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Abstract
Variation of the low-mass end IMF with velocity dispersion in Early Type Galaxies

using the Porter-14 Semi-Analytical Model

The Initial Mass Function (IMF) is an empirical function that describes the mass distribu-
tion of stars formed in a singular star-formation event. This distribution is a probability
distribution function (PDF) of the initial masses of stars, in other words, it relates the ratio
of low-mass stars to high-mass stars in a stellar population. The IMF has been considered
to be universal until recent studies showed that the low-mass end of the IMF varies with
galaxy properties, such as velocity dispersion. We used the updated semi-analytical model
Porter-14 with the numerical solution of the characteristic mass as a function of external
pressure, given by the model of Krumholz (2011), to test if the models reproduce the obser-
vations. The results were positive, especially above σ ≈ 200kms−1, and would imply, and
therefore enforcing the observations, that there are more low-mass stars in the early-type
galaxies than previously thought.
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1. Introduction

The quest for understanding how stars form and what is the origin of mass started more
than a century ago, with Eddington and Jeans. Star formation happens in gas clouds when
parts of the cloud begin to collapse under their own gravity. Due to the collapse, the
core of the protostar becomes hotter and hotter until it reaches the temperature that allows
hydrogen to burn into helium. This hydrogen burning creates a radiation pressure, which is
caused by photons, created in the reaction, being diffused from the core to the outer layers,
that counteracts the gravitational collapse and holds the star in balance. Moreover, stars
have a spectra of masses, ranging from 0.1M� to more than 100M�, but is it actually clear
what properties of the gas cloud or the environment determine the initial mass of each star?
We refer to the initial mass simply because stars loose mass during their lifetime due to a
multitude of processes, which are not relevant in this case.

Salpeter E. theoretized that the initial mass of the stars formed in a star-formation event is
given by a probabilistic distribution (the initial mass function) and later, this distribution
was thought to be universal. However, recent studies (see Section 3) showed that this is
not case, and the initial mass function is varying with the environment. Krumholz (2011)
showed that the external pressure from the interstellar medium onto the gas cloud affects
the characteristic stellar mass and it will be later shown that there are more low-mass stars
in massive galaxy than previously thought. This would mean that the amount of dark matter
in those galaxies is lower than expected and would have great implications in the models of
galaxy formation. The question is, can we quantify this variation based on the properties of
the galaxy, such as mass or luminosity, and do the updated models reproduce the observed
values?



2. The Initial Mass Function

2.1 The IMF
The Initial Mass Function (IMF) is an empirical function that describes the mass distribu-
tion of stars formed in a singular star-formation event. This distribution is a probability
distribution function (PDF) of the initial masses of stars, in other words, it relates the ratio
of low-mass stars to high-mass stars in a stellar population. Therefore, the IMF is a very
important tool in studying large populations of stars, such as galaxies, since properties like
color, luminosity and lifetime are governed by the initial mass of the star. For example, the
high-mass stars are responsible for most the chemical enrichment and the total light of the
galaxy, while low-mass stars dominate the total baryonic mass of the galaxy.

The IMF is a key ingredient in Stellar Population Synthesis models (SSP) used to ana-
lyze the integrated light of distant galaxies. Since these galaxies are too far way from us to
be able to resolve individual stars, the models create an artificial stellar population, with the
IMF given as input, in order to recreate the total integrated light from those galaxies. This
will provide us with information about the star formation history and the overall evolution
of the galaxy. However, it will be shown later that the IMF is not a universal function, but
it varies with the star formation environment and other factors. Therefore, a good under-
standing of these variations if crucial for inferring the physical driving factors, since at the
moment, the IMF is an observationally derived relation and the theoretical framework still
remains an open question.

2.2 The form of the IMF
In 1955, Edwin Salpeter introduced the notion of IMF, which is described by a power-law
form

Φ(logm) = dN/d logm ∝ m−Γ (2.1)
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where m is the mass of a star and N is the number of stars in some logarithmic mass range
[log m, log m + d log m]. The normalization constant is derived by setting the integral
of the function over a given mass range (usually between 0.1M� and 100M�) equal to
1. Therefore, if Γ is known, we can calculate the number of stars within a mass interval.
Salpeter calculated Γ for the stars in the solar neighbourhood with masses higher than the
solar mass and found a value of Γ = 1.35 (Salpeter 1955). This value is known as Salpeter
slope and will be used throughout the paper. What he showed was that the number of stars
decreases rapidly with increasing mass. Another way of representing the IMF is in the
form of a mass spectrum, in linear mass units

χ(m) = dN/dm ∝ m−α (2.2)

where it relates to the previous one as

χ(m) = 1/(mln10)Φ(logm) (2.3)

The relationship between the coefficients is

α = Γ+1 (2.4)

Later on, it was argued that the IMF was not a single power law over all stellar masses.
In 1993, Kroupa et al. found a multisegment power law where the slope of the IMF at
lower masses is flatter than the Salpeter value. This segmented IMF will be referred as
Kroupa IMF (Kroupa et al 1993). Another way to describe the IMF is by a log-normal
distribution in the low-mass end with a power-law tail above 1 M� (Chabrier 2003). This
is known as a Chabrier IMF. These are the main three functional forms proposed to fit the
Galactic observations on stellar mass distribution and can be seen in Figure 2.1.

Offner et al. (2014) saw the difference in representation as a difference in the under-
laying physical mechanisms that drive the star formation, whether is a continuous process
over all masses (Chabrier) or physical processes of star formation that act differently in
separate mass regimes (Kroupa). Another important aspect of the IMF is the high-mass
regime where the slope appears to be identical for all star-forming regions in the Local
Universe. In this thesis, the focus is on the low-mass regime, where the IMF appears to
vary with the conditions of the star-forming region. In this thesis we discuss briefly the
Galactic IMF and present and quantify the low-mass end variation of the IMF in ETGs,
followed by the comparison with the Porter-14 SAM.

2.3 The Galactic IMF
In this section, we briefly discuss different measurements of the IMF in different stellar
population within the disk of the Milky Way galaxy. This includes: volume-limited sam-
ples of stars from the vicinity of the Sun, open clusters, starburst clusters and the galactic
center. The results are summarized in Figure 2.2.
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Figure 2.1: The functional forms of the IMF, Salpeter in blue, Kroupa in red and Chabrier
in purple (Buchner 2015).

2.3.1 The IMF in the solar neighbourhood
In the late 90’s, most of the surveys were limited to a sphere around the Sun with a radius
of 5.2 pc. This value was adopted initially by van de Kamp (1971) in his volume-limited
surveys. These volume-limited surveys together with a magnitude-limited sample of dis-
tant stars allowed Kroupa, Tout and Gilmore in 1993 to establish the basis for the broken
power-law fit of the IMF, which later became the Kroupa-type IMF. In 1997, Reid and
Gizis used a dataset assembled by Gliese and Jahreiss (1991) to extend the volume-limited
sample to a radius of 8 pc. In this sample, the IMF was fit by a power-law with a value of
Γ = 0.2±0.3 in range 0.1−0.7M�. In the past years, there has been a lot of effort invested
to extend the volume-limited sample up to 10 pc. It is expected that the sample will soon
be complete and will greatly reduce the uncertainties in the Solar Neighbourhood IMF.

2.3.2 Open clusters
Most of the supersolar (M? > 1M�) IMF studies (e.g., Bonatto & Bica 2007, Maciejewski
& Niedzielski 2007, Carraro et al. 2005; Santos, Bonnato & Bica 2005) in these open
cluster reported a Salpeter value, however, there are few cases where the reported value
was different. These studies were identified by Scalo (2005) and summarized below. In
Phelps & Janes (1993), most of the clusters were Salpeter-like with the exception of two,
NGC 581 and NGC 663. In 1999, Sanner et al. confirmed a value of Γ= 1.8±0.2 for NGC
581, steeper than the Salpeter value, whereas NGC 663 has been studied more recently by
Pandey et al. 2005 and Sanner & Geffert 2001 and they found a value of Γ = 2.01± 0.4.
However, they argued that the distance to the cluster, the colors of some of the objects
and the dispersion in proper motions were problematic for NGC 663. Other clusters with
non-Salpeter slopes are NGC 2422 with a value of Γ = 2.07±0.08 (Prisinzano et al. 2003)
and NGC 2322 with Γ = 1.94 (Kalirai et al. 2003). However, both clusters need more
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observations in order to confirm their non-Salpeter like nature.

2.3.3 Starburst clusters
Most of these clusters are located at distances of around 3 to 8 kpc, making observations
less sensible to details. However, they are crucial tools to determine the IMF variations
with environment. The most notable example is the Arches cluster, located at 25 pc away
from the Galactic Center, is one of the densest and most massive clusters in our galaxy (ρ ≈
2× 105M�pc−3) and has been subjected to many studies. In 1999, Figer et al. measured
the IMF above 6M� and found a slope flatter than Salpeter (Γ = 0.65). Using different
techniques, Stolte et al. (2002) found a slightly steeper slope (Γ = 0.8), but still flatter
than Salpeter. The most recent result comes from Espinoza, Selman & Melnick (2009),
who after paying close attention to differential extinctions, they reported a value of Γ =
1.1±0.2.

Other clusters have been studied as well, such as Westerlund 1. Westerlund 1 is the most
massive known young cluster (4-7 Myr) in the galaxy. Brandner et al. (2008) analyzed
this cluster and found Γ = 1.3 in the mass range 3.4-27M� for the inner parts, which is
consistent with the Salpeter value. Many other starburst clusters have been studied and
strong evidence was found to support a radially varying mass function, which is explained
by the mass segregation.

2.3.4 Galactic center
Most (or maybe all) galaxies inherit a massive black hole at the center of the galaxy. Our
central black hole has a mass of ≈ 3× 106M� (Ghez et al. 2003, Schodel et al. 2003)
which stops the cold molecular clouds from collapsing due to its massive tidal forces (Mor-
ris 1993). Therefore, the shape of the IMF is very different from other places in the galaxy.
There have been many studies conducted to observe the IMF at the GC (Galactic center)
but the results are inconclusive due to the high opacity of the clouds surrounding the GC.
Most of these studies reported an extremely flat (top-heavy) IMF which suggest a large
production of stellar mass black holes. However, the presence of these stars is inconsistent
with stellar motion observations (Loeckmann, Baumgardt & Kroupa 2010). Further obser-
vations are needed to understand this behavior, especially in the low-mass and, to be able
to explain the low-mass stars deficit.

2.4 The characteristic stellar mass
It is believed that the characteristic mass of stars can be computed in terms of only fun-
damental constants, since it depends on the characteristic fragment mass in a star forming
cloud which is set by the cloud’s density and temperature profile. This view was supported
by observations that suggested a small or non-existent variation of the characteristic mass
with the star-forming environment. Krumholz (2011) computed the characteristic stellar
mass almost entirely in terms of fundamental constants with what he considered to be a
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Figure 2.2: This plot shows the derived IMF slope Γ from different stellar populations.
The points are located at the center of the mass bin used to derive the slope. The data

points are from multiple studies on the Galactic IMF. These papers are discussed in more
detail in Bastian et al. 2010. Image credit: Bastian et al. 2010

weak dependence on the interstellar pressure. For the calculation, he assumed a region of
a gas cloud with a pressure P that starts to collapse under its own gravity. Since the dy-
namical timescale varies as tdyn ≈ 1√

Gρ
, the central part of the protostar will collapse faster

due to its higher density. Therefore, the surrounding gas will either accrete or collapse
separately, depending on the pressure. The pressure near the star will be higher due to the
radiation heating, making the gas resistant to fragmentation and force it to accrete onto the
protostar. Far away from the star, the pressure will be lower and the gas colder, therefore
is more likely that it will collapse independently to form other stars. Thus, the limit where
the gas will accrete rather than fragment is considered to be the characteristic stellar mass.
Based on the deuterium burning physics and approximations of stellar equations, such as
polytropic models, he calculated the characteristic stellar mass as a function of interstellar
pressure P (see Figure 2.3 - red dotted line):

M∗ = 0.15
(

P/kB

106Kcm−1

)−1/18

M� (2.5)
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Initially, it seems to be counterintuitive but if the external pressure increases, the gas will
not accrete but rather fragment to form other stars. In other words, the higher the external
pressure is, the lower the characteristic mass will be and more low-mass stars will form.
In the analytical description of the process, the dependence with external pressure is very
small. However, when using a numerical instead of a polytrope model for stellar profile
(Figure 2.3: blue solid line), the characteristic stellar mass varies, on average, with ≈ 1.5
orders of magnitude. What seems to be a small variation, will be later shown that greatly
influences the low-mass end of the IMF.

Figure 2.3: Characteristic stellar mass M as a function of interstellar pressure P. A
comparison of the numerical and analytical solution. Image credit: Krumholz (2011)



3. IMF variations in ETGs

3.1 Early Type Galaxies and Velocity Dispersion
Early Type Galaxies (or ETGs) are a class of galaxies that include the elliptical and S0
type galaxies. Elliptical galaxies are one of the three main categories of galaxies described
by Hubble (Hubble 1936). They have an ellipsoidal shape and an almost featureless and
smooth brightness profile (see Figure 3.1). Compared to spiral galaxies, most of the el-
liptical galaxies are much older and more massive. They are mostly composed of old,
low-mass stars with a hot interstellar medium and minimal or non-existent star formation
activity.

S0 galaxies, or lenticular galaxies, are morphologically between elliptical and spiral
galaxies. The similarity with spiral galaxies comes from the presence of the bulge and
the disk, however, they do not exhibit spiral arms or considerable amounts of interstellar
medium, which is a characteristic of elliptical galaxies. Therefore, the elliptical and S0
galaxies (the ETGs) are perfect candidates for measuring the IMF due to their low or non
existent star formation activity.

In astronomy, the velocity dispersion - σ - is a statistical quantity which describes the
spread of velocities around the mean values for different types of objects such as clusters or
galaxies. It is a very important tool in calculating the mass of a gravitational bound object,
from the virial theorem, or the luminosity of an elliptical galaxy, using the Faber-Jackson
relation (Faber & Jackson 1976).
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Figure 3.1: The giant elliptical galaxy ESO 325-G004 (NASA, ESA, and The Hubble
Heritage Team)

The small luminosity of low mass stars makes the direct observation of them impossible
in the extragalactic environment, therefore the low-mass end of the IMF was assumed to
be the same everywhere in the Universe. However, recent studies on the extragalactic IMF
have shown that this is not the case. The low-mass IMF of Early-Type Galaxies varies,
therefore becomes more dwarf-rich with increasing galaxy velocity dispersion (Auger et
al. 2010; Conroy and van Dokkum 2012a,b; Ferreras et al. 2013; LaBarbera et al. 2013;
Spiniello et al. 2014, 2012; Treu et al. 2010; van Dokkum and Conroy 2010). The first
modern observation of the low-mass IMF variation was done by Pieter van Dokkum and
Charlie Conroy, 2010.
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3.2 Vast population of low-mass stars in ETGs
van Dokkum & Conroy (2010) used surface gravity sensitive spectral line strengths indica-
tive of low mass stars (≤ 0.3M�), more specifically the Na doublet (λ = 0.8183 µm and
λ = 0.8195 µm, Faber and French 1980, Schiavon et al. 1997) and the Wing-Ford molec-
ular FeH band (λ = 0.9916 µm Wing and Ford 1969, Schiavon et al. 1997), and compared
them with the ones created with the SSP models to get the best IMF fit. Their result can
be seen in Figure 3.1 and it is clear that a Kroupa IMF, which fits our galactic IMF, does
not give a large number of low-mass stars in order to reproduce the line strengths. A more
bottom-heavy IMF is needed and they found a value for the slope of 3 (or Γ = 2 ) which is
much steeper than Salpeter coefficient of 2.35 but fits the data extremely well.

Figure 3.2: IMF fits for the Na I (left) and Wing-Ford (right) spectral regions. Image
credit: van Dokkum and Conroy (2010)

Spiniello et al. (2012) found that the Na doublet lines can be influenced by interstellar
absorption which implied that the number of low-mass stars in ETGs was not as large as
previously thought. However, later on, using a similar relation, this time involving the TiO2
line strengths which are sensitive to cool dwarf stars and less influenced by the metallicity,
the same trend of a bottom-heavy IMF was found (Spiniello et al. 2014).

3.3 Relationship between low-mass IMF and velocity dispersion in
ETGs
The spectral lines used in previous studies (such as NaI, Wing-Ford FeH, CaI, etc.) are
mostly in the red-optical and Near-Infrared (NIR) parts of the spectrum. The NIR spectra
is contaminated by the presence of the sky lines and telluric absorption from water vapour
and the equivalent width in the red spectra relies heavily on correct removal of these line,
therefore making the analysis of the SSP models more difficult. Since optical spectra are
easier to obtain with current spectrographs, the blue-optical spectras are the perfect choice
due to their less uncertainties in the models.

Spiniello et al.(2014) used 7 features, the bTiO, aTiO, NaD, TiO1, TiO2, CaH1 and
CaH2. These are present in the spectrum, ranging from 350 to 750nm. In this wavelength
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range, the change in the number of dwarf stars in the galaxy is influenced and similar to
the change in the effective temperature of the cool red giant (RGB) population. Moreover,
spectra of galaxies from the SDSS galaxies were stacked for different velocity dispersion
(in bins of 150, 190, 230, 270, 310 km/s with ±20 km/s) and were compared to with
CvD12 SSP models with same age (13.5 Gyr) and solar metallicity but with different IMF
slopes.

From the stacked spectra, the equivalent widths were measured for each indicator in
each σ bins and it was found that all indicators showed a steeper IMF slope with increasing
galaxy mass. This means that the IMF in least-massive galaxies (σ∗ ∝ 150 km/s) is fitted by
a Chabrier IMF, in the intermediate mass galaxies (σ∗ ∝ 230 km/s) by a Salpeter IMF and
by a bottom-heavy IMF for the most massive galaxies (σ∗ ∝ 310 km/s). The best-fitting
IMF slope for each σ bin is showed in Figure 3. By using a linear regression model of the
form:

x = a× logσ200 + b (3.1)

the relation between the IMF slope (x) and the central stellar velocity dispersion (σ ) was
determined:

x = (2.3±0.1) logσ200 +(2.13±0.15) (3.2)

These values will be compared to the ones from the Porter-14 SAM in the Results
section.



4. The Models

4.1 Semi-Analytical Models

Treating the process of galaxy formation in full detail on a computer has always been a
challenge for astronomers. The problem comes from the nonlinear aspects of the physics
involved, for example: implementing Newton’s equations in an expanding Universe to-
gether with non-gravitational effects such as heating and colling by radiation. All these
processes are computationally expensive. One solution lies in "semi analytic modeling"
or "phenomenological galaxy formation modeling" (Benson 2010), which treats the vari-
ous physical processes associated with galaxy formation using approximate, analytic tech-
niques. The complexity of the physics being treated influences the degree of approximation
in the N-body simulations. The precision can vary from well-calibrated estimates of dark
matter merger rates to large parameter uncertainties in scaling functions (Benson 2010).

Compared to N-body simulations, the semi-analytic approach is computationally cheap.
However, the biggest disadvantage is that the semi-analytic modeling incorporates a larger
degree of approximation, yet comparison studies of semi-analytical vs. N-body simulation
have shown good agreement with the exception of simplified physics (Benson et al 2001b:
Yoshida et al. 2002; Helly et al. 2003b) and simulations of individual galaxies (Stringer et
al. 2010). Semi-analytic models have been used to investigate many aspects of galaxy for-
mation including: galaxy counts (Kauffmann et al. 1994; Devriendt and Guiderdoni 2000);
abundance and properties of Local Group galaxies (Benson et al. 2002b; Somerville 2002;
Li et al. 2010) and the reionization of the Universe (Devriendt et al. 1998; Benson et al.
2001a; Somerville and Livio 2003; Benson et al. 2006).
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4.2 Porter-14 SAM
The first theoretical framework of the semi-analytical modeling originated in the work of
White and Rees (1978). The first version of the semi-analytical model of galaxy formation
used in this work was presented in Somerville & Primack (1999) and Somerville, Primack
& Faber (2001). Since then, due to scientific discoveries, noteworthy updates followed,
such as Somerville et al. (2008b, S08), Somerville et al. (2010), Popping, Somerville
& Trager (2014, PST14), Porter et al. (2014), and Somerville, Popping & Trager (2015,
SPT15). The model follows the clustering of dark matter halos and other important physi-
cal processes such as shock heating and radiative cooling of gas, supernovae feedback, star
formation, active galactic nuclei (AGN) feedback (by quasars and radio jets), metal enrich-
ment of the interstellar and intracluster medium, mergers of galaxies and the evolution of
stellar populations (Popping et al. 2016).

The time evolution of each of these baryonic components is governed by a set of differen-
tial equations, which also tracks the mass of the components. In other words, the SAMs
follow the flows of matter between different components. In models presented above, the
galaxies form within a dark matter halo and include "hot" gas which is assumed to be in
a quasi-hydrostatic spherical configuration around the virial radius of the halo, "cold" gas
in a thin disk and "ejected" gas which has been heated and ejected from the halo by stellar
winds. Galaxies that form at the center of halos are called "central" galaxies. When the
dark matter halos merge, the central galaxies of small halos become "satellite" galaxies
and orbit the larger halo until they merge with the central galaxy of the larger halo or they
are destroyed by the tidal forces. The version of the SAM that I use is a modified version
of the Porter-14 SAM (Porter et al. 2014) that includes the numerical solution (instead of
the analytical one) of the characteristic stellar mass as a function of interstellar pressure
(Krumholz 2011), discussed in Section 2.4.

4.3 Acquiring the data
For this project, I ran five simulations with different dark matter halo merger histories.
The merger histories are based on numerical simulation, the isotrees (Klypin et al 2011;
Trujillo-Gomez et al. 2011) and not on Monte Carlo realizations. Initially, I used only
isotrees 0 and 1 since the number of galaxies produced by isotree 0 was much larger, I
ran the simulation twice with the isotree 1 to get a balance in the data. Since the galaxies
produced with different isotrees are slightly different, it was decided that I should run two
more simulations with new isotrees. The simulation number, the isotree used and the total
number of galaxies produced are presented in Table 4.1

Form the output of each simulation, I have only used the present day mass function
(pdm f .dat) and properties (gal prop.dat for the metallicities) files. After importing the
data, the next step was to select galaxies that match those from Spiniello et al. (2014).
The first condition used was that galaxies have little or non-existent star formation activity
(SFR/M� < 10−11yr−1). The second one is concerned with the velocity dispersion σ of
the bulge. From these, the galaxies with 130 ≤ σ ≤ 330 km/s were selected. However,
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Number of simulation Isotree used Galaxies produced
1 Isotree 0 0 1 ≈ 14.300
2 Isotree 0 0 1 ≈ 14.300
3 Isotree 0 0 0 ≈ 22.300
4 Isotree 0 0 2 ≈ 19.800
5 Isotree 0 0 3 ≈ 10.000

Table 4.1: Summary of Simulations

due to peculiar properties of galaxies, such as high velocity dispersion in the low-mass
regime, galaxies between 8≤ logM∗ ≤ 9 were removed as well. After all these conditions
were applied, we were left with 2900 galaxies for the following analysis. For a better
visualization of the simulation output, histograms of galactic mass (M∗) and metallicity
(Z∗) were plotted in Figure 4.2. It can be clearly seen that the mass and metallicity both
increase with increasing velocity dispersion, in good agreement with observations.

Figure 4.1: Histograms of mass (left) and metallicity (right), both logarithmic, for each σ

bin. For the mass histogram, 6 bins were used between 9 and 12 logM� with size 0.5. For
the metallicity histogram, 9 bins were used between -0.1 and 0.3 logZ� with size 0.045.

4.4 Data Analysis
The PDMF in the output was given as the fraction of mass in stars in logarithmic mass
bins, ranging from 0.1 to 1.8 M� (dM/d logM). Since we were interested in the numerical
fraction (dN/d logM), the PMDF value in each mass bins was divided by the mean mass
in that bin. The mass bins are given in linear space but equally spaced in logarithmic space
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and the values can be seen in the Appendix.

dN/d logM = dM/d logM× 1
Mmean

(4.1)

To understand how the IMF in the simulation compares with the median, 15 galaxies were
selected at random for each velocity dispersion bin and their IMF was plotted, with the
median IMF plotted on top. This can be seen in Figure 4.3.

The next step in the analysis was to calculate the slope of the low-mass end IMF in each
σ bin. This was done by separating the galaxies with respect to their velocity dispersion
and then calculating the median value in each mass bin, as well as the standard deviation.
Since the IMF is described by a power-law, in log-log space the function becomes a line.
Therefore, lines of the form ax+ b were fitted to the resulting IMF using the least-square
method. For the fitting, 3 mass ranges were used: 0.1− 0.7M�,0.1− 0.4M� and 0.4−
0.7M�. The median values in each mass bin, including the standard deviation and the line
fit for each σ bin as well as a comparison between all 5 IMFs can be seen in Figure 4.4.
The slope values will be compared in the Results and Conclusion section.
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Figure 4.2: The median IMF (blue dots) in each velocity dispersion bin plotted on top of
the IMF of 15 random selected galaxies (red lines). The x axis is LogM∗ and y axis is

Log( dN
dLogM∗

).
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Figure 4.3: Plots of the median IMF (red dots) in each velocity dispersion bin and line fits
for 3 mass ranges: green: 0.1−0.7M�,yellow: 0.1−0.4M� and blue: 0.4−0.7M�

Bottom Right: A comparison between all 5 median IMFs in the 0.1−0.4M� mass range.
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5.1 Results
In this section I present the relationship between the the low-mass end IMF slope and the
velocity dispersion σ , followed by the comparison with state-of-the-art observations of
Spiniello et al. (2014). As can be seen in Table 5.1, the slope of the IMF increases with
increasing velocity dispersion. This implies that there will be more low-mass stars in more
massive galaxies.

Velocity dispersion σ (km/s) 0.1-0.7 M� 0.1-0.4 M� 0.4-0.7 M�
150 α=2.33 α=2.24 α=2.39
190 α=2.49 α=2.41 α=2.55
230 α=2.57 α=2.48 α=2.63
270 α=2.63 α=2.53 α=2.69
310 α=2.63 α=2.52 α=2.70

Table 5.1: The low-mass end IMF slopes from the fit done in section 4.

The values from Table 5.1 are plotted in Figure 5.1, together with the data from
Spiniello et al. (2014). It can be seen that above σ = 200km/s, models fit the observed
values very well, within one standard deviation. Below this value, the models are more
Salpeter-like, whereas the observed are closer to a Chabrier IMF. This would imply that
the models are more dwarf-rich and one explanation would be that the galaxies with small
velocity dispersion selected from the simulations are not similar to the ones from Spiniello
et al. (2014). To check if this is the case, a more detailed analysis of the data would be
required. However, the aim of this work was to check if the difference of ≈ 1.5 orders
of magnitude between the numerical and analytical solution (see Section 2.4) is actually
significant , since the stellar mass range spans ≈ 3 orders of magnitude (from ≈ 0.1M� to
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≈ 100M�) and a deviation of 1.5 orders is substantial.

Figure 5.1: Comparison between the IMF slopes of Spiniello et al. (2014) (red dots) and
this work: green dots: between 0.1−0.4M�, black dots: between 0.4−0.7M� and blue

dots: between 0.1−0.7M�. The error bars of this work are given as 5σ uncertainty due to
very small values.

In Figure 5.2 I present the values for the analytic solution. These were calculated by
Gergo Popping. As it can be seen, the result of the analytic solution is extremely flat and
the ratio of low mass stars created does not vary with galactic mass. Even if this would
be the case, the small variation implies that a measurement will be almost impossible due
to the high uncertainties (as seen in Spiniello et al. 2014). In Figure 5.3 I present the
comparison between the IMF slopes calculated using numerical and analytical solution.
The difference is not substantial, however the numerical solution trend is much steeper and
it could actually be measured. This variation allowed us to reproduce the relation between
the IMF slope and the velocity dispersion reasonably well and to support the fact that the
external pressure on a star-forming cloud has greater implications than previously thought.
If this true, then the number of low-mass stars in early type galaxies is higher and would
imply that the amount of dark matter is lower, therefore the models of galaxy formation
have to be changed in order to account for this.
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Figure 5.2: Comparison between the IMF slopes of Spiniello et al. (2014) (red dots) and
the IMF slopes derived using the analytic solution.

Figure 5.3: Comparison between the IMF slopes derived using the numerical solution
(this work, in blue) and the analytic solution (red). The slopes were calculated in

approximately the same range of 0.1M� to ≈ 0.7−1M�.
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5.2 Conclusion
The Initial Mass Function is an empirical function that describes the mass distribution of
stars after a single star-formation event. In other words, it relates the ratio of high-mass
stars to low-mass stars. The IMF is a crucial tool in understanding the evolution of large
population of stars, such as galaxies, since high-mass stars are responsible for most of the
light of the galaxy, whereas low-mass stars highly contribute to the total baryonic mass of
the galaxy. Due to observational limitations, in the beginning, the IMF has been studied
only in the Milky Way galaxy. From these observations, the IMF has been described by
a power-law in the high-mass end with a log-normal turn over and an exponential cut-off
below 1 M�. The IMF has been considered to be universal until recent studies showed that
the low-mass end of the IMF varies with galactic properties, such as velocity dispersion.
More precisely, the studies revealed that early-type Galaxies with high velocity dispersion
have more low-mass stars than previously predicted by the universal IMF. Overall, the IMF
is an observational derived relation and the actual physical framework is still unclear. Re-
cent theories on low-mass fragmentation due to turbulence (Krumholz 2011) have been
implemented in the Porter-14 semi-analytical model. Until now, the analytic solution of
the relationship between the characteristic mass and external pressure was used. Recent
state-of-the-art measurements showed that the trend is much steeper. Therefore, the nu-
merical solution, which is steeper, was implemented in the models. It seems to recreate the
observed to a good extent, especially in the high velocity dispersion region (σ ≥ 200 km/s)
and would imply that the number of low-mass stars in early type galaxies is higher than
previously thought. Therefore, the amount of dark matter used in the models of galaxy
formation will have to change to account for this difference. For future research, a more
detailed analysis of the simulations and better selection criteria are required in order to
compare the same populations of galaxies. It would give a better insight into how the IMF
varies with the galactic properties and it will change the old method of implementing an
universal IMF in the models of galaxy formation.
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6. Appendix

6.1 The Python Code

1 " " "
Code w r i t t e n by Alexandru−D a n i e l Taun f o r t h e B a c h e l o r t h e s i s y e a r 2017

3 " " "
i m p o r t s c i p y . s t a t s a s s s

5 i m p o r t pandas as pd
i m p o r t numpy as np

7 from _ _ f u t u r e _ _ i m p o r t p r i n t _ f u n c t i o n , d i v i s i o n
i m p o r t m a t p l o t l i b . p y p l o t a s p l t

9 i m p o r t s c i p y . o p t i m i z e as o p t
%m a t p l o t l i b i n l i n e

11 np . s e t _ p r i n t o p t i o n s ( p r e c i s i o n =13)

13 # I mp or t t h e d a t a . Imp or t e v e r y s i m u l a t i o n as a m a t r i x
# I s o t r e e 1

15 d a t a 1 = pd . r e a d _ c s v ( " pdmf1 . d a t " , sep = ’ ’ , comment= ’ # ’ , h e a d e r = None )
d a t a 1 = d a t a 1 . a s _ m a t r i x ( )

17 # I s o t r e e 1
d a t a 2 = pd . r e a d _ c s v ( " pdmf2 . d a t " , sep = ’ ’ , comment= ’ # ’ , h e a d e r = None )

19 d a t a 2 = d a t a 2 . a s _ m a t r i x ( )
# I s o t r e e 0

21 d a t a 3 = pd . r e a d _ c s v ( " pdmf3 . d a t " , sep = ’ ’ , comment= ’ # ’ , h e a d e r = None )
d a t a 3 = d a t a 3 . a s _ m a t r i x ( )

23 # I s o t r e e 2
d a t a 4 = pd . r e a d _ c s v ( " pdmf4 . d a t " , sep = ’ ’ , comment= ’ # ’ , h e a d e r = None )

25 d a t a 4 = d a t a 4 . a s _ m a t r i x ( )
# I s o t r e e 3

27 d a t a 5 = pd . r e a d _ c s v ( " pdmf5 . d a t " , sep = ’ ’ , comment= ’ # ’ , h e a d e r = None )
d a t a 5 = d a t a 5 . a s _ m a t r i x ( )

29
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# I mp or t g a l p r o p . d a t f o r each s i m u l a t i o n
31 # I s o t r e e 1

g_prop1 = pd . r e a d _ c s v ( " g a l p r o p 1 . d a t " , sep = ’ ’ , comment= ’ # ’ , h e a d e r = None
)

33 g_prop1 = g_prop1 . a s _ m a t r i x ( )
# I s o t r e e 1

35 g_prop2 = pd . r e a d _ c s v ( " g a l p r o p 2 . d a t " , sep = ’ ’ , comment= ’ # ’ , h e a d e r = None
)

g_prop2 = g_prop2 . a s _ m a t r i x ( )
37 # I s o t r e e 0

g_prop3 = pd . r e a d _ c s v ( " g a l p r o p 3 . d a t " , sep = ’ ’ , comment= ’ # ’ , h e a d e r = None
)

39 g_prop3 = g_prop3 . a s _ m a t r i x ( )
# I s o t r e e 2

41 g_prop4 = pd . r e a d _ c s v ( " g a l p r o p 4 . d a t " , sep = ’ ’ , comment= ’ # ’ , h e a d e r = None
)

g_prop4 = g_prop4 . a s _ m a t r i x ( )
43 # I s o t r e e 3

g_prop5 = pd . r e a d _ c s v ( " g a l p r o p 5 . d a t " , sep = ’ ’ , comment= ’ # ’ , h e a d e r = None
)

45 g_prop5 = g_prop5 . a s _ m a t r i x ( )

47

# S t a c k t h e d a t a t o g e t h e r
49 d a t a =np . c o n c a t e n a t e ( ( da ta1 , da ta2 , da ta3 , da ta4 , d a t a 5 ) , a x i s =0)

g a l _ p r o p =np . c o n c a t e n a t e ( ( g_prop1 , g_prop2 , g_prop3 , g_prop4 , g_prop5 ) , a x i s
=0)

51

# b i n s e q u a l l y sp ac e d i n l o g s p a c e / w r i t t e n i n l i n s p a c e ( s t e l l a r mass
from 0 . 1 t o 1 . 8 Msun )

53 m_bins=np . g e n f r o m t x t ( " b i n s . d a t " )
# v e l o c i t y d i s p e r s i o n b i n s wi th a v e r a g e 150 ,190 ,230 ,270 ,310 and +−20 km / s

55 s i g m a _ b i n s =np . a r r a y ( [ 1 3 0 , 1 7 0 , 2 1 0 , 2 5 0 , 2 9 0 , 3 3 0 ] )
# I mp or t Z s t a r from g a l _ p r o p

57 z _ s t a r = g a l _ p r o p [ : , 1 9 ]
## ######################################################################

59 #Use on ly e a r l y t y p e g a l a x i e s <=> low s f r
## ######################################################################

61 # Requ i remen t 1 : S e l e c t g a l a x i e s wi th SFR / Mstar <10e−11 yr−1
# I mp or t t h e Mstar a s l i n

63 l o g _ m s t a r = d a t a [ : , 3 ]
m s t a r =10∗∗ l o g _ m s t a r

65 # I mp or t s f r
s f r = d a t a [ : , 8 ]

67 # Find t h e i n d i c e s o f t h e g a l a x i e s
g a l _ i n d i =np . where ( np . d i v i d e ( s f r , m s t a r ) <10e−11)

69

# I mp or t t h e whole pdmf and s e l e c t t h e pdmf f o r t h e g a l a x i e s t h a t f i t i n
r e q u i r e m e n t 1

71 pdmf= d a t a [ : , 9 : −1 ]
pdmf=pdmf [ g a l _ i n d i ]

73 l o g _ m s t a r = l o g _ m s t a r [ g a l _ i n d i ]
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z _ s t a r = z _ s t a r [ g a l _ i n d i ]
75 # I mp or t t h e whole sigma and s e l e c t t h e pdmf f o r t h e g a l a x i e s t h a t f i t i n

r e q u i r e m e n t 1
sigma= d a t a [ : , 2 ]

77 s igma=sigma [ g a l _ i n d i ]
# Requ i remen t 2 : F ind t h e g a l a x i e s t h a t have sigma between 130 and 330

79 s i g m a _ i n d i =np . where ( np . l o g i c a l _ a n d ( sigma >=130 , sigma <=330) )
# F i n a l s igma and pdmf v a l u e s f o r t h e g a l a x i e s t h a t f i t i n r e q u i r e m e n t 1

and 2
81 pdmf=pdmf [ s i g m a _ i n d i ]

s igma=sigma [ s i g m a _ i n d i ]
83 l o g _ m s t a r = l o g _ m s t a r [ s i g m a _ i n d i ]

z _ s t a r = z _ s t a r [ s i g m a _ i n d i ]
85 # Use g a l a x i e s wi th Mstar >9

m a s s _ i n d i =np . where ( l o g _ m s t a r >=9)
87 pdmf=pdmf [ m a s s _ i n d i ]

s igma=sigma [ m a s s _ i n d i ]
89 l o g _ m s t a r = l o g _ m s t a r [ m a s s _ i n d i ]

z _ s t a r = z _ s t a r [ m a s s _ i n d i ]
91 # C a l c u l a t e t h e median i n each mass b i n f o r e v e r y v e l o c i t y d i s p e r s i o n b i n

med = [ ]
93 # Std f o r each b i n

std_med = [ ]
95 p r i n t ( np . shape ( pdmf ) , np . shape ( s igma ) )

97 # F i n a l Mstar and Z wi th v a l u e s i n d i f f e r e n t columns
M _ s t a r _ f i n a l = [ ]

99 Z _ s t a r _ f i n a l = [ ]

101 #Loop t h r o u g h t h e sigma b i n s
f o r i i n r a n g e ( l e n ( s i g m a _ b i n s )−1) :

103 # C r e a t e an empty a r r a y f o r t h e median pdmf
med_pdmf = [ ]

105 M _ s t a r _ b i n = [ ]
Z _ s t a r _ b i n = [ ]

107 f o r j i n r a n g e ( l e n ( s igma ) ) :
#Loop t h r o u g h a l l t h e g a l a x i e s and i f s igma f i t s i n t h e g i v e n

bin , add t h e pdmf i n t h e a r r a y
109 i f ( s igma [ j ] >= s i g m a _ b i n s [ i ] and sigma [ j ] <= s i g m a _ b i n s [ i + 1 ] ) :

med_pdmf . append ( pdmf [ j , : ] )
111 M _ s t a r _ b i n . append ( l o g _ m s t a r [ j ] )

Z _ s t a r _ b i n . append ( z _ s t a r [ j ] )
113

# c a l c u l a t e t h e median pdmf as w e l l a s t h e s t a n d a r d d e v i a t i o n
115 med_imf=np . median ( med_pdmf , a x i s =0)

s t d =np . s t d ( med_pdmf , a x i s =0)
117 # add i t t o t h e f i n a l a r r a y

med . append ( med_imf )
119 s td_med . append ( s t d )

M _ s t a r _ f i n a l . append ( M _ s t a r _ b i n )
121 Z _ s t a r _ f i n a l . append ( Z _ s t a r _ b i n )
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123 # Get from b i n s t o p o i n t s i n t h e mass r a n g e ( t h e a v e r a g e o f 2 v a l u e s i n
l o g s p a c e i s t h e g e o m e t r i c a v e r a g e i n l i n s p a c e )

m_po in t s = [ ]
125 f o r i i n r a n g e ( l e n ( m_bins )−1) :

m_po in t s . append ( np . s q r t ( m_bins [ i ]∗m_bins [ i + 1 ] ) )
127 m_poin t s =np . log10 ( m_po in t s )

# Average mass i n each mass b i n
129 m_mean = [ ]

f o r i i n r a n g e ( l e n ( m_bins )−1) :
131 m_mean . append ( np . mean ( ( m_bins [ i ]+ m_bins [ i + 1 ] ) / 2 ) )

133 # D iv id e t h e median pdmf ’ s f o r e v e r y sigma

135

137 # F u n c t i o n which c a l c u l a t e s t h e e r r o r i n e v e r y dN / dLogM p o i n t from t h e dM
v a l u e s

d e f gamma_error ( median , s igma_median ) :
139 e r r =np . m u l t i p l y ( 0 . 4 3 4 , np . d i v i d e ( sigma_median , median ) )

r e t u r n e r r
141 # S e p a r a t e t h e pmdfs and t h e e r r o r s f o r each sigma b i n

med_150=np . log10 ( np . d i v i d e ( med [ 0 ] , m_mean ) )
143 s t d _ 1 5 0 =gamma_error ( med [ 0 ] , s td_med [ 0 ] )

145 med_190=np . log10 ( np . d i v i d e ( med [ 1 ] , m_mean ) )
s t d _ 1 9 0 =gamma_error ( med [ 1 ] , s td_med [ 1 ] )

147

med_230=np . log10 ( np . d i v i d e ( med [ 2 ] , m_mean ) )
149 s t d _ 2 3 0 =gamma_error ( med [ 2 ] , s td_med [ 2 ] )

151 med_270=np . log10 ( np . d i v i d e ( med [ 3 ] , m_mean ) )
s t d _ 2 7 0 =gamma_error ( med [ 3 ] , s td_med [ 3 ] )

153

med_310=np . log10 ( np . d i v i d e ( med [ 4 ] , m_mean ) )
155 s t d _ 3 1 0 =gamma_error ( med [ 4 ] , s td_med [ 4 ] )

157

159

# P l o t t i n g t h e IMF f o r e v e r y sigma
161 p l t . f i g u r e ( f i g s i z e = ( 1 2 , 1 2 ) )

# P l o t w i t h o u t e r r o r b a r s
163 p l t . p l o t ( m_points , med_150 , ’ ro ’ , c o l o r = ’ r e d ’ , l a b e l = r " $ \ s igma =150$ $km / s$

$and$ $ \ a l p h a =2 .24 $ " )
p l t . p l o t ( m_points , med_190 , ’ ro ’ , c o l o r = ’ b l a c k ’ , l a b e l = r " $ \ s igma =190$ $km / s$

$and$ $ \ a l p h a =2 .40 $ " )
165 p l t . p l o t ( m_points , med_230 , ’ ro ’ , c o l o r = ’ b l u e ’ , l a b e l = r " $ \ s igma =230$ $km / s$

$and$ $ \ a l p h a =2 .48 $ " )
p l t . p l o t ( m_points , med_270 , ’ ro ’ , c o l o r = ’ g r e e n ’ , l a b e l = r " $ \ s igma =270$ $km / s$

$and$ $ \ a l p h a =2 .53 $ " )
167 p l t . p l o t ( m_points , med_310 , ’ ro ’ , c o l o r = ’ o r a ng e ’ , l a b e l = r " $ \ s igma =310$ $km /

s$ $and$ $ \ a l p h a =2 .53 $ " )
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# P l o t w i th e r r o r b a r s
169 # p l t . e r r o r b a r ( m_points , med_150 , y e r r = s td_150 , fmt = ’o ’ , c o l o r = ’ red ’ , l a b e l = r "

$ \ s igma =150\ pm20$ $km / s$ " )
# p l t . e r r o r b a r ( m_points , med_190 , y e r r = s td_190 , fmt = ’o ’ , c o l o r = ’ red ’ , l a b e l = r "

$ \ s igma =190\ pm20$ $km / s$ " )
171 # p l t . e r r o r b a r ( m_points , med_230 , y e r r = s td_230 , fmt = ’o ’ , c o l o r = ’ red ’ , l a b e l = r "

$ \ s igma =230\ pm20$ $km / s$ " )
# p l t . e r r o r b a r ( m_points , med_270 , y e r r = s td_270 , fmt = ’o ’ , c o l o r = ’ red ’ , l a b e l = r "

$ \ s igma =270\ pm20$ $km / s$ " )
173 # p l t . e r r o r b a r ( m_points , med_310 , y e r r = s td_310 , fmt = ’o ’ , c o l o r = ’ red ’ , l a b e l = r "

$ \ s igma =310\ pm20$ $km / s$ " )

175 # Legend and l a b e l s
p l t . x l a b e l ( r ’ $Log$ $M_{∗}$ ’ , f o n t s i z e =23)

177 p l t . y l a b e l ( r ’ $ \ f r a c {dN}{ dlogM}$ ’ , f o n t s i z e =26)
p l t . x l im ( np . log10 ( 0 . 1 ) , np . log10 ( 0 . 4 0 ) )

179 p l t . y l im ( −0 .5 ,1 )

181 # F i t t i n g l i n e s t o IMF f o r e v e r y sigma v a l u e . Only f o r v a l u e s between 0 . 1
and 0 . 4 s o l a r masses . The 18 t h e l e m e n t

# c o r r e s p o n d s t o t h e 0 . 7M l i m i t , t h e 12 t h e l e m e n t c o r r e s p o n d s t o 0 . 4
s o l a r masses .

183 d e f l i m i t _ s l o p e ( l o w _ l i m i t , h i g h _ l i m i t ) :
m_point_new= m_poin t s [ l o w _ l i m i t : h i g h _ l i m i t ]

185

imf_150=med_150 [ l o w _ l i m i t : h i g h _ l i m i t ]
187 s td_150_new= s t d _ 1 5 0 [ l o w _ l i m i t : h i g h _ l i m i t ]

189 imf_190=med_190 [ l o w _ l i m i t : h i g h _ l i m i t ]
s td_190_new= s t d _ 1 9 0 [ l o w _ l i m i t : h i g h _ l i m i t ]

191

imf_230=med_230 [ l o w _ l i m i t : h i g h _ l i m i t ]
193 s td_230_new= s t d _ 2 3 0 [ l o w _ l i m i t : h i g h _ l i m i t ]

195 imf_270=med_270 [ l o w _ l i m i t : h i g h _ l i m i t ]
s td_270_new= s t d _ 2 7 0 [ l o w _ l i m i t : h i g h _ l i m i t ]

197

imf_310=med_310 [ l o w _ l i m i t : h i g h _ l i m i t ]
199 s td_310_new= s t d _ 3 1 0 [ l o w _ l i m i t : h i g h _ l i m i t ]

r e t u r n m_point_new , imf_150 , imf_190 , imf_230 , imf_270 , imf_310 ,
std_150_new , std_190_new , std_230_new , std_270_new , s td_310_new

201

# I know t h i s i s a ve ry we i rd way of do ing i t
203 m_points_1 , imf_150_1 , imf_190_1 , imf_230_1 , imf_270_1 , imf_310_1 , s td_150_1 ,

s td_190_1 , s td_230_1 , s td_270_1 , s td_310_1 = l i m i t _ s l o p e ( 0 , 1 8 )
m_points_2 , imf_150_2 , imf_190_2 , imf_230_2 , imf_270_2 , imf_310_2 , s td_150_2 ,

s td_190_2 , s td_230_2 , s td_270_2 , s td_310_2 = l i m i t _ s l o p e ( 0 , 1 2 )
205 m_points_3 , imf_150_3 , imf_190_3 , imf_230_3 , imf_270_3 , imf_310_3 , s td_150_3 ,

s td_190_3 , s td_230_3 , s td_270_3 , s td_310_3 = l i m i t _ s l o p e ( 1 1 , 1 8 )

207

# Line f i t t i n g where a∗x+b=0
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209 d e f l i n _ f u n c ( x , a , b ) :
r e t u r n a∗x+b

211 # I n i t i a l g u e s s . 0 ,0 f o r s i m p l i c i t y
x0=np . a r r a y ( [ 0 . 0 , 0 . 0 ] )

213

# F u n c t i o n which c a l c u l a t e s t h e s l o p e and i n t e r c e p t v a l u e s as w e l l a s t h e
e r r o r s i n them , u s i n g a w e i g h t e d l e a s t s q u a r e

215 d e f p a r a m _ v a l u e s ( xda ta , yda ta , y s t d ) :
param= o p t . c u r v e _ f i t ( l i n _ f u n c , xda ta , yda ta , x0 , y s t d )

217 v a l u e s =param [ 0 ]
a= v a l u e s [ 0 ]

219 b= v a l u e s [ 1 ]
pcov=param [ 1 ]

221 p e r r = np . s q r t ( np . d i a g ( pcov ) )
a e r r = p e r r [ 0 ]

223 b e r r = p e r r [ 1 ]
r e t u r n a , b , a e r r

225 # C a l c u l a t e t h e s l o p e a , t h e i n t e r c e p t b and t h e e r r o r i n t h e s l o p e s t d
f o r each b i n

# 0.1−0.7
227 a1_1 , b1_1 , s t d 1 _ 1 = p a r a m _ v a l u e s ( m_points_1 , imf_150_1 , s td_150_1 )

a2_1 , b2_1 , s t d 2 _ 1 = p a r a m _ v a l u e s ( m_points_1 , imf_190_1 , s td_190_1 )
229 a3_1 , b3_1 , s t d 3 _ 1 = p a r a m _ v a l u e s ( m_points_1 , imf_230_1 , s td_230_1 )

a4_1 , b4_1 , s t d 4 _ 1 = p a r a m _ v a l u e s ( m_points_1 , imf_270_1 , s td_270_1 )
231 a5_1 , b5_1 , s t d 5 _ 1 = p a r a m _ v a l u e s ( m_points_1 , imf_310_1 , s td_310_1 )

# 0.1−0.4
233 a1_2 , b1_2 , s t d 1 _ 2 = p a r a m _ v a l u e s ( m_points_2 , imf_150_2 , s td_150_2 )

a2_2 , b2_2 , s t d 2 _ 2 = p a r a m _ v a l u e s ( m_points_2 , imf_190_2 , s td_190_2 )
235 a3_2 , b3_2 , s t d 3 _ 2 = p a r a m _ v a l u e s ( m_points_2 , imf_230_2 , s td_230_2 )

a4_2 , b4_2 , s t d 4 _ 2 = p a r a m _ v a l u e s ( m_points_2 , imf_270_2 , s td_270_2 )
237 a5_2 , b5_2 , s t d 5 _ 2 = p a r a m _ v a l u e s ( m_points_2 , imf_310_2 , s td_310_2 )

# 0.4−0.7
239 a1_3 , b1_3 , s t d 1 _ 3 = p a r a m _ v a l u e s ( m_points_3 , imf_150_3 , s td_150_3 )

a2_3 , b2_3 , s t d 2 _ 3 = p a r a m _ v a l u e s ( m_points_3 , imf_190_3 , s td_190_3 )
241 a3_3 , b3_3 , s t d 3 _ 3 = p a r a m _ v a l u e s ( m_points_3 , imf_230_3 , s td_230_3 )

a4_3 , b4_3 , s t d 4 _ 3 = p a r a m _ v a l u e s ( m_points_3 , imf_270_3 , s td_270_3 )
243 a5_3 , b5_3 , s t d 5 _ 3 = p a r a m _ v a l u e s ( m_points_3 , imf_310_3 , s td_310_3 )

245

# P r i n t t h e IMF s l o p e wi th t h e s t a n d a r d d e v i a t i o n
247 # p r i n t ( " IMF s l o p e f o r s igma : 150=" ,− a1 +1 ,"190=" ,− a2 +1 ,"230=" ,− a3

+1 ,"270=" ,− a4 +1 ,"310=" ,− a5 +1)
# p r i n t ( " STD=" , s td1 , s td2 , s td3 , s td4 , s t d 5 )

249 # Get t h e l i n e s f o r t h e f i t
m1=np . m u l t i p l y ( m_points_2 , a1_2 ) +b1_2

251 m2=np . m u l t i p l y ( m_points_2 , a2_2 ) +b2_2
m3=np . m u l t i p l y ( m_points_2 , a3_2 ) +b3_2

253 m4=np . m u l t i p l y ( m_points_2 , a4_2 ) +b4_2
m5=np . m u l t i p l y ( m_points_2 , a5_2 ) +b5_2

255 # P l o t t h e l i n e s ove r t h e d a t a p o i n t s
p l t . p l o t ( m_points_2 , m1 , c o l o r = ’ r e d ’ , l i n e w i d t h =1)

257 p l t . p l o t ( m_points_2 , m2 , c o l o r = ’ b l a c k ’ , l i n e w i d t h =1)
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p l t . p l o t ( m_points_2 , m3 , c o l o r = ’ b l u e ’ , l i n e w i d t h =1)
259 p l t . p l o t ( m_points_2 , m4 , c o l o r = ’ g r e e n ’ , l i n e w i d t h =1)

p l t . p l o t ( m_points_2 , m5 , c o l o r = ’ o r a ng e ’ , l i n e w i d t h =1)
261 p l t . g r i d ( )

p r i n t ( a5_1 , a5_2 , a5_3 )
263 ## −1.32968491193 −1.2411670839 −1.39176263458

## −1.4942263311 −1.40904255851 −1.55111688385
265 ## −1.5779696297 −1.48712424856 −1.63870761322

## −1.63172185674 −1.53289937492 −1.69785262867
267 ## −1.63215511227 −1.52639856457 −1.69759069844

p l t . l e g e n d ( f o n t s i z e =20 , l o c =3)
269

271 ## ######################################################################
#Compare wi th S p i n i e l l o e t a l . 2014

273 ## ######################################################################
#The S p i n i e l l o d a t a

275 s p i n _ i m f =np . a r r a y ( [ 1 . 8 5 , 2 . 0 8 , 2 . 3 3 , 2 . 4 0 , 2 . 6 2 ] )
s p i n _ i m f _ e r r =np . a r r a y ( [ 0 . 2 , 0 . 2 , 0 . 4 , 0 . 3 , 0 . 4 ] )

277 p l t . f i g u r e ( f i g s i z e = ( 1 7 , 7 ) )
# Th i s work d a t a

279 i m f _ s l o p e _ 1 =np . a r r a y ([− a1_1 ,−a2_1 ,−a3_1 ,−a4_1 ,− a5_1 ] ) +1
i m f _ s l o p e _ 2 =np . a r r a y ([− a1_2 ,−a2_2 ,−a3_2 ,−a4_2 ,− a5_2 ] ) +1

281 i m f _ s l o p e _ 3 =np . a r r a y ([− a1_3 ,−a2_3 ,−a3_3 ,−a4_3 ,− a5_3 ] ) +1
p r i n t ( imf_s lope_1 , imf_s lope_2 , i m f _ s l o p e _ 3 )

283 # P l o t t i n g t h e e r r o r b a r s
p l t . e r r o r b a r ( [ 1 5 0 , 1 9 0 , 2 3 0 , 2 7 0 , 3 1 0 ] , sp in_ imf , x e r r =20 , y e r r = s p i n _ i m f _ e r r ,

fmt= ’ o ’ , c o l o r = ’ r e d ’ , l a b e l = ’ S p i n i e l l o e t a l . 2014 ’ )
285 p l t . e r r o r b a r ( [ 1 5 0 , 1 9 0 , 2 3 0 , 2 7 0 , 3 1 0 ] , imf_s lope_1 , x e r r =20 , y e r r =np . m u l t i p l y

( 5 , [ s td1_1 , s td2_1 , s td3_1 , s td4_1 , s t d 5 _ 1 ] ) , fmt= ’ o ’ , c o l o r = ’ b l u e ’ , l a b e l =
’ 0.1−0.7 ’ )

p l t . e r r o r b a r ( [ 1 5 0 , 1 9 0 , 2 3 0 , 2 7 0 , 3 1 0 ] , imf_s lope_2 , x e r r =20 , y e r r =np . m u l t i p l y
( 5 , [ s td1_2 , s td2_2 , s td3_2 , s td4_2 , s t d 5 _ 2 ] ) , fmt= ’ o ’ , c o l o r = ’ g r e e n ’ , l a b e l
= ’ 0.1−0.4 ’ )

287 p l t . e r r o r b a r ( [ 1 5 0 , 1 9 0 , 2 3 0 , 2 7 0 , 3 1 0 ] , imf_s lope_3 , x e r r =20 , y e r r =np . m u l t i p l y
( 5 , [ s td1_3 , s td2_3 , s td3_3 , s td4_3 , s t d 5 _ 3 ] ) , fmt= ’ o ’ , c o l o r = ’ b l a c k ’ , l a b e l
= ’ 0.4−0.7 ’ )

# F u n c t i o n t h a t f i t s S p i n i e l l o da t a , n o t used
289 d e f fun ( x ) :

r e t u r n 2 . 3∗ np . log10 ( x / 2 0 0 ) +2 .1
291 a , b , c , d , e= s s . l i n r e g r e s s ( np . log10 ( [ 1 5 0 , 1 9 0 , 2 3 0 , 2 7 0 , 3 1 0 ] ) , i m f _ s l o p e _ 1 )

s igmas =np . l i n s p a c e ( 1 0 0 , 3 3 0 , 1 0 0 )
293 # p l t . p l o t ( s igmas , np . m u l t i p l y ( np . log10 ( s igmas ) , a ) +b )

# p r i n t ( " S lope =" , a , " I n t e r c e p t p o i n t =" , b )
295 # F i t s t o t h e d a t a p o i n t s

# p l t . p l o t ( s igmas , fun ( s igmas ) , c o l o r = ’ red ’ )
297 # p l t . p l o t ( s igmas , np . m u l t i p l y ( np . log10 ( s igmas ) , a ) +b , c o l o r = ’ b lue ’ )

### P l o t t i n g l e g e n d
299 p l t . t i t l e ( r "IMF s l o p e as a f u n c t i o n o f $ \ s igma$ " , f o n t s i z e =20)

p l t . x l a b e l ( r " $ \ s igma$ $ (km / s ) $ " , f o n t s i z e =26)
301 p l t . y l a b e l ( r " $IMF$ $ s l o p e $ $ ( \ a l p h a ) $ " , f o n t s i z e =26)

p l t . g r i d ( )
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303 p l t . l e g e n d ( l o c =4 , f o n t s i z e =20)
# P l o t t i n g S a p l e t e r and C h a b r i e r

305 p l t . p l o t ( [ 1 0 0 , 3 5 0 ] , [ 2 . 3 5 , 2 . 3 5 ] , ’−− ’ , l i n e w i d t h =2 , c o l o r = ’ b l a c k ’ , l a b e l = ’
S a l p e t e r ’ )

p l t . t e x t ( 1 0 2 , 2 . 3 7 , ’ S a l p e t e r ’ , f o n t s i z e =20)
307 p l t . p l o t ( [ 1 0 0 , 3 5 0 ] , [ 1 . 8 , 1 . 8 ] , ’−− ’ , l i n e w i d t h =2 , c o l o r = ’ b l a c k ’ , l a b e l = ’

C h a b r i e r ’ )
p l t . t e x t ( 2 0 0 , 1 . 8 2 , ’ C h a b r i e r− l i k e ’ , f o n t s i z e =20)

309

##
#######################################################################

311 # A n a l y t i c s o l u t i o n compar i son
##

#######################################################################

313 p l t . f i g u r e ( f i g s i z e = ( 1 7 , 7 ) )
p l t . e r r o r b a r ( [ 1 5 0 , 1 9 0 , 2 3 0 , 2 7 0 , 3 1 0 ] , sp in_ imf , x e r r =20 , y e r r = s p i n _ i m f _ e r r ,

fmt= ’ o ’ , c o l o r = ’ r e d ’ , l a b e l = ’ S p i n i e l l o e t a l . 2014 ’ )
315 p l t . e r r o r b a r ( [ 1 5 0 , 1 9 0 , 2 3 0 , 2 7 0 , 3 1 0 ] , [ 2 . 4 8 , 2 . 5 2 , 2 . 5 3 , 2 . 5 6 , 2 . 5 4 ] , x e r r =20 ,

fmt= ’ o ’ , c o l o r = ’ b l u e ’ , l a b e l = ’ A n a l y t i c S o l u t i o n ’ )
p l t . t i t l e ( r "IMF s l o p e as a f u n c t i o n o f $ \ s igma$ " , f o n t s i z e =20)

317 p l t . x l a b e l ( r " $ \ s igma$ $ (km / s ) $ " , f o n t s i z e =26)
p l t . y l a b e l ( r " $IMF$ $ s l o p e $ $ ( \ a l p h a ) $ " , f o n t s i z e =26)

319 p l t . g r i d ( )
p l t . l e g e n d ( l o c =4 , f o n t s i z e =20)

321 # P l o t t i n g S a p l e t e r and C h a b r i e r
p l t . p l o t ( [ 1 0 0 , 3 5 0 ] , [ 2 . 3 5 , 2 . 3 5 ] , ’−− ’ , l i n e w i d t h =2 , c o l o r = ’ b l a c k ’ , l a b e l = ’

S a l p e t e r ’ )
323 p l t . t e x t ( 1 0 2 , 2 . 3 7 , ’ S a l p e t e r ’ , f o n t s i z e =20)

p l t . p l o t ( [ 1 0 0 , 3 5 0 ] , [ 1 . 8 , 1 . 8 ] , ’−− ’ , l i n e w i d t h =2 , c o l o r = ’ b l a c k ’ , l a b e l = ’
C h a b r i e r ’ )

325 p l t . t e x t ( 2 0 0 , 1 . 8 2 , ’ C h a b r i e r− l i k e ’ , f o n t s i z e =20)

327 ## ######################################################################
# A n a l y t i c vs Numer ica l

329 ## ######################################################################
p l t . f i g u r e ( f i g s i z e = ( 1 7 , 7 ) )

331 p l t . e r r o r b a r ( [ 1 5 0 , 1 9 0 , 2 3 0 , 2 7 0 , 3 1 0 ] , [ 2 . 4 8 , 2 . 5 2 , 2 . 5 3 , 2 . 5 6 , 2 . 5 4 ] , x e r r =20 ,
fmt= ’ o ’ , c o l o r = ’ r e d ’ , l a b e l = ’ A n a l y t i c ’ )

p l t . e r r o r b a r ( [ 1 5 0 , 1 9 0 , 2 3 0 , 2 7 0 , 3 1 0 ] , imf_s lope_1 , x e r r =20 , y e r r =np . m u l t i p l y
( 5 , [ s td1_1 , s td2_1 , s td3_1 , s td4_1 , s t d 5 _ 1 ] ) , fmt= ’ o ’ , c o l o r = ’ b l u e ’ , l a b e l =
’ Numeric ’ )

333 p l t . t i t l e ( r "IMF s l o p e as a f u n c t i o n o f $ \ s igma$ " , f o n t s i z e =20)
p l t . x l a b e l ( r " $ \ s igma$ $ (km / s ) $ " , f o n t s i z e =26)

335 p l t . y l a b e l ( r " $IMF$ $ s l o p e $ $ ( \ a l p h a ) $ " , f o n t s i z e =26)
p l t . g r i d ( )

337 p l t . l e g e n d ( l o c =4 , f o n t s i z e =20)
p l t . p l o t ( [ 1 0 0 , 3 5 0 ] , [ 2 . 3 5 , 2 . 3 5 ] , ’−− ’ , l i n e w i d t h =2 , c o l o r = ’ b l a c k ’ , l a b e l = ’

S a l p e t e r ’ )
339 p l t . t e x t ( 1 0 2 , 2 . 3 7 , ’ S a l p e t e r ’ , f o n t s i z e =20)
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p l t . p l o t ( [ 1 0 0 , 3 5 0 ] , [ 1 . 8 , 1 . 8 ] , ’−− ’ , l i n e w i d t h =2 , c o l o r = ’ b l a c k ’ , l a b e l = ’
C h a b r i e r ’ )

341 p l t . t e x t ( 2 0 0 , 1 . 8 2 , ’ C h a b r i e r− l i k e ’ , f o n t s i z e =20)
p l t . y l im ( 1 . 6 , 3 . 2 )

343

## #####################################################################
345 # Mass and m e t a l l i c i t y h i s t o g r a m s

## #####################################################################
347 p l t . f i g u r e ( f i g s i z e = ( 1 0 , 1 0 ) )

# b i n s = [ 9 , 9 . 5 , 1 0 , 1 0 . 5 , 1 1 , 1 1 . 5 , 1 2 ]
349 # Weights f o r t h e h i s t o g r a m s

w_1=np . o n e s _ l i k e ( M _ s t a r _ f i n a l [ 0 ] ) / f l o a t ( l e n ( M _ s t a r _ f i n a l [ 0 ] ) )
351 w_2=np . o n e s _ l i k e ( M _ s t a r _ f i n a l [ 1 ] ) / f l o a t ( l e n ( M _ s t a r _ f i n a l [ 1 ] ) )

w_3=np . o n e s _ l i k e ( M _ s t a r _ f i n a l [ 2 ] ) / f l o a t ( l e n ( M _ s t a r _ f i n a l [ 2 ] ) )
353 w_4=np . o n e s _ l i k e ( M _ s t a r _ f i n a l [ 3 ] ) / f l o a t ( l e n ( M _ s t a r _ f i n a l [ 3 ] ) )

w_5=np . o n e s _ l i k e ( M _ s t a r _ f i n a l [ 4 ] ) / f l o a t ( l e n ( M _ s t a r _ f i n a l [ 4 ] ) )
355 ## #####

b i n s = [ 9 , 9 . 5 , 1 0 , 1 0 . 5 , 1 1 , 1 1 . 5 , 1 2 ]
357 p l t . h i s t ( M _ s t a r _ f i n a l [ 0 ] , b i n s = b ins , w e i g h t s =w_1 , f i l l = F a l s e , l i n e w i d t h

=2 , h a t c h = ’ / / ’ , h i s t t y p e = ’ s t e p ’ , c o l o r = ’ r e d ’ , l a b e l = ’ 150 ’ )
p l t . h i s t ( M _ s t a r _ f i n a l [ 1 ] , b i n s = b ins , w e i g h t s =w_2 , f i l l = F a l s e , l i n e w i d t h

=2 , h a t c h = ’ \ \ \ \ ’ , h i s t t y p e = ’ s t e p ’ , c o l o r = ’ b l a c k ’ , l a b e l = ’ 190 ’ )
359 p l t . h i s t ( M _ s t a r _ f i n a l [ 2 ] , b i n s = b ins , w e i g h t s =w_3 , f i l l = F a l s e , l i n e w i d t h

=1 , h a t c h = ’−− ’ , h i s t t y p e = ’ s t e p ’ , c o l o r = ’ b l u e ’ , l a b e l = ’ 230 ’ )
p l t . h i s t ( M _ s t a r _ f i n a l [ 3 ] , b i n s = b ins , w e i g h t s =w_4 , f i l l = F a l s e , l i n e w i d t h

=1 , h a t c h = ’ \ \ \ \ ’ , h i s t t y p e = ’ s t e p ’ , c o l o r = ’ g r e e n ’ , l a b e l = ’ 270 ’ )
361 p l t . h i s t ( M _ s t a r _ f i n a l [ 4 ] , b i n s = b ins , w e i g h t s =w_5 , f i l l = F a l s e , l i n e w i d t h

=4 , h a t c h = ’ / / ’ , h i s t t y p e = ’ s t e p ’ , c o l o r = ’ o r an g e ’ , l a b e l = ’ 310 ’ )
p l t . l e g e n d ( l o c =2 , f o n t s i z e =15)

363 p l t . x l a b e l ( r ’ $Log \ ,M_{∗}$ ’ , f o n t s i z e =23)

365

367

# For t h e m e t a l l i c i t y , I had t o remove t h e nan v a l u e s from t h e a r r a y .
Th i s i s how I d i d i t :

369 Z _ s t a r _ 1 5 0 = np . a r r a y ( Z _ s t a r _ f i n a l [ 0 ] )
Z _ s t a r _ 1 5 0 = Z _ s t a r _ 1 5 0 [~ np . i s n a n ( Z _ s t a r _ 1 5 0 ) ]

371 Z _ s t a r _ 1 5 0 = np . log10 ( Z _ s t a r _ 1 5 0 )

373 Z _ s t a r _ 1 9 0 = np . a r r a y ( Z _ s t a r _ f i n a l [ 1 ] )
Z _ s t a r _ 1 9 0 = Z _ s t a r _ 1 9 0 [~ np . i s n a n ( Z _ s t a r _ 1 9 0 ) ]

375 Z _ s t a r _ 1 9 0 = np . log10 ( Z _ s t a r _ 1 9 0 )

377 Z _ s t a r _ 2 3 0 = np . a r r a y ( Z _ s t a r _ f i n a l [ 2 ] )
Z _ s t a r _ 2 3 0 = Z _ s t a r _ 2 3 0 [~ np . i s n a n ( Z _ s t a r _ 2 3 0 ) ]

379 Z _ s t a r _ 2 3 0 = np . log10 ( Z _ s t a r _ 2 3 0 )

381 Z _ s t a r _ 2 7 0 = np . a r r a y ( Z _ s t a r _ f i n a l [ 3 ] )
Z _ s t a r _ 2 7 0 = Z _ s t a r _ 2 7 0 [~ np . i s n a n ( Z _ s t a r _ 2 7 0 ) ]

383 Z _ s t a r _ 2 7 0 = np . log10 ( Z _ s t a r _ 2 7 0 )
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385 Z _ s t a r _ 3 1 0 = np . a r r a y ( Z _ s t a r _ f i n a l [ 4 ] )
Z _ s t a r _ 3 1 0 = Z _ s t a r _ 3 1 0 [~ np . i s n a n ( Z _ s t a r _ 3 1 0 ) ]

387 Z _ s t a r _ 3 1 0 = np . log10 ( Z _ s t a r _ 3 1 0 )
# F i n a l a r r a y

389 Z _ s t a r _ f i n a l =[ Z_s ta r_150 , Z_s t a r_190 , Z_s t a r_230 , Z_s t a r_270 , Z _ s t a r _ 3 1 0 ]
# Weights f o r t h e h i s t o g r a m

391 W_1=np . o n e s _ l i k e ( Z _ s t a r _ f i n a l [ 0 ] ) / f l o a t ( l e n ( Z _ s t a r _ f i n a l [ 0 ] ) )
W_2=np . o n e s _ l i k e ( Z _ s t a r _ f i n a l [ 1 ] ) / f l o a t ( l e n ( Z _ s t a r _ f i n a l [ 1 ] ) )

393 W_3=np . o n e s _ l i k e ( Z _ s t a r _ f i n a l [ 2 ] ) / f l o a t ( l e n ( Z _ s t a r _ f i n a l [ 2 ] ) )
W_4=np . o n e s _ l i k e ( Z _ s t a r _ f i n a l [ 3 ] ) / f l o a t ( l e n ( Z _ s t a r _ f i n a l [ 3 ] ) )

395 W_5=np . o n e s _ l i k e ( Z _ s t a r _ f i n a l [ 4 ] ) / f l o a t ( l e n ( Z _ s t a r _ f i n a l [ 4 ] ) )
# P l o t t i n g t h e f i g u r e

397 p l t . f i g u r e ( f i g s i z e = ( 1 0 , 1 0 ) )
z b i n s =np . l i n s p a c e ( −0 . 1 , 0 . 3 , 1 0 )

399 p l t . h i s t ( Z _ s t a r _ f i n a l [ 0 ] , b i n s = z b i n s , w e i g h t s =W_1, f i l l = F a l s e , l i n e w i d t h
=2 , h a t c h = ’ / / ’ , h i s t t y p e = ’ s t e p ’ , c o l o r = ’ r e d ’ , l a b e l = ’ 150 ’ )

p l t . h i s t ( Z _ s t a r _ f i n a l [ 1 ] , b i n s = z b i n s , w e i g h t s =W_2, f i l l = F a l s e , l i n e w i d t h
=2 , h a t c h = ’ \ \ \ \ ’ , h i s t t y p e = ’ s t e p ’ , c o l o r = ’ b l a c k ’ , l a b e l = ’ 190 ’ )

401 p l t . h i s t ( Z _ s t a r _ f i n a l [ 2 ] , b i n s = z b i n s , w e i g h t s =W_3, f i l l = F a l s e , l i n e w i d t h
=1 , h a t c h = ’−− ’ , h i s t t y p e = ’ s t e p ’ , c o l o r = ’ b l u e ’ , l a b e l = ’ 230 ’ )

p l t . h i s t ( Z _ s t a r _ f i n a l [ 3 ] , b i n s = z b i n s , w e i g h t s =W_4, f i l l = F a l s e , l i n e w i d t h
=1 , h a t c h = ’ \ \ \ \ ’ , h i s t t y p e = ’ s t e p ’ , c o l o r = ’ g r e e n ’ , l a b e l = ’ 270 ’ )

403 p l t . h i s t ( Z _ s t a r _ f i n a l [ 4 ] , b i n s = z b i n s , w e i g h t s =W_5, f i l l = F a l s e , l i n e w i d t h
=4 , h a t c h = ’ / / ’ , h i s t t y p e = ’ s t e p ’ , c o l o r = ’ o r an g e ’ , l a b e l = ’ 310 ’ )

p l t . l e g e n d ( l o c =2 , f o n t s i z e =15)
405 p l t . x l im ( −0 . 1 , 0 . 3 )

p r i n t ( np . sum ( a ) )
407 p l t . x l a b e l ( r ’ $Log \ , Z_{∗}$ ’ , f o n t s i z e =23)

409 ## ######################################################################
#Random g a l a x i e s wi th avg IMF

411 ## ######################################################################
# I ’ ve s e l e c t e d 15 random g a l a x i e s ( u s i n g a random g e n e r a t o r ) and p u t

them i n a f i l e
413 rand_150 =np . g e n f r o m t x t ( " 150 _rand " )

rand_190 =np . g e n f r o m t x t ( " 190 _rand " )
415 rand_230 =np . g e n f r o m t x t ( " 230 _rand " )

rand_270 =np . g e n f r o m t x t ( " 270 _rand " )
417 rand_310 =np . g e n f r o m t x t ( " 310 _rand " )

#Add t h e f i t
419 f i t _ 1 =np . m u l t i p l y ( m_points_1 , a1_1 ) +b1_1

f i t _ 2 =np . m u l t i p l y ( m_points_1 , a2_1 ) +b2_1
421 f i t _ 3 =np . m u l t i p l y ( m_points_1 , a3_1 ) +b3_1

f i t _ 4 =np . m u l t i p l y ( m_points_1 , a4_1 ) +b4_1
423 f i t _ 5 =np . m u l t i p l y ( m_points_1 , a5_1 ) +b5_1

# P l o t t i n g e v e r y t h i n g
425 wid th =0 .5

p l t . f i g u r e ( f i g s i z e = ( 1 5 , 1 5 ) )
427 #150

p l t . s u b p l o t ( 3 , 2 , 1 )
429 p l t . t i t l e ( r " $ \ s igma = 1 5 0 \ ,km / s$ " , f o n t s i z e =15)

f o r i i n r a n g e ( 1 5 ) :
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431 p l t . p l o t ( m_points , rand_150 [ i ] , c o l o r = ’ r e d ’ , l i n e w i d t h = wid th )
p l t . e r r o r b a r ( m_points , med_150 , y e r r = s td_150 , fmt= ’ o ’ , c o l o r = ’ b l u e ’ , l a b e l = r "

Median IMF " )
433 p l t . x l im ( np . log10 ( 0 . 1 ) , np . log10 ( 0 . 7 ) )

p l t . y l im ( −0 .5 ,1 )
435 p l t . l e g e n d ( f o n t s i z e =15)

p l t . g r i d ( )
437

#190
439 p l t . s u b p l o t ( 3 , 2 , 2 )

p l t . t i t l e ( r " $ \ s igma = 1 9 0 \ ,km / s$ " , f o n t s i z e =15)
441 f o r i i n r a n g e ( 1 5 ) :

p l t . p l o t ( m_points , rand_190 [ i ] , c o l o r = ’ r e d ’ , l i n e w i d t h = wid th )
443 p l t . e r r o r b a r ( m_points , med_190 , y e r r = s td_190 , fmt= ’ o ’ , c o l o r = ’ b l u e ’ , l a b e l = r "

Median IMF " )
p l t . x l im ( np . log10 ( 0 . 1 ) , np . log10 ( 0 . 7 ) )

445 p l t . y l im ( −0 .5 ,1 )
p l t . l e g e n d ( f o n t s i z e =15)

447 p l t . g r i d ( )
#230

449 p l t . s u b p l o t ( 3 , 2 , 3 )
p l t . t i t l e ( r " $ \ s igma = 2 3 0 \ ,km / s$ " , f o n t s i z e =15)

451 f o r i i n r a n g e ( 1 5 ) :
p l t . p l o t ( m_points , rand_230 [ i ] , c o l o r = ’ r e d ’ , l i n e w i d t h = wid th )

453 p l t . e r r o r b a r ( m_points , med_230 , y e r r = s td_230 , fmt= ’ o ’ , c o l o r = ’ b l u e ’ , l a b e l = r "
Median IMF " )

p l t . x l im ( np . log10 ( 0 . 1 ) , np . log10 ( 0 . 7 ) )
455 p l t . y l im ( −0 .5 ,1 )

p l t . l e g e n d ( f o n t s i z e =15)
457 p l t . g r i d ( )

#270
459 p l t . s u b p l o t ( 3 , 2 , 4 )

p l t . t i t l e ( r " $ \ s igma = 2 7 0 \ ,km / s$ " , f o n t s i z e =15)
461 f o r i i n r a n g e ( 1 5 ) :

p l t . p l o t ( m_points , rand_270 [ i ] , c o l o r = ’ r e d ’ , l i n e w i d t h = wid th )
463 p l t . e r r o r b a r ( m_points , med_270 , y e r r = s td_270 , fmt= ’ o ’ , c o l o r = ’ b l u e ’ , l a b e l = r "

Median IMF " )
p l t . x l im ( np . log10 ( 0 . 1 ) , np . log10 ( 0 . 7 ) )

465 p l t . y l im ( −0 .5 ,1 )
p l t . l e g e n d ( f o n t s i z e =15)

467 p l t . g r i d ( )
#310

469 p l t . s u b p l o t ( 3 , 2 , 5 )
p l t . t i t l e ( r " $ \ s igma = 3 1 0 \ ,km / s$ " , f o n t s i z e =15)

471 f o r i i n r a n g e ( 1 5 ) :
p l t . p l o t ( m_points , rand_310 [ i ] , c o l o r = ’ r e d ’ , l i n e w i d t h = wid th )

473 p l t . e r r o r b a r ( m_points , med_310 , y e r r = s td_310 , fmt= ’ o ’ , c o l o r = ’ b l u e ’ , l a b e l = r "
Median IMF " )

p l t . x l im ( np . log10 ( 0 . 1 ) , np . log10 ( 0 . 7 ) )
475 p l t . y l im ( −0 .5 ,1 )

p l t . l e g e n d ( f o n t s i z e =15)
477 p l t . g r i d ( )
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## ######################################################################
479 # THE END #

## ######################################################################

6.2 The PDMF mass bins

Bin edges M�
1 0.1
2 0.11175828065
3 0.124899132938
4 0.139585123518
5 0.155997934086
6 0.174340608984
7 0.194840067075
8 0.21774990898
9 0.243353554392

10 0.271967748289
11 0.303946479409
12 0.339685359484
13 0.379626517378
14 0.424264068712
15 0.474150228607
16 0.529902143188
17 0.592209524353
18 0.661843182262
19 0.739664561093
20 0.826636396053
21 0.923834623454
22 1.03246169122
23 1.15386143447
24 1.28953570025
25 1.44116292696
26 1.61061890854
27 1.8

Table 6.1: The PDMF mass bins given in linear but equally spaced in logarithmic space.
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