faculty of science
and engineering

university of
groningen

COMPARISON OF EXPLORATION METHODS FOR
CONNECTIONIST REINFORCEMENT LEARNING IN THE
GAME BOMBERMAN

Bachelor’s Project Thesis

Joseph Groot Kormelink, s2767058, josephgk@hotmail.nl
Supervisor: dr. M.A. Wiering

Abstract: In this thesis, we investigate which exploration method yields the best performance
in the game Bomberman. In Bomberman the controlled agent has to kill opponents by placing
bombs. The agent is represented by a multi-layer perceptron that learns to play the game with the
use of Q-learning. The learning capabilities of the exploration methods: RandomWalk, Greedy,
e-Greedy, Diminishing e-Greedy, Error-Driven, Max-Boltzmann and TD-Error will be compared.
Bomberman is represented in a deterministic framework and the agents have been built on top
of this framework. The results show that Max-Boltzmann exploration performs the best with
a win rate of 88%, which is 2% higher than the second best method, Diminishing e-Greedy.
Furthermore, Max-Boltzmann gathers on average 30 points more than Diminishing e-Greedy.
Error-Driven exploration outperforms all other exploration methods over the first 80 generations,

however this technique also produced unstable behavior.

1 Introduction

The idea that we learn by interacting with our en-
vironment is probably the first one that comes to
mind when we think about the nature of learn-
ing. Every interaction with the environment shapes
the way we think about our current state of being.
Throughout our lives these interactions are a ma-
jor source of the knowledge we acquire about the
world.

Reinforcement learning methods are computa-
tional methods that allow an agent to learn from
the interactions that take place in a specific world
[1]. After perceiving the current state, the agent
reasons about how to proceed to the next optimal
state, based on this current state. These environ-
ments can be modelled as Markov Decision Pro-
cesses [2; 3]. Reinforcement learning has already
been widely applied to games [4; 5; 6; 7]. This
thesis will examine the influence that exploration
methods have on the final performance of the agent
that is trained with Q-learning using a multi-layer
perceptron to store the state-action value function.
That every Borel measurable function can be ap-
proximated with a single hidden-layer feed forward

neural network has already been proven [8]. Thus, it
is no surprise that the perfect Bomberman player
can be approximated with a neural network. We
will explore the influence of specific exploration
methods on the training time needed before get-
ting to a near perfect player.

Bomberman is a strategic maze game where the
player must kill other players to become the win-
ner. The player controls one of the Bombermen and
must, by means of placing bombs, kill the other
players. To get to the other players it is necessary
to first remove a set of walls by strategically placing
bombs.

We aim to contribute to the field of connectionist
reinforcement learning and will do this by examin-
ing how well exploration methods perform in the
game Bomberman. The research question is: ”What
exploration method performs the best in the game
Bomberman?”. We will compare the exploration
methods: RandomWalk, Greedy, e-Greedy, Dimin-
ishing e-Greedy, Error-Driven, Max-Boltzmann and
TD-Error. Q-learning will be used to learn the ex-
pected state-action value of all moves in a given
state. A multi-layer perceptron (MLP) will be used

to represent the Q-value function [9]. The agent will
receive the current state as input and then will try
to approximate the optimal Q-value for every ac-
tion. Performance will be measured by using the
average amount of points gathered combined with
the individual win rate. First, we will describe the
framework and then we explain the different explo-
ration methods. After that, we will show the results
and discuss them. Finally, we will conclude with re-
spect to the research question and provide a basis
for future work.

2 Framework

2.1 Bomberman

Bomberman is a strategic maze-based video game
developed by Hudson Soft in 1983. The goal is
to finish some assignment by means of placing
bombs. Here we focus on the multiplayer variant
of Bomberman where the goal is to be the last
man standing. At the beginning of the game all
four players start in opposing corners of the grid.
The Bombermen all have 6 possible moves they can
take to transition through the game: up, down, left,
right, wait, place bomb. The grid is filled with ob-
stacles. There are two types of obstacles, breakable
and not breakable. Before the agent can kill its op-
ponents it first needs to pave a path through the
grid. Since the grid is filled with obstacles at the
start of the game (see Figure 2.1), players need to
break destructible objects in order to reach other
players.

We have developed a framework that implements
Bomberman in a discrete manner. A graphical de-
piction of this framework can be seen in Figure 2.1.
Every Bomberman is controlled by an agent. The
game state is sent to the agent, which can then de-
termine the next move. After an action has been ex-
ecuted the consequences of that action are commu-
nicated to the agents in the form of rewards. When
all agents have decided on an action, the actions
are executed simultaneously so that no agent has
an advantage. After a bomb has been placed it will
wait 5 turns before it explodes. If a bomb explodes
all hits are calculated. A turn consists of: determin-
ing the action, executing the action and then cal-
culating hits. If there is a hit with a breakable wall,
the wall vanishes. If all players die simultaneously,

Figure 2.1: Starting position of all Bombermen.
Brown walls are breakable, grey walls are un-
breakable

no one wins. As the game progresses, agents gain
more freedom due to the vanishing walls. This re-
sults in a lowering difficulty. Thus, Bomberman is a
non-converging game. This poses problems because
computation time can become infinite without the
addition of new knowledge. To tackle this issue we
added an element that makes the game converging.
After 150 rounds, bombs are placed at random loca-
tions. The amount of bombs placed increases every
round. This leads to a converging endgame whilst
not removing any of the Markov assumptions. The
Markov assumption still holds since the next state
is only based on the current state and the selected
actions.

2.2 State Representation

The game state is transformed into an input vector.
The game is divided in grid cells, where every cell
represents a position. Every cell has 4 values:

e Is the position free, breakable or obstructed?
resp. (1,0, -1)

e Does this position contain the player? (1, 0)

e Does this position contain an enemy? (1, 0)

e How dangerous is this position?
(-1 < danger < 1)

‘o 3 : Time passed
Danger is measured in g ——te= eplode the

danger is negative if the bomb has been placed by
the player, and positive if it has been placed by an
opponent. The state representation is sent to the
MLP, which will be trained using Q-learning as de-
scribed in the next section.

3 Reinforcement Learning

3.1 Q-learning

Reinforcement learning is a type of machine learn-
ing that allows agents to automatically learn the
optimal behaviour in a certain context to maximize
overall performance. When an agent starts playing
it will decide on an action from its action space.
What action will be chosen depends on the explo-
ration strategy that is being followed. We will ex-
plain more about exploration methods in section
4. After executing an action the agent receives a
reward, which is a numerical representation of the
consequences of the action it chose. The difference
between the received reward plus the next Q-value
for the best action and the actual Q-value is the
error. The goal of learning is to minimize the error,
so the agent can predict the consequences of its
actions. The framework created for this study is a
model of a Markov Decision Process (MDP) [3]. An
MDP is a discrete-time stochastic control process
and is defined by the following characteristics:

e A finite set of states S, where s; € S is the
state at time ¢.

e A finite set of actions A, where a; € A is the
action executed at time t.

e A reward function r(s,s’) which denotes the
reward when transitioning from state s to state

s’

e A transition function P,(s,s’) that gives the
probability of ending up in state s’ given action
a in state s.

e A discount factor v € [0, 1], which describes
how heavy future rewards should be taken into
account in the current action selection.

Learning the optimal policy is done by using Q-
learning [10]. For every state-action pair a Q-value
is learned. The Q-value is the sum of expected re-
wards obtained by performing action a in state s
and following the optimal policy afterwards. The
value function of the Q-learning algorithm can be
updated according the following rules:

Op = 7(8¢,8041) + v *max Q(Se41, apy1) — Qe (5, ar)

(3.1)
Qt(st, at) = Qt(st, at) —+ o * 5t (32)
In equation 3.1 J is the Temporal-Difference Er-
ror (TD-Error). The Temporal-Difference Error is
the difference between the received reward plus the
next Q-Value for the best action and the actual Q-
value. In equation 3.2, « is used to regulate how
fast the Q-value is pushed in a certain direction.
If « is too big an update might overshoot, if « is
too small convergences takes long. Q-learning is an
off-policy algorithm, which means that it learns in-
dependently of the agent’s policy. If one would play
the game an infinite amount of times, Q-learning
with lookup tables would converge to the optimal
strategy, and can therefore be used to learn in an
MDP [10]. In this thesis, we use an adaptation of
the Q-learning algorithm that fits with an MLP as
described in section 3.3:

Q1 (s¢,ar) = 7(8¢, S41) + v * max Q(S¢41, Gy1)
a

(3.3)
Where Q¢(s:,at) is the target value for updating
the MLP for state s; and action a;. We can use this
adaptation of the Q-learning rule because the MLP
already has a learning rate, thus we can remove this
from the formula. This leaves us with equation 3.3
to update the Q-value in an MLP.

3.2 Reward Function

In reinforcement learning, interaction with the en-
vironment is important. Therefore, we need a way
to transform action consequences into something
that Q-learning can use to learn the Q-function.
We do this by giving in-game events a numerical re-
ward. The in-game events and rewards are stated in
Table 3.1. These rewards have been carefully chosen
to clearly distinct between good and bad actions.
Dying is by far the worst thing, so this is repre-
sented by a very negative reward. For every bomb

Table 3.1: Ingame rewards

event reward
Perform action -1
Perform impossible action -2
Break a wall 30

Kill a player 100

Die -300

placed, it is tracked who placed it. The reward of
killing a player is only rewarded to the player that
actually placed the bomb. The rest of the rewards
are chosen to promote fast convergence and active
behaviour.

3.3 Multi-layer Perceptron

A problem that occurs when using Q-learning with
lookup tables is that a large state space requires
a large amount of memory. Every state needs to
have its own Q-value for every action. Since we have
a lot of states we need a lot of memory to store
those. Furthermore when using lookup tables, Q-
learning needs to explore all states before it can
make educated decisions on what action to take.
To solve these issues regarding space and time
complexity we use an MLP. An MLP is a feed-
forward artificial neural network that maps an in-
put vector that represents the state, to an output
vector, that represents the Q-value for all actions.
An MLP consists of a set of nodes. These nodes
are ordered in layers and every layer is fully con-
nected to the next layer. Every time a node outputs
a value, it is sent through connections to the next
nodes. In a connection the value is multiplied with
a weight assigned to that connection. Then, in the
next nodes, all values are summed and transformed
by some activation function. We use the sigmoid
function as activation function for the hidden-layer:

1

sigmoid(x) = T

We use a linear output function for the output
layer, so we can also predict values outside of the
[0,1] scope. As input we give the complete game
state to the MLP. The output of the MLP is a
6 value vector, where every value represents a Q-
value for a corresponding action. The MLP is ini-
tialized randomly, which means that it needs to

learn what Q-values correspond to which state-
action pairs. We do this by backpropagating the
error through the MLP to update the output in the
direction of the target QQ-values. After training the
MLP we can map the appropriate Q-values without
having to store all different Q-values of all states.
The MLP does this by generalizing over the input
state and transforming it into output. Because of
this our MLP is also able to make intelligent deci-
sions in states that it has not encountered yet. The
use of an MLP results in both a decrease in space
and time complexity.

4 Exploration Methods

If we humans engage in an activity, we always want
to gain the optimal reward. Imagine you are go-
ing out for dinner, you look for the best food for
the cheapest price. The problem is, you cannot be
certain you've had the best before you've tried all
the food. In reinforcement learning this is not dif-
ferent: we want the best policy. Exploration meth-
ods describe the policy one should use to learn the
optimal solution while minimizing the cost. If we
reflect exploration methods on the game Bomber-
man we want to learn how to kill our opponents
as fast as possible. The problem of balancing ex-
ploration and exploitation is known as the explo-
ration/exploitation dilemma [11]. This dilemma de-
scribes the difficulty of deciding whether to get
more knowledge or to act upon current knowledge.
It describes the trade-off of being stuck in a local
optimum versus exploring insignificant parts of the
state space.

We are going to compare 7 exploration methods
and finally determine which works best. The explo-
ration methods will be introduced and explained in
sections 4.2-4.8. The best performing method is the
method that gathers the most points and has the
highest final win rate. Points are gathered during
the game, where the total amount of points equals
the sum of all individual rewards. For every algo-
rithm we have two phases: we have a training phase
and a testing phase. In the training phase we take
the actions suggested by the exploration method. In
the testing phase we take the actions with the high-
est Q-value. We are testing the performance of the
MLP after training a certain amount of time with
a specific exploration method. We cannot reliably

test the performance of the MLP with randomness
involved and therefore the agent always takes the
action with the highest Q-value. Since we want to
test how an MLP learns over time, one training and
one testing phase might not be sufficient. Therefore
we introduce generations. A generation consist of
one training and one testing phase. With genera-
tions we can show how the MLP learns relative to
the amount of games played.

4.1 Opponents

To evaluate how good our exploration methods per-
form, we need a baseline. For this we introduce a
hard coded opponent algorithm. All 3 opponents
use this algorithm. These opponents do not learn,
but instead are guided by properties that induce
intelligent behaviour. The algorithm consists of 3
elements. The first element is that the agent always
search for cover in the neighbourhood of a bomb.
In Algorithm 4.1 we can see this in the first con-
ditional statement, where the agent will search for
cover in the neighbourhood of a bomb. The agent
searches for cover by calculating the utility of every
action. It does this by iterating through all bombs
that are within hit-range of the Bomberman. If a
Bomberman is within hit-range of a bomb, an util-
ity value is calculated for every action. The util-
ity is calculated by taking the root of the absolute
axis dependant distance between the bomb and the
Bomberman given a certain action is executed. The
absolute axis dependent distance is calculated by
adding the root of the absolute x-distance to the
root of the absolute y-distance. Because we sepa-
rate the x/y-axis and take the root of the differ-
ence, actions that make sure the Bomberman and
the bomb are no longer on the same x/y axis get
a higher utility. Secondly, if an agent is surrounded
by 3 walls it will place a bomb. If the agent is sur-
rounded by 3 walls, there has to be at least one
breakable wall. The combination of placing bombs
when surrounded by walls and searching cover in
the neighbourhood of bombs works well because it
shows incentive of opening up paths, while stay-
ing clear of bombs. If there are no bombs and not
enough walls the algorithm produces random be-
haviour. This algorithm is called semi-random be-
cause the behaviour is mostly guided, but random
at times.

Algorithm 4.1 Semi Random Opponent

possibleA = ReturnPossible Actions(player)
bombList = SurroundingBombs(player)
if bombList.NotEmpty() then
utilityList[] = possibleA.Size()
for a : possibleA do
for bomb : Bomblist do
possiblePos = MakeAction(a, player)
curUtility = Dist(bomb, possible Pos)
utilityList[a] += curUtility
end for
end for
bestUtility = Index M ax(utilityList)
return(possible A[bestUtility])
end if
SBT(obj) = Surrounded ByT hreeW alls(obyj)
if SBT (player) == TRUE then
return(placeBomb)
end if
return(RandomAction())

4.2 RandomWalk

The RandomWalk exploration method executes a
randomly chosen action every turn. This method
produces completely random behaviour, and is
therefore good as baseline method. Therefore with
this method it is possible to show the difference
between guided and completely random behaviour
when learning a policy.

4.3 Greedy

The Greedy method is the complete opposite of the
RandomWalk exploration strategy. We assume the
knowledge represented in the current Q-function
is completely correct and therefore every action is
based on exploitation. We always take the action
with the highest Q-value because we assume that
this is always the best action. Greedy tries to solve
some problems of RandomWalk: if the agent dies
constantly in the early game, the agent will not get
to explore the later part of the game. This could
be solved by taking no bad actions and this could
be achieved by only taking actions with the highest
Q-value. Because this method does not explore it
is susceptible to local optima. The pseudo-code is
stated in Algorithm 4.2

Algorithm 4.2 Greedy/()

state = CalculateState()
action = GetBest Action(state)
return(action)

4.4 Greedy

e-Greedy exploration is one of the most used and
simplest methods. It has 1 parameter, €, that deter-
mines what percentage of the actions is randomly
selected. The parameter falls in the range 0 < e <1
where 0 translates to no exploration and 1 to only
exploration. The action with the highest Q-value
is chosen with the probability 1 — € and a ran-
dom action is selected otherwise. Since the MLP
is initialized randomly initially the Q-values do not
translate to the actual sum of expected rewards. In
the Greedy method this could lead to the problem
of always taking a specific sub-optimal action in a
state. e-Greedy solves this problem of the Greedy
method by allowing for some randomness in the ac-
tion selection which allows for exploring the effects
of different actions. The pseudo-code is stated in
Algorithm 4.3.

Algorithm 4.3 € — Greedy(e)

rand = RandomV alue(0,1)
if rand < € then
return(RandomAction())
else
return(Greedy())
end if

4.5 Diminishing e-Greedy

Diminishing e-Greedy is a variant of e-Greedy in
which e decreases relative to the amount of games
that have been played. e-Greedy explores the same
amount in the beginning as in the end. This is not
optimal since we assume the agent is improving
its behaviour and thus over time needs less explo-
ration. This will lead to less exploration if we play
more games. We also incorporate a minimal explo-
ration value, to make sure the algorithm is still ex-
ploring in the end. As can be seen in Algorithm 4.4
the pseudo-code is similar to that of e-Greedy, only
now we calculate e adaptively.

Algorithm 4.4 Diminishing e-Greedy

_ _ currentGen
cur Explore = € * (1 totalGens)

if cur Explore < 0.05 then
cur Explore = 0.05
end if
return(e—Greedy(cur Explore))

4.6 Error-Driven

The problem of Diminishing e-Greedy is that you
have to specify beforehand how much the agent is
going to explore over time. To solve this problem,
Error-Driven exploration bases the exploration rate
on the difference in error between the previous two
generations. The current exploration can be calcu-
lated with: if ¢ > 3

min(errory 1, errory.s)

,minExploration)

(4.1)
Where t is the amount of generations and the error
is calculated as the sum of TD-Errors in a game,
averaged over a generation. If ¢ < 3 the exploration
chance is the standard value of e-Greedy. The ex-
ploration baseline exists to ensure that some explo-
ration occurs . The pseudo-code of this exploration
method is stated in Algorithm 4.5. The ”GetEr-
rorBasedExploration” function gets the error using
equation 4.1.

mazx(
maz(errory.y, errory.s)

Algorithm 4.5 Error-Driven

cur Explore = GetError Based Exploration()
return(e—Greedy(cur Explore))

4.7 Max-Boltzmann

One drawback of all the previous methods men-
tioned is that all explorative actions are chosen ran-
domly, which means that the second best action is
chosen as likely as the worst action. The Boltzmann
exploration method tries to solve this problem by
assigning a probability to all actions, ranking best
to worst [11] .

The probabilities are assigned using a Boltzmann
distribution function. The probability n(s,a) for

action a in state s is:

(Q(s,a)—max Q(s,a))/T)
e a

7T(8, a) = M e(Q(s,aizl)*ma;(Q(s,a)/T)

2

Where M is the amount of possible actions and 7T is
the temperature parameter in the function above.
A high T translates to a lot of exploration. If we
divide the Q-values by a high T the probabilities
of the actions will be approximately equal, which
means that all actions are chosen equally. We de-
crease 1" over time until we reach a value of 1. How-
ever, Boltzmann exploration did not provide any
good results because it produced either random or
Greedy behaviour. We have adapted the algorithm
and now use Max-Boltzmann. Max-Boltzmann pro-
duces the same behaviour as e-Greedy, however the
exploration is now done according the Boltzmann
distribution function [12; 13]. The greedy action
will be taken with probability 1 — € and otherwise
the action will be chosen according to the Boltz-
mann distribution function, as shown in Algorithm

4.6.

Algorithm 4.6 Max-Boltzmann(e)

rand = RandomV alue(0,1)
if rand > € then
return(Greedy())
end if
state = GetState()
t = GetTemperature()
qValues = GetQV alues(state)
probs = QualueT oProbability(Qualues, t)
action = Choose Action(probs)
return(action)

4.8 TD-Error

The Temporal-Difference Error (TD-Error) is an
exlporation strategy that uses the error range of
the Q-value estimates, next to the prediction of
the Q-values [14]. This method is based on Kael-
bling’s Interval Estimation [15]. Kealbling’s Inter-
val Estimation is used to assess how reliable a Q-
value is. The MLP has now 12 instead of 6 outputs,
where the first 6 outputs represent the Q-value and
the other 6 outputs represent the expected abso-
lute Temporal-Difference . We take the next action

based on the action that has the highest possible
reach in the Q-value. The reach is the highest pos-
sible Q-value given the current Q-value prediction
and the error interval. We calculate the reach by
adding the vinterval to the expected Q-value. Fur-
thermore, with a probability of € it chooses a ran-
dom action. The pseudo-code of this exploration
method is stated in Algorithm 4.7.

Algorithm 4.7 TD-Error(e)

rand = RandomV alue(0,1)
if rand < € then
return(RandomM ove())
end if
state = GetState()
qValues = GetQV alues(state)
range = GetError Range(state)
maxReach = —oo
bestAction = NULL
for (action : Actions) do
reach = qValues|action] +
if reach > maxReach then
maxReach = reach
bestAction = action
end if
end for
return(best Action)

rangelaction)

5 Experiments and Results

To answer the research question we will test the
exploration methods in combination with an MLP
and Q-learning. Every method will be trained for
100 generations. A generation consists of 10,000
training games and 100 testing games. 100 genera-
tions of training is called 1 simulation. The results
were obtained by running 20 simulations and taking
the average of the results. The averaging is done to
ensure the validity of the data. For every algorithm
we are going to examine what percent of the games
the methods win, and how many points they are
able to gather. The amount of points they gather
is the average sum of rewards gathered in a game.
The input length of our MLP on a 7 x 7 grid is
7 x 7 x4 =196. However, in a 7 X 7 grid we have
9 indestructible walls, so the true dimensionality of
the input is 7 X 7 x 4 — 9 x 4 = 160. We use a sin-
gle hidden-layer MLP with 100 hidden nodes and

6 output nodes, 1 output node for every possible
action. For this experiment, the MLP is initialized
randomly with values between -0.5 and 0.5, this
to make sure saturation is not likely to occur. Af-
ter running multiple preliminary experiments, 100
hidden nodes was found to be sufficient to produce
intelligent behaviour for a grid size of 7x 7. For this
research there has also been experimented with dif-
ferent amounts of nodes, but removing nodes would
decrease performance and increasing nodes would
only add computation time with no performance
increase. Adding more layers has also been investi-
gated but this only decreased the performance.

5.1 Parameters

To find the best hyperparameters a lot of testing
has been done. Since the parameters are continu-
ous, one can never be sure the optimal parameters
have been found. All neural networks have been
trained with a learning rate of 0.0001, and a ~ of
0.95. These values were selected after some prelim-
inary experiments and are the same for all explo-
ration methods. Table 5.1 shows the parameters for
all methods where € equals the exploration chance,
min-€ is the minimal exploration chance and T is
the Temperature.

Table 5.1: The parameter settings in training

Settings € min-e T
RandomWalk / / /
Greedy / / /
e-Greedy 0.3 / /
Diminishing e-Greedy 0.3—0.05 0.05 /
Error-Driven / 0.05 /
TD-Error 0.2 / /
Max-Boltzmann 0.3 / 200—1

5.2 Results

Figure 5.1 shows the exploration methods’ win rate
over time. In Figure 5.1 one can see that there is
a big difference between the methods that use an
exploration/exploitation trade-off and the methods
that do not (Greedy, Randomwalk). The trade-off
methods obtain quite good performances, although
they do not seem to improve after 20 generations.
Error-Driven outperforms all other methods for the
first 80 generations, but eventually gets surpassed
by Diminishing e-Greedy and Max-Boltzmann.

In Figure 5.2 we show for every exploration
method the average amount of points it gathered.
The two methods without exploration/exploitation
trade-off converge to the same value, while the
other methods perform much better. All methods
with the exploration/exploitation trade-off initially
follow the same curve and learning process, but one
can see that after 100 generations all methods con-
verge to different values.

Table 5.2 shows the results over the last 2000
games for every exploration method. We show
the mean percentage of the games that were won
and the standard error. It can be seen that Max-
Boltzmann performs the best while Error-Driven
and Diminishing e-Greedy perform second best.

Table 5.2: Mean and standard error of the win
rate over the last 2000 games

Mean win rate SE
RandomWalk 0.08 0.006
Greedy 0.58 0.033
e-Greedy 0.79 0.014
Diminishing e-Greedy 0.86 0.022
Error-Driven 0.86 0.026
TD-Error 0.82 0.027
Max-Boltzmann 0.88 0.015

Table 5.3 shows the average amount of points
gathered and the standard error for every explo-
ration method. This data was gathered over the last
2000 games. This table shows that Max-Boltzmann
performs far better than the other methods, scor-
ing on average 30 points more than the second
best method. There was a significant difference be-
tween Diminishing e-Greedy and Max-Boltzmann,
p<0.0001.

Table 5.3: Mean and standard error of the gath-
ered amount of points over the last 2000 games

Mean points SE
RandomWalk -336 0.2
Greedy -346 1.1
e-Greedy 3 1.2
Diminishing e-Greedy 66 1.1
Error-Driven 32 1.5

TD-Error 55 1
Max-Boltzmann 96 1.3

Exploration Method Performance Win Rate

09 ~
- = ¥ » \ 4 '—A —
px——t,a !AN \$, . v
0.8 2 - Y " 1 9,0 "'..
o
0.7 fl
I
0.6 |
¢ l
o
= 0.5 li
=
0.4
—@— RandomWalk —@— Greedy —@— e-Greedy
0.3
—@— Diminishing e-Greedy —@— Error Driven TD-Error
0.2 —@— Max-Boltzmann
0.1
y
0
0 10 20 30 40 50 60 70 80 90 100

Generations Of Training

Figure 5.1: Win rate of the exploration methods, where a generation consist of 10,000 training

games and 100 testing games

5.3 Discussion

From the results it can be concluded that Max-
Boltzmann performs better than the other meth-
ods. Max-Boltzmann gathers on average 30 points
more than the second best method and has a 2%
higher win rate. Especially the high amount of
points is important. We are maximizing the amount
of points and a high win rate does not always corre-
spond to a high amount of points. That a high win
rate does not directly translate to a high amount
of points becomes clear when comparing Greedy
to RandomWalk. Greedy has a much higher win
rate overall than RandomWalk whereas it gathers
less points. In the first 60 epochs the T of Max-
Boltzmann is relatively high, which means that
it produces approximately equal behaviour to e-
Greedy. During the last 40 epochs the exploration
gets more guided, we can see that this results in the
average amount of points starting to increase com-
pared to e-Greedy. It is worth noting that Error-
Driven exploration outperforms all other meth-

ods in the 10-80 generations interval. However this
method produces unstable behaviour. This claim
is supported by the relative high standard error in
Table 5.3 and can be seen in Figure 5.1.

We can answer our research question by stating
that Max-Boltzmann performs better than all other
methods. The only problem with Max-Boltzmann
is that it takes a lot of time before it outperforms
the other methods. In Figure 5.1 and 5.2 we can see
that only in the last 10 generations Max-Boltzmann
starts to outperform the other methods. Looking at
the tables, it is clear that the trade-off between ex-
ploration and exploitation is important. All meth-
ods that have this exploration/exploitation trade-
off perform significantly better than the methods
that have either only exploration or exploitation.

6 Conclusions

This thesis examined exploration methods in con-
nectionist reinforcement learning in Bomberman.

Exploration Method Performance Points

200

100

-100

-200

Points

-300

-400

—®— RandomWalk
-500 —@— g-Greedy
—@— Max-Boltzmann

-600
o] 10 20 30 40

—@— Greedy
—@— Error Driven

—®@— Diminishing e-Greedy
TD-Error
50 60 70 80 90 100

Generations Of Training

Figure 5.2: Points gathered by the exploration methods, where a generation consist of 10,000

training games and 100 testing games

We have explored multiple exploration methods
and can conclude that Max-Boltzmann outper-
forms the other methods on both win rate and
points gathered. The only aspect where Max-
Boltzmann is being outperformed, is the learning
curve. Error-Driven learns faster, but produces un-
stable behaviour. Max-Boltzmann takes longer to
reach a high performance than some other meth-
ods. For further research, it might be interesting
to combine Error-Driven exploration with Max-
Boltzmann. Both methods perform well and a com-
bination of the two might solve the problem where
Max-Boltzmann acts as e-Greedy early on.

References
[1] R. S. Sutton and A. G. Barto, Reinforcement
Learning : An Introduction. Cambridge: Brad-
ford Books, Mar 6, 2015.

[2] M. van Otterlo and M. Wiering, “Reinforce-

ment Learning and Markov Decision Pro-
cesses,” in Reinforcement Learning: State-of-
the-Art (M. Wiering and M. van Otterlo, eds.),
Springer Berlin Heidelberg, 2012.

[3] R. Bellman, “A markovian decision process,”
Journal of Mathematics and Mechanics, vol. 6,
10. 5, pp. 679684, 1957.

[4] L. Bom, R. Henken, and M. Wiering, “Rein-
forcement learning to train Ms. Pac-Man using
higher-order action-relative inputs,” in 2013
IEEE Symposium on Adaptive Dynamic Pro-
gramming and Reinforcement Learning (AD-
PRL), pp. 156-163, 2013.

[5] V. Mmnih, K. Kavukcuoglu, D. Silver,
A. Graves, I. Antonoglou, D. Wierstra,
and M. A. Riedmiller, “Playing atari
with deep reinforcement learning,” CoRR,
vol. abs/1312.5602, 2013.

[6] I. Szita, “Reinforcement learning in games,”

10

[12]

[13]

[14]

in Reinforcement Learning: State-of-the-Art
(M. Wiering and M. van Otterlo, eds.),
pp- 539-577, Springer Berlin Heidelberg, 2012.

A. Shantia, E. Begue, and M. Wiering, “Con-
nectionist reinforcement learning for intelli-
gent unit micro management in starcraft,” in
Neural Networks (IJCNN), The 2011 Inter-
national Joint Conference on, pp. 1794-1801,
IEEE, 2011.

K. Hornik, M. Stinchcombe, and H. White,
“Multilayer feedforward networks are univer-
sal approximators,” Neural Networks, vol. 2,
no. 5, pp. 359-366, 1989.

D. E. Rumelhart, G. E. Hinton, and R. J.
Williams, “Parallel distributed processing: Ex-
plorations in the microstructure of cognition,
vol. 1,” ch. Learning Internal Representations
by Error Propagation, pp. 318-362, Cam-
bridge, MA, USA: MIT Press, 1986.

C. J. C. H. Watkins and P. Dayan, “Technical
note: Q-learning,” Machine Learning, vol. 8,
p- 279, May 1, 1992.

A. D. Tijsma, M. M. Drugan, and M. A.
Wiering, “Comparing exploration strategies
for Q-learning in random stochastic mazes,”
in Computational Intelligence (SSCI), 2016
IEEFE Symposium Series on, pp. 1-8, 2016.

M. Wiering and J. Schmidhuber, “HQ-
learning,” Adaptive Behavior, vol. 6, no. 2,
pp- 219-246, 1997.

M. A. Wiering, Ezplorations in efficient rein-
forcement learning. PhD thesis, University of
Amsterdam, 1999.

M. White and A. White, “Interval Estima-
tion for Reinforcement-Learning Algorithms
in Continuous-State Domains,” in Advances
in Neural Information Processing Systems 23
(J. D. Lafferty, C. K. I. Williams, J. Shawe-
Taylor, R. S. Zemel, and A. Culotta, eds.),
pp. 2433-2441, Curran Associates, Inc., 2010.

L. Kaelbling, Learning in Embedded Systems.
A Bradford book, MIT Press, 1993.

11

