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Abstract: Neural Networks and Reinforcement Learning have successfully been applied
to various games, such as Ms. Pacman and Go. This research combines Multilayer Per-
ceptrons and a class of Reinforcement Learning algorithms called Actor-Critic to make
an agent learn to play the arcade classic Donkey Kong game. Two neural networks are
used in this study, the Actor and the Critic. The Actor neural network learns to select
the best action given the game state, the Critic tries to learn the value of being in a
certain state. First, a base game-playing performance is obtained by making the agent
learn from demonstration data, which is obtained from humans playing the game. After
the off-line training of the Actor on the demonstration data, the agent tries to further
improve its base performance using feedback from the Critic. The Critic gives feedback by
comparing the value of the state before and after taking the action. Results show that an
actor pre-trained on demonstration data is able to achieve a good baseline performance.
Applying Actor-Critic methods, however, does usually not improve performance, in many
cases even decreasing it. Possible reasons include the game not fully being Markovian
and other difficulties.

1 Introduction

Games have become a subject of interest for
machine learning in the last few decades. Play-
ing games is an activity enjoyed exclusively by
humans, which is why studying them in the
pursuit of Artificial Intelligence is very entic-
ing. Building software agents that perform well
in an area that requires human-level intelli-
gence would thus be one step closer to creating
Strong, General Artificial Intelligence, which
can be considered one of the primary goals of
the entire field.

Reinforcement learning techniques have of-
ten been used to achieve success in creating
game-playing agents (Silver et al., 2016; Mnih
et al., 2015). Reinforcement learning requires
the use of certain functions, such as a pol-
icy function that maps states to actions and
a value function that maps states to values.

The values of these functions could, for exam-
ple, be stored in tables. However, most non-
trivial environments have a large state space,
particularly games where the states are often
continuous. Unfortunately, tables would have
to become enormous in order to store all the
necessary function information. To solve this
problem, function approximation is often ap-
plied. Consequently, general function approxi-
mators such as Neural Networks are often used
in conjunction with Reinforcement Learning. A
famous recent example of this is the ancient
board game Go, in which Deep Mind’s AI Al-
phaGo was able to beat the world’s best players
at their own game (Silver et al., 2016). Besides
traditional games, the combination of neural
nets and reinforcement learning can be used
to learn to play video games as well. For ex-
ample, Deep Mind used a combination of con-
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volutional neural networks and Q-learning to
achieve good gameplay performance at 49 dif-
ferent Atari games, and was able to achieve
human-level performance on 29 of them (Mnih
et al., 2015). This study shows how a Reinforce-
ment Learning agent can be trained purely on
the raw pixel image. The upside of the research
showed that a good game-playing performance
could be obtained without handcrafting game-
specific features. The Deep Q-Network was able
to play the different games without any alter-
ations to the architecture of the network or the
learning algorithms. However, the downside is
that deep convolutional networks require excep-
tional amounts of computing power and time.
Furthermore, one could speculate how well per-
formance of each individual game could be im-
proved by incorporating at least some game-
relevant features. Still, it is impressive how the
network could be generalized to very different
games.

Alternatively, another approach is to instead
use hand-crafted features specific to the game
itself. One such game where this was success-
fully applied is Ms. Pac-Man, where an AI
was trained to achieve high win rates at the
game using higher-order, game-specific features
(Bom et al., 2013). This approach shows that
good performance can be obtained with a small
amount of inputs, therefore severely reducing
computation time.

In this thesis, we present an approach to ma-
chine learning in games that is more in line with
the second given example. We apply reinforce-
ment learning methods to a video game based
on Donkey Kong, an old arcade game that was
released in 1981 by Nintendo. The game fea-
tures a big ape called Donkey Kong, who cap-
tures princess Pauline and keeps her hostage at
the end of each stage. It is up to the hero called
Jumpman, nowadays better known as Mario,
to climb all the way to the end of the level to
rescue this damsel in distress. Besides climbing
ladders, the player also has to dodge incoming
barrels being thrown by Donkey Kong, which
sometimes roll down said ladders.

This game provides an interesting setting for
studying reinforcement learning. Unlike other
games, Donkey Kong does not require expert

strategies in order to get a decent score and/or
get to the end of the level. Instead, timing is
of the utmost importance for surviving. One
careless action can immediately lead Mario to
certain death. The game also incorporates un-
predictability, since barrels often roll down lad-
ders in an unpredictable way. The intriguing
part of studying this game is to see whether
reinforcement learning can deal with such an
unpredictable and timing-based continuous en-
vironment.

For this study, we used a specific reinforce-
ment learning technique called Actor-Critic
(Sutton and Barto, 1998). In each in-game step,
the Actor (player) tries to select the optimal
action to take given a game state, while the
Critic tries to estimate the given state’s value.
Using these state-value estimates, the Critic
gives feedback to the Actor, which should im-
prove the agent’s performance while playing the
game. A special form of Actor-Critic was used:
the Actor-Critic Learning Automaton (ACLA)
(Wiering and Van Hasselt, 2007).

Both the Actor and the Critic are imple-
mented in the form of a Multilayer Perceptron
(MLP). Initializing the online learning with an
untrained MLP would be near-impossible: the
game environment is too complex and chaotic
for random actions to lead to good behavior
(and positive rewards). In order to avoid this,
both the Actor and the Critic are trained offline
on demonstration data, which is collected from
demonstration games being played by human
players.

The main question this study seeks to an-
swer is: is a combination of neural networks
and Actor-Critic methods able to achieve good
gameplay performance in the game Donkey
Kong?

2 Game Implementation

A framework was developed that allows the
user to test several reinforcement learning tech-
niques on a game similar to the original Donkey
Kong. The game itself can be seen in Figure 2.1
and was recreated from scratch as a Java appli-
cation.
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The goal of the game is to let the player reach
the princess at the top of the level. The agent
starts in the lower-left corner and has to climb
ladders in order to ascend to higher platforms.
In the top-left corner, we find the game’s antag-
onist Donkey Kong, which throws barrels at set
intervals. The barrels roll down the platforms
and fall down when reaching the end, until they
disappear in the lower-left of the screen. When
passing a ladder, each barrel has a 50% chance
of rolling down the ladder, which adds a de-
gree of unpredictability to the barrel’s course.
The agent touching a barrel results in an in-
stant loss, while jumping over them nets a small
score. Additionally, two powerups (hammers)
can be picked up by the agent when he collides
with them by either a walking or jumping ac-
tion, which results in the barrels temporarily
being destroyed upon contact with the agent,
netting a small score gain as well. The agent
can execute one out of seven actions: walking
(left or right), climbing (up or down), jumping
(left or right) or doing nothing (standing still).
The game takes place in 680 × 580 window.
Mario moves to the left and right at a speed of
1.5 pixels, while Mario climbs at a speed of 1.8
pixels. A jump carries Mario forward around 10
pixels. Therefore, this means that Mario needs
to take a lot of actions to reach the princess
from his initial position.

The game contains several different settings
that determine how the player is controlled.
There is a manual mode, which allows a human
player to play the game using keyboard con-
trols. If done in combination with the demon-
stration mode, the game automatically writes
information about the game state for each time
step to a file, which can be used for learning
from demonstration (section 4). Additionally,
there is an automatic mode, which can be ex-
ecuted in two ways: either the agent is con-
trolled by an MLP trained on demonstration
data without receiving any input (“Actor-only
mode”), or the agent is controlled by the MLP
while receiving feedback from another MLP
(“Actor-Critic mode”). At each time step in the
automatic mode, the MLP takes input from the
game state and produces one out of the seven
possible actions as the output. When active, the

Critic provides feedback to the agent.
While this implementation of the game is

quite close to the original game, there are sev-
eral differences between the two versions of the
game:

• The game speed of the original is slower
than in the recreation.

• The barrels are larger in the original. To
reduce the difficulty of our game, we made
the barrels smaller.

• The original game contains an oil drum in
the lower-left corner which can be ignited
by a certain type of barrel. Upon ignition,
the barrel produces a flame that chases the
player. This has been entirely left out in
the recreation.

• The original game consists of several dif-
ferent levels. The recreation only consist of
one level, which is a copy of the first level
from the original.

• The original game uses a relatively com-
plex algorithm for determining whether a
barrel will go down a ladder or not, which
appears to be based on the player’s posi-
tion relative to the barrel and the player’s
direction. The code of the original is not
available, so instead the barrels’ odds of
rolling down a ladder is set to be simply
50% at any given time.

While there are a few notable differences be-
tween the original and its recreation, both ver-
sions are still quite similar. It is therefore rea-
sonable to assume that any AI-behavior in the
recreation would translate to the original as
well.

Figure 2.1: Recreation of Donkey Kong.
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3 Multilayer Perceptrons

The Actor and Critic are implemented in the
form of an MLP, a simple feed-forward network
consisting of an input layer, one or more hid-
den layers and an output layer. Like the game
itself, the MLP was built from scratch in Java,
meaning no external packages were used. In this
section, we look at the way the MLP used for
this study is built up.

3.1 MLP input

The inputs for the neural net are derived from
the game state using several different input
algorithms. This section provides an overview
of how these algorithms are implemented. The
first two algorithms are several varieties of grids
that are used to track the location of objects in
the game. Each cell in each grid corresponds
to one input for the MLP. Besides these grids,
several additional inputs provide information
about the current state of the game.

3.1.1 Vision Grids

There are three types of objects in the game
that the agent can interact with: barrels,
powerups and ladders. We use three different
vision grids that keep track of the presence of
these objects in the immediate surroundings of
the agent. A similar method was used by Shan-
tia et al. (2011) for the game Starcraft.

First of all, the MLP needs to know how to
avoid getting killed by barrels, meaning it needs
to know where these barrels are in relation to
the agent. Barrels that are far away pose no
immediate threat. This changes when a barrel is
on the same platform level as the agent: at this
point, the agent needs to find a way to avoid a
collision with this barrel. Generally, this means
trying to jump over it. Barrels on the platform
level above the agent need to be considered as
well, as they could either roll down a ladder or
fall down the end of the platform level, after
which they become an immediate threat to the
agent.

The second type of objects, ladders, are the
only way the agent can climb to a higher plat-
form level, which is required in order to reach

the goal. The MLP therefore needs to know if
there are any ladders nearby and where they
are.

Finally, the powerups provide the agent the
ability to temporarily destroy the barrels, mak-
ing the agent invincible for a short amount of
time. The powerups greatly increase the odds of
survival, meaning it’s important that the MLP
knows where they are relative to the player.

In order to track these objects, we use a set
of three grids of 7 × 7 cells, where each grid
is responsible for tracking one object type. The
grids are fixed on the agent, meaning they move
in unison. During every time step, each cell de-
tects whether it’s colliding with the relevant ob-
ject. Cells that contain an object are set to 1.0,
while those that do not are set to 0.0. This re-
sults in a set of 3 · 49 = 147 boolean inputs.

The princess is always above the player, while
barrels that are below the player pose no threat
whatsoever. We are therefore not interested in
what happens in the platform levels below the
agent, since there rarely is a reason to move
downwards. Because of this, the vision grids are
not centered around the agent. Instead, five of
the seven rows are above the agent while there
is only one row below.

A visualization of the vision grid can be seen
in Figure 3.1.

Figure 3.1: Visualization of the vision grid
that tracks objects directly around the
agent, granting Mario local vision of its im-
mediate surroundings. Note that while only
one grid can be distinguished, there are ac-
tually three vision grids stacked on top of
each other, one for each object type.
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3.1.2 Agent Tracking Grid

The MLP requires knowledge of the location of
the agent in the environment. This way it can
relate outputs (i.e. player actions) to certain
locations in the map. Additionally, this knowl-
edge is essential for estimating future rewards
by the Critic, which will be explained further
in section 5.

The agent’s location in the game is tracked
using a 20× 20 grid that spans the entire game
environment. Like the vision grid, each cell in
the agent tracking grid provides one boolean
input. The value of a cell is 1.0 if the agent
overlaps with it, 0.0 if it does not. This grid
provides 20 · 20 = 400 boolean inputs. A visu-
alization of the agent tracking grid can be seen
in Figure 3.2.

Figure 3.2: Visualization of the level-wide
grid that tracks the current location of the
agent. While not visible in this image, the
grid spans the entire game environment

3.1.3 Additional Inputs

Four additional inputs are extracted from the
game state. These are as follows:

• A boolean that tracks whether the agent
can climb (i.e. is standing close enough to a
ladder). This prevents the agent from try-
ing to climb while this is not possible.

• A boolean that tracks whether the agent is
currently climbing. This prevents the agent
from trying to do any other action besides
climbing while on a ladder.

• A boolean that tracks whether the agent
currently has an activated powerup. This
is used to teach the MLP that it can de-
stroy barrels while under the influence of

a powerup, as opposed to having to jump
over them.

• A real decimal number in the range [0,1]
that tracks how much time a powerup has
been active. Given the time passed since
the powerup was obtained (t) and the to-
tal time a powerup remains active (d), the
time that the current powerup has been
active is represented as the following frac-
tion: TimeLeft = t / d.

The total amount of inputs is the sum of 147
vision grid cells, 400 agent tracking grid cells
and 4 additional inputs, resulting in 551 inputs
in total.

3.2 MLP output

3.2.1 Actor

The output layer consists of seven neurons, each
neuron representing one of the seven possible
player actions: moving left or right, jumping left
or right, climbing up or down, or standing still.
During training using demonstration data, the
target pattern is encoded as a one-hot vector:
the target for the output neuron corresponding
to the action taken has a value of 1.0, while all
other targets are set to 0.0.

During gameplay, the MLP picks an action
based on softmax action selection (Sutton and
Barto, 1998). In this method, each action is
given a probability based on its activation. Us-
ing a Boltzmann distribution, we can transform
a vector a of length n, consisting of real output
activation values, into a vector σ(a) consisting
of n real values in the range [0,1]. The proba-
bility for a single output neuron i is calculated
as follows:

σ(ai) =
eai/τ∑n
j=1 e

aj/τ
for i = 1, ..., n (3.1)

Here, τ is a positive real temperature value,
which can be used to induce exploration into
action selection. For τ →∞, all actions wil be
assigned an equal probability, while for τ → 0
the action selection becomes purely greedy.
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During each in-game timestep, each output
neuron in the Actor-MLP is assigned a value
using equation 3.1. This value stands for the
probability that the Actor will choose a certain
action during this timestep.

3.2.2 Critic

The output layer of the Critic-MLP consists of
one numeric output, which is a value estimation
of a given game state. This will be explained
further in section 5.2.

3.3 Activation Functions

Two different activation functions were used for
the hidden layers: the sigmoid function and the
Rectified Linear Unit (ReLU) function.

Given an activation a, the sigmoid output
value σ(a) of a neuron is calculated as follows:

σ(a) = 1/(1 + e−a) (3.2)

The ReLU output value is calculated using:

σ(a) = max(0, a) (3.3)

Both activation functions are compared in
order to achieve the best performance for the
MLP. This will be elaborated upon in section
6.1.

4 Learning From Demon-
stration

Reinforcement Learning alone is often not
enough to learn to play a complex game. Hy-
pothetically, we could leave out offline learn-
ing and initialize both the Actor and the Critic
with an untrained MLP, which the Critic would
have to improve. In a game like Donkey Kong,
however, this would lead to initial behavior
to consist of randomly moving around without
getting even remotely close to the goal. In other
words: it would be hard to near-impossible for
the Actor to reach the goal state, which is nec-
essary for the Critic to improve gameplay be-
havior.

The above means that we need to pre-train
both the Actor and the Critic in order to obtain

a reasonable starting performance. For this, we
utilized Learning from Demonstration (LfD)
(Atkeson and Schaal, 1997). A dataset of input
and output patterns for the MLP was created
by letting both authors play 50 games each. For
each timestep, an input pattern is extracted
from the game state using the different input
algorithms. Additionally, the action chosen by
the player at that exact timestep is stored as
well. The observed reward is stored at each
time-step as well. The critic uses this reward
to create the target explained in Section 5.1,
Equation 5.3. All these corresponding input-
output patterns make up the data on which the
MLPs are pre-trained.

5 Reinforcement Learning
Framework

The elements of reinforcement learning are
combined in the general framework called the
Markov Decision Process (MDP), which is the
framework that is used in most reinforcement
learning problems (Sutton and Barto, 1998;
Wiering and van Otterlo, 2012). The MDP can
be viewed as a tuple < S,A, P,R, γ >, where S
is the set of all states, A is the set of all actions,
P (st+1|st, a) represents the transition probabil-
ities of moving from state st to state st+1 after
executing action a and R(st, a, st+1) represents
the reward function. γ represents the discount
factor, indicating the importance of future re-
wards. Since in Donkey Kong there is only one
main way of winning the game, which is saving
the princess, the future reward of reaching her
should be a very significant contributor to the
value of a state. Furthermore, as explained in
Section 2, the agent does not move very far af-
ter each action selection. When contrasted with
the size of the game screen, this means that at
around 2000 steps are needed to reach the goal,
where 7 actions are possible at each step, lead-
ing to a very challenging environment. For these
reasons, the discount factor γ is set to 0.999, in
order to cope with this long horizon, such that
values of states that are, for example, a 1000
steps away from the goal still get a portion of
the future reward of the saving the princess.
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Besides this tuple, we also have the decision
making agent, which takes actions to transi-
tion from states to other states. Furthermore,
a value function V (st) is defined, which maps a
state to the expected value of this state, indi-
cating the usefulness of being in that state. Be-
sides the value function, we also define a policy
function π(st) that maps a state to an action.
The goal of the reinforcement learning process
is to find an optimal policy π∗(st) such that an
action is chosen in each state as to maximize
the obtained rewards in the environment. The
process is assumed to contain the Markov prop-
erty. This property assumes that the history of
the process is not important to determine the
probabilities of state transitions. Therefore, the
transition to a state st+1 depends only on the
current state st and action at and not on any
of the previous states encountered.

In our Donkey Kong framework, the decision-
making agent is represented by Mario, who can
choose in each state one of the seven actions
to move to a new state, where the state is
uniquely defined by the combination of features
explained earlier. Like in the work done by Bom
et al. (2013), we use a fixed reward function
based on specific in-game events. Choosing ac-
tions in certain states can trigger these events,
leading to positive or negative rewards. We
want the agent to improve its game-playing per-
formance by altering its policy. Rewards give
an indication of whether a specific action in a
specific state led to a good or a bad outcome.
In Donkey Kong, the ultimate goal is to rescue
the princess at the top of the level. Therefore,
the highest positive reward of 200 is given in
this situation. One of the challenging aspects
of the game is the set of moving barrels that
roll around the level. Touching one of these
barrels will immediately kill Mario and reset
the level, so this behavior should be avoided at
all costs. Therefore, a negative reward of -10 is
given, regardless of the action chosen by Mario.
Jumping around needlessly should be punished
as well, since this can lead Mario into a dan-
gerous state more easily. For example, jumping
in the direction of an incoming barrel can cause
Mario to land right in front of it, with no means
of escape left. The entire set of events and the

Event Reward
Getting hit by barrel -10
Jumping over a barrel +3
Pick up powerup +1
Destroy barrel with powerup +2
Save princess +200
Needless jump -20

Table 5.1: Game events and their corre-
sponding rewards. A ’needless’ jump penalty
is only given if the agent jumped, but didn’t
jump over a barrel nor did the agent pick up
a powerup.

corresponding rewards are summarized in Ta-
ble 5.1.

5.1 Temporal Difference Learn-
ing

In this research, we apply a subset of Reinforce-
ment Learning algorithms called Temporal Dif-
ference Learning (Sutton, 1988). The advantage
of Temporal Difference (TD) methods is that
they can immediately learn from the raw ex-
periences of the environment as they come in
and no model of the environment needs to be
learned. This means that we can neglect the P
part of the MDP tuple explained earlier. TD
methods allow learning updates to be made at
every time step, unlike other methods that re-
quire the end of an episode to be reached before
any updates can be made, such as Monte Carlo
algorithms. The important prediction function
related to the TD methods that we use is the
value function, which estimates the value of
each state based on future rewards that can be
obtained, starting at this state. Therefore, the
value of a state st is the expected total sum of
discounted future rewards starting from state
st, as explained by Sutton and Barto (1998):

V (st) = E
[ ∞∑
k=0

γk ∗Rt+k+1

]
(5.1)

Here, st is the state at time t, γ is the dis-
count factor and Rt+k+1 is the reward at time
t+ k + 1. We can take the immediate reward
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observed in the next state out of the sum, to-
gether with its discount factor:

V (st) = E
[
Rt+1+γ∗

∞∑
k=0

γk+1∗Rt+k+2

]
(5.2)

We observe that the discounted sum in equa-
tion 5.2 is equal to the definition of the value
function V (st) in equation 5.1, except one time
step later into the future. Substituting equation
5.1 into 5.2 gives us the final value function pre-
diction target:

V (st) = E
[
Rt+1 + γ ∗ V (st+1)

]
(5.3)

Therefore, the predicted value of a state is the
reward observed in the next state plus the dis-
counted next state value.

Figure 5.1: The architecture of Actor-Critic
methods (Takahashi et al., 2008)

5.2 Actor-Critic methods

Actor-Critic methods are based on the Tem-
poral Difference learning idea. However, these
algorithms represent both the policy and the
value function separately, both with their own
weights in a neural network or probabili-
ties/values in a table. The policy structure is
called the Actor, which takes actions in states.
The value structure is called the Critic, who
criticizes the current policy being followed by
the Actor. The structure of the Actor-Critic
model is illustrated in Figure 5.1.

The environment presents the representation
of the current state st to both the Actor and the
Critic. The Actor uses this input to compute

the action to execute, according to its current
policy. The Actor then selects the action, caus-
ing the agent to transition to a new state st+1.
The environment now gives a reward based on
this transition to the Critic. The Critic observes
this new state and computes its estimate for
this new state. Based on the reward and the
current value function estimation, both Rt+1

and γ∗V (st+1) are now available to be incorpo-
rated into both making an update to the Critic
itself, as well as computing a form of feedback
for the Actor. The Critic looks at the difference
of the values of both state st and st+1. Together
with the reward, we can define the feedback δt
at time t, called the Temporal-Difference error,
as follows:

δt = Rt+1 + γ ∗ V (st+1)− V (st) (5.4)

When one of the two terminal states is en-
countered, getting hit by a barrel or saving the
princess, the value of the next state, γ∗V (st+1),
is set to 0.

If we neglect Rt+1 for now, we observe that
γ ∗ V (st+1)− V (st) will be positive if the next
state st+1 yields a (much) higher value than the
previous state st. This means that we have im-
proved our situation and entered a better state,
meaning that the action selected in state st
should be positively reinforced. The opposite is
also true: a negative δt means our condition has
worsened, so the ’bad’ action should be penal-
ized. The reward Rt+1 can help sway the TD-
error into the positive or negative direction.

The tendency to select an action has to
change, based on the following update rule, Sut-
ton and Barto (1998):

h(at|st) = h(at|st) + βδt, (5.5)

where h(at|st) represents the tendency or prob-
ability of selecting action at at state st and β
is a positive step-size parameter between 0 and
1.

In the case of Neural Networks, both the Ac-
tor and the Critic are represented by their own
Multilayer Perceptron. The feedback computed
by the Critic is given to the Actor network,
where the weights of the output node of the
Actor corresponding to the chosen action are
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directly acted upon. These weights have to be
changed in a way such that the tendency of
the action chosen is either positively or nega-
tively reinforced, based on the size and sign of
δt. Therefore, we form new targets for all of
our seven output nodes. Since the feedback is
only due to one action selected at the previous
state, we assume δt = 0 for all output nodes
not corresponding to the action selected. Thus,
for every output node, we define the target as
follows: target(node) = activation(node) + δt.
Comparing this to equation 5.5, the β parame-
ter is assumed to be equal to one, as we already
use a learning rate in the neural net itself. After
setting the targets, the backward propagation
algorithm should change the weights in such a
way to increase or decrease the tendency of the
chosen action next time the same state as the
one observed at time t is encountered.

The Critic is also updated by δt. Since the
Critic approximates the value function V (st)
itself, the following equation,

V (st) = V (st) + δt,

= V (st) +Rt+1 + γ ∗ V (st+1)− V (st)

is reduced to:

V (st) = Rt+1 + γ ∗ V (st+1), (5.7)

which is, once again, the value function tar-
get for the Critic. Combining equation 5.7 and
equation 5.4, we can see that, as the Critic
keeps updating and improves its approxima-
tion of the value function, δt = V (st) − V (st),
meaning δt converges to 0. This means that the
Temporal Difference error will keep decreasing,
meaning that the impact of the feedback on
the Actor will decrease as well, hopefully at the
time where the Actor converges to an optimal
policy.

5.2.1 ACLA

In this study, we used the Actor-Critic algo-
rithm called Actor-Critic Learning Automa-
ton (Wiering and Van Hasselt, 2007). This al-
gorithm functions in the same basic way as
standard Actor-Critic methods, except in the
way the Temporal Difference error is used for

feedback. As explained before, standard Actor-
Critic methods calculate the feedback δt, then
use this value to alter the tendency to select
certain actions by changing the parameters of
the Actor. ACLA does not use the exact value
of δt, but only looks at whether or not an action
selected in the previous state was good or bad.
Therefore, instead of the value, the sign of δt is
used. While the Critic still uses the value of δt
for its update, ACLA slightly changes the way
the Actor’s weights should be changed. After
calculating δt, the targets for the output nodes
of the Actor are set, depending on the sign of δt.
If δt is positive, we reinforce the action selected
at time t, by using the same one-hot vector en-
coding that was used during the demonstration
learning phase. For example, if action 6 needs
to be reinforced, the targets are represented as
the one-hot target vector [0 0 0 0 0 1 0]. If δt
is negative, we penalize the chosen action while
keeping the other actions the same. The tar-
get for the ’bad’ action is 0, while the target of
all the other output nodes is the Softmax value
they had at state st, meaning that the error
for these output nodes is 0. After this, a back-
ward pass will adjust the weights to achieve the
desired effect.

5.3 Implementation

There are a few implementation details regard-
ing the reinforcement learning methods that
need to be specified. Preliminary tests showed
that standard Actor-Critic and ACLA with
negative reinforcement caused the Actor net-
work to become unstable, resulting in bad play-
ing behavior that disturbed the entire perfor-
mance. For example, this instability sometimes
caused Mario to forget how to climb a ladder,
getting stuck into a jumping loop around it in-
stead. Therefore, after more tests, ACLA with
only positive feedback was implemented. This
means that any negative feedback computed by
the Critic is not propagated to the Actor. This
resulted in more stability.

Another method was implemented to in-
crease the stability of the network during train-
ing. With Temporal Difference learning, data to
learn from comes in at every time step. How-
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ever, this data always comes in the same or-
der due to the nature of the game, making the
samples the network has to learn from highly
correlated with each other. This high correla-
tion makes it harder for the Neural network to
learn. In order to reduce this sample correla-
tion, a method called Experience Replay (Lin,
1992) is applied. With this technique, a memory
dataset with a fixed size of 50000 is used, where
state transitions and rewards are stored. Then,
at every time step, a sample is randomly and
uniformly sampled from the memory dataset
and the Actor is trained on this sample. In
our experiments, to reduce computation time, a
sample contained one experience. Preliminary
tests seem to show that Experience Replay is
the biggest factor that contributes to the sta-
bility of the network being trained with ACLA.

One final addition to the game environment
is the inclusion of two invisible walls, one to the
right of the last ladder in the bottom right of
the screen. The other invisible wall is placed to
the left of the ladder right under the princess.
Mario can not pass through these. The inclu-
sion of these walls prevent unstable behavior
from completely ruining an entire run. Some
networks seem to become unstable in only a
smart part of the game environment, almost
always the two locations where the invisible
walls are placed. For example, a certain net-
work often became unstable after around 130
games played, causing the agent to keep jump-
ing around the ladder in the bottom-right cor-
ner of the screen instead of climbing it. How-
ever, the network still performed well in all
other sections of the environment.

Another implementation issue relates to the
Markov property. The Donkey Kong game vio-
lates this property, resulting in numerous work-
arounds that needed to be implemented in or-
der for the right states to be associated with
good or bad actions. Donkey Kong violates the
Markov property because not every state tran-
sition depends purely on the current state. For
example, during a jump, the agent can not
select any other actions until it lands on the
ground again. Therefore, during a jump, all the
state transitions in the states where Mario is
in the air after a jump depend heavily on the

state where the initial jump was selected, which
in our game implementation can almost be 50
states back into the past. Finally, the vision grid
gives Mario only local vision, meaning that the
entire game state is only partially observable
for the agent.

6 Experiments and Results

In order to test the performance of the Actor-
Critic methods, several experiments were per-
formed. We define the performance as the per-
centage of games where the agent was able to
reach the princess: gamesWon

gamesPlayed .
In the first experiment, the parameters for

the MLP trained using learning from demon-
stration were optimized in order to achieve a
good baseline performance. We then perform 10
runs of 100 games to see how the optimized Ac-
tor performs without any Reinforcement Learn-
ing.

For the second experiment, we compare the
performance of only the Actor versus an Ac-
tor trained with ACLA for 5 different models.
Between each model, the performance of the
Actor-MLP is varied: we do not only want to
see if ACLA is able to improve our best Actor,
but we want to know whether it can heighten
the performance of lower-performing Actors as
well.

6.1 Parameter Optimization

The MLP has several parameters that influence
the performance of the network: the learning
rate, temperature (see section 3.2), the amount
of hidden nodes per layer, the amount of hidden
layers and the activation function (see section
3.3) We want the Actor-MLP to achieve a rea-
sonable baseline performance, meaning the pa-
rameter settings had to be optimized. For each
parameter value, the MLP was initialized and
trained 10 times, each time playing 100 games
after training. While testing a parameter, all
other parameters were kept at a default value.

First, we compared parameter settings using
only the sigmoid activation function. Table 6.1
shows the tested parameter settings while using
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only the sigmoid functions, together with the
default setting for each parameter.

Sigmoid
Parameter Parameter Default

values
Learning rate {0.0005, 0.001, 0.01

0.005, 0.01, 0.05}
Temperature {0.5, 1, 2, 4, 8} 1
N hidden nodes {25, 50, 100, 100

150, 200}
N hidden layers {1, 2, 3} 1

Table 6.1: The values that were tested for
each parameter using a sigmoid activation
function. The third column shows the pa-
rameter’s default setting.

ReLU typically requires a lower learning rate
than a sigmoid activation function. Further-
more, we wanted to compare the effects of com-
bining multiple hidden layers between both ac-
tivation functions. Table 6.2 shows the tested
parameter settings while using only the ReLU
function (temperature = 1, 100 hidden nodes).
Note that we used either only sigmoid or only
ReLU activation functions: due to both func-
tions requiring different learning rate values, we
did not test a combination of sigmoid and ReLU
while using 2 or more hidden layers.

ReLU
Parameter Parameter Default

values
Learning rate {0.00005, 0.01

0.0001, 0.0005
0.001, 0.005}

N hidden layers {1, 2, 3} 1

Table 6.2: The values that were tested for
each parameter using a ReLU activation
function. The third column shows the pa-
rameter’s default setting.

The full training data set consists of data
from 100 played games, both authors each hav-
ing played 50 games. However, in order to keep
the training time at a reasonable level, a data
set of 50 games was used during parameter op-
timization. For the stop criterion we look at

the difference in the error between two training
epochs. The error in each output neuron is de-
fined as 1

2 (t−o)2, where t is the neuron’s target
and o its output. The MLP stops training when
the average error over all 7 output neurons for
all input patterns in the dataset becomes lower
than 0.0007. Additionally, when multiple hid-
den layers are used, each consecutive hidden
layer has half the amount of nodes of the pre-
vious layer. If the MLP has three layers with
n nodes in the first layer, the second and third
layers each have n

2 and n
4 hidden nodes, respec-

tively.

6.2 Parameter Optimization Re-
sults

Tables 6.3 to 6.8 show the average performance
of 10 runs of 100 games for all tested parameter
setting. The best setting for each parameter is
in boldface.

Learning rate (sigmoid)
Value Mean

performance
0.0005 10.3% (SD 2.2)
0.001 14.2% (SD 3.3)
0.005 37.3% (SD 9.5)
0.01 40.6% (SD 5.4)
0.05 38.5% (SD 4.9)

Table 6.3: The average performance of 10
runs of 100 games for 5 different learning
rate values using a sigmoid activation func-
tion

Temperature
Value Mean

performance
0.5 38.2% (SD 7.4)
1 35.9% (SD 6.2)
2 41.0% (SD 5.9)
4 45.9% (SD 6.3)
8 34.7% (SD 5.5)

Table 6.4: The average performance of 10
runs of 100 games for 5 different tempera-
tures
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N hidden nodes
Value Mean

performance
25 36.7% (SD 4.9)
50 33.4% (SD 9.2)
100 37.3% (SD 8.2)
150 36.1% (SD 5.0)
200 42.3% (SD 7.0)

Table 6.5: The average performance of 10
runs of 100 games for 5 different hidden node
sizes

N hidden layers (sigmoid)
Value Mean

performance
1 38.5% (SD 6.4)
2 42.2% (SD 5.0)
3 38.9% (SD 3.5)

Table 6.6: The average performance of 10
runs of 100 games for 3 different amounts
of hidden layers using a sigmoid activation
function

Learning rate (ReLU)
Value Mean

performance
0.00005 9.0% (SD 2.5)
0.0001 14.3% (SD 3.7)
0.0005 27.2% (SD 5.1)
0.001 34.3% (SD 4.6)
0.005 41.7% (SD 10.9)

Table 6.7: The average performance of 10
runs of 100 games for 5 different learning
rate values using a ReLU activation function

N hidden layers (ReLU)
Value Mean

performance
1 39.3% (SD 6.6)
2 37.6% (SD 7.9)
3 34.2% (SD 6.8)

Table 6.8: The average performance of 10
runs of 100 games for 3 different amounts
of hidden layers using a sigmoid activation
function

Tables 6.3 and 6.7 show that the highest per-
formance achieved by varying the learning rate

is comparable between an MLP using sigmoid
and an MLP using ReLU when using 1 hidden
layer. However, Table 6.6 shows that adding
more hidden layers further improves the per-
formance for a sigmoid-MLP, which is not the
case with ReLU (Table 6.8). We therefore chose
the settings found in Table 6.9 for training an
optimized network. The bottom row shows the
average performance of 10 MLPs trained with
these settings, each having played 100 games.
This time, the full dataset of 100 games was
used. Furthermore, the stop criteron was set to
a minimal error difference of 0.0001.

Parameter Value
Learning rate 0.01
Temperature 4
N hidden nodes 200
N hidden layers 2
Activation function Sigmoid

Performance 49.6%

Table 6.9: The optimized parameter set-
tings. The bottom rows shows the average
performance of 10 runs of 100 games

Note that since all parameters (except for the
one being tested) were kept at a constant value,
some trials were repeated. For example, the tri-
als leading to the results as shown in the fourth
row in Table 6.3 and the second row in Table
6.4 use the same parameter settings, since the
default learning rate value for sigmoids is 0.01
and the default temperature is 1. One would
expect the average performance for both trials
to be approximately the same. How a network
performs, however, is dependent on how it is
initialized and trained. Since each network is
re-initialized 10 times for each trial, there are
quite some fluctuations in the performance even
when the parameters are kept at constant val-
ues. This difference is reflected by the standard
deviations as shown in Tables 6.3 to 6.7.

6.3 Model Selection for RL

During the Reinforcement Learning experi-
ments, the ACLA algorithm was applied to a
few different Actor networks. The selected net-
works were selected based on their performance
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on the 10 × 100 games. For example, the first
model we considered is an Actor trained with
the combination of the best parameters for the
sigmoid activation function, found as a result
of the parameter optimization. We consider two
networks using the sigmoid activation functions
and two networks using the ReLU activation
function. The last model differs from the other
4: this model is only trained for 2 epochs, mean-
ing that the model is quite bad, leaving much
room for improvement. Besides model 5, the
two sigmoid models were trained until a mini-
mum change in error between epochs of 0.00005
was reached, while the two ReLU models had a
minimum change threshold of 0.0007. The rea-
son that the ReLU models’ threshold is higher
than the Sigmoid models’, is that preliminary
results have shown that the error did not de-
crease further after extended amounts of train-
ing for MLPs using ReLU.

Table 6.10 displays and details all 5 models
that we considered and tried to improve dur-
ing the Reinforcement Learning trials together
with their performance and its standard error.

Model N hidden N hidden learning Activation Performance
layers nodes rate function

1 2 200 0.01 sigmoid 56.6% (SE: 1.08)
2 1 50 0.001 sigmoid 29.9% (SE: 1.08)
3 1 100 0.005 ReLU 48.6% (SE: 2.02)
4 2 50 0.001 ReLU 50.6% (SE: 1.46 )
5 1 80 0.01 sigmoid 12.6% (SE: 0.90 )

Table 6.10: Details of the 5 models that were
used in the Reinforcement Learning trials

6.4 Reinforcement Learning Ex-
periments

This section explains how the reinforcement tri-
als were set up. Each of the 5 models is trained
during one ACLA session. This learning ses-
sion lasts 1000 games, where the temperature
of the Boltzmann distribution starts at a value
of 8. This temperature is reduced every 200
games, such that the last 200 games are run at
the lowest temperature of 4. Preliminary results
showed that most networks performed best at
this temperature. The ACLA algorithm is ap-
plied at every step, reinforcing positive actions.
The learning rate of the Actor is set to 0.0001,

so that ACLA can subtly push the Actor into
the right direction. The Critic also uses a learn-
ing rate of 0.0001. The Critic is already trained
well on the demonstration data as explained in
Section 4, so the low learning rate allows the
Critic to increase its approximation of the value
function without the Critic being changed too
much. Setting the learning rate too high causes
the network to become unstable. In this event,
state values can become very negative, espe-
cially when the Actor encounters a lot of neg-
ative rewards. The overall trend of the perfor-
mance over time during the 1000 games session
for model 1 and 5 can be seen in Figure 6.1
and Figure 6.2. These are displayed because
they show the most interesting trends out of
the 5 models. The performance is defined as
gamesWon
gamesPlayed .

Figure 6.1: Performance of model 1 trained
with ACLA over 1000 games

Figure 6.2: Performance of model 5 trained
with ACLA over 1000 games

After the 1000-games training sessions, the
performance of the Actors trained with ACLA
were compared to the performance of the Ac-
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tors before training with ACLA. For each of the
5 models, both Actors were tested in 10 × 100
games, both with a fixed temperature of 4. The
results of the trained Actor performances are
shown in Table 6.11. The final results are shown
in Figure 6.3, where the performance of each
model’s Actor versus the model’s Actor trained
with ACLA are shown.

Statistic Model 1 Model 2 Model 3 Model 4 Model 5
MEAN 45.8% 31.2% 44.5% 20.8% 26.4%
SE 1.45 1.46 0.76 1.34 1.59

Table 6.11: Results of the models trained
with ACLA on 10 runs

6.5 Analysis of Results

Looking at Figure 6.3, the differences in per-
formance can be seen for each model, together
with standard error bars which have a length
of 4 × SE. From this figure, we see that the
error bars of models 2 and 3 overlap. This
might indicate that these differences in perfor-
mances are not significant. The other 3 models
do not have overlapping error bars, suggesting
significance. In order to test for significance, we
use a nonparametric Wilcoxon rank sum test,
since the performance scores are not normally
distributed. The five Wilcoxon rank sum tests
yield the results in Table 6.12. The Wilcoxon
rank sum test confirms a significant effect of
ACLA on models 1 (W = 41.5, p < 0.05), 4
(W = 100, p < 0.05) and 5 (W = 0, p < 0.05),
but not on models 2 (W = 41.5, p > 0.05) and 3
(W = 27, p > 0.05). These results seem to con-
firm the observations made earlier with respect
to the error bars in Figure 6.3.

Model W-value p-value
1 98.5 0.0003
2 41.5 0.54
3 27 0.087
4 100 0.0001
5 0 0.0001

Table 6.12: Results of the Wilcoxon rank
sum test on the 5 models

7 Discussion

Using parameter optimization, we were able
to find an MLP that is able to obtain a rea-
sonable baseline performance by using learning
from demonstration. The best model, model 1,
was able to achieve an average performance of
56.6%. In addition to this, several MLPs were
trained with different parameter settings, re-
sulting in a total of 5 neural net models. The
performance of these 5 models vary, so that we
can see how robustly the Actor-Critic method is
able to improve differently performing agents.

While the performance achieved by an Actor
that is only trained offline is not too bad, ACLA
does not usually seem to be able to improve
this any further. Even worse, the Actor’s per-
formance can start to decline over time. Only a
model that is barely pre-trained on demonstra-
tion data can obtain a significant improvement.
We therefore conclude that a combination of
neural nets and Actor-Critic is in most cases
not able to achieve good gameplay performance
in Donkey Kong.

How generalizable the trained agent is has
yet to be established, as almost no research into
this has been conducted in this thesis. However,
one aspect of the generalizability has been ex-
plored, pointing out a flaw in the preparation
of the demonstration data. During this demon-
stration phase, the location of the powerups
is fixed. This causes the neural network to
wrongly associate the specific Mario-tracking
grid block with the need to jump to collect
the powerup. This mistake is exposed when
the powerups in question are temporarily re-
moved: the trained Actor will jump in the
specific Mario-tracking grid block that would
normally give him the powerup, even if the
powerup is not there. The probable solution
to this problem is to randomize the location of
the powerups every game, such that the neural
network actually associates jumping when the
powerup shows up close enough in the vision
grid instead of associating the jump with the
Mario-tracking grid blocks.

The results in section 6.2 show that lower
learning rate values lead to bad performance
for both the sigmoid and ReLU activation func-
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Figure 6.3: Performances of Actor trained without ACLA vs. Actor trained with ACLA
for each model. The error bars show two standard errors (SE) above and below the mean

tions. This is partly due to the stop crite-
rion used: once the difference in the error is
below a certain threshold, the training stops.
This threshold was kept equal for all parame-
ter experiments. The lower the learning rate,
the smaller the error change between epochs.
This poses a problem for lower learning rate
values: on one hand, the MLP needs to train
longer to reduce the error to a reasonable level,
while on the other hand the training is more
likely to stop prematurely due to the error dif-
ference between two epochs being too low. The
low performances achieved by these MLPs may
therefore not be entirely representative of the
performance they would have had if they were
to have more time to train.

7.1 Future research

Future research could result in better play-
ing performance than those obtained in this
research. Actor-Critic methods turned out to
not be able to improve the performance of the
agent. Therefore, other reinforcement learning
algorithms and techniques could be explored,
such as Q-learning (Watkins, 1989), advantage
learning (Baird, 1995) or Monte Carlo methods.

A recent method has been introduced called the
Hybrid Reward Architecture, which has been
applied to Ms. Pac-Man to achieve a very good
performance (Van Seijen et al., 2017). Apply-
ing this method to Donkey Kong could yield
better results. Another option is inplementing
a discrete version, where every entity in the en-
vironment moves in a grid instead of with con-
tinuous pixels, could also lead to better results,
but such an environment would not be as diffi-
cult or interesting to research. Additionally, the
generalizability of the agent to other levels can
be explored in future research.
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A Division of Workload

• Developing the game environment: done in
equal parts by Jelle and Paul

• Programming the MLP: Jelle

• Implementing Learning from Demonstra-
tion:

– Storing game state information: Paul
and Jelle

– Reading game state information and
converting them to MLP inputs and
targets: Paul

• Implementing reinforcement learning
methods (AC, ACLA): Paul

• Implementing the vision grids: Paul

• Creating learning from demonstration
dataset: done in equal parts by Jelle and
Paul

• MLP optimization and experiments: Jelle

• RL experiments: Paul

• Thesis:

– Section 2, 3, 4, 6-6.2 written by Jelle

– Abstract and section 1, 5, 6.3-6.5
written by Paul

– Section 7 co-written by Jelle and Paul

– Proofreading and correcting done in
equal parts by Jelle and Paul

• Both authors met often to work together.
During these sessions, they helped each
other debug their code and solve problems
that arose during the project.
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