = enemy

end if
end for
if target != NULL then

Move towards and attack target
else

move back to its random guard location
if frame count > 100 then

state = ”idle”
end if

end if
end if

clearly failed to attack the enemy base while evad-
ing enemy unit. This behaviour can be seen in the
pseudo-code in algorithm 2.2.

Algorithm 2.2 Evasive Invade

if Damaged then
state=”idle”
return

end if
lowest resistance= ∞
for path in find path to enemy base do

if resistance < lowest resistance then
lowest resistance = path resistance
best path = path

end if
end for
walk best path

2.2.3 Defensive Invade

The unit will take a path to the enemy base that is
at a the map length longer than the shortest path.
It then chooses the path with the most enemy resis-
tance of all the possible paths, to perform a counter

4



attack on the strongest enemy front. Note that af-
ter every step the unit attempts to attack every-
thing around it. The idea here is to either destroy
invading enemy units or at least slow them down,
while still putting pressure on the enemy base de-
fences. The behaviour does not default to the ”idle”
state since the termination condition is either the
destruction of the enemy base or the death of the
unit. The pseudo-code is provided in algorithm 2.3
and is similar to the evasive invade behaviour.

Algorithm 2.3 Defensive Invade

highest resistance=−∞
for path in find path to enemy base do

if resistance > highest resistance then
highest resistance = path resistance
best path = path

end if
end for
walk best path

2.2.4 Hunt

The unit will move towards and attack the closest
enemy asset (enemy unit or base) it can find, it will
pursue the enemy asset until either it or the enemy
asset is dead. If the enemy asset dies it will default
back to an ”idle” state, which is represented in al-
gorithm 2.4 by the target having 0 or less health. It
will be in this state until the player assigns a new
order to the unit.

2.3 Reinforcement Learning

We use reinforcement learning to teach the neu-
ral network how to play our RTS. A reinforce-
ment learning system consists of 5 parts, a model,
an agent, actions, a reward function and a value
function (Sutton and Barto, 1998). In our case
the model is the game itself, our neural network
is the agent, the policy determines how states are
mapped to actions using the value function, the re-
ward function defines rewards for specific states and
finally the value function reflects the expected sum
of future rewards for state-actions pairs. This value
takes in account both short term rewards but also
future rewards. The goal of the agent is to reach
states with high values.

Algorithm 2.4 Hunt

if target=NULL then
minDistance=∞
for enemy in list of enemy assets do

if enemy distance < distance then
minDistance = enemy distance
target = enemy

end if
end for

else
if target health > 0 then

find path to target
walk path

else
target = NULL
state = ”idle”

end if
end if

It should be noted that in reinforcement learn-
ing systems it is assumed that future rewards can
be predicted using only the information in the cur-
rent state: past actions / history are not needed to
make decisions. This is called the Markov property
(Markov, 1960).

Our reward function is fixed and based on the
zero-sum principle, points are distributed according
to what would be prime objectives in RTS games:
killing enemy units and destroying the enemy base
which results in winning the game. The rewards
are received the moment a unit destroys the en-
emy base or kills an enemy unit. Dying or losing
the game is punished, dying isn’t punished harsher
than the reward for killing because units are ex-
pandable given that they at least take out 1 enemy
unit before dying. The reward function for our RTS
game can be found in Table 2.1. If multiple rewards
are given while a specific behaviour is active they
are simply summed and the total reward is taken
as the reward for taking the chosen behaviour.

We have two different ways of distributing the re-
wards, individually and shared. For individual re-
wards the units get only the reward they caused
themselves and so the only shared reward is the
”Lose” reward. It is assumed that all units are re-
sponsible for losing. With shared rewards the mo-
ment a unit achieves a rewarding event all units
from the same team get the reward. The exception

5



here is that the step-reward is still only applied
once per time-step to prevent extreme time-based
punishment.

Table 2.1: List of events and their corresponding
rewards

Event Reward Description
Enemy killed 100 Unit has killed enemy unit
Died -100 Unit died
Win 1000 Unit has destroyed the enemy base
Lose -1000 The unit’s base has been destroyed
Step -1 Time step

We use the ε-greedy exploration strategy, this
means that we choose the action with the high-
est state-action value all but ε of the time where
0 ≤ ε ≤ 1. In the cases it does not act greedily it
will select a random action. We start with an ε of
0.2 and lower it over time to 0.02. We do this be-
cause intuitively the system knows very little in the
beginning so it should explore, while over time the
system should have more knowledge and therefore
act more greedily.

2.4 Learning Methods

There are various learning algorithms that can be
used to learn the value-function. We implemented
both Q-learning and Monte Carlo methods (Sutton
and Barto, 1998) and compared them to each other.

From here on a state at time t is referred to as
st and an action at time t as at. The total reward
received after action at and before st+1 is noted as
rt. The time that rt spans can be arbitrarily long.

Monte Carlo methods implement a complete
policy evaluation, this means that for every state
we sum the rewards from that point onward, with
a discount factor for future rewards, and use the
total sum of discounted rewards to update the
expected reward of that state-action pair. The
general Monte-Carlo learning rule is:

Q(st, at) = Q(st, at) + α · (
∑∞

i=0(λi · rt+i)−Q(st, at))

Where α is the learning rate and λ the discount
factor. The learning rate determines how strongly
the value function is altered, while the discount
factor determines how strongly future rewards are
weakened compared to immediate rewards.

As opposed to Monte-Carlo learning, Q-learning
uses step by step evaluation. This means it uses

the reward it gets after an action (can take
arbitrary amount of time) and adds the current
maximal expected future reward to determine how
to update the action-value function. To get the
expected future rewards the current value-function
is used to evaluate the possible state-actions pairs.
The general Q-learning rule is:

Q(st, at) = Q(st, at) + α · (rt + λ ·max
a
Q(st+1, a)−Qt(st, at))

As before α is the learning rate and λ the
discount factor.

The neural network itself is updated using an al-
tered back-propagation algorithm where the target
value is given by one of our learning algorithms.
The back-propagation algorithm takes a target for
a specific input-action pair and then updates the
network such that given the same input the output
is closer to the given target. When using reinforce-
ment learning the target is given by a combination
of the reward(s), discount factor and in case of Q-
learning the value of the best next state-action pair.
This gives us 3 different formulas to determine the
target-value to train the feedforward neural net-
work. The first function is used when this is the
last behaviour of the unit, both learning methods
share this formula.

T (st, at) = rt

In other states Monte-Carlo learning uses the fol-
lowing formula to determine the target-value:

T (st, at) =

∞∑
i=0

(λi · rt+i)

While for Q-learning the following formula is
used to determine the target-value:

T (st, at) = rt + λ ·max
a

Q(st+1, a)

2.5 State Representation

Our neural network does not directly perceive the
game, and receives as input numeric variables that
represent the state of the model. These variables
have to be chosen carefully because they should
contain enough information to make optimal deci-
sions. Including more information generally needs

6



Table 2.2: Inputs used to represent a state

Unit specific inputs
Amount of hit-points left
Boolean (0 or 1) value ”is spearman”
Boolean (0 or 1) value ”is archer”
Boolean (0 or 1) value ”is cavelry”
Minimal travel distance to enemy base
Minimal travel distance to own base
Resistance around the unit

Game specific inputs
Amount of defenders
Amount of attackers
Amount of hunters
Amount of enemy spearmen
Amount of enemy archers
Amount of enemy cavelry
Minimal travel distance between base and enemy assets

a larger network to make use of the information,
which makes the method slower and takes longer
to train. In our case the network gets 14 inputs, see
Table 2.2. Half of the inputs are about the unit for
which the behaviour has to be decided while the
other half contains information about the current
state of the game.

Unit specific inputs contain first of all basic infor-
mation: the amount of hit-points the unit has left
and which type it is (in the form of 3 boolean val-
ues). It also contains 2 inputs which give distance
values namely the minimal travel distances to the
enemy base and its own base. The final unit specific
information contained in the inputs is the ’enemy
resistance’ around the unit, this counts all enemy
units in a 5 × 5 square around the unit where the
unit type it is strong against is counted as a half
unit. Then the amount of friendly units in the same
square is subtracted from this number. The result
gives an indication how dangerous the current lo-
cation is for the unit.

Game-wide inputs provide information about the
owner of the units: the amount of defenders, attack-
ers and hunters the owner already has. Note that
for attackers the aggressive and evading invaders
are summed. This information could be used to
prevent creating too many defenders. The inputs
about the enemy contain the composition of the
enemy army, so the amount of archers, cavalry and
spearmen. This could be used to prevent for ex-
ample hunting behaviour if the enemy has a lot of
archers while the unit in question is a spearman.

Given that a spearman cannot perform ranged at-
tack and is not very fast it would be taken out
before achieving anything. The last input gives the
distance between the owner’s base and the enemy
unit closest to it.

3 Experiments and Results

3.1 Testing Setup

To test our methods all configurations (shared
vs individual rewards and Q-learning vs Monte
Carlo methods) have been tested against two pre-
programmed opponents, a random AI which sim-
ply chooses a random behaviour whenever it needs
to make a decision and a classic AI which we
programmed ourselves to follow a set of rules we
thought to be logical. We also tested these two
against each other and found that they never tied
(all games ended within 4500 frames) and the clas-
sic AI wins about 46.5% of the games. Making a
deterministic AI that plays well against the ran-
dom AI as well as other opponents is quite difficult
since the random AI is hard to predict, and coun-
tering the random AI specifically could result in the
AI equivalent of over fitting where it wins from the
random AI but loses from other opponents. Besides
the predictability issue the limited amount of op-
tions in commands makes it hard to issue the right
order for every specific situation.

Each configuration has been ran for 100 trials
where each trial is 26 epochs (games) long. Each
initial neural network was stored on disk and after
each game the network was again stored on disk. All
of those stored networks were then tested against
the same AI it was trained against for 40 games,
during these 40 games training and exploration is
disabled to determine the network’s performance.
We then stored the win, lose and tie percentages.
A tie is a game that is not finished after 4500 frames
(90 seconds real-time).

The networks consist of 14 inputs and 4 outputs.
After several parameter-sweeps of all configurations
we found that optimal performance was achieved
with the following parameter settings. We used 2
hidden layers with layer sizes of 100 and 50 and
a learning-rate which started at 0.005 and that is
multiplied with 0.7 after each game degrading to
a minimum of 10−6. The exploration rate also de-

7



grades from a start exploration rate of 20% to a
final exploration rate of 2%. The discount factor is
0.9. Since most units have a relatively small amount
of behaviours before dying we discount future re-
wards relatively harshly. Finally we added momen-
tum to the neural network, this means that the pre-
vious change of the network is used to adjust how
the network should change now. In our case 40% of
the previous change is added to the current change
of a weight in the network. This reduces the fluctu-
ations in weight changes when around an optimal
value and it also speeds up training the network if
weights have to be updated in the same direction
repeatedly.

3.2 Results

The results that were gathered are plotted in Fig-
ures 3.1 - 3.4. Figure 3.1 and Figure 3.2 contain
the mean ratio between wins and losses after X
amount of epochs (games) for different combina-
tions of learning algorithms and reward applica-
tions. Figure 3.1 shows the ratios of every configu-
ration playing against the random AI, while Figure
3.2 shows the ratios for every configuration play-
ing against the classic (pre-programmed) AI. The
win-loss ratio shows how well the neural network
performs in comparison to the opponent, a value
of 1 represents equal performance. A value higher
than 1 such as the Q-learning individual rewards
result in Figure 3.1 represents better performance
than the opponent, while a value lower than 1 rep-
resents worse performance than the opponent.

The results shown in Figure 3.3 and Figure 3.4
contain the weighted sum of the mean win- and
tie-rates for all different combinations of learning
algorithms and reward applications. The win-rate
has a weight of 1, loss-rate a weight of 0 and the
tie-rate has a weight of 0.5. The lines indicate the
mean weighted sum while the gray area indicates
the standard deviation.

In all figures it can be observed that all lines
increase over time, this indicates that all config-
urations at least improve their performance dur-
ing training. In the figures you can clearly see that
the combination of Q-learning with individual re-
wards outperforms all other configurations signif-
icantly. After training it achieves a final win:loss
ratio which is approximately 7:2 against the clas-
sic AI and 3:1 against the random AI, roughly 3

times higher than the second best configuration.
The weighted sum of its win- and tie-rates are also
significantly higher than all other combinations. It
is noticeable that Q-learning outperforms Monte-
Carlo learning in both performance measures given
that the other factors are equal and individual re-
wards outperforms shared rewards given the other
factors are equal.

Figure 3.1: Graph that shows the ratio between
wins and losses for all configurations against the
random AI

Figure 3.2: Graph that shows the ratio between
wins and losses for all configurations against the
classic AI

All the results measured show considerable tie-
rates, against the classic AI the tie-rates are mostly
in the region of 65-75% and against the random
AI they are mostly between 45-65% as shown in
Table 3.1. The exceptions for both opponents are

8



Table 3.1: Mean performance after 26 epochs (games)

Opponent Method Reward Application Win-rate Tie-rate Loss-rate Win:loss
Classic Q-learning Individual 19.5% 75.0% 5.5% 7:2
Classic Q-learning Shared 13.2% 72.3% 14.4% 9:10
Classic Monte-Carlo methods Individual 18.0% 67.0% 15.0% 6:5
Classic Monte-Carlo methods Shared 21.9% 48.0% 30.0% 7:10
Random Q-learning Individual 28.6% 61.5% 10.0% 3:1
Random Q-learning Shared 23.5% 57.8% 18.8% 5:4
Random Monte-Carlo methods Individual 28.8% 45.1% 26.2% 11:10
Random Monte-Carlo methods Shared 32.0% 26.2% 41.9% 3:4

Figure 3.3: Graph that shows the summed ratios
of wins and ties for all configurations against the
random AI

the results of Monte Carlo methods using a shared
reward function, there the tie-rate converges to
50% against the classic AI while it converges to
25% against the Random AI. This might seem
favourable, but the decrease of the tie-rate has an
almost one to one inverse relation with the loss-rate
and is thus an overall worse result.

3.3 Discussion

The results show that individual rewards out per-
form shared rewards, we suspect the reason for this
is that shared rewards incentivizes taking less risks.
The unit that takes the risk to hunt enemy units
or attack the enemy base gets the same reward as
a unit that defends the base while it is not under
attack. So the system then learns that defending
the base from nothing in this case was as good as

Figure 3.4: Graph that shows the summed ratios
of wins and ties for all configurations against the
classic AI

attacking the enemy. While in the case of individ-
ual rewards only using the behaviour at the right
time is rewarded, such as killing an enemy while
defending or destroying the base while attacking.

We also encountered relatively high tie-rates,
there are several possible causes for this relatively
high tie-rate in the measured results. A round is
deemed a tie when a time-limit of 90 seconds is
reached, this feature is implemented to reduce stag-
nating behaviour and allow for faster data collec-
tion. Increasing the time limit should lower the
amount of ties. The game’s simple nature also rep-
resents the so called ”early-game” in most RTS
games, this stage does not usually yield a winner
unless major mistakes are made or huge risks are
taken.

9



4 Conclusions

With the obtained results there is clear data which
shows that Q-learning performs better than Monte
Carlo methods in our RTS game, thereby answering
our second research question. The results also show
that individual rewards perform better than shared
rewards, this answers our third research question.
The performance of Q-learning with individual re-
wards as shown by the win-loss ratio of 3.5:1 against
the pre-programmed AI and 3:1 against the random
AI supports our theory that hierarchical reinforce-
ment learning with higher-order inputs is viable ap-
proach for learning to optimize behaviour selection
in our RTS game, thereby answering both our first
and fourth research question.

4.1 Future Work

Even though our assumption that it is possible
to play RTS games with higher-order inputs is
confirmed, the performance difference in compar-
ison with using much more input information is
not known. This might change performance signifi-
cantly, but it most likely will increase computation
time significantly as well. Without research this will
be impossible to tell with any certainty however.

There are several facets which deserve a closer
look following our experiences during this research.
Especially the use of different modules and the mul-
tiplicative effects they can have. The unit builder
is a great example, we found that having a more
intelligent unit builder significantly improves per-
formance. Even though the unit builder in this case
was handled by an FSM it implies that adding a
module to the AI that can learn which units to
build would likely increase the performance as a
whole significantly. The result of a neural network
using a smart unit builder (FSM) against our clas-
sic AI with a random unit builder can be observed
in Figure 4.1. One can clearly see that the win-rate
approaches 90%. We suspect that the combination
of the hunt behaviour with the right units has a
significantly positive impact on performance.

More performance gain could possibly be ob-
tained by training (more) behaviours in a simi-
lar fashion to Patel’s bot training (Patel, 2009). If
this is done in a bottom-up style where low-level
behaviours are trained first then higher level be-
haviours have access to optimized sub-behaviours.

Figure 4.1: Graph of the performance for Q-
learning with individual rewards where it has
an improved unit building algorithm compared
to the opponent’s random choice

This will result in optimized behaviour in multi-
ple levels of the hierarchical reinforcement learn-
ing structure. Other factors that may improve per-
formance are learning techniques and structures
such as HAMQ, MAXQ and HEXQ (Wiering and
Van Otterlo, 2012) that promote integrated learn-
ing through multiple levels of the hierarchical sys-
tem (Hengst, 2012). Especially since the network is
trained for units individually, these learning tech-
niques in combination with unit interaction op-
tions might be able to allow for squad formations
and more coordinated behaviour between individ-
ual units on the same squad.

To increase the external validity of research like
this, we strongly recommend the application of the
tested techniques on different (or fully developed)
games. This will most likely require the SMDPs
to be extended to a new form op MDP similar to
partially observable MDPs, since most RTS games
use mechanics like the ”fog of war” which hide parts
of the map and this makes the environment only
partially observable for each player.

References

A.G. Barto and S. Mahadevan. Recent advances
in hierarchical reinforcement learning. Discrete
Event Dynamic Systems, 13:341–379, 2003.

Luuk Bom, Ruud Henken, and Marco Wiering. Re-

10



inforcement learning to train Ms. Pac-Man us-
ing higher-order action-relative inputs. In Adap-
tive Dynamic Programming and Reinforcement
Learning (ADPRL), 2013 IEEE Symposium on,
pages 156–163, 2013.

Michael Buro and David Churchill. Real-time strat-
egy game competitions. AI Magazine, 33(3):106,
2012.

Michael Buro, Marc Lanctot, and Sterling Orsten.
The second annual real-time strategy game AI
competition. Proceedings of gameon NA, 2007.

I. Ghory. Reinforcment learning in board games.
Department of Computer Science, University of
Bristol, Tech. Rep, 2004.

Bernhard Hengst. Hierarchical approaches. In Re-
inforcement learning State-of-the-Art, pages 293–
323. Springer, 2012.

Michael L. Littman. Markov games as a framework
for multi-agent reinforcement learning. In Pro-
ceedings of the eleventh international conference
on machine learning, volume 157, pages 157–163,
1994.

Andrei Andreyevich Markov. The theory of algo-
rithms. Am. Math. Soc. Transl., 15:1–14, 1960.

Bhaskara Marthi, Stuart J Russell, David Latham,
and Carlos Guestrin. Concurrent hierarchical re-
inforcement learning. In IJCAI, pages 779–785,
2005.

P. Patel. Improving computer game bots behav-
ior using Q-learning. Master’s thesis, Southern
Illinois University Carbondale, San Diego, 2009.

Martin L. Puterman. Markov decision processes.
1994. John Wiley & Sons, New Jersey, 1994.

Pieter Spronck, Marc Ponsen, Ida Sprinkhuizen-
Kuyper, and Eric Postma. Adaptive game AI
with dynamic scripting. Machine Learning, 63
(3):217–248, 2006.

Richard S Sutton and Andrew G. Barto. Reinforce-
ment learning: An introduction, volume 1. MIT
press Cambridge, 1998.

István Szita. Reinforcement learning in games. In
Reinforcement Learning State-of-the-Art, pages
539–577. Springer, 2012.

Harm van Seijen, Mehdi Fatemi, Joshua Romoff,
Romain Laroche, Tavian Barnes, and Jeffrey
Tsang. Hybrid reward architecture for reinforce-
ment learning. arXiv preprint arXiv:1706.04208,
2017.

Marco Wiering and Martijn Van Otterlo. Rein-
forcement Learning State-of-the-Art, volume 12.
Springer, 2012.

11



A Appendix

A.1 Division of work

A.1.1 The game

Remi:

• Interface
• Game controller
• Graphical representation
• Neural network & learning methods
• Pathfinding & movement

Jasper:

• Unit statistics
• Attacking & collision
• Extension of reward function for shared rewards
• Classic AI opponent

Shared:

• Game design

A.1.2 Report

Remi:

• Results collection
• Results plotting
• Writing sections 3.2-3.5
• Reward table

Jasper:

• Writing sections 1, 2, 3.1, 5
• Providing pseudo-code in section 3.2

Shared:

• Writing section 4
• Results table

Parts that were written by one person were corrected and partly rewritten by the other.

12


