
Apollo
Simplicity and intuitiveness in a personalized

multilingual reading tool

Bachelor's thesis

June 2017

Student: D. Chirtoaca

Primary supervisor: Dr. M. Lungu

Secondary supervisor: Dr. A. Lazovik



Abstract

Learning a language is a long and exhaustive process. To encourage and
help language learners study their language of choice, we analyzed, proposed,
developed and evaluated a reading platform that is suitable for the above listed
needs, allowing the users to interact with reading material for which they have
interest in, with the ultimate purpose to make the learning process an enjoyable
one.

The tool has been tested in a high-school environment, by a sizable group of
French learning students. Important usability insights have thus been gathered
that helped improving and fine-tuning the system, charting the road-map for
future refinement opportunities.



C O N T E N T S

1 Introduction 3
1.1 Structure 5

2 Related Work 6
2.1 Zeeguu Reader for iOS 6

2.2 Zeeguu Reader for Android 8

2.3 Amazon Kindle 8

2.4 The Effects of Extensive Reading 9

3 Problem Description 11

4 Realization 14
4.1 Article Scraping and Curation 14

4.2 Word Translation 15

4.3 Word Pronunciation 17

4.4 Translation Alternatives 17

4.5 Extended Features 18

4.5.1 Undo Translation 18

4.5.2 Text Selection 18

4.5.3 Article liking 19

4.5.4 Article starring 19

5 Architecture 21
5.1 Back-end 22

5.1.1 Flask app 22

5.1.2 Pre-processing 23

5.2 Front-end 23

5.2.1 ZeeguuRequests 24

5.2.2 Translator 25

5.2.3 Speaker 26

5.2.4 AlterMenu 26

5.2.5 Notifier 27

5.2.6 UndoStack 28

1



CONTENTS 2

5.2.7 Starer 28

5.2.8 UserActivityLogger 29

6 Results and Evaluation 30
6.1 User Satisfaction 30

6.2 Heat Maps 32

6.3 Statistical Analysis 34

6.4 Discussion 39

7 Conclusion 40

8 Future Work 41
8.1 Dictionary support 41

8.2 Preserve some visuals 41

8.3 Preserve article state 41

8.4 Particle verbs support 42

8.5 Reading modes 42

8.6 Reading rate 42

A Workflow 43

B Dependencies and Tools 44
b.1 Flask 44

b.2 Newspaper 44

b.3 Hotjar 44

Bibliography 45



1
I N T R O D U C T I O N

We are living in multicultural societies. Travelling, migrating or simply com-
muting, eventually makes us interact with a variety of individuals. To be able
to adapt and integrate into these new societal contexts, communication is one
of the primary tools that we use. The most meaningful and efficient commu-
nication can be achieved through the means of language. Hence, proficiency
in multiple languages gives us a distinct advantage in the current globalized
world that we live in.

What we conclude from the above is that language learning is becoming
an ubiquitous and even natural process when dealing with day-to-day and
human-to-human interactions. Facilitating this process can thus benefit a large
part of the society.

One of the most beneficial ways for a learner to improve their mastery of
a foreign language has proven to be reading. In fact, McCarthy [3] argues
that extensive reading serves as a comprehensive training ground that has
the potential and ability to improve the other crucial language skills as a
result: writing, listening, and speaking. Moreover, this same idea of extensive
reading is backed by research, conducted by a large number of researchers and
educators.

Several empirical studies and syntheses on the topic have concluded that
indeed extensive reading does have a positive impact on the above mentioned
points. Renandya [7] argues in his article about "The Power of Extensive
Reading" that the benefited gains from extensive reading make it an attractive
method to be encouraged by language teachers. It should not be considered
as a replacement of the usual intensive reading, but it must be acknowledged
that it allows the student to focus on broader intricacies of the language he or
she is studying. Moreover, Namhee [4] presents research results in which the
significant impact of extensive reading over reading comprehension, reading
rate and vocabulary acquisition is highlighted (see section 2.4).

The state of the art in supporting readers of foreign languages is however
lacking. On one hand, traditional learning materials in textbooks are most often
unattractive as they target the non-existent generic learner. On the other hand,

3



CHAPTER 1. INTRODUCTION 4

the majority of the materials available online are usually incompatible with the
learner’s current language skill level.

Making reading more adapted to the personalized needs of the individual
will help learners become more engaged, and thus enable them to progress
easier and faster. Language learners would become more committed if they
could read content that they find appealing. Moreover, some learners are often
trying to maintain a parallel learning process of multiple different foreign
languages.

The issues concerned with providing the user with an interface through
which sources for articles in their target language(s) can be identified and
subscribed to, as well as listing the available reading options, is analyzed in
detail in the related thesis - Prometheus1, authored by L.A.H. van den Brand
[10].

This thesis however, is focused on creating and evaluating a reading plat-
form that provides users with a straightforward reading experience, which
is characterized by the ability to read the material they find appealing in an
unobtrusive manner, such that the clutter they have to face on usual websites,
is removed, leaving the user with clean and efficient text interaction. At the
same time, offering the availability of in-place translation possibilities, but as
McCarthy [1] stresses, such activity has to be discouraged in order to push the
learner to concentrate on the message conveyed rather than the meaning of a
particular word or phrase thus facilitating the premise of extensive reading and
ensuring a pleasant experience.

The research questions that this project analyzes and tries to answer are:

RQ1 (a) What is a minimally required User Experience that allows for non-
intrusive, extensive reading?

(b) What is the simplest software architecture that would support it?

RQ2 Would a system like the one described in this proposal be helpful for the
learners? Would it increase the engagement of the users with respect to
traditional textbook materials?

1 Where Prometheus is the god of forethought, Apollo is the god of analysis.



1.1 structure 5

1.1 structure

This document presents and describes the reading environment of the Zeeguu
Reader, together with the results of the user study and the evaluation procedure.
The rest of this document is structured in the following manner:

2. Related work:
This chapter presents relevant work related to the problem at hand.

3. Problem Description:
This chapter focuses on the derived requirements for the reading platform.

4. Realization:
This chapter demonstrates the implemented functionality and features of
the system (i.e. the end product).

5. Architecture:
This chapter is concerned with the architecture, design and implementa-
tion of the system.

6. Results and Evaluation:
This chapter analyzes the obtained results from user testing and evaluates
those accordingly.

7. Conclusion:
This chapter draws conclusions and general insights from the project as a
whole and determines its level of success.

8. Future Work:
This chapter lists features and changes to the system to improve and
further iterate on.

Appendix: This section provides more information about the project’s development
such as workflow, used dependencies, tools and others.



2
R E L AT E D W O R K

Even though this project is built from the ground up, there have certainly been
influences with respect to design decisions as well as analysis of necessary or
absent features. Moreover, the existence of the Personalized Multilingual
Reader is partially the result of aiming to solve the issues with the related
platforms.

2.1 zeeguu reader for ios

The Zeeguu Reader for iOS, designed and developed by Jorrit Oosterhof [5]
is a nicely designed application that provides the user with a sufficiently
streamlined reading environment (Figure 1), that serves its purpose well.

Figure 1: Reading an article in the iOS Reader

6



2.1 zeeguu reader for ios 7

It allows the user to obtain translations by tapping the words. Moreover it
offers the option to switch between a few translation modes:

1. Single word.

2. Pairs of words.

3. Sequence (interval) of words.

Translations are inserted into the text, but these cannot be removed, which
sometimes proves to be a nuisance.

Additionally, it supports changing and adapting the font size to the reader’s
needs and disabling the links within the article. Last but not least, the person
reading will obtain a pronunciation for the words for which a translation has
been requested. However the peculiarity of this feature is that either all the
translated words are pronounced or none of them, since the text-to-speech
functionality is turned on by a menu toggle. The above listed options can be
easily identified in the figure below:

Figure 2: Article options in the iOS Reader



2.2 zeeguu reader for android 8

2.2 zeeguu reader for android

Prior to the iOS reader, an Android solution was built by Linus Schwab [8]. A
great application, but a completely independent and separate project from the
iOS counterpart.

It uses Feedly 1 as its RSS feed aggregator, a rather popular solution at
the time and even more so today. It thus provides a neatly stylized interface
for source and article finding. It uses an extended (custom) WebView client
for the reading environment, but translation functionality is rudimentary and
even cumbersome to use. This is due to it using the native selection of the
WebView client, requiring the user to press and hold over the desired word
for an extended time. Moreover, expanding a selection is handled by manually
adjusting the selection hooks. Last but not least, translations are transient,
displayed temporarily as a tooltip, thus requiring the user to re-request them if
he or she finds the need. The figure below summarizes the above listed aspects:

Figure 3: Reading an article in the Android Reader

2.3 amazon kindle

The reading platform provided by Amazon, is a very extensive one, with plenty
of reading material choices. Together with a dictionary (Figure 4) extension
(from the target learning language to the reader’s native one), this can be
considered a viable language learning platform since it also tracks the words

1 https://developer.feedly.com/

https://developer.feedly.com/


2.4 the effects of extensive reading 9

that are being translated (i.e. Vocabulary Builder), on which the person reading
can later practice 2 .

Figure 4: Defining and translating words on Amazon Kindle

2.4 the effects of extensive reading

To elaborate on the previously introduced research on extensive reading [4],
we should underline that it argues in favor of the benefits of extensive reading
towards:

• reading comprehension

• reading rate

• vocabulary acquisition

The research had compelling conclusions, one of which can be summarized in
Figure 5, extracted from the research paper:

2 http://www.makeuseof.com/tag/learn-language-using-kindle-paperwhite/

http://www.makeuseof.com/tag/learn-language-using-kindle-paperwhite/


2.4 the effects of extensive reading 10

Figure 5: Vocabulary Mean Scores Across Group and Time

What we notice is that the group of students who performed extensive
reading, caught up and even surpassed the intensive reading group, leading to
the conclusion that the potential for better vocabulary acquisition lies with the
former reading methodology. Furthermore, similar results apply to the other
two topics of research: reading rate and comprehension.

The above are just some of the available solutions that partly solve our
problem. Each of them have specific advantages and/or features, but neither
seems to be attaining the goal of intuitive and simplistic multilingual reader.

The next section underlines the weaknesses of the above listed applications
and sets up the main problem description aspects, while focusing on the idea
of extensive reading and its impact on language learning.



3
P R O B L E M D E S C R I P T I O N

After analyzing the related work, presented in the previous section, certain
conclusions have been drawn. There are certain very good ideas bound to these
projects that we would like to inherit and build upon:

1. The simple interaction mechanism from the iOS Reader that allows for
retrieving a translation simply by tapping a word.

2. The ability to pronounce words similarly easy.

3. The possibility to check out alternatives for a translation.

4. The ability to extend a translation for more than one word as in the
Android Reader.

Nevertheless, the listed platforms are burdened by several shortcomings. In
return, this product tries to overcome a handful of them:

1. Have one platform that is available on multiple devices from different
ecosystems. The iOS and the Android reader have little to nothing in
common, thus switching platforms would require the user to adapt to a
new interaction model.

2. The iOS reader depends on the already offline readability tool 1 and
the Android one uses two separate APIs to implement its functional-
ity - Zeeguu and Feedly. This is undesired and comes with multiple
inconveniences: the iOS app is no longer functioning while the Android
counterpart requires the management of two accounts, associated with
the two used APIs.

3. Intuitive interface for translating words, without the need to switch be-
tween several modes or to access hidden interface components.

4. Better handling of the text-to-speech functionality.

5. Even better article scraping and curation.

1 https://www.readability.com/

11

https://www.readability.com/


CHAPTER 3. PROBLEM DESCRIPTION 12

What concerns more concrete specifications of the actual features that the
system should be equipped with, we are listing the following core feature set:

1. The system should be able to extract the textual content given an article
URL, curate it and present it into a readable, non-invasive format such
that any unnecessary clutter is no longer present, while not depending
on third party services.

2. The user should be able to translate (obtain a translation for) words
with the simple action of tapping (clicking) on a word, to allow for easy
and efficient text interaction. The difficult mechanism from the Android
version or the different modes from the iOS version are not efficient
enough to not break the user’s reading flow.

3. In order to enhance the language learning process, the user can directly
obtain a pronunciation for the translated word or sequence of words. The
pronunciation should be handled on top of the translation, unlike the iOS
version where the same interaction event triggers both of them.

4. Taking into consideration that machine translation cannot be 100% accu-
rate, the user can supply a translation suggestion of his or her own, thus
opening the possibility to improve translations.

From here on, by integrating the primary goal of this system - stimulating
extensive reading, the main non-functional requirements have been identified
to be connected with the following:

1. The system should be web based in order to allow for cross-platform use,
with seamless compatibility across all ranges of devices (from desktop
computers and laptops to tablets and smartphones).

2. The system’s interface should support proper scaling such that it adapts
to the size of mobile device environments, since it is one of the most used
platforms nowadays.

3. The system should be highly maintainable, such it can effortlessly be
adapted to the user feedback or to new feature sets. Equally, high qual-
ity code with a high level of modularity and detailed documentation,
represent a significant aspect in achieving that.

4. The system should be focused on delivering high usability, which is
determined by intuitiveness of the user interface and simplicity in the
user interaction. There should practically be no learning curve and the
reading environment should not contain any distractions.

5. The system has to perform swiftly, to give the impression of seamless
interaction and to supply the user with visual feedback that informs him
or her about an ongoing activity.



CHAPTER 3. PROBLEM DESCRIPTION 13

These non-functional requirements serve as a foundational guideline in the
development process of the personalized reader, to which we abide.

This platform is built around the functionality of the Zeeguu API 2. Most
of the features previously mentioned will be built on the mentioned API, by
accessing and directly utilizing its provided resources, among which we can
mention user account management and translations provider.

2 https://github.com/mircealungu/Zeeguu-API

https://github.com/mircealungu/Zeeguu-API


4
R E A L I Z AT I O N

To describe the solution we will start by looking at individual parts of the
system and how these parts solve the problem at hand. The core features,
which have been described in the previous section, are explored below by
taking a look at them in their implemented state. Moreover, this section is
extended with a set of additional features that complement the core feature set.

4.1 article scraping and curation

One of the main problems that we encounter while browsing the web is the
huge amount of clutter and distractions that accompany the information that
we are looking for. Therefore, reading articles tends to become more about
dodging the annoyances than about the time spent in a pleasant manner. To
solve this problem, the system performs an intelligent and thorough cleaning
process for a given article, in its original web format, leaving us with pure,
meaningful textual content.

Among the things that the system filters out as clutter we can enumerate
the following:

1. banners

2. advertisements

3. pop-ups

4. UI of the website

5. links

6. headers and footers

7. pictures and videos

8. unconventional font styles (replaced by uniform and readable font style)

9. any other references that have little to no relation to the actual content.

14



4.2 word translation 15

The transformation is rather profound and it can best be evaluated by taking a
look at what it achieves, given an article page to be processed (Figure 1).

Figure 1: Original website vs Reading environment

The visual improvement is noticeable, allowing for considerably larger font,
while still being able to fit more than 60% of the content of the original page.
The person reading can now focus on the content of the article without having
to constantly avoid the extra material displayed on the page.

4.2 word translation

One of the main reasons for this platform’s existence is its ability to give in
place translations. In response to that, a lot of time was dedicated to develop
something that works seamlessly without interrupting the reading experience
by either obstructing the reading environment or requiring to manipulate
the text in any manner whatsoever. When the person reading has troubles
understanding a word, tapping on it retrieves its translation (Figure 2).



4.2 word translation 16

Figure 2: Obtaining a word translation

The user can chain a few consecutive words into a single translation if it’s
either a phrase that’s new, or if the initially obtained translation needs more
words combined with it, to deliver the correct contextual meaning. Again,
everything works by tapping the words, as consecutive words will be automati-
cally merged into a ’translation bubble’, unifying the entire interaction mode
to simple taps on the words (Figure 3). Moreover, this minimalistic interaction
model serves another purpose - it is easy to use for words and phrases, but it
discourages users to translate entire sentences or even paragraphs, following
McCarthy’s [1] idea presented before - extensive reading should discourage
intensive use of translations.

Figure 3: Obtaining a word sequence translation

Retrieving translations instantly would indeed be an ideal ability of the
system. However, we have to accommodate for the fact that in reality this is
not always achievable. Hence, to compensate for any delays the API might
experience, the user is presented with a subtle, yet clear, animation, that
distinctly conveys the message that the results will arrive shortly. Not only that,
but as we can see in Figure 4, the system tries to approximate the length of the
to be received translated word, by inserting ’dots’ in the translation field, to
inform about content that will be added at that location.

Figure 4: Waiting for a translation



4.3 word pronunciation 17

4.3 word pronunciation

A very useful feature when studying a language, is the ability to perform text
to speech on the newly encountered words. Even though the current state of
text-to-speech engines is still in its development (improvements in this domain
are rapidly evolving), it proves to be a valuable addition to the system.

As of right know, the languages that are properly supported include: Ger-
man, Dutch, Spanish and French. These are also the languages in which articles
can be read. Support for more languages should and will expand with time.

Once something is translated the original word is highlighted with a subtle
shade of blue. Clicking on it makes the computer pronounce it.

4.4 translation alternatives

Machine translations are not always fully accurate. Sometimes the meaning
for something can only be deduced from the context, other times it is part of
a group of words that determine the meaning. Moreover, there are cases in
which even though a translation is appropriate, it does not convey what was
meant. That can be due to that word (or word combination) be a replacement
for something else, more specific (e.g. l’hexagone in French actually refers to
France), that is culturally not semantically embedded into the language.

To our help, comes the ability to view a list of alternatives, as a dynamic
drop-down menu. It is accessed by a click on the translated part of a ’translation
bubble’. From here, replacing the original translation with one of the available
alternatives is done by clicking on the preferred and best suiting alternative
(Figure 5).

Figure 5: Translation alternatives

If however neither of the provided options are satisfactory enough, the user
is encouraged to suggest his or her own alternative. A dedicated field at the
bottom of the alternatives menu will allow them to do just that. The system
will then use the suggested translation instead (Figure 6).



4.5 extended features 18

Figure 6: Suggesting a translation

4.5 extended features

Developing, testing and receiving feedback is what eventually helps determin-
ing not only the faults in a platform, but also its needs. Working in iterations is
what granted us the ability to understand what works well and what is still in
need of improvement. Every release version delivered improved core features
while the process itself allowed us to make certain observations, both from
development testing and user testing, which in turn have been summarized in
a few feature definitions.

4.5.1 Undo Translation

Making the translation mechanism so simplistic and intuitive, results in a few
small issues. One of them is the fact that a user could accidentally translate a
piece of text without actually willing to do so. To solve this problem, the undo
feature was introduced to the system (Figure 7).

Figure 7: The ’Undo’ button

The way it works is very straightforward: after translating something,
click the undo button and the last action will be undone, in this case the last
translated word will be restored to its original state.

Moreover, if two consecutive words are translated in succession quick
enough, the system will consider that as a unique action. This, in turn, results
in the undo system affecting both words and restoring them.

4.5.2 Text Selection

In order to streamline the translation interaction, there was one necessary trade-
off - disabling text selection. This does not interfere with the user while they
are enjoying an article, it actually only enhances the stability and fluidity of the
translations system. If however they feel the need to copy, save or google some



4.5 extended features 19

text within the article, selection needs to be enabled. Deriving from a similar
feature on the iOS Reader [5], a simple toggle button is placed in the top right
corner of the page to provide the user with that ability (Figure 8).

Figure 8: The ’Copy’ toggle

After toggling it, the text interaction is the good old click and drag to select.

4.5.3 Article liking

In the era of social media, people have become so accustomed to virtually
stating that they like something, that having a ’like’ button is becoming an
almost ubiquitous thing.

At the end of each article, after a good read, the user encounters the like
button. It of course works just as expected (Figure 9).

Figure 9: Liking an article

A feature like this is actually of great value. In the long run, it can be used
to determine the interests a user has. Based on that, we can then provide him
with suggestions to read. Besides that, we can evaluate the quality of an article
source, deduced from the amount of likes its articles receive on an usual basis.

4.5.4 Article starring

Sometimes, an article is too long to be read in one single reading section. Some
other times, an article might simply be worth coming back to, both from the
perspective that it presents an excitingly interesting story, or it seems like a very
good article on which to practice the corresponding language. Both of these
needs are fulfilled by the starring feature.

The ’star’ toggle can be easily identified in the top right corner, on the action
bar (Figure 10).



4.5 extended features 20

Figure 10: Starring an article

It gives visual feedback upon starring something, by filling up the star icon’s
background. Having the star always in the field of view ensures that a user can
easily star the article and move on.



5
A R C H I T E C T U R E

The reader is built to run in the web browser. The primary architectural decision
that guides the development of this platform is to build the server-side (back-
end) as a Python Flask app and the client-side (front-end) in ECMAScript 2015
(ES6). The fact that our back-end is particularly lightweight is accommodated
by Flask in a very simplistic and compact manner. What concerns ES6, since it
currently is still bound to limited support across browsers, it is transpiled into
compatible JavaScript code, bundled into one file, using Webpack.

The user interface is primarily dominated by the Material Design Lite
framework. As its name suggests, it is used in order to abide by the material
design principles. MDL has the ability to correctly and automatically scale to a
large variety of resolutions. Hence, it considerably improves the cross-platform
support that this project aims for.

In the upcoming subsections, we take a look at each one of these components
and analyze their structure and functionality, starting from the back-end and
then continuing with the front-end.

A glimpse of the platform’s architecture overview can be seen in Figure 1.
The related subscription management system (i.e. Thesis Prometheus [10]) is
treated as a black box in this schema.

21



5.1 back-end 22

Figure 1: System overview

5.1 back-end

The Flask server, upon successful validation of the user’s session ID, redirects
to the article.html. This HTML document references the packaged script to be
executed. It is also the place where the actual content of the article is appended.

5.1.1 Flask app

What concerns the back-end functionality tied to the reading platform, the Flask
app, which is also a Blueprint, contains the endpoint /article, that responds
to a GET request. It expects the caller to supply the URL to the article to be
preprocessed, as a GET parameter. Additionally, the language of the article can
be supplied, otherwise it is inferred by the article extracting tool, as well as a
boolean parameter to assert whether this represents an article from the starred
list of the user.



5.2 front-end 23

5.1.2 Pre-processing

Previously we have demonstrated what our system achieves through article
curation. Underwater, this is mainly accomplished with the help of a Python
tool - Newspaper3k and it occurs in the following order:

1. download the article page (entire html page)

2. parse the page

3. extract the content

4. wrap words with custom tags

5. insert content into the template

Newspaper [6] allows us to simply feed it the URL to the article of interest, addi-
tionally (optionally) the language of the article, and then extract the meaningful
textual content from that web page, separated into title, body, authors, etc. (for
more information on Newspaper see appendix B).

From here on, we construct the page template, by inserting the retrieved
content at its appropriate location. Also, a crucial part in the functionality of
the reader is played by the wrapping of words into custom tags (i.e. ’zeeguu’
tag). This is an improved idea borrowed from the iOS Reader, that eventually
eases the manoeuvrability of words on the front-end, which will be explained
later.

To accomplish this however, we are using an extended regular expression
(Figure 2) to identify individual words. It is constructed based on the list of
unicode characters 1, characters identified in the Indo-European languages, to
which we have added special characters such as the hyphen, used in compound
words (e.g. non-stop) and the apostrophes, used in article - word combinations
(e.g. l’animal). By doing this, we are certain (up to a degree) that words are
properly separated and isolated.

Figure 2: Regular expression for identifying words

5.2 front-end

To offer an overview of the architecture of the reading platform, we provide
the following schema that shows how the functionality is divided among ES6
classes, which allows us to approach the problems at hand in an OOP manner:

1 https://en.wikipedia.org/wiki/List_of_Unicode_characters

https://en.wikipedia.org/wiki/List_of_Unicode_characters


5.2 front-end 24

Figure 3: Front-end architecture overview

5.2.1 ZeeguuRequests

As we have previously underlined, the reading platform is built around the
Zeeguu API [2]. The system interacts with this API in order to retrieve useful
information, such as translations or alternatives to those. Also, it serves as an
endpoint for communicating the user’s interaction with the platform, such as
suggesting translations, liking an article or starring it.

The Zeeguu API provides the means for communicating with it as a set of
REST endpoints, usually in the form of a POST or GET request. To provide a con-
sistent as well as abstracted manner to perform these requests, ZeeguuRequests
class (Figure 4) is the one that implements and provides the GET and POST
methods. These allow to specify the endpoint that will be contacted, the data
to be sent and the eventual callback method when Zeeguu replies. Moreover, it
automatically takes care of the authentication details when contacting the API,
as it retrieves the appropriate session ID parameter from the cookie, where it
is stored after logging in on the Zeeguu platform.

Figure 4: The static ZeeguuRequests class



5.2 front-end 25

Given that all the requests are performed asynchronously and the responses
are received with unpredictable delays, the need for callback methods arose in
order to allow the application to remain usable and operable at all times.

5.2.2 Translator

The ability to translate is one of the highlight features of the reading platform.
Its functionality was carefully crafted to allow for seamless interaction.

The translator has three main functionalities (Figure 5):

1. waiting for translation requests upon which a merging pre-processing
function is used

2. contacting Zeeguu to retrieve the translations

3. inserting the received translations.

Figure 5: Translator class

The system was designed to only support translating one word at a time.
However, the functionality added along the way is the ability to merge consec-
utively translated words into a ’translation bubble’, providing the user with
expectantly an even better translation for that sequence of words.

We have underlined, that in the back-end, words are separated and sur-
rounded with the custom ’zeeguu’ tags. This serves two significant purposes:

1. The ability to accurately and easily determine the word that was ’clicked’
by attaching custom listeners to these custom tags.

2. Facilitating merging of consecutively translated words, that essentially
boils down to identifying consecutive ’zeeguu’ tags, for which a translation
has already been retrieved and then merging that sequence under a new
’zeeguu’ tag, for which the translation is then requested.

Because translations are not instant, a subtle pulse animation is attached to
the in-process ’translation bubbles’. This provides appropriate visual feedback
to the user to underline on ongoing activity, but it also does not distract



5.2 front-end 26

the attention if the person reading wishes to temporarily move on with their
reading.

A translation is always appended with a CSS after rule 2. When the
translation arrives, it is inserted and the surrounding paragraph is automatically
adjusted to accommodate the extra text. This however means that if there are
any perceivable delays in the translation process, then the paragraph the user is
currently exploring, will suffer from textual adjustments when the translations
are inserted into place. This movement is of course distracting. Our attempt
to minimize this as much as possible is to anticipate from the beginning the
length of the upcoming translated word. The simplest rule is to use the length
of the original word and replace its characters by something neutral. We have
discovered that replacing each character with two dots gives the best results,
both in terms of being unobtrusive and doing a decent job at minimizing any
additionally needed textual adjustments.

5.2.3 Speaker

The text to speech functionality uses the SpeechSynthesisUtterance interface
of the Web Speech API to complete speech requests 3. The advantage and
simplicity in using it is that it suffices to supply the language and the text to be
spoken. It can of course be further tweaked by setting the pitch or the tempo
for the voice, but this extends beyond our needs, at least for the current state of
the platform. The class is thus rather minimalistic and its diagram can be seen
in figure 6.

Figure 6: Speaker class

5.2.4 AlterMenu

The need to show alternative translations in a compact and convenient way
is solved by our solution that lies in the AlterMenu class. It uses a dynami-
cally manipulated html div container that gets constructed, placed and then
opened right under the word for which alternatives have been requested to be
displayed. The translations are saved as attributes of the custom ’tran’ tag, thus,
easily retrieved and inserted into the AlterMenu as separate rows (buttons). Last

2 https://developer.mozilla.org/en-US/docs/Web/CSS/::after
3 https://developer.mozilla.org/ro/docs/Web/API/SpeechSynthesisUtterance

https://developer.mozilla.org/en-US/docs/Web/CSS/::after
https://developer.mozilla.org/ro/docs/Web/API/SpeechSynthesisUtterance


5.2 front-end 27

but not least, there is a field which allows to manually input alternatives. The
overview of this class is offered in the figure below:

Figure 7: AlterMenu class

The AlterMenu will swap the translation shown in the ’translation bubble’
with the one chosen from its list. If however no alternatives are available a
Notifier object is used to inform the user about this situation. The user can
still contribute with a translation if he or she so desires.

In the event that the user chooses an alternative or provides one, Zeeguu
gets notified of the action. This allows for the creation of a small feedback loop
that eventually aims to improve the translations delivered by the Zeeguu API.

5.2.5 Notifier

In order to inform the user about certain events in the system, we have built
the Notifier class that underwater uses the MDL snackbar component. The
need to wrap it in a custom class arises from the fact that this snackbar will be
displaying messages in a queue manner, even if these messages are repeating
themselves. Such behaviour is obviously unwanted.

The Notifier class (Figure 8) takes care of this by preserving the information
about the text of the current notification. If a request with the same text as the
one currently in view comes in, it is simply ignored. Everything is thus nicely
abstracted. The Notifier behaves almost like a static class, thus it does not
need to be instantiated as a separate object when used. To use this notifier, the
method notify() with the message as a parameter is sufficient.



5.2 front-end 28

Figure 8: The Notifier class

5.2.6 UndoStack

Due to the translation functionality being so accessible, a user might erroneously
translate a word. It therefore, sometimes occurs that undoing a translation
might be needed. Since we are manipulating the html of the page on each
translation, the easiest way to add undo functionality is to preserve the state of
the article content in html format before each translation request, onto a stack.

Once an undo request comes in, the state from the top of the stack is popped
and replaced with the currently displayed one. When the stack is empty, the
undo request will be ignored. An overview of this class is presented in the
figure below.

Figure 9: UndoStack class

The advantage of using this solution is the ease in its implementation.
However, it depends on the article template and it can also be memory wasteful.

5.2.7 Starer

Zeeguu provides the ability to mark specific articles as ’starred’ and then retrieve
those in a list. This gives the user the possibility to save an article for a later
reading session since it is easily identified under the starred section of the
reader (more on this in the Prometheus thesis).

The implemented functionality lies in the Starer class (Figure 10). It gets
the reference to the ’star’ component on the page and then toggles its state
accordingly. Moreover, this state is synchronized with the Zeeguu API, using the
ZeeguuRequests class. Visually, the javascript code toggles a class attribute



5.2 front-end 29

that as a result swaps two icons depending on whether the article is starred or
not.

Figure 10: Starer class

5.2.8 UserActivityLogger

The interaction of the user with the system is logged using the UserActivityLogger
class (Figure 11). It allows us to later analyze the behaviour and then eventually
decide on valuable improvements for the system. The logs are sent to a remote
endpoint and since the functionality of the logger is implemented by using the
ZeeguuRequests, it handles everything asynchronously.

Figure 11: UserActivityLogger class

The method log() of the UserActivityLogger keeps things minimal and
properly structured. As argument it requires a string the defines the type of
event that is sent. Additionally, a logging event can also be accompanied by
some ’value’ and even ’extra-data’.

Additional information about the dependencies of this project can be explored
in the appendix B.



6
R E S U LT S A N D E VA L U AT I O N

In order to evaluate the engagement of our users with the product, we con-
ducted several analysis procedures from which we gathered usage data. This
includes feature interaction, content interaction and platform acceptance as a
whole. We tried to understand and evaluate whether the reading platform does
indeed provide the users with a consistent and useful environment to digest
their favorite content in the language(s) they study. We wanted to observe
whether the things people read are indeed personalized and even though there
might be trending topics, everybody tends to read the subjects that interests
them. The above are questions in relation to RQ2. Moreover, we want to
estimate whether the platform is simple enough to be seamlessly used and
thus determine whether the tools that are provided to the person reading are
actually used and whether the addition of a ’like’ or ’star’ button can help in
determining parameters that define user interest. The latter questions are in
relation to RQ1. Last but not least, the gathered insights have been extracted
from anonymized data in order to preserve users’ confidentiality.

The obtained statistics are retrieved with the use of either Hotjar (see
appendix B) - an analytics and feedback framework or from the logged events
to the Zeeguu back-end.

6.1 user satisfaction

The best way to understand how satisfied the users are is to talk directly to them.
To automate and speedup this process, we have sent out polls through Hotjar, in
which users could answer our questions and rate the system itself. Additionally,
we asked them for feature ideas that would improve their experience and we
inquired about potential inconsistencies or problems with the platform, to
determine the robustness of the system. To give an idea of what these polls
look like, the table below gives a glimpse of the feedback we have received.

30



6.1 user satisfaction 31

Figure 1: Feedback poll example

Some of the things that we have learned from this feedback are:

1. Internet Explorer does not work - Even though in initial stages of
development, IE was a supported browser, we were forced to drop it due
to it being legacy software, not supporting modern day functionalities
required for the system.

2. Ability to save articles to a separate list - This is what pushed us into
bringing the starring feature to the system, which is integrated with the
related Article Subscription system [10].

3. Preserve some visuals - People think their reading experience would be
greatly improved if some of the pictures in the articles were still present.
Thus, this point has been added to the future work section.

Besides issues and/or improvements, we have received feedback that serves
as appropriate validation for the perspective that the reader is a good replace-
ment for the traditional textbook material (Figure 2 and Figure 3).

Figure 2: Preference for the reading platform poll



6.2 heat maps 32

Figure 3: Preference for the reading platform chart

6.2 heat maps

Another way to analyze a platform is by looking at heat maps of its usage.
These allow us to understand whether users are having troubles interacting
with the UI and how intensively are certain elements on the platform used. To
give an example of what the usual user interaction on a website is, we present
the figure below (source 1):

Figure 4: Heat map example

1 https://conversionxl.com/19-things-we-can-learn-from-numerous-heatmap-tests/

https://conversionxl.com/19-things-we-can-learn-from-numerous-heatmap-tests/


6.2 heat maps 33

What we notice is that users’ activity is rather chaotic as they are exploring
some textual content, going over pictures and other alternative links, hence
these are possible distractions from the reading experience.

Hotjar is again the tool that helps us in tracking and generating heat maps
for our system (Figure 5). A more uniform interaction can already be observed
on our reading platform.

Figure 5: Zeeguu Reader heat map example

This heat map is based on a sample from the total number of registered
clicks (4291). The insights we gather from it can be summarized to the following:

1. The back button (top left corner) appears to be heavily used, pointing
towards the fact that the two subsystems of the multilingual reader:
Prometheus and Apollo, integrate together properly, encouraging users
to go back and find other things to read, instead of simply leaving the
platform only after exploring a single article.

2. There appears to be an even distribution of clicks within the text area,
which suggests that the translation feature is properly and actively used
within articles.

3. In the top bar, on the right side, we see a decreasing tendency in the use of
the: undo, copy and star button respectively. This aspect however, needs
to be treated a bit differently, as the star button is not used on every article



6.3 statistical analysis 34

and even if it is, then it is usually clicked at most once per article. On the
other side, the undo button appears to serve its purpose very well, as it
is actively used (more on this in the next section and in Figure 6). The
copy toggle however, shares a much smaller user click interest, guiding
towards the idea that it may be a feature with too small of an impact to
be preserved. This however would be efficiently checked by performing
some A/B testing in future development phases.

Even if these heat maps provide good knowledge about the usage of the
platform, the static nature of them does not allow us to analyze some of the
dynamic components in our system. The following section tackles this problem
from another angle.

6.3 statistical analysis

What concerns the intensity with which the platform’s components are used,
we derive statistical analysis based on the events that have been logged to the
Zeeguu back-end. We are presenting the barplot in Figure 6 from which several
observations are deduced.

Figure 6: Barplot of the components’ usage in number of requests (log scale)



6.3 statistical analysis 35

We can clearly see that the main feature of the system - translations -
is indeed, as expected, the most used one, guiding us into thinking that it
definitely brings value to the reader.

Second to it is the feature that offers to the user translation alternatives.
This means that people are eager to explore all the meanings for a translation,
they do not take the default version for granted, but it also might indicate that
in about 15.1% of the times, the primary translation choice does not fully satisfy
the person reading. Nevertheless, they usually are able to find appropriate
translations from the alternative ones, since the feature for sending translation
suggestions appears to be used very lightly.

Taking a look at the number of users that interact and use the features of
the system, we have computed the numbers in the figure below:

Figure 7: Barplot of the components’ usage in number of distinct users

It is easily noticeable that this plot follows a similar trend to the one in
Figure 6. In the top five most used features, we also identify:

1. text-to-speech

2. undoing a translation

3. liking an article

About 5% of the times, if a translation was retrieved, a pronunciation for it
was requested as well. We also looked at the number of times the same word
or phrase was pronounced by the same user. This data ranges from one single
pronunciation to 14 pronunciations for the same word (phrase). The size of this
interval is mostly due to the users’ different proficiency in a certain language
and the difficulty in pronunciation of the word (phrase) itself. Nevertheless,
on average, the number approaches 1.66 pronunciation requests for the same



6.3 statistical analysis 36

piece of text, suggesting that users are generally sufficiently content with a
pronunciation after hearing it the first time.

What concerns the undo functionality, we have calculated that on average a
user performs 4.9 undo requests per article.

One of the conclusions that can be drawn from the above is that the things
most related to the translation functionality are among the highlights of the
features of the system.

Another interesting point regarding the way the users interact with the
platform can be deduced from the following table:

Figure 8: Average statistics

The data in this analysis has been collected from about 70 distinct users
from a period of around 2 weeks. Respectively, we see that on average, each
user has explored about 8 articles, requesting about 16 translations per article.
What we can infer from this is that the ability to translate words within articles
serves as a good and experience enhancing functionality, while still allowing to
maintain the focus on the reading experience per se.

Looking at this data from another perspective, we built the following his-
togram (Figure 9):

Figure 9: Histogram of the total translations per article vs Number of articles
(log scale)

From it, we observe that most of the articles (about 300 at the time of the
creation of this plot) that have been explored, have received up to 40 translation
requests from all the involved readers. This suggests that users are reading



6.3 statistical analysis 37

content of an appropriate level of difficulty for them. Thus the users tend to use
the translation capabilities of the system, only when really needed, which is, as
mentioned before, the actual intended behaviour of a good extensive reading
experience. There are also a few outlier articles, where the number of total
translations exceeds 150 translations, but those were left out of the histogram
to better accentuate the meaningful data.

Last but not least, we want to understand whether the language learners
are benefiting from having the advantage of choosing the content they have
interest in. To support this claim, we present the scatter plot in Figure 10.

Figure 10: Article exploration vs users



6.3 statistical analysis 38

This plot helps us understand one very important thing: from the almost
300 different articles that were explored by the users, there does not seem to
be any universal choice for a specific article. This can be inferred from the fact
that there are no horizontal line patterns in the scatter plot, meaning that even
if there are articles read by more than one user, overall, each of them had his
own, personalized set of reading content.

Besides having personalized content, the system also tries to achieve multi-
platform support. To back this up, in figure 11 we provide a chart that presents
the usage across many different browsers.

Figure 11: Different browser usage (log scale)

The highest tendency gravitates towards Google Chrome Browser, which is
to be expected given the today market trends. Moreover, the fact that we have
dropped support for Internet Explorer, affects only about 2.5% of our users. Not
only that, but since Internet Explorer is slowly being fazed out and replaced
by Edge, the issue for IE support is practically negligible.



6.4 discussion 39

6.4 discussion

As a result from the research and the conclusions we have drawn in the previous
sections, several perspectives with respect to our research questions can be
formulated:

1. The platform successfully allows the users to enjoy their personalized
reading content. They are engaged and make good use of almost all of
the tools that the platform provides them with. As we have seen and
confirmed, people use the opportunity to read only the content that they
find interesting. To add to this however, a further level o research needs
to be applied in the future, to determine whether once a user has started
to explore an article, is it actually interesting for him or her, or do they
abandon it midway. We tried to compensate for that by providing them
with the ability to ’like’ an article, which then has a stronger indication
that indeed the content they have identified from the Prometheus platform,
is actually enjoyed in the Apollo part.

2. As the focus was on creating a streamlined and lightweight system,
the users have reported high satisfaction incentives. Not only that, but
we observed the system performing properly on all of the platforms
of development (i.e. browsers). Ultimately, more testing needs to be
performed to determine even more accurately the usability of certain
features and eventually to identify the need for novel ones.

3. We understood that the feedback system, even though useful and easy to
use, can be extended and improved. We would like to have more leverage
into how and what we analyze from the user behaviour and interaction
with the system.

The research questions have thus been answered successfully. Nevertheless,
we believe there is potential fore more analysis with respect to them as the
platform will grow and evolve.



7
C O N C L U S I O N

Even if the project had a predefined outline, we tried to remain flexible along
the entire development process. Due to having a solid and well established
workflow (see appendix A) we have been able to accommodate additions and
changes to the project in a iterative manner, continuously improving on their
quality.

The system itself was designed with maintainability in mind. Developing
a web platform proved to be a rewarding decision, not only for the reduced
complexity in the development process, but also for the high malleability of
the product towards change. Additional requirements were usually easily
accommodated into the architecture, while testing and bug fixing was most of
the time straightforward.

The evaluation of the platform indicates that users are indeed actively
engaged with the content that they interact with and that the minimal set of
tools provided to them in the reading environment, proves to be helpful and
useful. We were able to gather valuable insights from the user satisfaction
metrics and surveys that were sent out.

The end product meets the initial requirements and scores high in the user
satisfaction department. Consecutively, it sets a good and strong basis for
further improvements.

40



8
F U T U R E W O R K

An important aspect that is bound to this project is the ability and intention to
improve it and evolve it as times goes by. The project shows a lot of potential
and the only way to nourish that potential is by paying attention to the future
work.

Several aspects of the platform have been identified to be good candidates
for further feature definitions, most of which are supported by the user feedback
we have received.

8.1 dictionary support

Sometimes, simply translating a word might not be sufficient to fully and
properly understand its conveyed meaning. There are a lot of times, when
the translation for a word is not completely different from the original one,
yet, the fact that even in the user’s native language (in this case the language
we translate to) that word might be unknown, underlines the importance of
dictionary functionality for this system.

8.2 preserve some visuals

People have pointed out that numerous articles have at least one image that
considerably enhances their grasp of the content. Currently, being presented
solely with a page of text, if the article is longer than usual, it tends to transmit
an initial impression of intimidation. To stimulate user engagement even more,
we might look into preserving some of the original visuals of the articles.

8.3 preserve article state

Going back to the idea of articles that are longer than usual, it would be
rather useful to save the progress on an article and then later, allow the user
to seamlessly continue from where he or she left off. Right now there is the

41



8.4 particle verbs support 42

possibility to star an article and have it saved to a custom list, but after returning
to it, all the previously retrieved translations are lost.

8.4 particle verbs support

Currently, the system translates single words, or groups of words consecutive to
each other. However, things such as particle verbs are not yet supported. Particle
verbs are word constructions where the verb is accompanied by a particle, but
these do not necessarily come together. Depending on the language, they get
separated by one or more words, but they convey the correct meaning only
when translated together. Interface support for this would be welcomed.

8.5 reading modes

Reading in darker environments while having a white background causes a
lot of strain on the eyes. The idea is to offer the possibility to let the user
choose to adapt this to suit his or her preferences. Either having the ability to
invert the theme and read light gray text on black background or change the
complete white background to something more toned down, like sepia, which
is known to be more pleasing to the eye. This will eventually help the user
achieve comfort no matter when and where he or she prefers to read.

8.6 reading rate

Another important aspect that determines the user’s ability to explore and
grasp the content of an article is his or her reading speed. It is one of the
parameters that can be estimated by determining the difference in time between
the event that marks a user accessing an article and then the time when the
article was left, together with the amount of words that were read.



A
W O R K F L O W

Nowadays, the need for continuous improvement, especially in the Software
Engineering field, is a well established aim. This implies that a system should
be and will be - subject to changes, additions, reductions and who knows what
else. Consecutively, as a software designer and developer, we have to always
think with regards to that idea and act accordingly. This philosophy is nicely
summarized yet greatly encompassed by the idea of Scrum - an iterative and
incremental, agile software development framework. An idea parented and
developed by Jeff Sutherland in his popular book on the same topic [9].

The concept of Scrum and its backing framework represent extensive tools
and principles to be applied in a development process. To be able to cover and
adapt entirely to this working methodology requires a rather advanced level
of expertise. We however, tried to a approach it in a more relaxed manner, but
still, successfully following its core focus. To outline the workflow that we have
used, we can underline the following points:

1. The development process was divided into weekly iterations.

2. Each iteration was bound to a Sprint specification.

3. A sprint consisted of a number of issues to be addressed during its
duration, usually decided upon with the involvement of the supervisor -
Mircea Lungu.

4. During a sprint, we would have daily meetings for discussion, analysis,
design and development.

5. The development process was co-reviewed with L.A.H. van den Brand,
by sending and reviewing each other’s pull requests.

6. A sprint would generally end with a pull request from a release branch,
where the main supervisor would be responsible for the review.

7. Weekly meetings with the customer/supervisor would help us determine
the next milestones for the upcoming sprints.

43



B
D E P E N D E N C I E S A N D T O O L S

We will limit ourselves to only presenting a few of the tools and dependencies
of the system. The remaining components are thoroughly documented in our
online documentation, present on Github pages1.

b.1 flask

Flask 2 is a micro web framework written in Python and based on the Werkzeug
toolkit and Jinja2 template engine. It allows to run a RESTful Python Server
that is simple to use, comprehend and maintain. Furthermore, it allows for easy
sharing and code reuse between Zeeguu’s services since these also implement
their functionality using the same microframework. Nowadays, Flask finds
itself to be the most popular Python web development framework on GitHub.

b.2 newspaper

Newspaper [6] is an amazing python library for extracting and curating articles.
It is extremely straightforward in its use and has a lot of embedded functionality.
It allows to download the page of an article, parse the page to retrieve the
content of the article and even allows to perform NLP analysis on the article to
identify keywords in the text, topics, etc.

b.3 hotjar

Hotjar 3 is a powerful tool that reveals the online behaviour of the users, by
providing with both feedback and analysis tools. The former is tied to sending
polls and surveys to users while the later is concerned with building heat maps
of the website usage, as well as recording the user activity itself. The simplicity
in integrating it into the system is what makes it a very viable option.

1 https://mircealungu.github.io/Unified-Multilanguage-Reader/
2 http://flask.pocoo.org/
3 https://www.hotjar.com/

44

https://mircealungu.github.io/Unified-Multilanguage-Reader/
http://flask.pocoo.org/
https://www.hotjar.com/


B I B L I O G R A P H Y

[1] Timothy Bell. Extensive reading: Why? and how? The Internet TESL
Journal, 4(12):1–6, 1999.

[2] Mircea F. Lungu. Bootstrapping an ubiquitous monitoring ecosystem for
accelerating vocabulary acquisition. In Proccedings of the 10th European
Conference on Software Architecture Workshops, ECSAW ’16, pages 28:1–28:4,
New York, NY, USA, 2016. ACM.

[3] C. McCarthy. Reading Theory as a Microcosm of the Four Skills. The
Internet TESL Journal, 5(5), 1999.

[4] S. Namhee. The Effects of Extensive Reading on Reading Comprehension,
Reading Rate, and Vocabulary Acquisition. Reading Research Quarterly,
52(1):73–89, 2016.

[5] J. Oosterhof. Making reading in a second language more enjoyable. 2016.

[6] Lucas Ou-Yang. Newspaper - Article scraping and curation.

[7] Willy A. Renandya. The power of extensive reading. RELC Journal,
38(2):133–149, 2007.

[8] L. Schwab. Using rss Feeds to Support Second Language Acquisition.
2016.

[9] Jeff Sutherland. Scrum: The Art of Doing Twice the Work in Half the Time.
Crown Business, New York, NY, USA, 1st edition, 2014.

[10] L.A.H. van den Brand. Prometheus: Efficiency and Usability in a Personal-
ized Multilingual Feed Manager. 2017.

45


	Introduction
	Structure

	Related Work
	Zeeguu Reader for iOS
	Zeeguu Reader for Android
	Amazon Kindle
	The Effects of Extensive Reading

	Problem Description
	Realization
	Article Scraping and Curation
	Word Translation
	Word Pronunciation
	Translation Alternatives
	Extended Features
	Undo Translation
	Text Selection
	Article liking
	Article starring


	Architecture
	Back-end
	Flask app
	Pre-processing

	Front-end
	ZeeguuRequests
	Translator
	Speaker
	AlterMenu
	Notifier
	UndoStack
	Starer
	UserActivityLogger


	Results and Evaluation
	User Satisfaction
	Heat Maps
	Statistical Analysis
	Discussion

	Conclusion
	Future Work
	Dictionary support
	Preserve some visuals
	Preserve article state
	Particle verbs support
	Reading modes
	Reading rate

	Workflow
	Dependencies and Tools
	Flask
	Newspaper
	Hotjar

	Bibliography

