
Bachelor Thesis
Applied Mathematics

SKEW PARTITIONING FOR THE
HYBRID MULTILEVEL SOLVER

Mark van der Klok
s2324903

University of Groningen
July 13, 2017

First assessor: Dr. ir. F.W. Wubs
Second assessor: Prof. dr. M.K. Camlibel
Daily supervisor: Ir. S. Baars

Abstract

This bachelor thesis constitutes a research of skew partitioning in three dimensions for
the hybrid multilevel solver (HYMLS), a parallel solver developed at the University of
Groningen to solve incompressible (Navier-) Stokes problems. The separators in stan-
dard Cartesian partitioning isolate pressure nodes which possibly affects the conver-
gence properties of HYMLS, which is why skew partitioning is considered as an alterna-
tive. After a brief overview of the HYMLS method, the currently employed partitioning
mechanisms – 2D Cartesian, 3D Cartesian and 2D skew partitioning – are studied us-
ing a three-step approach that consists of (1) building a template, (2) finding the groups
for a general domain and (3) distributing the results over the grid. This lead to insights
on how to generalize the 2D situation to the 3D case and how to perform the transi-
tion from Cartesian to skew partitioning. Using these insights, domain shape candidates
were identified for 3D skew partitioning. A prism shape was finally shown to yield a
consistent partitioning without the presence of isolated pressure nodes.

Contents

1 Introduction 1
1.1 The solver . 1
1.2 Partitioning and Schur complements . 2
1.3 Geometric partitioning: standard versus skew 3
1.4 The goal of this project . 5
1.5 Overview of this thesis . 6

2 About HYMLS 7

3 Cartesian partitioning 11
3.1 The approach . 11
3.2 Cartesian partitioning in 2D . 12
3.3 Cartesian partitioning in 3D . 15

4 Skew partitioning 19
4.1 Skew partitioning in 2D . 19
4.2 Skew partitioning in 3D . 22

4.2.1 Partitioning constraints . 22
4.2.2 Identifying possible domain shapes 23
4.2.3 First design: octahedrons / tetrahedrons 24
4.2.4 Final design . 26

5 Discussion 33

6 Conclusion 34

Bibliography 35

A MATLAB code 36

i

1 Introduction

1.1 The solver

The Hybrid Multilevel Solver (HYMLS) is developed at the University of Groningen to
solve the incompressible Navier-Stokes (NS) equations on parallel computers [1–4]. The
method shows a grid-independent convergence rate and does not break down at high
Reynolds numbers. The incompressible1 NS equations describe the relations between
velocity u = (u, v,w) and pressure p of a fluid with density ρ and viscosity µ and subject
to external forces g. They can be stated as

∂u

∂t
+u · ∇u = −

1
ρ
∇p+

µ

ρ
∇2u+g, (1.1)

∇ ·u = 0, (1.2)

where Equation (1.1) describes conservation of momentum and Equation (1.2) describes
mass conservation under the incompressibility condition. HYMLS uses a combination
of direct and iterative techniques to solve the NS equations numerically. The problem
is usually discretized on an Arakawa C-grid, where for each grid cell the velocities are
defined at the center of cell faces and the pressure at the cell center [5] (see Figure 1.1).
This discretization (along with linearization for the nonlinear terms, by e.g. Newton’s
method) leads to systems of the form[

A B

BT O

] [
u

p

]
=

[
f1
f2

]
, (1.3)

where A is positive definite and B is a gradient type matrix [6], i.e. it has at most two
nonzero entries per row and their sum is zero. The matrix occurring on the left-hand
side in Equation (1.3) is called an F -matrix [7]. In addition to the (Navier-) Stokes prob-
lems, HYMLS can also be used to solve strongly coupled fluid-transport equations [8],
Poisson problems, or other problems in which F -matrices occur, e.g. electrical network
simulations. In this thesis, the focus lies on the steady (Navier-) Stokes problems.

1Throughout this text, only the incompressible Navier-Stokes equations are considered. Therefore, from
here on the adjective incompressible will not explicitly be written.

1

u u

v

v

p u

uv

v

w

w

p

Figure 1.1. Schematics of the cells in the staggered Arakawa C-grid in 2D (left) and 3D (right),
indicating the positions of the nodes of the variables u, v, w and p within the grid
cells.

1.2 Partitioning and Schur complements

HYMLS is designed to solve the fluid flow problem in parallel, and it does so by par-
titioning the computational domain into a set of non-overlapping subdomains (the in-
teriors) plus an interface (the separators). After solving the interface problem through
the Schur complement, the problem is reduced to solving the independent systems asso-
ciated with the subdomains. This allows for parallel computation. The general idea of
partitioning is illustrated in the following example.

Example. For a general large (sparse) problem Ax = b, partitioning into n subdomains
amounts to reordering the unknowns to obtain a problem of the form

A11 A1S
. . .

...
Ann AnS

AT
1S . . . AT

nS ASS



x1
...
xn
xS

 =


b1
...

bn

bS

 .

The diagonal blocks Aii (for i = 1, . . . ,n) correspond to the interiors of the n subdomains
(i.e. variables xi) and the blocks AiS represent the couplings of these interior variables
to the separator variables xS. If for brevity the block diagonal matrix containing the
interior blocks is contracted into a single block AII and their couplings to the separators
are contracted into AIS, then elimination of the interior variables formally yields the
block LU decomposition[

AII AIS

AT
IS ASS

]
=

[
I O

AT
ISA

−1
II I

] [
AII AIS

O S

]
where

S = ASS −AT
ISA

−1
II AIS = ASS −

n∑
i=1

AT
iSA

−1
ii AiS

is the Schur complement of AII. It should be noted that wherever an inverse of a ma-
trix is written, a solver should be employed rather than explicitly computing the matrix

2

inverse. From this LU decomposition it follows that the partitioned system can now be
solved by first solving

SxS = bS −

n∑
i=1

AT
iSA

−1
ii bi

followed by solving n independent systems

Aiixi = bi −AiSxS, ∀i = 1, . . . ,n,

which can be done in parallel. �

Partitioning of a linear system can be done based on the graph of the associated
matrix. It is also possible to partition the grid geometrically, i.e. by subdividing the
grid manually into equally sized subdomains. It is this latter case that is considered in
this project. The partitioning can be thought of as if the grid is subdivided by placing
lines (planes) over the velocity nodes in the 2D (3D) grid to define the separators (see
e.g. Figures 1.2 and 1.3). All of the velocities on these separators will be retained in the
Schur complement, along with for each subdomain (ideally) one pressure node from the
interior, usually the first one. This pressure node is retained to prevent singularities in
the Schur complement problem (i.e to fix the pressure inside the subdomain). As will
be discussed in the next section, it may occur that additional pressure nodes have to
be retained in the Schur complement, which is undesired since it leads to complicated
code due to the many exceptions that have to be implemented. This complicated code
is prone to bugs which may affect the convergence properties of the HYMLS program,
even though the method is theoretically sound.

1.3 Geometric partitioning: standard versus skew

Arguably the most straightforward way of partitioning the grid geometrically, is to use
standard Cartesian partitioning. Here the domain is partitioned into equally sized square
subdomains (square in the number of unknowns), by placing equidistant horizontal and
vertical subdomain separators on the grid. Two examples for the 2D case are shown in
Figure 1.2. Here the separators are lines that intersect in points. The 3D case is similar,
but then separators are planes intersecting in lines (where four subdomains meet) and
in points (where eight subdomains meet). In Figure 1.2, an 8×8 grid is partitioned into
four subdomains, each of size 4×4. The separators which separate the subdomains from
each other are highlighted in red (horizontal separators) and blue (vertical separators).
The separators consist of u and v nodes, which subsequently are grouped together based
the set of subdomains they connect to. In other words, separator lines and points will
belong to different groups. The nodes that do not belong to any separators will be said
to belong to the interior of the subdomain. The reasons for grouping the nodes like this
will become clear in the following chapter.

It can be observed in Figure 1.2 that the intersection of horizontal and vertical sep-
arators leads to isolated pressure nodes, meaning that all of its surrounding velocities

3

(a) Separator length 4. (b) Separator length 2.

Figure 1.2. Example of Cartesian partitioning of an 8×8 grid with different separator lengths.
Horizontal separators are highlighted in red, vertical separators are highlighted in
blue. The intersection of separators leads to the isolation of pressure nodes, as high-
ligted in (a).

(a) Separator length 4
√

2. (b) Separator length 2
√

2.

Figure 1.3. Skew partitioning for an 8×8 grid with different separator lengths. By placing the
separators diagonally on the grid, the intersections no longer isolate a pressure node,
but domains along the grid boundary are asymmetric.

4

are separator velocities. This cell is called a full conservation cell. This pressure node can
not be eliminated but instead should be retained in the Schur complement as it would
otherwise lead to a singular matrix for the interior of the corresponding subdomain [4].
In addition to keeping this pressure node in the Schur complement (thereby placing it
in a separate group), the four surrounding velocity nodes that are also in the full conser-
vation cell should be placed in separate groups as well. (This ensures that these nodes
are retained throughout the multilevel approach.) This workaround is, as turns out, un-
necessarily complicated: it is better to prevent the occurrence of isolated pressure nodes
at all. In three dimensions it gets even more complicated, since then separators become
planes instead of lines, so that one could potentially get entire “tubes” of isolated pres-
sure nodes at positions where four subdomains meet, and further complications can be
imagined in cells where eight subdomains meet.

It has turned out that the treatment of full conservation cells is (unnecessarily) com-
plicated and prone to bugs and errors in the HYMLS code. It may even affect the con-
vergence properties of the method and therefore it may be better to partition the grid in
such a way as to prevent any occurrences of isolated pressure nodes. In particular, it was
proposed to use skew Cartesian separators, which are obtained by rotating the separa-
tors in standard Cartesian partitioning by 45 degrees. For the 2D case, this is shown in
Figure 1.3. This figure shows that there are no isolated pressure nodes if the separators
are placed diagonally on the grid. This means that there is no specific pressure node in
the interior of the subdomains (except for the first one) that needs to be retained in the
Schur complement and the interior can be eliminated in the regular way.

1.4 The goal of this project

Partitioning using skew separators for the 2D case has already been implemented and
tested in the HYMLS code. The next step is to also implement skew separators in 3D.
However, in 3D it gets hard to imagine/visualize what is happening. The fact that there
are now three velocity components to form entire separator planes makes it complicated
to construct such partitions without isolating pressure nodes. So, in particular intersec-
tions of separator planes should be carefully considered.

The main goal of this bachelor project is to visualize and analyze the possibility of
skew domain partitioning in 3D. This starts by identifying candidate domain shapes.
MATLAB will be used to write a program that for a given grid size and separator length,
performs a skew partitioning on the 3D grid to obtain skew subdomains. The program
should thus determine for each subdomain which nodes it contains. More precisely, it
should give back a list of node indices of the interior nodes and of the nodes within the
different separator groups that surround it. The final delivery will be MATLAB code
which can be easily converted into C++ code to be used in HYMLS.

5

1.5 Overview of this thesis

This problem will be tackled step by step, which also defines the structure of this thesis.
First, the HYMLS method is studied briefly in Chapter 2. Then, Chapter 3 contains a
review on the standard Cartesian partitioning mechanisms, in two and three dimensions.
This provides insight and a general systematic three-step approach to the problem of
skew partitioning. In Chapter 4, the problem of skew partitioning is described, again
using the three-step approach. The report ends with a discussion and some concluding
remarks.

6

2 About HYMLS

The HYMLS method is based on a direct method developed for the Stokes F -matrix [6].
This direct method maintains the F -matrix properties of the equations and so preserv-
ing the structure of the equations. In particular, this method has the property that it
introduces no additional fill in the B part of the matrix of Equation (1.3). To extend this
method to an incomplete factorization, orthogonal transformations are used in combina-
tion with dropping of (only) velocity-velocity couplings. The resulting method, HYMLS,
iterates in the kernel of BT , meaning that it satisfies the incompressibility constraint in
(the discrete version of) Equation (1.2) throughout the iterations. Furthermore, it should
lead to a grid-independent convergence rate. A brief description of the various steps
that are performed in the HYMLS method is given below, in order to exemplify why
partitioning is required and how it is used HYMLS.

The domain decomposition. The first step is to split the computational domain into
a number of subdomains without overlap. As has been discussed in the Chapter 1,
this partitioning is based on the velocity nodes and can be done in various ways. For
geometrical partitioning skew partitioning is preferable over standard Cartesian parti-
tioning. The partitioning is done based on the separator length as the input parameter.
In the case of skew partitioning, one can equivalently base the partitioning on the “cube
length”, i.e. the side length of the smallest cube which contains one subdomain. This
has the advantage that one can define the separators with integer numbers in a straight-
forward way. The cube length can also be interpreted as the repeat distance of the sepa-
rators. The terms “separator length” and “cube length” will be used interchangeably in
this thesis.

The partitioning results in two sets of unknowns, the interiors and the separators.
Separators are defined as the nodes which connect to more than one subdomain. The
remaining nodes are said to belong to the interiors of the subdomain. In particular, all
pressure nodes are inside the domain interiors as the partitioning is rather based on the
velocity nodes. The domain the pressure nodes belong to is the one that contains the
majority of its coupled velocity nodes [2].

The separator groups and retained variables. The separators defined by the domain
decomposition are subdivided into separator groups. This particular grouping is done

7

in order for the multilevel approach to work. A separator group consists of all velocity
nodes of the same type (so all u, v or w components) that connect to the same set of
subdomains. So, an edge between two (four) domains in 2D (3D) would form a group,
and so would a point between four (eight) subdomains, et cetera.

Each separator group contains information that has to be transferred to the next level
in the multilevel approach. Additional information has to be retrieved from an arbitrary
pressure node for each subdomain, which is also taken out of the interior and put into
a separate ‘group’. In the approaches described in this thesis, this pressure node is cho-
sen to be the first pressure node in each subdomain interior. Furthermore, if there are
isolated pressure nodes, this node as well as each of its surrounding velocities are put
into separate groups as well in order to prevent singularities in the Schur complement.
For the two-dimensional case, Figures 3.2b and 4.2b show the different groups for the
standard Cartesian and skew Cartesian cases respectively.

The Schur complement. The remainder of interiors is eliminated by a direct method as
described in [6]. A fill reducing order (such as approximate minimum degree [9]) is used
on the fill pattern F(A)∪ F(BTB) and elimination is performed dynamically: whenever a
velocity node that is coupled to a pressure node is to be eliminated, they are eliminated
together using a 2× 2 pivot. This ensures that the numerical and structural properties of
the initial system are preserved throughout the elimination. In particular, it ensures that
the Schur complement resulting from the elimination is again an F -matrix. Therefore, it
makes sense to talk about the A or B part in the Schur complement, cf. Equation (1.3).

The multilevel preconditioner. After elimination of the interior variables, the problem
is reduced to first solving the Schur problem of the for Sxs = ys after which the interior
variables can be solved for independently.

An example of a Schur complement for standard partitioning of a 16 × 16 grid with
separator length 8 is shown in Figure 2.1a. In the B part (i.e. the last few columns) the
separators cause occurrence of dense columns, at most two per separator group. These
correspond to the coupling of each separator to the retained pressures of the connect-
ing subdomains. In order to prevent fill-in, the velocities on these separators should be
decoupled as much as possible from the pressure nodes [2]. This can be done by apply-
ing orthogonal similarity transformations. These transformations should preserve the
structural properties of the matrix. A suitable choice is the Householder transformation.
When applied to the dense columns (and dense rows in BT part) these columns can be
reduced to only one nonzero entry (Figure 2.1b). In other words, only one velocity node per
separator group remains coupled to the pressures inside the subdomains on either side of the sep-
arator. (This is, in essence, why the separator variables are grouped together in the first
place.) The velocity nodes that are still coupled to pressure nodes are called VΣ nodes
and can be interpreted as the summed velocity through the separators.

After the similarity transformation, all VΣ nodes are shifted to the end of the matrix
(so that they will be retained in the next level Schur complement). Then, all couplings

8

(a) The Schur complement. (b) After Householder trans-
formations.

(c) After shifting and drop-
ping.

Figure 2.1. Example of Schur complement and the transform-and-drop strategy for standard par-
titioning of a 16 × 16 grid with separator length 8. After a Householder transforma-
tion on the dense columns of the B part, the VΣ nodes are shifted to the end. Dropping
then yields a block diagonal matrix with the next level Schur complement in the last
block. Image courtesy of Fred Wubs.

between non-VΣ nodes and VΣ nodes are dropped, as well as all couplings between
non-VΣ nodes in different separator groups. The result (Figure 2.1c) is a block diagonal
matrix with the next level Schur complement in the last block on which the process
can be repeated. An illustration from the grid point-of-view is shown in Figure 2.2.
This particular example shows the principle for a coarsening factor of 2, meaning that on
each subsequent level the separator length becomes twice as long. Other values for the
coarsening factor are possible within HYMLS.

The solution. After construction of the preconditioner for the Schur complement, the
problem can be solved by first solving the Schur problem with a preconditioned iterative
Krylov subspace method (e.g. GMRES [10]). After this, the interior variables can be
solved in parallel from the direct solvers that were computed in the first step.

9

(a) Initial groups. (b) After elimination of interiors only the sep-
arators remain.

(c) The Householder transformations leaves
one VΣ-node per separator group.

(d) Domains on next level.

Figure 2.2. Construction of the preconditioner from the grid point-of-view. This example uses a
coarsening factor of 2, i.e. the separators on the next level have twice the length as on
the previous level.

10

3 Cartesian partitioning

In the first implementation of HYMLS the standard Cartesian partitioning was used,
where the grid is divided up into rectangular domains. This particular method of do-
main decomposition is studied in this chapter in order to get insight in the partitioning
mechanisms. In particular any observations on the generalization from 2D to 3D could
be helpful when the 3D skew partitioning is investigated. A three-step approach is used
to tackle the partitioning problem and the results are verified visually.

3.1 The approach

Each of the partitioning mechanisms in this thesis can be described in pure mathematical
terms. For example, for two-dimensional, Cartesian partitioning with separator length
s, one can run through all grid cells and determine whether its variables u, v,p belong to
the separators or not, by doing modulo arithmetic: in both directions, every s’th grid cell
contains the separator velocities, except for the cells at the grid boundaries. Similarly,
skew partitioning could be described by placing a skew separator every s’th grid cell
(also in both directions).

The advantage to do the partitioning in this way is that it can be easily generalized
to arbitrary grid sizes, and there are no restrictions on the subdomain sizes. However,
in itself it will not fail if the cube length does not divide the grid size even though this
would result in partial subdomains. Another disadvantage is that it is only possible
to define the separators in this way if the exact shapes of the domains and hence the
separator planes are known beforehand. This is obviously not the case for 3D skew par-
titioning since the shapes of the domains are not (yet) known. Therefore, the approach
advocated here is more of a bottom-up approach. Since the exact shapes are not known
for the three-dimensional skew case, the approach starts by defining a domain shape
and it uses this shape to construct the partitioning for the entire grid. So, this approach
can easily be used for subdomains of any shape and size. Furthermore, it reduces the
partitioning problem to designing a general domain, and the entire grid information is
extracted from this. Therefore the problem can be formulated in terms of the domain
shape only. The approach consists of three successive steps, briefly delineated below.
In general, the entire process is aided by means of plotting the (intermediate) results in
order to (visually) verify the results.

11

1. Construct a domain template.
The first step is to create a domain template which consists of a general subdomain in-
cluding all of its surrounding separators. This is the ‘design process’ for the problem
and certainly the most important step. The domain template is basically an array of
node numbers that make up the domain. The template can be plotted and the domain
shape can be verified visually.

2. Set up a test problem and solve for the different groups.
With the domain template finished, a test problem can be set up. The test problem will
be the only occasion where the group solver is employed. A central test domain is set
up, and additional neighboring domains are placed around it as they would in the actual
grid. The templates thus have some overlap: more precisely, only the separators which
are part of the general template will belong to multiple domains in the test problem.
The idea is now that all nodes (of the same velocity component) in the central domain
that belong to the same set of neighbors will be put into separate separator groups. This
generates all of the groups for a domain which is surrounded by a maximum number of
possible neighbors in the actual grid.

3. Distribute the result from the test problem over the grid.
Now that the groups around a general domain are known, all that remains is to distribute
this result over the actual grid. The results from the test problem should be translated
such that they coincide with the actual domain in the grid. Since the templates are actu-
ally node numbers, this can be done by simply adding a number to the resulting groups
of the test problem. For domains at the grid boundary, additional care should be taken
since parts of the template may be outside the grid. The parts outside the grid should be
thrown away. Furthermore, separators which exactly coincide with the grid boundaries
may have to be put back into the interior. At the end of this step, the results should be
verified.

3.2 Cartesian partitioning in 2D

In the following, the two-dimensional grid under consideration contains nx by ny cells.
The grid is subdivided into square subdomains of side length s. This means that there
will be N = nxny/s

2 subdomains. In each direction, the grid size is thus restricted to be
an integer multiple of s. This is a consequence of the three-step approach and it ensures
that no partial (non-square) domains remain along the grid boundaries. Furthermore,
the subdomains are numbered starting at 0 at the south-west corner and increasing from
left to right, bottom to top. Each domain consists of s2 cells which are numbered accord-
ing to the same rules. Each cell contains u, v and p nodes, which are again numbered. In
particular, nodes 0, 1 and 2 belong to cell c0 and more generally ci would contain nodes
3i (u), 3i+ 1 (v) and 3i+ 2 (p). An example of the cell and node numbering for nx = 8,
ny = 8 and s = 4 is shown in Figure 3.1.

12

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

0

1

2 3

4

5 6

7

8 9

10

11 12

13

14 15

16

17 18

19

20 21

22

23

24

25

26 27

28

29 30

31

32 33

34

35 36

37

38 39

40

41 42

43

44 45

46

47

48

49

50 51

52

53 54

55

56 57

58

59 60

61

62 63

64

65 66

67

68 69

70

71

72

73

74 75

76

77 78

79

80 81

82

83 84

85

86 87

88

89 90

91

92 93

94

95

96

97

98 99

100

101 102

103

104 105

106

107 108

109

110 111

112

113 114

115

116 117

118

119

120

121

122 123

124

125 126

127

128 129

130

131 132

133

134 135

136

137 138

139

140 141

142

143

144

145

146 147

148

149 150

151

152 153

154

155 156

157

158 159

160

161 162

163

164 165

166

167

168

169

170 171

172

173 174

175

176 177

178

179 180

181

182 183

184

185 186

187

188 189

190

191

D0 D1

D2 D3

Figure 3.1. A grid of nx = 8 by ny = 8 cells is divided into N = 4 subdomains of separator
length s = 4. Cell numbers are indicated in the north east corner of each cell. Each
cell can be associated with three nodes (one u, v and p), indicated by the same color.

The template and test problem

The first step is to generate a template for the domain. The template contains all nodes in
the domain together with all surrounding separator nodes. Here are distinction is made
between the minimal template and the maximal template. The minimal template consists
of the interior together with the minimal set of separators which completely close the
interior from other domains. The maximal template is actually used in HYMLS and in
the test problem to find all the groups properly. It is a square template (side length s+ 1)
which is formed by the intersection of separator edges that run through the grid, up to
and including all nodes that belong to both separators. The 2D Cartesian template is
shown in Figure 3.2a, for the case where s = 4. The test problem is a 3 × 3 arrangement
shown in Figure 3.3. The resulting groups, including the additional groups for the full
conservation cell, are shown in Figure 3.2b.

Full problem

With the groups for an arbitrary domain known, the full problem can be solved by
shifting the results appropriately. However, for domains at the boundaries, special care
should be taken. For example, for domains along the left boundary of the grid (D0, D3,
D6 in Figure 3.1) one should cut off the left-most cells from the template. Similarly, there
are excess cells for domains along the bottom of the domain.

For cells along the top and right boundaries of the grid, separator groups that coin-

13

(a) Domain template. The minimal template is
shown in black. The additional nodes used
in the test problem are shown in grey.

(b) Result from test problem. Different colors
represent different groups. This shows that
there are at most 19 groups per domain.

Figure 3.2. MATLAB results for the domain template and the groups from the test problem for a
domain with separator length s = 4.

C

NNW

W

SW S SE

E

NE

Figure 3.3. The configuration in the test problem for the 2D Cartesian partitioning. It consists of
9 domains, with the test domain located in the center.

14

Figure 3.4. MATLAB results for problem with nx = 12, ny = 12, s = 4. Different colors represent
different groups.

cide with the grid boundaries should be changed accordingly. Along the top boundary it
does not make sense to have a horizontal separator (unless there are periodic boundary
conditions) and therefore the v velocities should be added to the interiors of the corre-
sponding domains whereas the u velocities from the full conservation cells should be
added to the vertical separators. The separators along the right boundary should be up-
dated analogously. So, there are two boundary cases to consider; either there are excess
nodes corresponding to template cells that are outside the grid after shifting, or there
are separators coinciding with the grid boundaries. To get the groups of the remaining
domains, shifting the template groups is sufficient.

After running the MATLAB program, the results should of course be verified. At
first hand, it was checked whether there was any overlap between different groups of
the same domain. Any intersection of two groups of the same domain should be empty.
Furthermore, it was made sure that all groups together contained not too many or too
few nodes, i.e. that the disjoint union of nodes in the groups (including the interior)
exactly coincided with all nodes in the domain template

A second, powerful way to verify the results is by plotting them. The result of the
12 × 12 grid is shown in Figure 3.4. For each domain, different groups are represented
by different colors.

3.3 Cartesian partitioning in 3D

The three dimensional case can be considered an extension of the two dimensional case.
To exploit this observation in building the 3D template, the starting point is the 2D do-

15

main template stacked on top of each other. Then, additional w-nodes should be placed
to close the domain.

The visualization using markers and cells is no longer clear in three dimensions.
Therefore, a different representation is chosen for the template, see Figure 3.5. This rep-
resentation still uses the idea of grid cells, but instead of drawing markers, the nodes are
indicated by colored faces of the grid cells. In this representation, u nodes are colored
in red, v nodes in orange, w in yellow. Using this approach, it is easy to spot missing
separators (there would be gaps in the separator planes, which could lead to connected
interiors) or isolated pressure nodes (there would be grid cells that are completely closed
off). Furthermore, the entire template also contains pressure nodes, which if plotted
should be completely closed off by the separator nodes. A layer-by-layer representation
of the separators surround the domain template is shown in Figure 3.7. In this picture,
the two dimensional template can be recognized when looking closely to the u (red) and
v (orange) nodes only. Furthermore, isolated pressure nodes can readily be spotted in
the top-right grid cells on most layers, resulting in complete tubes of isolated pressure
nodes.

In order to find the groups, a test problem can be set up which contains 27 subdo-
main templates. Their relative positions correspond to three layers of 3 × 3 arrangement
similar to the 2D case, i.e. all possible combinations of displacements 1, 0 and -1 (in units
of the separator length) in x, y and z directions (see Figure 3.6). The tubes of isolated
pressure nodes will result in many additional groups of nodes that should be retained
in the Schur complement problem. Finally, the full problem is solved similarly as in
the two dimensional case, where domains along the boundary may contain excess grid
nodes or unnecessary separators that should be either removed from the grid or added
to the interior of the corresponding domains.

The fact that the two-dimensional case can be recognized in Figure 3.7 deserves some
more attention. The figure shows a layer-by-layer representation in the z-direction and
if the w-nodes are disregarded one sees exactly the two-dimensional Cartesian partition-
ing of Figure 3.2a in all layers except the first and last. More generally, projecting the
template layers along either the x, y or z directions will yield the exact same figure (but
with permuted colors) and hence the 2D case can be recognized from either direction, as
can be expected from an extension of a square into a cube.

16

(a) Maximal template. (b) Minimal template.

Figure 3.5. MATLAB results for 3D Cartesian domain template with separator length s = 8.

Figure 3.6. The configuration for the three-dimensional Cartesian test problem contains 27 do-
mains. The test domain is located in the center.

17

Figure 3.7. A layer-by-layer representation of the domain in Figure 3.5. The (yellow) w-nodes
are located ‘on top of’ the u- and v-nodes. In the top-right corner, isolated pressure
nodes are present.

18

4 Skew partitioning

Now that the standard Cartesian partitioning is discussed, it is clear how isolated pres-
sure nodes arise. In the HYMLS code, an full conservation cell implementation was
made such that isolated pressure nodes are retained in the Schur complement. Other-
wise, danger exists that singular matrices are encountered for the domain interior or the
matrices could no longer share the important properties of F -matrices [4]. This imple-
mentation, however, is fragile and hence partitioning with skew separators is considered
as an alternative. The general approach to find the separators groups for skew separa-
tors remains the same as in the previous case, as only the templates should be changed
(and hence the corresponding test problem). For the 3D case, it gets really important to
be able to plot the results accurately in order to verify the partitioning, since this par-
titioning is novel. As in the previous chapter, the problem will be discussed using the
three-step approach: template, test problem, full problem.

4.1 Skew partitioning in 2D

The principle for skew partitioning in two dimensions has already been mentioned in
Chapter 1. Placing the separators diagonally over the grid provides the ability to parti-
tion the domain without isolating any pressures. An example of a skew partitioned grid
in 2D is shown in Figure 4.1, where nx = ny = 8 and the separator length is s = 2

√
2. Be-

cause it is easier to work with integer number, one can recognize that the slightly shaded
area in the figure (square block with corner cells 0 and 27) actually forms a ‘repeating
unit’ for the grid. That is, when placing the separator pattern inside this block repeat-
edly throughout the grid the full grid partitioning is generated. Hence, instead of using
the separator length s one can equivalently work with the ‘cube length’ cℓ =

√
2s (so

cℓ = 4 in Figure 4.1) since in three dimensions this extends to a cube. This length will
also be the input parameter for the MATLAB programs.

The template and test problem

The template for this problem with cℓ = 6 is shown in Figure 4.2a and the resulting
groups are shown in Figure 4.2b. One can recognize a square subdomain, rotated by 45
degrees. At its maximum width and height it spans cℓ + 1 and cℓ grid cells respectively.

19

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

0

1

2 3

4

5 6

7

8 9

10

11 12

13

14 15

16

17 18

19

20 21

22

23

24

25

26 27

28

29 30

31

32 33

34

35 36

37

38 39

40

41 42

43

44 45

46

47

48

49

50 51

52

53 54

55

56 57

58

59 60

61

62 63

64

65 66

67

68 69

70

71

72

73

74 75

76

77 78

79

80 81

82

83 84

85

86 87

88

89 90

91

92 93

94

95

96

97

98 99

100

101 102

103

104 105

106

107 108

109

110 111

112

113 114

115

116 117

118

119

120

121

122 123

124

125 126

127

128 129

130

131 132

133

134 135

136

137 138

139

140 141

142

143

144

145

146 147

148

149 150

151

152 153

154

155 156

157

158 159

160

161 162

163

164 165

166

167

168

169

170 171

172

173 174

175

176 177

178

179 180

181

182 183

184

185 186

187

188 189

190

191

D0 D1

D2 D3 D4

D5 D6

D7 D8 D9

D10 D11

Figure 4.1. A grid of nx = 8 by ny = 8 cells is divided into 12 subdomains of separator length
s = 2

√
2, or equivalently cube length cℓ = 4 (shaded area). Cell numbers are indicted

in the north east corner of each cell. Each cell can be associated with three nodes (one
u, v and p), indicated by the same color.

The arrangement for the test problem is depicted in Figure 4.3. The arrangement is
similar to the 2D Cartesian case and it also contains 9 domain templates. It results in less
groups than in the Cartesian case, due to the fact that no longer full conservation cells
have to be implemented since no isolated pressure nodes are present.

Full problem

The results from the test problem can now be applied to the full problem. For the prob-
lem in Figure 4.1, the MATLAB results are shown in Figure 4.4. It can be seen here that
instead of only ‘updating’ the excess nodes or separator nodes along the grid bound-
aries, this time entire halves of the template have to be cut off. Contrary to the standard
Cartesian case, where the excess nodes are always either the first or last row/column of
the template, this requires some bookkeeping in the MATLAB program in order to de-
termine which nodes exactly correspond to which half of the domain. This bookkeeping
can be prevented by considering the absolute coordinates of the cells, making use of the
node numbering introduced before. That is, for each node, the coordinates of its corre-
sponding cell can be calculated and if either of its coordinates falls out of the specified
grid its nodes should be removed. It may also occur that the first pressure node in the
interior of the template, as shown in Figure 4.2b, has to be removed. Therefore, the step
where for each subdomain the first pressure in its interior is put into a separate group is

20

(a) Domain template. (b) Result from test problem.

Figure 4.2. MATLAB results for the skew domain template and the groups from the test problem
for a domain with cℓ = 6. Different colors represent different groups. From the test
problem it can be found that there are at most 14 groups per domain.

C

N

NW

W

SW

S

SE

E

NE

Figure 4.3. The arrangement in the test problem for the 2D skew partitioning.

21

Figure 4.4. MATLAB results for the test problem and the complete problem with nx = 12, ny =
12, cℓ = 6. Different colors represent different groups.

carried out only after the domains are distributed over the grid and hence the pressure
nodes are part of the interior in the first stages of partitioning.

4.2 Skew partitioning in 3D

So far, each of the partitioning mechanisms currently employed have been studied in
some detail. The most important findings can be summarized as follows. When study-
ing the Cartesian partitioning, the 3D case can be considered as an extension of the 2D
case, by applying the 2D partitioning in each of the three grid directions for the two
complementary velocity components. Furthermore, when comparing the standard and
skew partitioning, one can think of the latter being a distortion or rotation of the first. It
is perhaps better to think of it as being a distortion, to prevent any restrictions on gener-
alizing this to the 3D situation. That is, the 3D skew partitioning is not merely restricted
to be a rotation of the cube that is used for 3D Cartesian partitioning, but rather it can
be the result of distorting the cube. In fact, the final result is obtained by first rotating
the cube by 45 degrees in the (arbitrarily chosen) z-plane and then distorting the result
along the normal of this plane. Alternatively this can be imagined as performing the 2D
partitioning to each layer in the grid and then use an additional third separator plane to
create the subdomains.

4.2.1 Partitioning constraints

In order to ensure that the partitioning works properly, it should satisfy a number of
constraints which are induced from the study of the existing partitioning mechanisms.

22

More precisely, the demands for the 3D skew partitioning are:

• There should not be any isolated pressure nodes. This is the main problem that is
tackled in this project to begin with as it possibly defects the convergence proper-
ties of HYMLS.

• The interiors of different domains should not overlap or touch each other. This
requires a careful construction of the separators and it is preferable to define the
domains by subdividing the grid with entire (straight) separator planes.

• The separators of surrounding neighboring domains should coincide. If two do-
mains are neighbors then they should share (precisely) one layer of separator ve-
locities. This can make the template seem somewhat asymmetric. For example, the
top separators of D0 in Figure 3.1 should coincide with the bottom separators of
D3. Also this can be easily achieved by using straight separator planes. The test
problem further ensures that the groups that are found are indeed the result from
the overlapping separators, if the domain template is defined correctly.

• The domains should be scalable for the multilevel approach. The HYMLS method
is based on the principle of multilevel preconditioning of the Schur complement. In
order to do so, for each level a partitioning is performed on the retained nodes from
the previous level. From a grid point-of-view (e.g. Figure 2.2) this comes down to
having a domain shape which can be combined to construct a larger, scaled version
of itself. In three dimensions this can readily be achieved by using three types
separator planes.

• The domain shape should be space filling. That is, using only the domains one
should be able to completely fill 3D space without leaving gaps. An easy way to
achieve this is by making sure the domain can be built up from a ‘repeating unit’,
similary to the shaded area of Figure 4.1. This further allows to continue working
with the cube length instead of the separator length.

• For a proper partitioning, all nodes in the grid should belong to precisely one
unique group (including the interiors of subdomains). These groups may occur
multiple times as they surround multiple domains.

4.2.2 Identifying possible domain shapes

It should be clear from all previous considerations, that the most important ingredient
in the domain decomposition is the domain template. This is where all the tweaking
occurs, the rest is mainly the same as the previous cases: solve test problem, translate
results. Therefore, the problem starts by finding candidate domain shapes that fulfill the
partitioning constraints. This can be done based on the principle of extending the 2D
skew case to three dimensions in the same way was the extension for Cartesian parti-
tioning, i.e. by using the 2D partitioning and applying it in each of the three principal
directions. Alternatively this can be done by stacking the 2D situation and using a cut

23

plane, or by rotating the Cartesian domains and then distorting it. An overview of some
domain candidates is shown in Figure 4.5.

4.2.3 First design: octahedrons / tetrahedrons

The first idea resulting from generalizing the 2D skew domain shape to a 3D setting was
to use octahedron domains, as shown in Figure 4.5a. Partitioning with this design turned
out to be unsuccessful, but it is still briefly discussed here since it lead to some new
insights. Since regular octahedrons (the dual to cubes, having their vertices at the centers
of the cube faces) in itself are not space tiling, the octahedrons are slightly distorted
to make them fit within a single cubic repeat unit. The resulting domains are space
tiling, but only by using three mutually orthogonal domain types. For clarity, these
types will be referred to by the normal of the central square plane of the domain. So, the
x-domain has a central square plane parallel to the yz plane and with normal in the x

direction, et cetera. The fact that it requires the use of three types of templates increases
the programming efforts significantly since it introduces a lot of exceptional cases that
should be considered, e.g. for boundary domains.

When viewed along the y and z axes, the x-domain resembles the 45 degree rotated
square plane as for the 2D domain shape. Moreover, a central, horizontal cross-section
of the x-domain exactly yields the 2D case, which is a desired property for ease of imple-
mentation. Similar observations can be made for the other two domain types. However,
a general observation is not true, for example the central, horizontal cross-section of the
z-domain yields the 2D Cartesian case.

The octahedron domains are not scalable, which is a demand for the multilevel ap-
proach. However, scalability can be achieved by splitting the octahedrons into four
smaller tetrahedrons, of which six different types are required to fill 3D space. This is
indicated by the different colors in Figure 4.5a. This would introduce additional separa-
tor planes that are similar to the 2D skew case and hence it increases the risk of isolating
a pressure node when such planes intersect. Especially planar intersections which are
parallel to either of the Cartesian axes have a high risk of isolating pressure nodes (for
similar reasons as isolated pressure nodes occur for the 3D Cartesian case, see Figure 3.7).

The octahedron domains from Figure 4.5a resulted either in isolated pressure nodes
or in interiors which where not completely separated from each other and hence after
a fair amount of effort, this idea was put to rest. It was briefly considered to rotate
all three octahedrons by 45 degrees around the z axis, but since this results in entire
planes parallel to the yz- or zx-planes (the rotated x- and y-domains), also this idea was
disregarded.

Despite the fact that the implementation of octahedron domains was unsuccessful, it
was very insightful since it provided the following observations. First of all, the com-
plexity of the domain shape should be reduced as much as possible. Whereas the oc-
tahedron domains are bounded by four planes that do not run continuously throughout
the grid, it should be possible to define domains that are bounded by three continu-
ous planes. In fact, the 3D Cartesian partitioning is an example of this. Decreasing the

24

(a) Octahedron domains. Three mutually orthogonal domains (from left to right referred to as
the x, y and z type) can be used to tile 3D space. In order to make this design scalable, each
octahedron should be split up into four tetrahedrons. This would lead to six different domain
types, indicated by the different colors.

(b) The final design. It is the
result of stacking the 2D
skew partitioning in the z-
direction (red and green)
and bounding it by a third,
diagonal plane (blue).

(c) By tilting the green plane
from the design in (b), a
design is obtained that fits
within a single cube.

(d) Subsequently tilting the
red plane from the design
in (c) yields a regular
rhombohedron domain.

Figure 4.5. Possible domain shapes for 3D skew partitioning.

25

number of planes means that the risk of isolating pressure nodes is also decreased. Fur-
thermore, by only using three separator planes, this creates one template types, which
reduces the amount of programming effort in terms the number of exceptional cases for
domains along the grid boundaries. It also makes it easier to get an impression of how
the different domains are located relative to each other. If, in turn, this single domain
type has the property that a cross-section yields the 2D skew case, this would also ben-
efit the implementation in the source code. Lastly, by using only three types of planes,
the resulting domain is guaranteed to be scalable: this is for example achieved by con-
sidering the domain that is obtained by simply removing every second plane of each
type.

The three domain shapes shown in Figures 4.5b to 4.5d all satisfy these constraints.
The latter two can be obtained by subsequently tilting the green and red planes. Each of
these was briefly studied, and since the first is most easily obtained from the 2D skew
partitioning, namely by ‘stacking’ the two-dimensional template in the z direction and
then using a third plane to bound the three-dimensional domains, it was decided to
continue working on this design. The other two designs showed isolated pressure nodes
in the first try and are hereafter disregarded in this work.

4.2.4 Final design

The final design is the prism in Figure 4.5b. This domain is obtained from the 2D skew
partitioning by stacking the 2D skew separators in the zdirection splitting this into sub-
domains by using a third, skew plane as shown in Figure 4.6. So the partitioning is
defined by three skew planes throughout the grid. These planes can be characterized by
their normal vectors:

red : nr = 1
2

[
1 1 0

]T ,

green : ng = 1
2

[
1 −1 0

]T ,

blue : nb = 1
3

[
1 −1 1

]T ,

where the length of each vector is normalized to match the planar spacings (in units of
cℓ).

The template for the final design is derived from the prism in Figure 4.5b. Using
the same three-dimensional visual representation as before, with cℓ = 8 this yields the
domains shown in Figure 4.7. A layer-by-layer representation is shown in Figure 4.9.
The maximal template is used to solve for the different groups, whereas the minimal
template shows all of the separators that directly connect to the interior nodes. The
configuration for the test problem is shown in Figure 4.8; it contains 27 domains. In
fact, the test problem is equivalent to the 3D Cartesian case but with rotated principal
directions: instead of stacking in the x-, y- and z-directions, the stacking occurs in the
(x/2+y/2)-, (x/2-y/2+z)- and z-directions. There are 65 groups for each subdomain.

26

Figure 4.6. Three types of planes define the entire partitioning for the final design. Furthermore,
the grid can be build up from a cubic repeat unit, of which eight are drawn here. This
implies that the design is suitable for the multilevel approach.

At the same time, Figure 4.8 illustrates that indeed the domain shape is scalable.
This makes it a suitable choice for the multilevel approach. In fact, the figure shows the
domain that would be obtained if a coarsening factor of 3 is applied.

An interesting property of the final domain template is that its central cross-section
resembles the skew partitioning in the two-dimensional case. In Figures 4.7 and 4.9 this
can be seen at the eighth layer of grid cells (z = 8). Indeed, the red (u) and orange (v)
nodes on this layer correspond to the same template as Figure 4.2a, albeit for a differ-
ent cℓ. This means that in the implementation, the first layer of cells can be made to
correspond exactly to the 2D case and the skew 3D partitioning can be regarded as an
extension of the 2D skew partitioning. Another way of seeing this is by comparing the
separator edges on the bottom plane (or top for that matter) in Figure 4.6 to the separator
lines in Figure 4.4 and recognizing that they are equivalent. The HYMLS implementa-
tion was adapted to make the case nz = 1 correspond to the 2D skew partitioning by
only taking the central layer of the domain template.

What is interesting to see in Figure 4.5b is that in the z direction, the (yellow) w

nodes follow an oscillating pattern. This is done to match the w nodes in the third plane
corresponding to the blue plane in Figure 4.6 on each z layer. This minimizes the number
of separator velocities as well as the risk of isolating pressure nodes. The cost of this is
that the w nodes on the inside of the domain have to be put in a different group than the
ones on the outside of the template, since each will couple to different pressure nodes in
the Schur complement. Hence, if this is not done, the F -matrix structure of the Schur
complement is lost and the method does not work anymore. These kinds of tweaks
where implemented in the C++ code during the implementation process but not in the
MATLAB code that is included in Appendix A.

The first test of the new partitioning approach was performed on the steady Stokes
equations in absence of body forces. These equations are a simplification of the Navier-

27

Stokes equations whereby Re → 0. This yields (cf. Equations (1.1) and (1.2))

µ∇2u−∇p = 0,
∇ ·u = 0.

Both the 2D (the first layer of the 3D case) and 3D Stokes equations were tested for dif-
ferent combinations of the (first-level) separator length cℓ, the coarsening factor cx and
the number of levels of the Schur preconditioner. The results are shown in Figures 4.10a
and 4.10b. For the 2D case it is clear that the number of iterations becomes independent
of nx. The 3D case looks promising as well since the lines seem to flatten as they do for
the 2D problem. However, probably larger grids are required to really see if the lines
become independent of nx. An interesting observation is that the lines for cℓ = 8, cx = 4
have similar slopes as the lines for cℓ = 4, cx = 8. This can be explained from the fact
that at each level the domains grow in a similar way, meaning that essentially the same
information is retained on successive levels. In the first stage, however, more informa-
tion is ‘lost’ for cℓ = 8 (since there are less separators throughout the grid), and hence
more iterations are required to solve the problem accurately.

28

(a) Maximal template. (b) Minimal template.

Figure 4.7. Representation of the separator nodes in the domain template in the final design for
cube length cℓ = 8. The domain is 15 grid cells high, the u and v nodes on the eighth
layer exactly coincide with the 2D skew partitioning discussed in Section 4.1.

Figure 4.8. The configuration in the test problem consists of 27 domains.

29

z=0 z=1 z=2

z=3 z=4 z=5

z=6 z=7 z=8

Figure 4.9. Layer by layer representation of the final design for cℓ = 8. At z = 8, the 2D skew
partitioning is retrieved.

30

z=9 z=10 z=11

z=12 z=13 z=14

z=15

Figure 4.9. (continued) Layer by layer representation of the final design for cℓ = 8. At z = 8, the
2D skew partitioning is retrieved.

31

0 500 1000 1500 2000 2500
n

x

0

20

40

60

80

100

120

140

ite
ra

tio
ns

c
l
 = 4,c

x
 = 4,nlev = 3

c
l
 = 4,c

x
 = 4,nlev = 4

c
l
 = 4,c

x
 = 4,nlev = 5

(a) Results for 2D Stokes using central layer of the new 3D skew domains.

0 50 100 150 200 250 300
n

x

50

100

150

200

250

300

350

ite
ra

tio
ns

c
l
 = 4,c

x
 = 4,nlev = 3

c
l
 = 8,c

x
 = 4,nlev = 3

c
l
 = 4,c

x
 = 8,nlev = 3

c
l
 = 4,c

x
 = 4,nlev = 4

(b) Results for 3D Stokes.

Figure 4.10. Results for the steady Stokes equations using the new partitioning. The grid size is
nx in all directions.

32

5 Discussion

The MATLAB code presented in Appendix A was handed over to be implemented in
the HYMLS C++ code. After some optimization, the code was tested successfully on a
single level, i.e. using the Schur preconditioner only once before solving. At this stage,
the code did not work in parallel nor on multiple levels. The parallel implementation
was eventually achieved and also the problems considering multilevel preconditioning
were solved, leaving a fully functional multilevel preconditioner.

During the implementation, it was found out that the oscillating w nodes in the ver-
tical separator walls posed a problem for the multilevel approach. The w nodes on either
side of the walls would couple to different sets of pressure nodes leading to four dense
columns in the Schur complement instead of two. To make sure no similar cases would
occur, a run can be performed over all nodes in the separator groups to check whether
the cells of the corresponding nodes would belong to the same domains. Nodes that be-
long to different domains (i.e. velocities that would couple to a different set of pressure
nodes) can then be split into separate groups.

The partitioning method performed as in the provided MATLAB code suffers the
limitation that the solveGroups script only works if cℓ is chosen to be smaller than or
equal to both nx/2 and ny/2. This happens because the height of the template has twice
the size of the width. The positioning part in the solveGroups script will fail if cℓ is
chosen too large. This problem can be circumvented by reprogramming the script to
make it independent of the grid that is used. This has not yet been corrected in the C++
implementation, which means that the number of levels is restricted.

Furthermore, the bookkeeping used in lines 78–173 of SKEW_PARTITIONER.m should
be replaced by a script that removes nodes based on their global coordinates, so that it
automatically removes nodes that fall outside the grid. This would both be safer code
(since it treats all boundary cases simultaneously) and consequently the code would be
cleaner to read. This was changed in the actual HYMLS implementation as well.

The first results for the Stokes problem look promising. However, the 3D partition-
ing without isolated pressure nodes does not yet yield compelling evidence for grid-
independent convergence. It is likely that this is due to the small range of nx values, so
experiments on finer grids should be performed in order to confirm grid independence.

33

6 Conclusion

Skew partitioning in three dimensional problems is complicated but possible. Correct
partitioning is essential for HYMLS since its entire working principle is based on parti-
tioning. Preferably the partitioning is done without any isolated pressure nodes or full
conservation cells, since these may affect the convergence properties of the method. The
search for ways to partition the three-dimensional grid started off by studying the cur-
rently employed partitioning methods in some detail. The three-step approach provided
means to tackle each of the problems systematically. This lead to insights on generalizing
from 2D to 3D and from Cartesian to skew partitioning. These insights in turn lead to
candidate domain shapes. With the prism domain shape, it is possible to have skew par-
titioning without isolated pressure nodes. Moreover, the implementation in the HYMLS
code showed promising results and hence the 3D skew partitioning in HYMLS provides
many new opportunities to novel numerical experiments.

34

Bibliography

[1] Fred W Wubs and Jonas Thies. A robust parallel ilu solver with grid-independent
convergence for the coupled steady incompressible navier-stokes equations. Pro-
ceedings 5th ECCOMAS CFD, 2010, 2010.

[2] Fred W Wubs and Jonas Thies. A robust two-level incomplete factorization for
(navier–) stokes saddle point matrices. SIAM Journal on Matrix Analysis and Applica-
tions, 32(4):1475–1499, 2011.

[3] Jonas Thies and Fred Wubs. Design of a parallel hybrid direct/iterative solver for
cfd problems. In E-Science (e-Science), 2011 IEEE 7th International Conference on, pages
387–394. IEEE, 2011.

[4] Jonas Thies. Scalable algorithms for fully implicit ocean models. PhD thesis, University
of Groningen, 2011.

[5] Akio Arakawa and Vivian R Lamb. Computational design of the basic dynamical
processes of the ucla general circulation model. Methods in computational physics,
17:173–265, 1977.

[6] Arie C De Niet and Fred W Wubs. Numerically stable ldlt-factorization of f-type
saddle point matrices. IMA Journal of Numerical Analysis, 29(1):208–234, 2009.

[7] Miroslav Tuma. A note on the ldlt decomposition of matrices from saddle-point
problems. SIAM journal on matrix analysis and applications, 23(4):903–915, 2002.

[8] Weiyan Song, Fred W Wubs, and Jonas Thies. A highly parallel code for strongly
coupled fluid-transport equations. In Proceedings of the 11th world congress on com-
putational mechanics (WCCM XI), pages 199–210, 2014.

[9] Patrick R Amestoy, Timothy A Davis, and Iain S Duff. An approximate mini-
mum degree ordering algorithm. SIAM Journal on Matrix Analysis and Applications,
17(4):886–905, 1996.

[10] Youcef Saad and Martin H Schultz. Gmres: A generalized minimal residual al-
gorithm for solving nonsymmetric linear systems. SIAM Journal on scientific and
statistical computing, 7(3):856–869, 1986.

35

A MATLAB code

The three main MATLAB files for 3D skew partitioning, corresponding to the three-step
approach are included in this appendix.

Listing A.1. SKEW_PARTITIONER.m
1 %% 3D SKEW PARTITIONER by Mark van der Klok

2 % performs 3d skew partitioning for HYMLS

3
4 clearvars

5
6 nx = 16; ny = 16; nz = 16;% Grid settings

7 cl = 8; % Cube length. NOTE: cl <= nx/2 , ny/2

8 nVars = 4; % Number of node types

9
10 % Principal directions.

11 dirX = nVars*cl; dirY = nVars*nx*cl; dirZ = nVars*nx*ny*cl;

12
13 % Get the template and solve test problem

14 template = getTemplate(cl, nx , ny , nz, nVars);

15 templateList = template2list(template);

16 groups = solveGroups(templateList , cl , nx , ny, nz, nVars);

17 fprintf('Found %d groups ... \n', length(groups))

18
19 % Carry out first test to see if all nodes are in exactly one group

20 testGroups(templateList , groups);

21
22 % Get different halves of the domain to treat boundary cases

23 bottomhalf = template2list(template (1:cl));

24 tophalf = template2list(template(cl+1: end));

25 for ii = 1:cl+2

26 testMatrix(ii ,:) = (0: nVars:nVars*cl) + (ii -1)*nVars*nx ...

27 - cl*nVars*nx*ny - nVars *(cl/2+1)*nx;

28 end

29 testSouth = testMatrix (1:cl/2+1 ,:);

30 testWest = testMatrix (:,1:cl /2+1);

31 removeCol = testMatrix (1,cl /2+1):nVars*nx*ny:testMatrix (1,cl/2+1) ...

32 + dirZ+nVars*nx*ny;

33
34 halves = {'bottomhalf ', 'tophalf '};

35 for h = [1,2]

36 currentHalf = eval(halves{h});

36

37 NSintersect = []; EWintersect = [];

38 for type = 0:3

39 for jj = 1:cl % length of the half

40 NSintersect = [NSintersect;

41 testSouth +(jj -1 + (h-1)*cl)*nVars*nx*ny+type];

42 EWintersect = [EWintersect;

43 testWest +(jj -1+ (h-1)*cl)*nVars*nx*ny+type];

44 end

45 end

46
47 north{h} = removeFromList(currentHalf , NSintersect (:));

48 south{h} = removeFromList(currentHalf , north{h});

49 east{h} = removeFromList(currentHalf , EWintersect (:));

50 west{h} = removeFromList(currentHalf , east{h});

51
52 end

53
54 % Get one layer in the grid (same as skew 2d case)

55 ncx = nx/cl; ncy = ny/cl; ncz = nz/cl;

56 totNum2DCubes = ncx * ncy; % number of cubes for fixed z

57 numPerLayer = 2 * totNum2DCubes + ncx + ncy; % domains for fixed z

58 numPerRow = 2*ncx + 1; % domains in a row (both lattices); fixed y

59 totNumDomains = (ncz+1)*numPerLayer - 1;

60
61 domains = cell(1, numPerLayer);

62 for D = 0: totNumDomains

63 Z = floor(D/numPerLayer);

64
65 % Get domain coordinates and its first node

66 % Considers 'superposed ' lattices

67 X = mod(D - Z*numPerLayer , numPerRow); lattice = 1;

68 Y = floor ((D - Z*numPerLayer) / numPerRow) - 0.5;

69 if X >= ncx

70 X = X - ncx - 0.5;

71 Y = Y + 0.5;

72 lattice = 2;

73 end

74
75 % First node of cube

76 firstNode = X*dirX + Y*dirY + Z*dirZ - nVars + nVars*nx*(cl/2);

77
78 % Boundary cases. Can be optimized by basing on cell coordinates

79 toRemove = [];

80 if lattice == 1

81 if Y == -0.5

82 if Z == 0

83 currentNodes = north {2};

84 toRemove = [toRemove; bottomhalf; south {2}];

85 elseif Z == ncz

86 currentNodes = north {1};

87 toRemove = [toRemove; tophalf; south {1}];

88 else

89 currentNodes = [north {1}; north {2}];

90 toRemove = [toRemove; south {1}; south {2}];

37

91 end

92 elseif Y == ncy - 0.5

93 if Z == 0

94 currentNodes = south {2};

95 toRemove = [toRemove; bottomhalf; north {2}];

96 elseif Z == ncz

97 currentNodes = south {1};

98 toRemove = [toRemove; tophalf; north {1}];

99 else

100 currentNodes = [south {1}; south {2}];

101 toRemove = [toRemove; north {1}; north {2}];

102 end

103 else

104 if Z == 0

105 currentNodes = tophalf;

106 toRemove = [toRemove; bottomhalf];

107 elseif Z == ncz

108 currentNodes = bottomhalf;

109 toRemove = [toRemove; tophalf];

110 else

111 currentNodes = templateList;

112 end

113 end

114
115 if X == 0

116 currentNodes = removeFromList(currentNodes , ...

117 [removeCol - nVars*(cl/2 + (cl/2)*nx + (cl -1)*nx*ny), ...

118 removeCol - nVars*(cl/2 + (cl/2)*nx + (cl -1)*nx*ny + 1), ...

119 removeCol - nVars*(cl/2 + (cl/2)*nx + (cl -1)*nx*ny + 2), ...

120 removeCol - nVars*(cl/2 + (cl/2+1)*nx + (cl -1)*nx*ny), ...

121 removeCol - nVars*(cl/2 + (cl/2+1)*nx + (cl -1)*nx*ny + 2)]);

122 toRemove = [toRemove;

123 removeCol ' - nVars*(cl/2 + (cl/2)*nx + (cl -1)*nx*ny);

124 removeCol ' - nVars*(cl/2 + (cl/2)*nx + (cl -1)*nx*ny + 1);

125 removeCol ' - nVars*(cl/2 + (cl/2)*nx + (cl -1)*nx*ny + 2);

126 removeCol ' - nVars*(cl/2 + (cl/2+1)*nx + (cl -1)*nx*ny);

127 removeCol ' - nVars*(cl/2 + (cl/2+1)*nx + (cl -1)*nx*ny + 2)];

128 end

129 elseif lattice == 2

130 if X == -0.5

131 if Z == 0

132 currentNodes = east {2};

133 toRemove = [toRemove; bottomhalf; west {2}];

134 elseif Z == ncz

135 currentNodes = east {1};

136 toRemove = [toRemove; tophalf; west {1}];

137 else

138 currentNodes = [east {1}; east {2}];

139 toRemove = [toRemove; west {1}; west {2}];

140 end

141 elseif X == ncx - 0.5

142 if Z == 0

143 currentNodes = west {2};

144 toRemove = [toRemove; bottomhalf; east {2}];

38

145 elseif Z == ncz

146 currentNodes = west {1};

147 toRemove = [toRemove; tophalf; east {1}];

148 else

149 currentNodes = [west {1}; west {2}];

150 toRemove = [toRemove; east {1}; east {2}];

151 end

152 else

153 if Z == 0

154 currentNodes = tophalf;

155 toRemove = [toRemove; bottomhalf];

156 elseif Z == ncz

157 currentNodes = bottomhalf;

158 toRemove = [toRemove; tophalf];

159 else

160 currentNodes = templateList;

161 end

162 end

163 if Y == 0

164 currentNodes = removeFromList(currentNodes , ...

165 [removeCol +1, removeCol +2]);

166 toRemove = [toRemove; removeCol '+1; removeCol '+2];

167 elseif Y == ncy -1;

168 currentNodes = removeFromList(currentNodes , ...

169 removeCol + 2 + nVars *((cl -1)*nx*ny + (cl+1)*nx));

170 toRemove = [toRemove;

171 removeCol ' + 2 + nVars *((cl -1)*nx*ny + (cl+1)*nx)];

172 end

173 end

174
175 % Get the groups , remove nodes

176 currentGroups = groups; numEmpty = 0;

177 for ii = 1: length(currentGroups)

178 G = ii - numEmpty;

179 currentGroups{G} = removeFromList(currentGroups{G}, toRemove) ...

180 + firstNode;

181 if isempty(currentGroups{G})

182 currentGroups(G) = [];

183 numEmpty = numEmpty + 1;

184 end

185 end

186
187 % Get first pressure node from interior to a new group

188 interior = sort(currentGroups {1}); % Assumes interior first!

189 for i = 1: length(interior)

190 node = interior(i);

191 if mod(node ,nVars) == 3

192 interior = removeFromList(interior , node);

193 currentGroups {1} = interior;

194 currentGroups = [currentGroups , {node }];

195 fprintf('First pressure node : %3d \n', node)

196 break

197 end

198 end

39

199
200 % For visualization only: get v_sum nodes for next level

201 vsum = zeros(1,length(currentGroups));

202 for j=1: length(currentGroups)

203 vsum(j) = currentGroups{j}(1);

204 end

205
206 % Save results

207 domains{D+1}. nodes = currentNodes + firstNode;

208 domains{D+1}. groups = currentGroups;

209 domains{D+1}. first = firstNode;

210 domains{D+1}. xVal = X;

211 domains{D+1}. yVal = Y;

212 domains{D+1}. zVal = Z;

213 domains{D+1}. lattice = lattice;

214 domains{D+1}. vsum = vsum;

215
216 % Check function xyz2subdom for all nodes in interior

217 for i= currentGroups {1}

218 x = mod(floor(i / nVars), nx);

219 y = mod(floor(i / nVars / nx), ny);

220 z = mod(floor(i / nVars / nx / ny), nz);

221 assert(xyz2subdom(x,y,z,nx,ny,nz,cl) == D);

222 end

223 end

224
225 % Additional tests

226 performChecks(domains ,nx,ny,nz)

Listing A.2. getTemplate.m
1 function nodes = getTemplate(cl , nx , ny, nz, nVars)

2 % Principal directions

3 dirX = nVars; dirY = nVars*nx; dirZ = nVars*nx*ny; % Cartesian directions

4 dir1 = dirY+dirX; dir2 = dirY -dirX; % Skew directions in xy -plane

5
6 % Info for each node type

7 firstNode = [nVars*cl/2 + dirY , nVars*cl/2 + 1, nVars*cl/2 + 2 - dirZ , ...

8 nVars*cl/2 + 3 + dirY] - dirY*(cl/2+1);

9 baseLength = [cl/2, cl/2 + 1, cl/2 + 1, cl/2];

10
11 % Get the nodes

12 for type = 1: nVars

13 % Current node type

14 nodes{type} = cell(1, 2*cl + 1);

15
16 % Get central layer

17 [central , ptr] = buildPlane45(firstNode(type), baseLength(type));

18 nodes{type}{cl+1} = central;

19
20 % Used in the loop to determine which nodes to assign to each layer

21 idxList = 1: length(central); rowLength = diff(ptr) - 1;

22 activePtrs = 1: baseLength(type); offset = rowLength(activePtrs);

23
24 % Vertical offset for p layers

40

25 if type == nVars , pAdd = 1; else pAdd = 0; end

26
27 bottom = [];

28 for i = 1:cl

29 % Get indices for the layers

30 bottom = [bottom , ptr(activePtrs) + offset];

31 top = idxList; top(bottom) = [];

32
33 % Add layers

34 if type == 3 % w layers are an exception with odd/even layers

35 if mod(i,2) == 0

36 nodes{type}{i} = nodes{type}{i-1} + dirY + dirZ;

37 nodes{type}{cl + 1 + i} = central(top) + i*dirZ;

38 else % mod(i,2) == 1

39 nodes{type}{i} = central(bottom) - (cl + 1 - i)*dirZ;

40 nodes{type}{cl + 1 + i} = nodes{type}{cl + i} + dirY + dirZ;

41 end

42 else

43 nodes{type}{i + pAdd} = central(bottom) - (cl + 1 - pAdd - i)*dirZ;

44 nodes{type}{cl + 1 + i} = central(top) + i*dirZ;

45 end

46
47 if i < cl

48 % Update pointers and offset

49 offset = offset - 1;

50 if type == nVars % pressure nodes are an exception

51 if offset (1) < 0

52 offset (1) = []; activePtrs (1) = [];

53 activePtrs = [activePtrs , activePtrs(end)+1];

54 offset = [offset , rowLength(activePtrs(end))];

55 end

56 else

57 if offset (1) < 0

58 offset (1) = []; activePtrs (1) = [];

59 elseif offset (1) == 0,

60 activePtrs = [activePtrs , activePtrs(end)+1];

61 offset = [offset , rowLength(activePtrs(end))];

62 end

63 end

64 end

65 end

66 end

67
68 % Remove top and bottop single wall , which are unnecessary separators

69 nodes {1} = nodes {1}(2: end -1);

70 nodes {2} = nodes {2}(2: end -1);

71 nodes {3} = nodes {3}(2: end);

72 nodes {4} = nodes {4}(2: end -1);

73
74 % Merge the template layers

75 nodes = mergeTemplateLayers(nodes);

76
77 %% Nested function , to build a square , rotated plane

78 function [plane ,ptr] = buildPlane45(firstNode , lngth)

41

79 left = firstNode; right = firstNode; height = 2*lngth;

80 extraLayer = false;

81 if (mod(firstNode ,nVars) == 0) % correction for u nodes

82 left = left - dirX; height = height + 1; extraLayer = true;

83 elseif (mod(firstNode ,nVars) == 3)

84 extraLayer = true; height = height + 1;

85 end

86
87 % Build the plane

88 plane = []; ptr = [1, zeros(1,height -1)];

89 for ii = 1:height -1

90 plane = [plane , left:dirX:right];

91 ptr(ii+1) = ptr(ii) + length(left:dirX:right);

92
93 if ii < lngth

94 left = left + dir2; right = right + dir1;

95 elseif (extraLayer) && (ii == lngth)

96 left = left + dirY; right = right + dirY;

97 else

98 left = left + dir1; right = right + dir2;

99 end

100 end

101 end

102
103 end

104
105 function newTemplate = mergeTemplateLayers(template)

106 newTemplate {1} = template {3}{1};

107 for jj = 1: length(template {1})

108 newTemplate{jj+1} = [template {1}{jj}, template {2}{jj},...

109 template {3}{jj+1}, template {4}{jj}];

110 end

111 end

Listing A.3. solveGroups.m
1 % Finds the groups for the 'test problem '.

2
3 function groups = solveGroups(template , cl, nx , ny , nz, nVars)

4 % Principal directions for domain displacements

5 dirX = nVars*cl; dirY = nVars*nx*cl; dirZ = nVars*nx*ny*cl;

6 dir1 = (dirY + dirX)/2;

7 dir2 = (dirY -dirX)/2 + dirZ;

8 dir3 = dirZ;

9
10 % Create model problem

11 positions = [

12 0 0 0

13 0 0 -1

14 0 0 1

15 0 -1 0

16 0 -1 -1

17 0 -1 1

18 0 1 0

19 0 1 -1

42

20 0 1 1

21 -1 0 0

22 -1 0 -1

23 -1 0 1

24 -1 -1 0

25 -1 -1 -1

26 -1 -1 1

27 -1 1 0

28 -1 1 -1

29 -1 1 1

30 1 0 0

31 1 0 -1

32 1 0 1

33 1 -1 0

34 1 -1 -1

35 1 -1 1

36 1 1 0

37 1 1 -1

38 1 1 1

39]*[dir1; dir2; dir3];

40
41
42 % Setup all domains in the test problem

43 domain = cell(1, length(positions));

44 for p = 1: length(positions)

45 domain{p} = template + positions(p);

46 end

47
48
49 % Find groups. Note that domain {1} is the domain that we want to solve for

50 groups = {};

51 groups {1}. doms = [1]; % Ensure that interior is first group

52 groups {1}. nodes = [];

53 grpCntr = 1;

54 for N = 1: length(domain {1})

55 % For each node , first check to which domains it belongs

56 node = domain {1}(N);

57 listOfDomains = [];

58 for D = 1: length(domain)

59 if ismember(node ,domain{D})

60 listOfDomains = [listOfDomains , D];

61 end

62 end

63
64 newgroup = true;

65 % Check if a group already exists for this combination of domains. If

66 % not , we have to make a new group (below)

67 for G = 1: length(groups)

68 if length(groups{G}.doms) == length(listOfDomains)

69 if groups{G}.doms == listOfDomains

70 newgroup = false;

71 groups{G}. nodes = [groups{G}.nodes , node];

72 end

73 end

43

74 end

75
76 if (newgroup)

77 grpCntr = grpCntr + 1;

78 groups{grpCntr }.doms = listOfDomains;

79 groups{grpCntr }. nodes = node;

80 end

81 end

82
83 % Only keep the nodes field of the struct; doms it not required later

84 groups = cellfun (@(STRUCT) sort(STRUCT.nodes), groups , ...

85 .'UniformOutput ', false);

86
87 % Separate different node types

88 numGroups = length(groups);

89 newGroups = 0;

90 for i = 2: numGroups %skip interior! (first group = interior)

91 j = i + newGroups;

92 if length(groups{j}) > 1

93 listU = groups{j}(mod(groups{j},nVars) == 0);

94 listV = groups{j}(mod(groups{j},nVars) == 1);

95 listW = groups{j}(mod(groups{j},nVars) == 2);

96
97 % Update groups; replace groups{j} with 3 separate groups for u,v,w

98 groups = [groups (1:j-1), {listU}, {listV}, {listW}, groups(j+1: end)];

99 newGroups = newGroups + 2;

100 end

101 end

102
103 % Keep only nonempty

104 groups = groups (~ cellfun('isempty ', groups));

105 end

44

	Introduction
	The solver
	Partitioning and Schur complements
	Geometric partitioning: standard versus skew
	The goal of this project
	Overview of this thesis

	About HYMLS
	Cartesian partitioning
	The approach
	Cartesian partitioning in 2D
	Cartesian partitioning in 3D

	Skew partitioning
	Skew partitioning in 2D
	Skew partitioning in 3D
	Partitioning constraints
	Identifying possible domain shapes
	First design: octahedrons / tetrahedrons
	Final design

	Discussion
	Conclusion
	Bibliography
	MATLAB code

