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Abstract

This thesis treats the Sturm-Liouville problem, a typical case of some
differential equation subject to certain boundary conditions. After a short
introduction this problem is explored using the separation of variables
method to solve a differential equation associated with the Sturm-Liouville
theory. Then some basic properties of vector spaces and inner product
spaces will be given and the L2 space will be discussed, which is one
of the most common examples of a Hilbert space. This enables us to
describe the convergence, completeness and orthogonality of functions in
the L2 space. Using this, differential operators which are self-adjoint will
be explored since this concept applies to the operator associated with the
Sturm-Liouville problem. Thereafter the Sturm-Liouville problem itself
shall be discussed and some spectral properties concerning the eigenvalues
and eigenfunctions will be proven. Finally the theory discussed thus far
will be illustrated by working out an example and some applications of
this subject will be given.



CONTENTS

Contents

1 Introduction 1

2 The Sturm-Liouville Problem 2
2.1 Ordinary differential equations . . . . . . . . . . . . . . . . . . . 2
2.2 The Sturm-Liouville problem . . . . . . . . . . . . . . . . . . . . 3
2.3 The separation of variables method . . . . . . . . . . . . . . . . . 4

2.3.1 Solution of a Sturm-Liouville equation . . . . . . . . . . . 4
2.3.2 The heat equation . . . . . . . . . . . . . . . . . . . . . . 5

3 Vector Spaces 8
3.1 The inner product space . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 The L2 Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 Convergence in L2 . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Orthogonal functions . . . . . . . . . . . . . . . . . . . . . 13

4 Self-Adjoint Differential Operators 18

5 The Spectral Theory 22
5.1 Existence of the eigenvalues and eigenfunctions . . . . . . . . . . 23
5.2 Completeness of the eigenfunctions . . . . . . . . . . . . . . . . . 30

6 Application of the Sturm-Liouville Theory 34
6.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2 An example: the second derivative . . . . . . . . . . . . . . . . . 35
6.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Acknowledgements 38

8 References 39

ii



1 INTRODUCTION

1 Introduction

Probably everyone has heard or played an instrument, for example a guitar. The
sound of a guitar comes from plucking a string. The vibration of the plucked
string changes the initial position and initial velocity. The motion of the vi-
brating string can be described by a wave equation, which is a typical problem
that can be solved by the Sturm-Liouville theory. Exploring some of its the
properties gives us insight in the harmonics of the instrument, which clarifies
the pleasing sound of a guitar.
Not only the sound of a guitar, but many other important physical processes
and mechanical systems from classical physics and quantum physics can be de-
scribed by means of a Sturm-Liouville equation. This Sturm-Liouville theory
deals with linear second-order differential equations subject to particular bound-
ary conditions. Often these differential equations describe the oscillation of e.g.
pendula, vibrations, resonances or waves.
The Sturm-Liouville problem is named after Jacques Charles François Sturm
(1803–1855) and Joseph Liouville (1809–1882). Sturm described how a partial
differential equation corresponding to a Sturm-Liouville problem can be solved
by the separation of variables method. He discussed the heat conduction in an
inhomogeneous thin bar as an example to illustrate this. However, before him
people were mostly interested in the specific solution itself. In contrast, Sturm
and Liouville came up with a theory which focused on investigating the prop-
erties of the solution of the differential equation, such as the eigenfunctions. In
view of the guitar problem the eigenfunctions correspond to the resonant fre-
quencies of vibration. For a more detailed and very interesting depiction of the
origin and the history of the Sturm-Liouville problem the reader is referred to
pages 423-475 of [7].
The simplest example of a Sturm-Liouville operator is the constant-coefficient
second-derivative operator. This example will be elaborated at the end of this
thesis and we shall see the eigenfunctions are the trigonometric functions. Other
functions associated to Sturm-Liouville operators are the well-known Airy func-
tion and Bessel function.

First in chapter 2 a brief overview of ordinary differential equations and the gen-
eral Sturm-Liouville theory will be given. The separation of variables method
will be utilized to give a solution to this problem and to solve a particular
case, namely the heat equation. Then in chapter 3 some basic properties of
vector spaces and inner product spaces will be given. This enables us to dis-
cuss the L2 space, which is a particular case of a Hilbert space. Finally the
convergence, completeness and orthogonality of functions in the L2 space will
be described in this section. Thereafter this will be used to explore the self-
adjointness property of differential operators in chapter 4. We will show the
Sturm-Liouville operator treated in this thesis is also self-adjoint. In chapter 5
the Sturm-Liouville problem itself will be discussed together with its spectral
properties. Several statements concerning the eigenvalues and eigenfunctions
will be proven. Finally in section 6 some applications of the Sturm-Liouville
theory will be given, whereafter a Sturm-Liouville problem will be illustrated.
The second-derivative operator will be studied in detail as a concrete example,
followed by some concluding remarks.
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2 THE STURM-LIOUVILLE PROBLEM

2 The Sturm-Liouville Problem

In this section we start with some basic concepts of ordinary differential equa-
tions. Then we will give the general theory behind the Sturm-Liouville prob-
lem and afterwards we shall shortly give a review of the separation of variables
method for solving partial differential equations. However, we assume the reader
is somewhat familiar with this method and partial differential equations in gen-
eral. At the end of this section this method will be utilized to solve a differential
equation associated with the Sturm-Liouville problem.

2.1 Ordinary differential equations

Let’s first look at ordinary differential equations in general. Consider an ordi-
nary differential equation of second order on the real interval I given by the
following equation

α0(x)u′′ + α1(x)u′ + α2(x)u = f(x), (1)

where α0, α1, α2 and f are complex functions on I. If the function f equals zero,
equation (1) is homogeneous. Otherwise it is considered as inhomogeneous, i.e.
f 6= 0. If we define the following second-order differential operator

L = α0(x)
d2

dx2
+ α1(x)

d

dx
+ α2(x),

we are able to rewrite equation (1) in the following form

Lu = f.

Consider any two functions f, g for which the first and second derivatives are
continuous on the interval I, i.e. f, g ∈ C2(I). If they are solutions of differential
equation (1), then for constants c1, c2 ∈ C we have

L(c1f + c2g) = c1Lf + c2Lg,

which implies the operator L is linear. Therefore we call (1) a linear differen-
tial equation. If f and g are solutions to the linear homogeneous differential
equation, i.e.

Lf = 0 and Lg = 0,

then any linear combination of solutions is also a solution. This implies

L(c1f + c2g) = c1Lf + c2Lg = 0.

If the function α0 is nowhere zero on the interval I we can divide the ordinary
differential equation (1) by α0 which gives

u′′ + q(x)u′ + r(x)u = g(x), (2)

where q = α1

α0
, r = α2

α0
and g = f

α0
. Obviously, the ordinary differential equations

(1) and (2) have the same set of solutions and in this case equation (1) is
called regular. The equation is said to be singular if there exists some point
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2 THE STURM-LIOUVILLE PROBLEM

z ∈ I such that α0(z) = 0 and in this case z is called the singular point of
the ordinary differential equation. Since we assume the reader is familiar with
linear second-order differential equations we neither discuss initial conditions
and boundary conditions, nor the properties of the solutions of equation (2).
Later on, especially from section 4 about self-adjoint operators onwards, we will
make use of the statements made in this section.

2.2 The Sturm-Liouville problem

The Sturm-Liouville problem is a differential equation over the finite interval
[a, b] which is of the following form

− d

dx

[
p(x)

du(x)

dx

]
+ r(x)u(x) = λw(x)u(x). (3)

The Sturm-Liouville problem is called regular if the functions p(x) and w(x) are
both strict positive, p(x), p′(x), r(x) and w(x) are continuous over the interval
[a, b] and moreover it has the following non-trivial boundary conditions

α1u(a) + α2u
′(a) = 0 (α2

1 + α2
2 > 0),

β1u(b) + β2u
′(b) = 0 (β2

1 + β2
2 > 0).

(4)

Of course the trivial solution u(x) = 0 is always a solution. However, the
non-trivial solutions of the differential equation given in (3) which satisfy the
boundary conditions in (4) only exist for specific values of λ. These values are
called the eigenvalues of the boundary value problem and we denote them by
λn. The corresponding eigenfunctions are denoted by un. Before solving the
problem using the separation of variables method we will first give some main
results of the Sturm-Liouville theory which among others can be found on pages
147-148 of [8] or pages 72-73 of [13].

1. The eigenvalues can be ordered in the following way

λ1 < λ2 < λ3 < · · · < λn < · · · ,

where limn→∞ λn →∞. These eigenvalues show asymptotic behaviour as
can be seen in the example given in section 6. However, this will not be
proven in this thesis but can be found on page 275 of [12].

2. The eigenfunction un corresponding to the eigenvalue λn is unique up to
a constant normalization factor and it has exactly n− 1 zeros in the open
interval (a, b).

3. After normalizing un(x), the eigenfunctions form an orthonormal basis,
i.e.

〈un, um〉 =

∫ b

a

un(x)um(x)w(x) dx = δmn.

This is an orthonormal basis for the weighting function w(x) over the
interval [a, b] in the Hilbert space L2([a, b], w(x)dx). Later on in this thesis
we will clarify the notion of Hilbert spaces and the L2 space.

3



2 THE STURM-LIOUVILLE PROBLEM

2.3 The separation of variables method

We will now give a short review of the separation of variables method. This
method is used for solving linear partial differential equations with boundary
and initial conditions. Examples are the heat equation, wave equation, Laplace
equation and Helmholtz equation, which we assume the reader are familiar with.
This method will be illustrated in section 2.3.1 by solving a Sturm-Liouville
partial differential equation. Then in section 2.3.2 we will consider a special
case where the separation of variable method will be utilized to give a solution
to the homogeneous heat equation.

2.3.1 Solution of a Sturm-Liouville equation

Let’s consider a partial differential equation of the following form with corre-
sponding boundary and initial conditions

f(x)
∂2u

∂x2
+ g(x)

∂u

∂x
+ h(x)u =

∂u

∂t
+ k(t)u,

u(a, t) = u(b, t) = 0,

u(x, 0) = s(x).

(5)

The separation of variables method is based on u being writable as a product of
two functions X and T where the variables are separated, as the name already
suggested. So a solution would be of the following form

u(x, t) = X(x)T (t).

Using this expression for u(x, t) and taking the appropriate derivatives enables
us to write the equation given in (5) in the following separated form

L̂X(x)

X(x)
=
M̂T (t)

T (t)
, (6)

where we used the following substitutions

L̂ = f(x)
d2

dx2
+ g(x)

d

dx
+ h(x),

M̂ =
d

dt
+ k(t).

(7)

We see L̂ and X(x) only depend on the variable x and M̂ and T (t) only on t.
Since the right hand side only depends on x and the left hand side only on t, we
know both sides of (6) have to be equal to some constant which we will denote
by λ. Therefore we can write our differential equation in the following form

L̂X(x) = λX(x),

M̂T (t) = λT (t).
(8)

Using the boundary conditions given in (5) we obtain

X(a) = X(b) = 0.

4



2 THE STURM-LIOUVILLE PROBLEM

The Sturm-Liouville theory enables us to solve the first formula of (8) and for
now we assume this solution is known, i.e. we already have the eigenfunctions
Xn and eigenvalues λn. However, we are already able to solve the second formula
of (8). Again assuming the eigenvalues are known and substituting the formula
for M̂ given in (7) we obtain

d

dt
Tn(t) = (λn − k(t))Tn(t).

This leads to the following solution for Tn

Tn(t) = ane
(λnt−

∫ t
0
k(τ)dτ).

Using this formula and substituting it in the equation for u(x, t) results in

u(x, t) =
∑
n

anXn(x)e(λnt−
∫ t
0
k(τ)dτ).

The coefficient an can be determined using the Hilbert space L2 with its corre-
sponding inner product, which will be discussed later on in this thesis.

2.3.2 The heat equation

Let’s examine the heat equation, which is a special case of a Sturm-Liouville
problem. In the one-dimensional form it is given by the following formula

∂u

∂t
− α∂

2u

∂x2
= 0, (9)

and we consider homogeneous boundary conditions, i.e.

u(0, t) = 0 = u(L, t). (10)

Now we will separate the variables, which implies we consider a solution of x of
the following form

u(x, t) = X(x)T (t), (11)

as we have seen before. Taking the first and second partial derivative of the
function u(x, t) given in (11) with respect to t and x, making use of the product
rule, and substituting this in the heat equation (9) we obtain the following result

T ′(t)

αT (t)
=
X ′′(x)

X(x)
.

Again this implies both sides of the equation above are equal to some constant
−λ, leading to the following expressions

T ′(t) = −λαT (t),

X ′′(x) = −λX(x).

For non-positive λ there are no solutions for X(x), as we shall see when consid-
ering the following two cases. Let us first assume λ < 0. Then a solution for X
is given by

X(x) = Be
√
−λx + Ce−

√
−λx,

5



2 THE STURM-LIOUVILLE PROBLEM

where B,C ∈ R. Then, using the homogeneous boundary conditions given in
(10) we obtain

X(0) = 0 = X(L),

which implies B = 0 = C. Therefore u = 0.
Assuming λ equals 0 we have the following solution for X

X(x) = Bx+ C,

where B,C ∈ R. Using the boundary conditions again we obtain u = 0.
This implies λ has to be positive. This gives the following solutions for T and
X

T (t) = Ae−λαt,

X(x) = B sin(
√
λx) + C cos(

√
λx),

where A,B,C ∈ R. Then from the boundary conditions, i.e. X(0) = 0 = X(L)
we obtain

C = 0 and
√
λ = n

π

L
,

for some n ∈ N. So this is the solution to the heat equation if we can write
u(x, t) as a product where the variables x and t are separated as in (11).
Summing over the solutions satisfying the heat equation with the boundary
conditions given in (10) yields

u(x, t) =

∞∑
n=1

Dn sin
nπx

L
exp

(
−n

2π2αt

L2

)
. (12)

This is also a solution to the heat equation satisfying the boundary conditions
and therefore we can regard it as the final solution. Using an initial condition
enables us to determine Dn. If we are given the following initial condition

u(x, 0) = f(x),

we obtain the following solution for f(x) by substituting t = 0 in equation (12)

f(x) =

∞∑
n=1

Dn sin
nπx

L
.

If we multiply both sides of the last equation by sin nπx
L and integrate them

from 0 to L we obtain the following result for Dn

f(x) sin
nπx

L
=

∞∑
n=1

Dn

(
sin

nπx

L

)2
∫ L

0

f(x) sin
nπx

L
dx =

∫ L

0

∞∑
n=1

Dn

(
sin

nπx

L

)2
dx

∫ L

0

f(x) sin
nπx

L
dx =

L

2
Dn

Dn =
2

L

∫ L

0

f(x) sin
nπx

L
dx.

6



2 THE STURM-LIOUVILLE PROBLEM

Now the Sturm-Liouville theory plays an important role since it assures us the
eigenfunctions, which in this case are given by

{
sin nπx

L

}∞
n=1

, are orthogonal
and complete. The orthogonality and completeness of the eigenfunctions are
necessary conditions for this method and will be discussed later on in this thesis.

7



3 VECTOR SPACES

3 Vector Spaces

In this section some basic concepts shall be given which are necessary to better
understand the rest of the thesis. Definitions and theorems from metric spaces
will be omitted, since they should be known by the reader. For a detailed
treatment of this subject, the reader is referred to [11].
We shall consider a linear vector space X, or just called a vector space. This
is a set over K whose elements are called vectors and we have two operations,
namely addition and scalar multiplication. K here stands for the field of real
numbers R or the field of complex numbers C. We assume the reader is familiar
with the basic properties of linear algebra, but for an accessible course on this
topic we recommend [6].
First in section 3.1 some basic properties of an inner product space will be
given, which is a special type of a vector space. This enables us to discuss the
L2 space in chapter 3.2, which is a particular case of a Hilbert space. At the end
of this section we will describe the convergence, completeness and orthogonality
of functions in the L2 space.

3.1 The inner product space

The vector space X is called an inner product space if for every pair of elements
x, y ∈ X we have a corresponding inner product, denoted as 〈x, y〉 ∈ K. This
can be seen as a function from X × X → K such that for x, y ∈ X we have
(x, y) 7→ 〈x, y〉 ∈ K. The inner product has to satisfy the following properties

1. The inner product of two elements equals the complex conjugate of the
reversed inner product, i.e

〈x, y〉 = 〈y, x〉.

2. The inner product is linear, so for x, y, z ∈ X and α ∈ K this implies

〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 and

〈αx, y〉 = α〈x, y〉.

3. The inner product of an element with itself is positive definite, so for all
x ∈ X we have

〈x, x〉 ≥ 0 and

〈x, x〉 = 0 if and only if x = 0.

An inner product space satisfies the following condition, which is also known as
the Cauchy-Schwarz Inequality.

Theorem 3.1. If X is an inner product space, then for all x and y in X we
have

|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉.
Proof. Let α be any complex number. Then, using the properties an inner
product has to satisfy on an inner product space, we get the following inequality

0 ≤ 〈x− αy, x− αy〉
= 〈x, x〉+ 〈x,−αy〉+ 〈−αy, x〉+ 〈−αy,−αy〉

= 〈x, x〉 − α〈x, y〉 − α〈x, y〉+ αα〈y, y〉,
(13)

8



3 VECTOR SPACES

where α denotes the complex conjugate of α.

Let us first consider the case where 〈y, y〉 6= 0. Taking α = 〈x,y〉
〈y,y〉 and substituting

into the inequality given in (13) gives

0 ≤ 〈x, x〉 − 〈x, y〉
〈y, y〉

〈x, y〉 − 〈x, y〉
〈y, y〉

〈x, y〉+
〈x, y〉
〈y, y〉

〈x, y〉
〈y, y〉

〈y, y〉

= 〈x, x〉 − |〈x, y〉|
2

〈y, y〉
− |〈x, y〉|

2

〈y, y〉
+
|〈x, y〉|2

〈y, y〉

= 〈x, x〉 − |〈x, y〉|
2

〈y, y〉
,

which is exactly the inequality we wanted to prove.
Now we consider the case where 〈y, y〉 = 0. This is actually trivial since it
implies y = 0 and therefore the inequality always holds. This makes the proof
complete.

The vector space X is a normed space if for every element of X there exists a
norm, which is a non-negative real number. If we have a vector x ∈ X we will
denote the norm by ‖x‖ and it satisfies the following properties

1. ‖x+ y‖ ≤ ‖x‖+ ‖y‖

2. ‖αx‖ = |α|‖x‖

3. ‖x‖ > 0 whenever x 6= 0,

for all x, y ∈ X and scalars α.
Now let’s define the following norm for x ∈ X

‖x‖ = 〈x, x〉 12 , (14)

where x is called normalized if we have ‖x‖ = 1. Using this norm the Cauchy-
Schwarz inequality given in theorem 3.1 takes on the following form

|〈x, y〉| ≤ ‖x‖‖y‖. (15)

This defines a norm on an inner product space X if we prove the following
theorem.

Theorem 3.2. If X is an inner product space, then for all x and y in X we
have

‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Proving this theorem implies every pair of elements of X satisfies the three
properties above. Therefore this defines a norm on an inner product space X.

Proof. Using the norm given in (14) we obtain

‖x+ y‖2 = 〈x+ y, x+ y〉
= ‖x‖2 + 〈x, y〉+ 〈y, x〉+ ‖y‖2

= ‖x‖2 + 2 Re〈x, y〉+ ‖y‖2

≤ ‖x‖2 + 2|〈x, y〉|+ ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 using (15)

= (‖x‖+ ‖y‖)2

9



3 VECTOR SPACES

Therefore, taking square roots of both sides, we obtain the following inequality

‖x+ y‖ ≤ ‖x‖+ ‖y‖,

which proves the theorem.

Theorem 3.2 also leads to the well-known triangle inequality. defining the dis-
tance between two elements x and y as ‖x − y‖, we obtain for three elements
x, y, z ∈ X the following inequality

‖x− y‖ = ‖x− z + z − y‖ ≤ ‖x− z‖+ ‖z − y‖. (16)

Now we are able to explore the idea of orthogonal sets.

Definition 3.3. If we have 〈x, y〉 = 0 for x, y ∈ X, we call x orthogonal to y,
denoted as x ⊥ y. A subset S ⊆ X is called an orthogonal set if every pair of
elements in this subset is orthogonal.

We can see definition 3.3 for the n-dimensional real space also intuitively. If we
have two vectors x, y ∈ Rn we can define the angle θ between these two vectors
using the Cauchy-Schwarz inequality given in (15) in the following way

〈x, y〉 = ‖x‖‖y‖ cos θ.

Notice we used the term cos θ to make an equality of the inequality. This angle
θ is defined uniquely and if the vectors x and y are both nonzero we must have

〈x, y〉 = 0 if and only if cos θ = 0,

which is exactly the condition for the two vectors x and y to be orthogonal in
Rn. Using the definition of an orthogonal set we are able to give the concept of
an orthonormal set.

Definition 3.4. An orthogonal subset S of an inner product space X is called
orthonormal if every element of this subset is normalized, i.e. the norm of every
element x ∈ S equals 1 (or symbolically ‖x‖ = 1).

3.2 The L2 Space

Now we are able to move on to the L2 space, which is named after the French
mathematician Henri Lebesgue (1875 – 1941). First let us define the vector
space denoted by C ([a, b]). This vector space consists of complex continuous
functions on the real interval [a, b]. For two functions f, g ∈ C ([a, b]) we define
the following inner product

〈f, g〉 =

∫ b

a

f(x)g(x) dx. (17)

Using the norm given in (14) we obtain

‖f‖ = 〈f, f〉 12 =

√∫ b

a

f(x)f(x) dx =

√∫ b

a

|f(x)|2 dx. (18)

We can now show that the Cauchy-Schwarz inequality given in theorem 3.1 and
the triangle inequality given in equation (16) both still hold in the vector space
C([a, b]). This boils down to proving (17) is an inner product, so we have to
check the three properties an inner product has to satisfy.

10
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Proof.

1. The inner product of two elements equals the complex conjugate of the
reversed inner product, i.e.

〈f, g〉 =

∫ b

a

f(x)g(x) dx =

∫ b

a

g(x)f(x) dx = 〈g, f〉.

2. The inner product is linear, so for f, g, h ∈ C ([a, b]) and α ∈ K we have

〈f + g, h〉 =

∫ b

a

(f(x) + g(x))h(x) dx

=

∫ b

a

f(x)h(x) dx+

∫ b

a

g(x)h(x) dx = 〈f, h〉+ 〈g, h〉,

and

〈αf, g〉 =

∫ b

a

αf(x)g(x) dx = α

∫ b

a

f(x)g(x) dx = α〈f, g〉.

3. The inner product is positive definite, so for f, g ∈ C ([a, b]) we have

〈f, f〉 =

∫ b

a

f(x)f(x) dx =

∫ b

a

|f(x)|2 dx ≥ 0,

Furthermore since g is continuous we must have 〈g, g〉 ≥ 0, so in case this
is an equality this must imply g ≡ 0.

Therefore, the inner product defined by (17) satisfies both the Cauchy-Schwarz
inequality and the triangle inequality. Thus we have

|〈f, g〉| ≤ ‖f‖‖g‖ and ‖f + g‖ ≤ ‖f‖+ ‖g‖. (19)

We will now use L2(a, b) to denote the set of functions f : [a, b]→ C for which
the following hold ∫ b

a

|f(x)|2 dx <∞. (20)

However we have to note that these functions have to be Lebesgue measurable.
This Lebesgue measure is a natural extension of the classical notions of lengths
and areas to more general sets. It is a standard way of measuring a set by cov-
ering it with intervals and then taking the sum of the lengths of these intervals
as an approximation of the measure of the set. This subject will not be further
discussed, but a brief review can be found on pages 110-112 of [4] or for a more
extensive description the reader is referred to sections 16-20 of [3].

Now we will define the same inner product as in (17) and norm as in (18) on
L2(a, b). Applying the triangle inequality on the following norm yields

‖αf + βg‖ ≤ ‖αf‖+ ‖βg‖ = |α|‖f‖+ |β|‖g‖,

11



3 VECTOR SPACES

for all f, g ∈ L2(a, b) and α, β ∈ C. This implies αf + βg ∈ L2(a, b), following
from the fact that the norm of f and g is less than infinity since f, g ∈ L2(a, b).
Therefore it is a vector space and with this inner product it becomes an inner
product space. Actually C([a, b]) is a subspace of L2(a, b) and from now on we
will use the latter space since the integrals are interpreted as Lebesgue integrals.
This is necessary since from the Cauchy-Schwarz inequality it follows that the
inner products of f and g are well defined if ‖f‖ and ‖g‖ exist. This implies
|f |2 and |g|2 have to be integrable and this is exactly the case for L2(a, b) since
it consists of those functions f such that |f |2 is integrable on [a, b]. Again more
information about Lebesgue integrals can be found on pages 108-110 of [4] or
pages 322-323 of [3].

Two functions f, g ∈ L2(a, b) are called equal almost everywhere if ‖f − g‖ = 0.
This term comes from the fact f and g do not have to be equal pointwise on
this interval, i.e. f(x)− g(x) = 0 at every x ∈ [a, b]. This is due to the fact that
in this space ‖f‖ = 0 does not always imply f(x) = 0 at every point x ∈ [a, b].
Therefore we can regard the space L2 as been made up out of equivalence classes
of functions which are equal almost everywhere.

3.2.1 Convergence in L2

Before describing convergence in the space L2 we will first give the definitions
of pointwise and uniform convergence of a sequence of functions.

Definition 3.5. i) A sequence of functions fn : I → F converges pointwise
to the function f : I → F if for every x ∈ I we have limn→∞ fn(x) = f(x).

i)) This sequence of functions is said to be uniformly convergent if for every
ε > 0 there exists a natural number N such that

n ≥ N implies |fn(x)− f(x)| < ε for all x ∈ I.

We will denote pointwise convergence by fn → f and uniform convergence by
fn

u→ f . One nice consequence is that uniform convergence implies pointwise
convergence (but not necessarily the other way around).

Now we have given the definitions of pointwise and uniform convergence of a
sequence of functions, we will mostly be looking at convergence in the space L2

in this section.

Definition 3.6. If we have a sequence of functions (fn) in L2(a, b), it converges
in L2 if there exists a function f ∈ L2(a, b) such that

lim
n→∞

‖fn − f‖ = 0.

In other words, for every ε > 0 there exists a natural number N such that

n ≥ N implies ‖fn − f‖ < ε.

We will denote convergence in L2 by fn
L2

→ f , where f is said to be the limit in
L2 of the sequence (fn).

12
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Pointwise convergence does not imply convergence in L2 and convergence in L2

does also not imply pointwise convergence. This is due to the limit in L2 is
an equivalence class of functions, i.e. they are equal in L2 but not pointwise.
However, if a sequence of functions converges pointwise as well as in L2, then
these limits are equal.

Uniform convergence on the other hand does imply convergence in L2 under
the following conditions. The sequence (fn) and its limit f must lie in L2(I)
and this interval I should be bounded. The proof will not be given since it uses
some basic properties of uniform convergence which have not been discussed in
this thesis.

In the preliminaries we assumed the reader is familiar with metric spaces and
therefore knows concepts such as completeness and the Cauchy sequence. Now
we shall give these definitions in terms of the L2 space.

Definition 3.7. A sequence in L2 is called a Cauchy sequence if for each ε > 0
there exists a natural number N such that ‖fn − fm‖ < ε whenever n,m ≥ N .

A sequence (fn) which converges in L2 is a Cauchy sequence. Namely, using
the triangle inequality we have

‖fn − fm‖ ≤ ‖fn − f‖+ ‖f − fm‖.

If we take m and n large enough, the right-hand side of the last inequality can

be made as small as desired since we have fn
L2

→ f . Therefore the left hand
side can be made arbitrarily small, which implies this convergent sequence is a
Cauchy sequence.

Furthermore the space L2 is complete. This is because it is one of the most
common examples of a Hilbert space, which is a complete inner product space
under its norm induced by the inner product. Completeness of the L2 space
actually means the following.

Theorem 3.8. For every Cauchy sequence (fn) in L2 there exists a function

f ∈ L2 such that fn
L2

→ f .

The proof can be found on pages 329-330 of [10]. Moreover, the set of continuous
functions is dense in this space, i.e. C([a, b]) is dense in L2(a, b). This density
property is given by the following theorem and can also be found in [10] on page
326.

Theorem 3.9. For any f ∈ L2(a, b) and any ε > 0 there exist a continuous
function g on [a, b] such that ‖f − g‖ < ε.

In section 5.2 this theorem will be used to prove the eigenfunctions of a Sturm-
Liouville problem are complete, but for now we will first have a look at the
orthogonality property in the L2 space.

3.2.2 Orthogonal functions

Let’s say we want to write a function f ∈ L2 in terms of other functions in
the complex space L2. So suppose we have an orthogonal set of functions in

13
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L2, i.e. {ϕ1, ϕ2, ϕ3, . . . }. Note that this set could be finite or infinite. If the
function f is a finite linear combination of elements in this set {ϕk}, then f can
be represented as follows

f =

n∑
i=1

αiϕi with αi ∈ C. (21)

Since we are dealing with an orthogonal set the inner product of every element
with another element equals zero as we have seen in definition 3.3, i.e.

〈ϕi, ϕj〉 = 0, whenever i 6= j.

Therefore, taking the inner product of ϕk with f defined as in (21) yields

〈f, ϕk〉 = αk ‖ϕk‖2. (22)

Dividing both sides by ‖ϕk‖2 we obtain an expression for the coefficient αk

αk =
〈f, ϕk〉
‖ϕk‖2

. (23)

Substituting this into equation (21) we see the function f can be represented in
L2 as follows

f =

n∑
k=1

〈f, ϕk〉
‖ϕk‖2

ϕk. (24)

So we see the coefficients αk are determined by what we call the projections of f
on ϕk. We can also obtain an orthonormal set by dividing each ϕi by its norm,

i.e.
{
ψk = ϕk

‖ϕk‖

}
. This defines an orthonormal set since every element ψk is

normalized. In other words ‖ψk‖ = 1 as we saw in definition 3.4. Therefore
equation (22) becomes 〈f, ψk〉 = αk‖ψk‖2 = αk and it enables us to rewrite our
function f as in (24) as follows

f =

n∑
k=1

〈f, ψk〉ψk,

where the coefficients are the projections of f on ψk.

On the other hand, if f is not a linear combination of elements of {ϕk} we
would like to determine its best approximation in L2, again using a finite linear
combination of the elements of {ϕk}. This comes down to determining the
coefficients αk for which the following norm is minimized∥∥∥∥∥f −

n∑
k=1

αkϕk

∥∥∥∥∥ . (25)

If we apply the definition of the norm to the square of the norm given above we

14
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get ∥∥∥∥∥f −
n∑
k=1

αkϕk

∥∥∥∥∥
2

=

〈
f −

n∑
k=1

αkϕk, f −
n∑
k=1

αkϕk

〉

= ‖f‖2 − 2

n∑
k=1

Reαk〈f, ϕk〉+

n∑
k=1

|αk|2‖ϕk‖2

= ‖f‖2 −
n∑
k=1

|〈f, ϕk〉|2

‖ϕk‖2

+

n∑
k=1

‖ϕk‖2
[
|αk|2 − 2Reαk

〈f, ϕk〉
‖ϕk‖2

+
|〈f, ϕk〉|2

‖ϕk‖4

]

= ‖f‖2 −
n∑
k=1

|〈f, ϕk〉|2

‖ϕk‖2
+

n∑
k=1

‖ϕk‖2
∣∣∣∣αk − 〈f, ϕk〉‖ϕk‖2

∣∣∣∣2 .
We only have to deal with the last term of this equation since we want to
determine the coefficients αk which minimize the norm given in (25). This
last term on the right hand side above is always greater or equal to zero so to
minimize ‖f −

∑
k=1 αkϕk‖2 (and therefore also its square root) we want to

choose αk such that the last term equals zero, i.e.

αk =
〈f, ϕk〉
‖ϕk‖2

.

This makes the last term
∑n
k=1 ‖ϕk‖2

∣∣∣αk − 〈f,ϕk〉
‖ϕk‖2

∣∣∣2 equal to zero and therefore

we obtained the minimum of the norm given in (25). Substituting this αk in
our formula for the squared norm yields∥∥∥∥∥f −

n∑
k=1

〈f, ϕk〉
‖ϕk‖2

ϕk

∥∥∥∥∥
2

= ‖f‖2 − 2

n∑
k=1

Re〈f, ϕk〉〈f, ϕk〉
‖ϕk‖2

+

n∑
k=1

|〈f, ϕk〉|2

‖ϕk‖4
‖ϕk‖2

= ‖f‖2 − 2

n∑
k=1

|〈f, ϕk〉|2

‖ϕk‖2
+

n∑
k=1

|〈f, ϕk〉|2

‖ϕk‖2

= ‖f‖2 −
n∑
k=1

|〈f, ϕk〉|2

‖ϕk‖2
.

Since the left hand side has to be greater or equal to zero we can rewrite the
right hand side to obtain the following result

n∑
k=1

|〈f, ϕk〉|2

‖ϕk‖2
≤ ‖f‖2.

Since this holds for any n we can take the limit as n→∞ which gives

∞∑
k=1

|〈f, ϕk〉|2

‖ϕk‖2
≤ ‖f‖2. (26)
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This last relation is called Bessel’s inequality and it holds for any orthogonal
set {ϕk : k ∈ N} and any f ∈ L2.
This inequality becomes an equality if and only if∥∥∥∥∥f −

∞∑
k=1

〈f, ϕk〉
‖ϕk‖2

ϕk

∥∥∥∥∥ = 0.

This actually means

f =

∞∑
k=1

〈f, ϕk〉
‖ϕk‖2

ϕk in L2.

Therefore we see the sum
∑∞
k=1 αkϕk with αk = 〈f,ϕk〉

‖ϕk‖2 is a representation of

the function f in L2.
We will now use these representations of f to describe the completeness of an
orthogonal set making use of theorem 3.8. Note that this should not to be
confused with the completeness of a space.

Definition 3.10. An orthogonal set {ϕk : k ∈ N} in L2 is called complete if
for any function f ∈ L2 we have

n∑
k=1

〈f, ϕk〉
‖ϕk‖2

ϕk
L2

→ f.

This actually implies that a complete orthogonal set in L2 is a basis for the
space and this complete orthogonal set is an infinite set since L2 is infinite-
dimensional.
So if Bessel’s inequality given in (26) is an equality we have

‖f‖2 =

∞∑
k=1

|〈f, ϕk〉|2

‖ϕk‖2
, (27)

which is called Parseval’s identity and we will relate this identity to definition
3.10 about completeness in the following theorem.

Theorem 3.11. An orthogonal set {ϕk : k ∈ N} is complete if and only if it
satisfies Parseval’s identity given in (27) for any f ∈ L2.

As we have seen before the orthogonal set {ϕk} can be normalized to the or-

thonormal set
{
ψk = ϕk

‖ϕk‖

}
. Then Bessel’s inequality can be written as

∞∑
k=1

|〈f, ψk〉|2 ≤ ‖f‖2, (28)

and Parseval’s identity turns into

‖f‖2 =

∞∑
k=1

|〈f, ψk〉|2. (29)
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Additionally, since for all f ∈ L2 we have ‖f‖ <∞, recall formula (20), Bessel’s
inequality implies 〈f, ψn〉 → 0. So it converges in L2, independent of this or-
thonormal set {ψk} being complete.

Furthermore, Parseval’s identity can be seen as the Pythagorean theorem for
inner product spaces since it is an abstraction from Rn to the more general
setting of the L2 space. In this case,

∑∞
k=1 |〈f, ψk〉|2 is a representation of the

sum of the squares of the projections of a vector on an orthonormal basis which,
by Pythagoras, has to equal the squared length of this vector, now represented
by ‖f‖2.

17
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4 Self-Adjoint Differential Operators

We are now able to define self-adjoint differential operators in the L2-space.
Therefore we want to find the adjoint of the operator L : L2(I)∩C2(I)→ L2(I)
defined as follows

L = p(x)
d2

dx2
+ q(x)

d

dx
+ r(x), (30)

which is exactly the same operator as we have seen in section 2.1, though using a
more convenient notation. Again we assume p, q and r are real C2 functions on
I. In order to examine the adjoint of the operator L, which will be denoted by
L′, we have to look at the definition of the adjoint. It is given by the following
equation

〈Lf, g〉 = 〈f, L′g〉 for all f, g ∈ L2(I) ∩ C2(I). (31)

We will now further investigate 〈Lf, g〉 to shift the differential operator from
f to g. Then, using equation (31), we obtain an expression for the adjoint
operator L′. Setting I = (a, b) and using operator (30), inner product (17) and
integration by parts, we have

〈Lf, g〉 =

∫ b

a

(pf ′′ + qf ′ + rf)g dx

= pf ′g|ba −
∫ b

a

f ′(pg)′ dx+ qfg|ba −
∫ b

a

f(qg)′ dx+

∫ b

a

frg dx

= (pf ′g − f(pg)′) |ba +

∫ b

a

f(pg)′′ dx+ qfg|ba −
∫ b

a

f(qg)′ dx+

∫ b

a

frg dx

= 〈f, (pg)′′ − (qg)′ + rg〉+ (p(f ′g − fg′) + (q − p′)fg) |ba,

which is well defined if p ∈ C2(a, b), q ∈ C1(a, b) and r ∈ C(a, b). If we rewrite
the inner product on the right-hand side using a new differential operator de-
noted by L∗, we obtain

〈Lf, g〉 = 〈f, L∗g〉+ (p(f ′g − fg′) + (q − p′)fg) |ba. (32)

Rewriting the inner product this way implies the operator L∗ has to satisfy the
following equality

L∗g = (pg)′′ − (qg)′ + rg

= pg′′ + (2p′ − q)g′ + (p′′ − q′ + r)g.

Therefore this operator is defined as follows

L∗ = p
d2

dx2
+ (2p′ − q) d

dx
+ (p′′ − q′ + r), (33)

and we will refer to it as the formal adjoint of L. L is formally self-adjoint if
L∗ = L. So comparing equations (33) and (30) yields

p = p, 2p′ − q = q and p′′ − q′ + r = r.

18
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This implies q = p′ since we assumed p and q are real. Substituting this in the
definition of our operator L gives

Lf = pf ′′ + p′f ′ + rf = (pf ′)′ + rf,

which enables us to write the operator L in the following form if it is formally
self-adjoint

L =
d

dx

(
p

d

dx

)
+ r.

Since L = L∗ and q = p′ when L is formally self-adjoint, we can rewrite equation
(32) to

〈Lf, g〉 = 〈f, Lg〉+ p(f ′g − fg′)|ba. (34)

Now we are able to determine the form of the self-adjoint operator. We have
already defined the adjoint of L in equation (31) and the operator L is called
self-adjoint if in addition L′ = L. Looking at equation (34) we see this requires
the following condition

p(f ′g − fg′)|ba = 0 for all f, g ∈ L2(I) ∩ C2(I). (35)

So we have seen the conditions for an operator to be self-adjoint and we will
now apply this to the Sturm-Liouville eigenvalue problem. This is a system
consisting of the following equation

Lu+ λu = 0, (36)

combined with certain boundary conditions. This equation will be investigated
to find the the eigenvalues λ and their corresponding eigenfunctions for the op-
erator −L. Since L turns out to have negative eigenvalues for positive p, we look
for the eigenvalues of −L. This is possible since −L is (formally) self-adjoint if
and only if the operator L itself is (formally) self-adjoint.

Thus far we have obtained some conditions for the self-adjoint operator in this
section and they will be summarized in the following theorem.

Theorem 4.1. Let L : L2(a, b) ∩ C2(a, b) → L2(a, b) be a second-order linear
differential operator defined as follows

Lu = p(x)u′′ + q(x)u′ + r(x)u, x ∈ (a, b),

where p ∈ C2(a, b), q ∈ C1(a, b) and r ∈ C(a, b). Then the following statements
hold

i) L is formally self-adjoint, i.e. L∗ = L, if the coefficients p, q and r are
real and q = p′.

ii) L is self-adjoint, i.e. L′ = L, if L is formally self-adjoint and equation
(35) holds.
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iii) If L is self-adjoint this implies the eigenvalues λ of equation (36) are all
real and when two eigenvalues are distinct, their corresponding eigenfunc-
tions are orthogonal in L2(a, b).

Proof. The first two statements have already been discussed and demonstrated
in this section, so we’re left with proving the last statement. Let’s assume λ ∈ C
is an eigenvalue of −L. This implies there exists an associated eigenfunction
f ∈ L2(a, b) ∩ C2(a, b) which is nonzero and for which the following equation
holds

Lf + λf = 0.

Therefore we must have

λ‖f‖2 = 〈λf, f〉 = −〈Lf, f〉, (37)

where we substituted λf = −Lf . Since we assumed L is self-adjoint we also
have

−〈Lf, f〉 = −〈f, Lf〉 = 〈f, λf〉 = λ‖f‖2. (38)

Combining equations (37) and (38) gives

λ‖f‖2 = λ‖f‖2,

which implies λ = λ since ‖f‖ 6= 0. Since λ was chosen arbitrarily, all eigenvalues
have to be real.
Suppose we have another eigenvalue µ of −L with corresponding eigenfunction
g ∈ L2(a, b) ∩ C2(a, b). Then we have

λ〈f, g〉 = −〈Lf, g〉 = −〈f, Lg〉 = µ〈f, g〉,

which implies (λ−µ)〈f, g〉 = 0. Since we assumed λ 6= µ we must have 〈f, g〉 = 0,
so the eigenfunctions f and g are orthogonal. This completes the proof.

The third statement of theorem 4.1 can be generalized to differential operators
which are not even formally self-adjoint. This can be done by defining a positive
function w such that the operator wL is formally self-adjoint. This w can be
regarded as a sort of weight function. Multiplying the eigenvalue equation (36)
by w yields

wLu+ λwu = 0.

Now we want L̃ := wL to be formally self-adjoint. Therefore we multiply the
operator L given in (30) by w which gives

L̃ = wp
d2

dx2
+ wq

d

dx
+ wr.

We have seen that an operator is formally self-adjoint if the second coefficient
equals the derivative of the first coefficient. For this operator L̃ that is

wq = (wp)′ = w′p+ wp′,
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and its solution is given by

w(x) =
c

p(x)
exp

(∫ x

a

q(t)

p(t)
dt

)
,

where c is a constant. We see when L itself is formally self-adjoint, i.e. q = p′,
w(x) becomes a constant as we expected. Furthermore if the equivalent of (35),
given by

wp(f ′g − fg′)|ba = 0

still holds, the operator wL is even self-adjoint. Now it’s not hard to show that
for positive function w which is continuous on [a, b] the following statements
again hold

i) every eigenvalue of Lu+ λwu = 0 is real and

ii) if two eigenfunctions are distinct, they are orthogonal.

This is a generalisation of the third statement in theorem 4.1 since it is not
required for the operator L to be (formally) self-adjoint anymore.

21



5 THE SPECTRAL THEORY

5 The Spectral Theory

In this section we will discuss the Sturm-Liouville problem and the spectral
properties related to the Sturm-Liouville differential operator. Again we con-
sider the following formally self-adjoint operator

L =
d

dx

(
p(x)

d

dx

)
+ r(x), (39)

with the following eigenvalue equation

Lu+ λw(x)u = 0.

If it satisfies the following separated homogeneous boundary conditions

α1u(a) + α2u
′(a) = 0, |α1|+ |α2| > 0,

β1u(b) + β2u
′(b) = 0, |β1| + |β2| > 0,

(40)

with αi, βi ∈ R, we call this the Sturm-Liouville eigenvalue problem. From
the last section we know the function w makes L self-adjoint and therefore
the eigenvalues are real and their corresponding eigenfunctions are orthogonal.
Furthermore we note that 0 is not an eigenvalue of this operator. The proof is
elementary and will therefore be omitted. As stated in section 2.1 the problem
is called regular if the interval (a, b) is bounded and p 6= 0 on [a, b], otherwise
it’s called singular. We will actually only consider the regular problem and in
this case we are able to assume without loss of generality that p(x) > 0. Then
the eigenfunctions of the operator −L

w solve the problem.

The goal of this section is to prove that the solutions of the Sturm-Liouville
problem span the whole space L2(a, b). Throughout this section we shall take
w(x) = 1 since it simplifies proofs and calculations, but still covers the general
idea. Eventually we will analyse the spectral properties of L−1 which is related
to our original operator in the following way. The eigenfunctions of −L coincide
with the eigenfunctions of −L−1 and its eigenvalue equation is given by

L−1u+ µu = 0.

In this case the eigenvalues are related by the identity µ = 1
λ . This analysis of

the spectral properties will be done by exploring an integral expression for L−1

denoted by the operator T , making use of Green’s function. This is a continuous
C2 function G : [a, b] × [a, b] → R which is symmetric for the Sturm-Liouville
eigenvalue problem and satisfies the following equation

LxG(x, ξ) = p(x)Gxx(x, ξ) + p′(x)Gx(x, ξ) + r(x)G(x, ξ) = 0, (41)

whenever x 6= ξ. Furthermore its derivative with respect to x has a jump
discontinuity at ξ which is given by

∂G

∂x

(
ξ+, ξ

)
− ∂G

∂x

(
ξ−, ξ

)
=

1

p (ξ)
. (42)
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5.1 Existence of the eigenvalues and eigenfunctions

First the existence of the eigenvalues and the eigenfunctions of the Sturm-
Liovuille problem will be proven. Therefore we will build up this Green’s func-
tion for the operator L satisfying the boundary conditions given in (40). Using
the existence and uniqueness theorem for second-order differential equations,
we know there must exist two solutions v1 and v2 to the eigenvalue equation
Lu = 0 which are unique and nontrivial. Furthermore they satisfy

v1(a) = α2, v′1(a) = −α1,

v2(b) = β2, v′2(b) = −β1.

Using these values for v1 and v2 we see they satisfy the boundary conditions
given in (40) since we have

α1v1(a) + α2v
′
1(a) = α1α2 − α2α1 = 0,

β1v2(b) + β2v
′
2(b) = β1β2 − β2β1 = 0.

Since 0 is not an eigenvalue of the operator L, the solutions v1 and v2 must be
linearly independent. Now the Green’s function is defined in the following way

G(x, ξ) =

{
c−1v1(ξ)v2(x), a ≤ ξ ≤ x ≤ b,
c−1v1(x)v2(ξ), a ≤ x ≤ ξ ≤ b, (43)

where c = p(x) (v1(x)v′2(x)− v′1(x)v2(x)) . Since p 6= 0, proving this c is a
nonzero constant boils down to showing the derivative of p(x)(v1(x)v′2(x) −
v′1(x)v2(x)) equals zero as follows.

Proof.

0 = v1Lv2 − v2Lv1 = v1

(
(pv′2)

′
+ rv2

)
− v2

(
(pv′1)

′
+ rv1

)
= v1 (pv′2)

′
+ v1rv2 − v2 (pv′1)

′ − v2rv1 = v1 (pv′2)
′ − v2 (pv′1)

′

= v1p
′v′2 + v1pv

′′
2 − v2p′v′1 − v2pv′′1

= p′v1v
′
2 − p′v′1v2 + pv1v

′′
2 + pv′1v

′
2 − pv′1v′2 − pv′′1 v2

= (p (v1v
′
2 − v′1v2))

′
,

which is known as the Langrange identity.

As noted before, the Green’s function defined in (43) is indeed symmetric and
actually satisfies equations (41) and (42). Finally, using G we are able to define
this operator T which we wanted to be an integral expression for L−1. We
will prove this by showing that the function Tf solves the differential equation
Lu = f and also the reverse, i.e. Lu solves Tf = u. Therefore we must show
Tf is a C2 function as well, but let us first define this operator T as follows

(Tf) (x) =

∫ b

a

G(x, ξ)f(ξ) dξ. (44)

Using the continuity of G and f at ξ = x, the continuity of v1 and v2 and
the property of G given in (42) we obtain the following three expressions by
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differentiating equation (44)

(Tf)(x) =

∫ x

a

G(x, ξ)f(ξ) dξ +

∫ b

x

G(x, ξ)f(ξ) dξ,

(Tf)′(x) =

∫ x

a

Gx(x, ξ)f(ξ) dξ +

∫ b

x

Gx(x, ξ)f(ξ) dξ,

(Tf)′′(x) =

∫ x

a

Gxx(x, ξ)f(ξ) dξ +

∫ b

x

Gxx(x, ξ)f(ξ) dξ +
f(x)

p(x)
.

The elaborations of the first and second derivative can be found on page 13 of
[1]. Because of the jump discontinuity of the Green’s function at x = ξ given in
(42) these proofs involve some subtleties wherefore they will be left out of this
thesis. Moreover, in the second expression for the first derivative (Tf)′(x) we
made use of the continuity of G and f at ξ = x and we note that the derivatives
of limits cancel out.
From the last expression it follows that Tf ∈ C2([a, b]). Using the formulas
above and the equation for LxG(x, ξ) given in (41), applying the operator L on
the function Tf yields

L(Tf)(x) = p(x)(Tf)′′(x) + p′(x)(Tf)′(x) + r(x)(Tf)(x)

=

∫ x

a

LxG(x, ξ)f(ξ) dξ +

∫ b

x

LxG(x, ξ)f(ξ) dξ + f(x)

= f(x),

as desired. We also made use of the property of the Green’s function given by
equation (41) from which we know LxG(x, ξ) = 0 for every ξ 6= x. Furthermore,
because G is symmetric it follows that Tf satisfies the boundary conditions of
the Sturm-Liouville eigenvalue problem given in (40).
On the other hand, if we have another function u ∈ C2([a, b]) which satisfies the
same boundary conditions, we can prove the reverse statement. Making use of
the fact that p, u and u′ are continuous and also using the properties which the
Green’s function satisfies, we obtain

T (Lu)(x) = u(x).

This is just a matter of substituting Lu(x) in equation (44) and applying inte-
gration by parts to the result. Therefore the proof will be omitted.
So we have actually seen L(Tf) = f and T (Lu) = u, thus the operator T can be
considered as an inverse of L. This is exactly the operator we searched for since
it is an integral expression of L−1. So we see the Sturm-Liouville eigenvalue
equation given by

Lu+ λu = 0,

subject to the separated homogeneous boundary conditions given in (40) corre-
sponds to the eigenvalue equation

Tu = µu,

with µ = − 1
λ . Therefore the eigenfunction u is a solution of the Sturm-Liouville

problem corresponding to the the eigenvalue λ if and only if u is an eigenfunc-
tion of T corresponding to the eigenvalue − 1

λ . Since it takes significantly less
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effort, we shall explore the spectral properties of the integral operator T , as
they present information about the spectral properties of the Sturm-Liouville
problem itself.

Let us first look at the eigenvalues of the Sturm-Liouville problem. We have
already noted 0 is not an eigenvalue of −L and the next lemma proves there
exist more real numbers which are not an eigenvalue of this operator.

Lemma 5.1. The eigenvalues of −L are bounded below by a real constant.

Proof. Consider a function u ∈ C2([a, b]) satisfying the boundary conditions
given in (40). To say something about the value of the eigenvalues we will first
evaluate the inner product of −Lu with u using (17). Applying (39) and using
the boundary conditions to replace u′ we get

〈−Lu, u〉 = 〈−(pu′)′ − ru, u〉 =

∫ b

a

(
−(pu′)′u− r|u|2

)
dx

= [−p(x)u′(x)u(x)]
b
a −

∫ b

a

−p|u′|2dx+

∫ b

a

−r|u|2dx

=

∫ b

a

(
p|u′|2 − r|u|2

)
dx+ p(a)u′(a)u(a)− p(b)u′(b)u(b)

=

∫ b

a

(
p|u′|2 − r|u|2

)
dx+ p(b)

β1
β2
u2(b)− p(a)

α1

α2
u2(a),

where we made use of integration by parts in the second step. If α2 or β2 equals
0 the boundary conditions imply u(a) = 0 and u(b) = 0 respectively. Therefore
the second or third term above drops out. In case they both equal zero we can
already state the following concerning the eigenvalue λ corresponding to the
eigenfunction u

λ‖u‖2 = 〈−Lu, u〉 =

∫ b

a

p(x)|u′(x)|2 dx−
∫ b

a

r(x)|u(x)|2 dx

≥ −‖u‖2max{|r(x)| : a ≤ x ≤ b}.

So if we define ` := −max{|r(x)| : a ≤ x ≤ b}, we see this ` is a lower bound for
λ since u ∈ C2([a, b]) was chosen arbitrary.
On the other hand if α2 and β2 do not equal zero, we can show by contradiction
−L does not have more than two linearly independent eigenfunctions less than
this lower bound `. So let’s assume our operator has three linearly independent
eigenfunctions u1, u2 and u3. Corresponding to them we have the eigenvalues
λ1, λ2 and λ3 respectively, which all three are less than `. Furthermore we
suppose the eigenfunctions are orthonormal. As a reminder, this implies the
inner product of ui with uj for i 6= j equals zero and the norm of every ui
equals 1. Now we define the following eigenfunction

v(x) = c1u1(x) + c2u2(x) + c3u3(x),

where c1, c2 and c3 are constants and for which we have v(a) = v(b) = 0.
This follows directly from the fact that u1, u2 and u3 must satisfy the boundary
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conditions given in (40), which implies the following two identities hold

c1u1(a) + c2u2(a) + c3u3(a) = 0,

c1u1(b) + c2u2(b) + c3u3(b) = 0.

Since v(a) = v(b) = 0 we must have from the argument above that the eigenvalue
corresponding to v is bounded below by `. However, here we stumble upon a
contradiction since the following inequality must also hold

〈−Lv, v〉 = λ1|c1|2 + λ2|c2|2 + λ3|c3|2 < `
(
|c1|2 + |c2|2 + |c3|2

)
= `‖v‖2,

where we used the orthonormality property of the eigenfunctions ui. Therefore
there exist at most two linearly independent eigenvalues less than ` in the case
of α2 and β2 being unequal to zero and none less than ` if α2 and β2 both equal
zero. So the eigenvalues of −L are bounded below by a real constant.

By determining an eigenvalue of T we are able to show its existence. Therefore
we first want to prove the set of functions Tu contains a sequence which is uni-
formly convergent on [a, b] to a continuous function. We shall see this function
is an eigenfunction of the operator T corresponding to the eigenvalue we are
searching for. To prove that it contains a uniformly convergent sequence we will
use the following theorem, also known as the Ascoli-Arzela theorem which can
be found on pages 28-31 of [9].

Theorem 5.2. Let F be an infinite, uniformly bounded, and equicontinuous
set of functions on the bounded interval [a, b]. Then F contains a sequence
(fk : k ∈ N) which is uniformly convergent on [a, b] to a function which is
continuous on [a, b].

Before proving {Tu} is uniformly bounded and equicontinuous we first want to
clarify these concepts. Again consider the infinite set F consisting of functions
which are continuous on [a, b] satisfying the following inequality

|f(x)| ≤M for all f ∈ F and allx ∈ [a, b],

where M is a positive number. Then we call the set F uniformly bounded. On
the other hand, if for every ε > 0 there exists a δ > 0 such that |f(x)−f(ξ)| < ε
for all f ∈ F and all x, ξ ∈ [a, b] whenever |x− ξ| < δ, then we call the infinite
set F equicontinuous on [a, b]. Note that δ may depend on ε, but not on x, ξ or
f . Making use of these concepts, we are now able to prove the next theorem by
showing Tu is uniformly bounded and equicontinuous, and subsequently using
the Ascoli-Arzela theorem.

Theorem 5.3. The set of functions Tu, with u ∈ C([a, b]) and ‖u‖ ≤ 1, con-
tains a sequence which is uniformly convergent to a continuous function on
[a, b].

Proof. First of all we know |G(x, ξ)| is uniformly continuous and bounded by
some positive constant M since the Green’s function G is continuous on [a, b]×
[a, b]. Therefore, consecutively using the expression for the operator T given in
(44), the inner product given in (17) and the Cauchy-Schwarz inequality (19),
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we obtain

|Tu(x)| =

∣∣∣∣∣
∫ b

a

G(x, ξ)u(ξ) dξ

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

a

G(x, ξ)u(ξ) dξ

∣∣∣∣∣
= |〈G(x, ξ), u(ξ)〉| ≤ ‖G‖‖u‖ ≤M

√
b− a‖u‖.

(45)

Since we assumed ‖u‖ ≤ 1 we see the set Tu is uniformly bounded since
|Tu(x)| ≤ M

√
b− a‖u‖ ≤ M

√
b− a. On the other hand, again using the uni-

form continuity of G we must have that for any ε > 0 there exists a δ > 0 such
that for x1, x2 ∈ [a, b], |x2 − x1| < δ implies |G(x2, ξ) − G(x1, ξ)| < ε for all
ξ ∈ [a, b]. Since u ∈ C([a, b]) we therefore have that whenever |x2− x1| < δ this
implies |Tu(x2)−Tu(x1)| ≤ ε

√
b− a‖u‖ ≤ ε

√
b− a. So besides being uniformly

bounded we notice the set of functions Tu for which we have u ∈ C([a, b]) and
‖u‖ ≤ 1, is also equicontinuous since our choice for δ is independent of x1, x2
and u.

Applying the Ascoli-Arzela theorem given in theorem 5.2 we see we have proven
Tu contains a uniformly convergent subsequence and this enables us to make
a claim concerning the existence of an eigenvalue of T . Therefore we want to
define the norm of this operator as follows

‖T‖ = sup{‖Tu‖ : u ∈ C([a, b]), ‖u‖ = 1}.

Using this norm it is not too hard to show the first of the following two identities
hold for all continuous functions u on [a, b]

1. ‖Tu‖ ≤ ‖T‖‖u‖ ,
(46)

2. ‖T‖ = sup
‖u‖=1

|〈Tu, u〉| .

The second statement is not completely trivial but can be found on pages 234-
235 in [4]. These identities will be useful in proving the following theorem about
the existence of an eigenvalue of T .

Theorem 5.4. Either ‖T‖ or −‖T‖ is an eigenvalue of the operator T .

Proof. First of all, since 〈Tu, u〉 is a real number we have using the second
identity in (46) that either ‖T‖ = sup〈Tu, u〉 or ‖T‖ = − inf〈Tu, u〉 with the
norm of u being equal to 1. We will assume ‖T‖ = sup〈Tu, u〉 since the proof
for −‖T‖ = inf〈Tu, u〉 is similar. This assumption implies there must exist a
sequence of continuous functions {uk} on [a, b] for which 〈Tuk, uk〉 → ‖T‖ as
k →∞. According to theorem 5.2 the sequence {Tuk} contains a subsequence
{Tukj} which converges uniformly to a continuous function which we will denote
by ϕ0. We shall see this ϕ0 actually is an eigenfunction of T and its correspond-
ing eigenvalue, which we will denote by µ0, indeed equals ‖T‖. So since {Tukj}
converges uniformly to ϕ0 we know

sup
x∈[a,b]

|Tukj (x)− ϕ0(x)| → 0.
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Therefore, using (46) we have ‖Tukj −ϕ0‖ → 0 which in turn implies ‖Tukj‖ →
‖ϕ0‖. Using this and the fact that 〈Tukj , ukj 〉 → ‖T‖ = µ0 we obtain the
following identity

‖Tukj − µ0ukj‖2 = ‖Tukj‖2 + ‖µ0ukj‖2 − 2〈Tukj , µ0ukj 〉
= ‖Tukj‖2 + |µ0|2‖ukj‖2 − 2µ0〈Tukj , ukj 〉
= ‖Tukj‖2 + µ2

0 − 2µ0〈Tukj , ukj 〉
→ ‖ϕ0‖2 + µ2

0 − 2µ2
0 = ‖ϕ0‖2 − µ2

0.

(47)

Since ‖Tukj − µ0ukj‖2 is always greater than or equal to zero on [a, b] we
must have ‖ϕ0‖2 ≥ µ2

0 ≥ 0. Furthermore, using (46) we have ‖Tukj‖2 ≤
‖T‖2‖ukj‖2 = ‖T‖2 = µ2

0. This implies (47) boils down to

0 ≤ ‖Tukj − µ0ukj‖2 ≤ µ2
0 + µ2

0 − 2µ0〈Tukj , ukj 〉 = 2µ2
0 − 2µ0〈Tukj , ukj 〉.

Since 〈Tukj , ukj 〉 → µ0 the right hand side of the expression above goes to zero.
Therefore we obtain ‖Tukj − µ0ukj‖ → 0. Now we will rewrite the norm of
Tϕ0 − µ0ϕ0 in the following way using the triangle inequality given in (19)

0 ≤ ‖Tϕ0 − µ0ϕ0‖ = ‖Tϕ0 − T (Tukj ) + T (Tukj )− µ0Tukj + µ0Tukj − µ0ϕ0‖
≤ ‖Tϕ0 − T (Tukj )‖+ ‖T (Tukj )− µ0Tukj‖+ ‖µ0Tukj − µ0ϕ0‖.

If we use the just obtained results we see the left hand side tends to zero as j
goes to infinity. Therefore it follows that ‖Tϕ0 − µ0ϕ0‖ must equal zero, which
implies Tϕ0(x) = µ0ϕ0(x) for all x ∈ [a, b] because Tϕ0 − µ0ϕ0 is continuous.
This completes the proof since we have shown that µ0 = ‖T‖ is an eigenvalue
of the operator T corresponding to the eigenfunction ϕ0.

We shall now use this result in the proof of the following theorem regarding the
existence of eigenfunctions of T .

Theorem 5.5. The operator T has an infinite sequence of orthonormal eigen-
functions in the L2(a, b) space.

Proof. We will prove this theorem inductively, creating a sequence of eigen-
functions in the following way. Using ϕ0, µ0, the Green’s function G and the
self-adjoint operator T we shall define the normalized eigenfunction ψ0, a new
function G1 and a new self-adjoint operator T1 as follows

ψ0 :=
ϕ0

‖ϕ0‖
,

G1(x, ξ) := G(x, ξ)− µ0ψ0(x)ψ0(ξ),

(T1u)(x) :=

∫ b

a

G1(x, ξ)u(ξ) dξ =

∫ b

a

(
G(x, ξ)− µ0ψ0(x)ψ0(ξ)

)
u(ξ) dξ

=

∫ b

a

G(x, ξ)u(ξ) dξ − µ0ψ0(x)

∫ b

a

u(ξ)ψ0(ξ) dξ

= Tu(x)− µ0〈u, ψ0〉ψ0(x),

(48)

which holds for all continuous functions u on [a, b]. Defining it this way we see
G and G1 satisfy the same regularity properties and moreover G1 is symmetric,
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i.e. G1(x, ξ) = G1(ξ, x) for all x, ξ ∈ [a, b] following from G being symmetric
itself. This implies the set of functions T1u is also uniformly bounded and
equicontinuous for ‖u‖ ≤ 1. Furthermore, if we define |µ1| := sup |〈T1u, u〉|
for ‖u‖ = 1 and assume ‖T1‖ 6= 0, we see ‖T1‖ = µ1 is an eigenvalue of the
self-adjoint operator T1. It corresponds to the continuous eigenfunction ϕ1 and
therefore it satisfies the following equation

T1ϕ1 = µ1ϕ1.

Because ϕ0 is an eigenfunction of T corresponding to the eigenvalue µ0 we must
also have Tψ0 = µ0ψ0 for the normalized eigenfunction ψ0. Using this we obtain

〈T1u, ψ0〉 = 〈Tu− µ0〈u, ψ0〉ψ0, ψ0〉 = 〈Tu, ψ0〉 − µ0〈〈u, ψ0〉ψ0, ψ0〉
= 〈u, Tψ0〉 − µ0〈u, ψ0〉 = 〈u, µ0ψ0〉 − µ0〈u, ψ0〉 = 0,

(49)

where we made use of the operator T being self-adjoint and the eigenfunction
ψ0 being normalized, thus its norm being equal to 1. Since this holds for all
continuous functions u on [a, b] we can now normalize the eigenfunction ϕ1 of T1,
i.e. ψ1 := ϕ1

‖ϕ1‖ and see ψ1 is orthogonal to ψ0. This results from substituting

ψ1 for u in expression (49) as follows

0 = 〈T1ψ1, ψ0〉 = 〈µ1ψ1, ψ0〉 = µ1〈ψ1, ψ0〉.

Since we assumed µ1 6= 0 we see the inner product of ψ1 and ψ0 equals zero
which implies they are orthogonal. Using the definition of T1 given in (48),
applying this operator to ψ1 yields

T1ψ1 = Tψ1 − µ0〈ψ1, ψ0〉ψ0 = Tψ1, (50)

where we used the orthogonality of ψ0 with ψ1. Since T1ψ1 = µ1ψ1 we see
Tψ1 = T1ψ1 = µ1ψ1 which implies ψ1 is also an eigenfunction of the operator T
with corresponding eigenvalue µ1. Using expression (50), the definitions of µ0

and µ1, and the inequality given in (46) we obtain

|µ1| = |µ1|‖ψ1‖ = ‖µ1ψ1‖ = ‖Tψ1‖ ≤ ‖T‖‖ψ1‖ = ‖T‖ = |µ0|.

In the same way we shall construct G2 and T2 for which we obtain a new
eigenfunction. Let’s define them as follows

G2(x, ξ) := G1(x, ξ)− µ1ψ1(x)ψ1(ξ) = G(x, ξ)− µ0ψ0(x)ψ0(ξ)− µ1ψ1(x)ψ1(ξ)

= G(x, ξ)−
1∑
k=0

µkψk(x)ψk(ξ),

(T2u)(x) :=

∫ b

a

G2(x, ξ)u(ξ) dξ =

∫ b

a

(
G(x, ξ)−

1∑
k=0

µkψk(x)ψk(ξ)

)
u(ξ) dξ

=

∫ b

a

G(x, ξ)u(ξ) dξ −
1∑
k=0

(
µkψk(x)

∫ b

a

u(ξ)ψk(ξ) dξ

)

= Tu(x)−
1∑
k=0

µk〈u, ψk〉ψk(x).
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From this we obtain another normalized eigenfunction of T which we will de-
note by ψ2 corresponding to the eigenvalue µ2. Again we are able to show
this eigenfunction is orthonormal to the other two eigenfunctions ψ0 and ψ1

and moreover the eigenvalue satisfies |µ2| ≤ |µ1|. Proceeding this way we
can construct a sequence of eigenfunctions ψ0, ψ1, ψ2, . . . of the operator T
which are orthonormal, and they are associated with the sequence of eigen-
values |µ0| ≥ |µ1| ≥ |µ2| ≥ . . . . Then we obtain the following expressions for
the iterated Green’s function and integral operator

Gn(x, ξ) = G(x, ξ)−
n−1∑
k=0

µkψk(x)ψk(ξ),

(Tnu)(x) =

∫ b

a

Gn(x, ξ)u(ξ) dξ = Tu(x)−
n−1∑
k=0

µk〈u, ψk〉ψk(x),

(51)

where the norm of the operator Tn satisfies

‖Tn‖ = |µn|. (52)

Obviously, if we have |µn| = ‖Tn‖ = 0 for some n, this sequence of eigenvalues
ends. However, it is not too hard to prove that ‖Tn‖ is greater than zero for all
n ∈ N. This can be shown by a contradiction, so assuming |µn| = 0 we have

0 = L(0) = L(µnu) = L(Tnu) = L(Tu)− L

(
n−1∑
k=0

µk〈u, ψk〉ψk

)

= u−
n−1∑
k=0

µk〈u, ψk〉Lψk ⇒ u =

n−1∑
k=0

µk〈u, ψk〉Lψk

=

n−1∑
k=0

〈u, ψk〉Lµkψk =

n−1∑
k=0

〈u, ψk〉LTψk =

n−1∑
k=0

〈u, ψk〉ψk.

But this must hold for all continuous functions u on [a, b] which contradicts
the fact that there cannot exist a finite set of functions which spans whole
C([a, b]). Therefore there must exist an infinite sequence of eigenfunctions,
which completes the proof.

5.2 Completeness of the eigenfunctions

In this section we shall prove that the eigenfunctions of the operator T are
complete. Therefore we make use of theorem 3.11 in which Parseval’s identity
is related to the completeness property of an orthogonal set. Thus we have to
prove that Bessel’s inequality given in (28) is an equality, i.e.

f =

∞∑
k=0

〈f, ψk〉ψk.

The following theorem will be used to show this holds for any f ∈ L2(a, b).

Theorem 5.6. Given any f ∈ C2([a, b]) subject to the separated homogeneous
boundary conditions given in (40) the infinite series

∑
〈f, ψk〉ψk is uniformly

convergent to f on [a, b].
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Proof. First we will prove
∑∞
k=0 µk〈u, ψk〉ψk is uniformly convergent to a con-

tinuous function on [a, b]. As we constructed the eigenfunctions for the operator
T we saw for any function 〈u, ψk〉ψk we have T (〈u, ψk〉ψk) = µk (〈u, ψk〉ψk).
This implies

T

(
n∑

k=m

〈u, ψk〉ψk

)
=

n∑
k=m

µk〈u, ψk〉ψk,

for n > m. From expression (45) we know the set Tu is uniformly bounded since
|(Tu)(x)| ≤ M

√
b− a‖u‖ for all continuous functions u on [a, b]. Therefore,

using the identity above and the definition of the norm given in (18) we obtain∣∣∣∣∣
n∑

k=m

µk〈u, ψk〉ψk

∣∣∣∣∣ =

∣∣∣∣∣T
(

n∑
k=m

〈u, ψk〉ψk

)∣∣∣∣∣ ≤M√b− a
∥∥∥∥∥

n∑
k=m

〈u, ψk〉ψk

∥∥∥∥∥
= M

√
b− a

√√√√ n∑
k=m

∫ b

a

|〈u, ψk〉ψk|2 dx

= M
√
b− a

√√√√ n∑
k=m

|〈u, ψk〉|2,

since ψk is normalized. From Bessel’s inequality given in (28) we know the last
expression must be less than or equal to M

√
b− a‖u‖. So if m,n → ∞ this

implies |
∑n
k=m µk〈u, ψk〉ψk| → 0 and therefore

∑n
k=m µk〈u, ψk〉ψk is uniformly

convergent to a continuous function on [a, b]. Now we will show this continuous
function turns out to be Tu. Therefore we will apply Bessel’s inequality to the
Green’s function. First we notice by definition of the operator T given in (44)
that

〈G(x, ξ), ψk〉 =

∫ b

a

G(x, ξ)ψk dξ = Tψk(x) = µkψk(x),

for every x ∈ [a, b]. Using this expression and applying Bessel’s inequality we
obtain

n∑
k=0

µ2
k|ψk(x)|2 =

n∑
k=0

|µkψk(x)|2 =

n∑
k=0

|〈G,ψk〉|2 ≤ ‖G‖2 =

∫ b

a

|G(x, ξ)|2 dξ,

where the last equality follows from (18). As noticed before we know the Green’s
function is bounded by some positive constant M . Therefore, using the fact that
ψk is normalized and integrating the expression above with respect to x yields

∞∑
k=0

µ2
k ≤M2(b− a)2,

as n → ∞. This implies we must have that limn→∞ |µn| = 0. Now using the
expression for Tn given in (51), the value of its norm given in (52) and the
inequality given in (46) we obtain for any continuous function u on [a, b]

‖Tu−
n−1∑
k=0

µk〈u, ψk〉ψk‖ = ‖Tnu‖ ≤ ‖Tn‖‖u‖ = |µn|‖u‖.
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Since we just determined limn→∞ |µn| = 0, the right hand side of the inequality
above also tends to zero as n→∞. Because Tu is continuous we therefore have

Tu(x) =

∞∑
k=0

µk〈u, ψk〉ψk(x), (53)

for all x ∈ [a, b]. As we saw before, if f is continuous function on [a, b] satisfying
the boundary conditions of the Sturm-Liouville problem given in (40) we can
define another continuous function u as follows

u = Lf and f = Tu,

since T acts as an inverse operator of L. Using this and the fact that T is
formally self-adjoint we obtain

µk〈u, ψk〉 = 〈u, µkψk〉 = 〈u, Tψk〉 = 〈Tu, ψk〉 = 〈f, ψk〉,

as µk is the eigenvalue of the operator T corresponding to the normalized eigen-
function ψk. Substituting this into equation (53) we finally obtain

f(x) = Tu(x) =

∞∑
k=0

µk〈u, ψk〉ψk(x) =

∞∑
k=0

〈f, ψk〉ψk(x),

which holds for all x ∈ [a, b]. Therefore
∑
〈f, ψk〉ψk is uniformly convergent to

f ∈ C2([a, b]) and this completes the proof.

Now using the density of C2([a, b]) in L2(a, b) already given in theorem 3.9 we
are able to prove ∥∥∥∥∥f −

n∑
k=0

〈f, ψk〉ψk

∥∥∥∥∥→ 0

as n→∞. The proof goes too much into detail for this thesis and will therefore
be omitted, but it can be found on pages 81-83 in [2]. However, we have shown
that

lim
n→∞

∥∥∥∥∥f −
n∑
k=0

〈f, ψk〉ψk

∥∥∥∥∥ = 0 =⇒ f =

∞∑
k=0

〈f, ψk〉ψk,

which is equivalent to Parseval’s identity given in (29). As proved before we
see this shows that the set of eigenfunctions of the operator T is orthonormal
and furthermore complete in L2(a, b). We are now able to summarize this
whole section. Using theorem 5.5 and the relation between the eigenvalues of
the operators T and L given by µ = − 1

λ , we see limn→∞ |µn| = 0 implies
1
|λn| = |µn| → 0. Considering the eigenvalues are bounded below (lemma 5.1)

we therefore have λn → ∞ as n → ∞. Also taking the weight function w into
account we obtain the following fundamental theorem regarding the Sturm-
Liouville eigenvalue problem, which was already stated in section 2.2.

Theorem 5.7. Consider the following formally self-adjoint operator

L =
d

dx

(
p(x)

d

dx

)
+ r(x),
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with the following eigenvalue equation

Lu+ λw(x)u = 0,

satisfying the following separated homogeneous boundary conditions

α1u(a) + α2u
′(a) = 0, |α1|+ |α2| > 0,

β1u(b) + β2u
′(b) = 0, |β1| + |β2| > 0,

with αi, βi ∈ R. Suppose p′, r, w ∈ C([a, b]) with p, w > 0 and x ∈ [a, b].
Then the Sturm-Liouville eigenvalue problem has an infinite sequence of real
eigenvalues which can be ordered in the following way

λ0 < λ1 < λ2 < · · · < λn < · · · ,

where λn →∞ as n→∞. The eigenfunctions ϕn corresponding to each eigen-
value λn are unique and after normalizing the eigenfunctions to ψn they form
an orthonormal basis of the L2(a, b) space.

33
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6 Application of the Sturm-Liouville Theory

In this section we shall have a look at some applications of the Sturm-Liouville
theory and an example will be elaborated. This illustrates the main results ob-
tained in this thesis. The section ends with some concluding remarks concerning
the Sturm-Liouville problem and its applications.

6.1 Applications

Besides the example of the sound of a guitar mentioned in the introduction,
the Sturm-Liouville theory has many more applications. These equations occur
frequently in applied mathematics as well as in physics. They describe the vi-
brations of a particular system, e.g. the vibrations of the plucked string of the
guitar. Another example is the one-dimensional time-independent Schrödinger
wave equation, where the eigenvalues represent the energy levels of the atomic
system. These Sturm-Liouville problems do not only occur in one space dimen-
sion but also in higher dimensions and the results obtained in this thesis then
still apply. Considering the wave equation, an example for dimension 2 is given
by the resonant frequencies of a drum. If the dimension equals 3 we can think
of the resonant frequencies of sound waves in a room.
One illustration of the one-dimensional Schrödinger equation is given by a crys-
tal structure. This wave equation then represents the motion of a conduction
electron in the crystal structure. The spectrum of the Sturm-Liouville eigen-
value equation can be seen as existing of intervals. The location of an eigenvalue
in one of these intervals determines whether a solution is bounded or unbounded,
where in the latter case it grows exponentially. Therefore some electrons can
move freely through the crystal and the motion of others is bounded, since their
energy lies in either of both intervals. This in turn clarifies whether the crystal
acts like an insulator or conducts electricity. An example of a semiconductor is
given by silicon, which is among other things used to create computer chips.
Another example of Sturm-Liouville equations are the Airy functions, which de-
scribe the change of a solution from oscillatory to exponential behaviour. This
can be clarified by the oscillatory integrals for the Airy functions which have
two stationary phase points. Illustrations of this transition from one state to the
other are the caustics in light reflections or the passage of a particle from one
region to another in semi-classical quantum mechanics. A very familiar example
of a caustic is a rainbow.
The Airy functions can also be found in the study on linear dispersive water
waves. For example, Diederik Korteweg and Gustav de Vries came up with a
model consisting of a nonlinear, dispersive partial differential equation which
describes waves on shallow water surfaces. Also Kelvin, who actually invented
the method of stationary phase, studied the pattern of dispersive water waves
made by a ship with constant speed.
A few other Sturm-Liouville equations are Bessel’s equation, Legendre equations
and Laguerre equations. However, they will not be discussed in this thesis but
a very interesting lecture on Sturm-Liouvile eigenvalue problems can be found
in chapter 4 of [5].

34



6 APPLICATION OF THE STURM-LIOUVILLE THEORY

6.2 An example: the second derivative

At last we shall discuss an example which illustrates the concepts treated so
far. We will have a look at one of the simplest forms of a Sturm-Liouville
problem, i.e. the second derivative −

(
d2/dx2

)
. In view of equation (30) for

the operator L we see this is the case for p = −1, q = 0 and r = 0. Theorem
4.1 now implies this operator is formally self-adjoint since all the coefficients

are real and furthermore p′ = d(−1)
dx = 0 = q. To determine its eigenvalues and

eigenfunctions we need to solve the equation Lu = λu, which implies

u′′ + λu = 0. (54)

Let’s assume it’s subject to the following boundary conditions

u(0) = u(l) = 0,

for 0 ≤ x ≤ l. We will explore this for different values of λ, so let’s start with the
case where the eigenvalue is strict positive. From ordinary differential equations
we know the general solution is then given by

u(x) = c1 cos
√
λx+ c2 sin

√
λx,

where c1 and c2 are constants. Using the boundary conditions we obtain

u(0) = c1 = 0,

u(l) = c2 sin
√
λl = 0.

The last equality implies λn = n2π2

l2 where n ∈ N. Since both the eigenvalue
equation and the boundary conditions are homogeneous we can take c2 = 1
and obtain the following expression for the eigenfunctions corresponding to the
eigenvalues λn

un(x) = sin
nπ

l
x.

Now considering the case where λ ≤ 0, we obtain the following solutions for the
differential equation

u(x) = c1x+ c2 if λ = 0,

u(x) = c1 cosh
√
−λx+ c2 sinh

√
−λx if λ < 0.

Using the boundary conditions both cases lead to the trivial solution u = 0 and
therefore we conclude equation (54) only has positive eigenvalues. Thus the
eigenvalues and eigenfunctions of this particular Sturm-Liouville problem are
given by

λn =
n2π2

l2
and un(x) = sin

nπ

l
x for n ∈ N.

So we see the eigenvalues are real, form an infinite sequence and tend to infinity
as n→∞, which was also concluded in theorem 5.7. Furthermore we can prove
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the eigenfunctions are orthogonal in the space L2(0, l) by showing each inner
product equals zero. For if we have m 6= n and use definition (17) we get

〈um, un〉 =

∫ l

0

sin
mπ

l
x sin

nπ

l
xdx

=
1

2

∫ l

0

(
cos(m− n)

π

l
x− cos(m+ n)

π

l
x
)

dx = 0,

since m and n are integers. Finally, using theorem 5.7 we know the sequence
{un} of eigenfunctions is complete in L2(0, l) and spans this space.
The completeness of the eigenfunctions implies we are able to represent any
function f ∈ L2(0, l) as follows

f(x) =

∞∑
n=1

αn sin
nπ

l
x. (55)

Note the equality holds in the L2(0, l) space, which means it should be inter-
preted as follows ∥∥∥∥∥f(x)−

∞∑
n=1

αn sin
nπ

l
x

∥∥∥∥∥ = 0.

In section 3.2.2 we already found an expression for the coefficient αn given in
(23), which for this example turns into

αn =
〈f, sin(nπx/l)〉
‖ sin(nπx/l)‖2

, (56)

where we substituted the eigenfunction un(x) we just found. Evaluating the
denominator using (18) yields∥∥∥sin

nπ

l
x
∥∥∥2 =

∫ l

0

sin2 nπ

l
x dx =

l

2
.

Substituting this in our formula for the coefficient αn given in (56) and evalu-
ating the inner product we then obtain

αn =
2

l

∫ l

0

f(x) sin
nπ

l
x dx.

This can be illustrated by showing how to represent the constant function f(x) =
1 on [0, l]. The inner product of f(x) with our eigenfunction un is given by

〈1, sin(nπx/l)〉 =

∫ l

0

sin
nπ

l
xdx =

l

nπ
(1− cosnπ) =

l

nπ
(1− (−1)n).

Therefore our coefficient αn turns into

αn =
2

l
〈1, sin(nπx/l)〉 =

2

nπ
(1− (−1)n)
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Substituting this in our formula for the representation of f given in (55) yields

1 =
2

π

∞∑
n=1

(
1− (−1)n

n

)
sin

nπ

l
x,

where again the equality is in the space L2(0, l). Therefore we should interpret
it as

2

π

n∑
k=1

(
1− (−1)k

k

)
sin

kπ

l
x
L2

→ 1,

when n→∞.

6.3 Concluding remarks

In this section we have discussed some applications of the Sturm-Liouville theory
and we looked at an example. This illustrated some of the spectral properties
such as the infinite sequence of real eigenvalues and the representation of a func-
tion in the L2 space. We saw the set of functions {sin(nπx/l) : n ∈ N} spans
L2(0, l). It can be shown that {cos(nπx/l) : n ∈ N} also spans this space and
their combination spans L2(−l, l), leading to the Fourier series. However we
shall not further digress on this, but it shows how comprehensive the Sturm-
Liouville problem is. We could also have considered the singular case, i.e. when
some of the initial conditions are not satisfied. For example the function p(x)
being equal to zero at any of the endpoints a or b, or the interval (a, b) being
infinite. Then the spectral properties given in this paper are still satisfied and
it even leads to a generalisation of the theory and its conditions. Well-known
examples follow from this singular problem, e.g. Legendre’s and Hermite’s equa-
tion, or the one-dimensional time-independent Schrödinger equation. Thus we
see the Sturm-Liouville theory is deeply investigated and utilized and still is to
this day. Hence this thesis did not cover the entire research on this topic but it
did work towards some of its main results to make the reader familiar with the
Sturm-Liouville theory.
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