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Abstract: Nowadays, image classification becomes increasingly indispensable in our modern day lives,
with a wide range of applications such as in identifying handwritten postal codes or object recognition
in computer vision. This thesis describes a method to improve image classification with patch-based
multilayer perceptrons (MLP). A weight is applied to each patch that is produced by a second MLP.
This MLP is also trained on patches, but it will learn the weight, which is the probability the MLP
awarded to the correct class. For the test images the patches are extracted and fed into both MLPs
which results in output vectors for the first, and weights for the second MLP. The weights are then
applied to the output vectors which are then combined, using sum voting, to produce a classification.
The purpose of weighting the patches is to improve the accuracy of the system. To test this, the MNIST
(handwritten digits) and the CIFAR-10 (small images) datasets are used. We compare the accuracy rates
with and without weighting as well as the certainties for these classifications. This study demonstrates
that even with a simple MLP with one hidden layer, error rates lower than 1% on the MNIST dataset can
be achieved. However it does not surpass the state-of-the-art techniques. The results also display that
the new algorithm does not improve the image classification accuracy of the system on both datasets.
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1 Introduction

Image classification is an important part of com-
puter vision. From robots recognizing the objects
around them [1] to classification of skin diseases
[2], analyzing the contents of visual information
has significant applications. In this thesis we are
going to explore how neural networks, more specif-
ically multilayer perceptrons (MLP), can perform
this task. They belong to the group of supervised
learners, which are trained by comparing the out-
put of the system to a desired output. Testing will
be done with the benchmark datasets MNIST [3]
and CIFAR-10 [4]. They consist of small images of
hand-written digits and a set of animals and vehi-
cles, respectively.

The approach for the classification system for
this project is based on the idea of splitting the im-
age into smaller patches by sliding a window over
the image with a fixed size and stride. This idea
was first mentioned in Haralicks et al. paper from
1973 [5]. Later patch-based image classification was
used in bag of word (or bag of features) models [6]
[7] [8], where each patch would represent a word in
the bag in for instance text interpretation.

Each of these patches will be weighted with a
weight which is produced by a second MLP (weight
MLP). This MLP is trained to have an internal rep-
resentation that links a patch to a weight, which
is dependent on the certainty with which the first
MLP (class probability MLP) would classify this
patch correctly. A second MLP has to be used be-
cause the labels of the test images are not known
to the MLP and therefore it cannot determine this
certainty.

Similar to the idea discussed in this paper are
so called boosting algorithms, where weak learners
are forced to focus on the hard examples in the
dataset, the examples with high error, giving them
weights [9]. Schapire shows that the algorithm pro-
posed increases performance while avoiding over-
fitting. The approach here is similar but uses only
one cycle instead of multiple ones as proposed by
Schapire.

The goal of this thesis is to research if the
approach of giving each patch a weight depending
on the certainty of similar patches in the train set
can reduce the misclassifications of the network.
For this reason the question we will answer is: can
weighting patches improve the image classification



rate of a patch-based MLP?

2 System Design

In this section we will explain the basis for the sys-
tem and its parts starting with the MLP followed
by the general procedure and its parts.

2.1 Multilayer Perceptrons

An MLP is a simple feed-forward neural network
that uses forward and backward propagation of in-
formation to learn internal representations [10]. In
the forward pass the inputs are passed through the
network to get a corresponding output. This output
is then used in the backward propagation algorithm
to adjust the weights and reduce the error. The in-
ternal representations are stored implicitly in the
weights between the nodes therefore it is impossi-
ble to see how the systems links the input to the
output.

2.1.1 Forward pass
The forward pass through the MLP calculates the

activation of the nodes based on the weights be-
tween them, the activation of previous nodes, and
the activation function. The activation a of a node
i is calculated as follows:

a; = ijif(aj) + b; (2.1)

Here wj; is the weight from node j to 7, f is the
activation function and b; is the bias for node 3.
The sum is over all nodes j connected to node i. The
bias is implemented by adding an extra node to the
layer. The more commonly used sigmoid function
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where z is the sum of weighted inputs, is used in
the weight MLP (see sec. 2.4).
R(z) = maz(0, z) (2.3)
Equation 2.3 shows the simpler rectifier which is
used in the class MLP. Nodes using this activa-
tion function are called rectified linear units (short

ReLU). It was first introduced by Hahnloser et al.
[11]. This function is not as heavy computationally
but gives similar results. We chose to use a differ-
ent activation function for the class MLP, because
it has far more connections from the hidden to the
output layer. Instead of one output unit for the
weight MLP the class probability MLP has an out-
put size of the number of classes in the datasets.

A graphical illustration of both the sigmoid and the
ReLU activation function is shown in Figure 2.1.
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Figure 2.1: ReLU activation function and
sigmoid function

2.1.2 Backward propagation

In this part of the process the error the system
made in the forward pass is used to adjust the
weights in the MLP with the help of the gener-
alized delta rule [10].
To adjust the weights of the connections between
the nodes the error e is propagated back through
the network. The following equations (2.4 - 2.8) are
adapted from Rumelhart’s et al. paper [10]. In our
system the error is defined as follows:
ej(n) = dj(n) —y;(n) (2.4)
where e;(n) is the error in output node j given by
the n-th data example, d;(n) is the desired value,
and y;(n) is the actual output of the output node.
The purpose of the delta function is to reduce the
summed square error

e(n) = % Z e?(n) (2.5)

of the system. The generalized delta rule has two
parts which can be written in three equations. First
we have the equation which gives us the change of
the weights:

Aw;;(n) = nd;(n)y:(n) (2.6)



where w;;(n) is the weight between node ¢ and node
j, and 7 is the learning rate. The second part con-
sists of two equations which guard how the error
is passed back to the weight to be changed. If the
weight is connected to an output unit the error sig-
nal is simply

d;(n) = ej(n)
for the input to hidden layer weights the error signal

i) = (3 dulmpuw ) L)
k
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where Jas(n) 18 the derivative of the non-linear acti-
vation function with respect to the activation. This
includes the bias as seen in Equation 2.1. In this
manner the 0;(n) values for deeper layers can be
calculated as well, by recursivly calculating the ¢-

values.
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Figure 2.2: Architecture of the system doing clas-
sification
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2.2 General Procedure

There are two different passes through the system.
First we train the MLP then we test it by feeding
it the test images. This is the actual classification
step. For the training process there are random
patches extracted from the train image set. These
are used to train the weights between the layers
of the MLP. They are translated into feature

vectors using the HOG feature descriptor, which
is explained in detail in section 2.5. The feature
vector is then normalized and fed to the MLP.
After the class probability MLP is trained, the
weight MLP is trained. It has one output node
whose desired output is the class probability
awarded to the correct class passing through the
first MLP.

For the classification or test phase, each image is
split into patches and all these patches are fed into
the classification MLP and the weighting MLP.
From the first MLP we get an output vector with
a length according to the amount of classes in the
dataset, in this case it is 10 for both datasets.
These are multiplied by the value the weight MLP
produces. The final output vectors for all patches
of the image are combined with sum voting. Now
the class with the highest value is determined and
the images can be classified (see Figure 2.2).

The general framework was provided by Groefsema
[7] and Maas [8] which scans in the images, pro-
vides the training and test structure and presents
the results in a readable form.

2.3 Patches

In our approach we split the image in smaller
patches. The reason behind this is that it reduces
the size of the feature vectors of an image which
in turn allows for a reduction in size of the MLP.
This also allows us to have a voting system and
therefore we do not rely on one output of the MLP
alone. When weighting the patches the system re-
duces the influence of patches with high error. See
the next section for further information.

In comparison to using the whole image as the in-
put at once another advantage of patches is that
local features can be captured, which are represen-
tative of the class. For example the 'x’-like pattern
in the middle of a handwritten '8’ does not occur
in any other digit, which could make it an identifier
for this class [12].

The patches for test images are created by a slid-
ing window of a fixed size and with a fixed stride
over the image. In our experiments we used a stride
which is smaller than the size of the patch. This
leads to overlap between the patches and gives the
advantage of not missing patterns in the image like
the previously mentioned 'x’-shaped pattern in the



digit ’8’. It could happen that the patch covers only
half of the pattern which would lead to a different
representation in the feature vector reducing the
representativeness of the patch for the class.

2.4 Weighting patches

Weighting the patches is supposed to give the sys-
tem an advantage over a normal neural network
by giving the patches, that do not contain relevant
information for the classification process, less in-
fluence on the final result. An example of this are
patches that just contain parts of the sky. It is un-
known if the picture contains an airplane or a bird
from this patch and therefore the patch gets a low
weight, but a patch containing the wing of this air-
plane, for example, has a high representativeness
for the airplane so it will get a higher weight.

The weights of the patches are based on the class
probability of the correct class similar patches had
during the training phase of the class probability
MLP. The certainties for the right class of an im-
age are stored and then given to the second neural
network where they are used as the desired outputs
to train this MLP.

2.5 Local feature descriptor

The feature descriptor we use here is the Histogram
of Oriented Gradients (HOG). Here the patch is
divided into smaller cells where for each pixel the
horizontal and vertical gradient is computed. These
are then combined to get the direction and magni-
tude of the gradient. Now the gradients for a cell
are put into a histogram of fixed size (number of
bins) according to the orientation of the gradient.
There is a histogram for each cell so if there are
9 cells in a patch and there are 16 bins for each
histogram the feature vector dimension is 154 [8]
[13]. The values are then standardized with the L2,
or Euclidean normalization (||z||s = /D>, z7) to
finalize the process of feature extraction.

2.6 Dropout

Dropout is a regularization method for neural net-
works. This procedure ensures that the neurons do
not become over specialized on very specific fea-
tures, but on the contrary are adaptive and can

build a useful representation. This is done by turn-
ing nodes, and their connections, temporarily off.
This happens in the training process and essentially
means that a lot of different networks are trained
with very few examples each. The nodes have a 50%
chance of being turned off.

Srivastavas et al. [14] shows that dropout reduces
error on the same datasets we are using here,
MNIST and CIFAR-10.

We chose to only use dropout with the class MLP
since it has more connections and therefore more
weights.

2.7 Classification through neural
network with weighting

To classify a new image the system has not seen
before, the images are split into patches and run
through the classification neural network as well as
the weight neural network. The outputs of the first
neural network are then weighted by the output of
the second one. All of the resulting outputs are put
together in a single classification vector with sum
voting. The index of the largest value of this vector
determines the classification of the image.

3 Experimental setup

3.1 Datasets

We used two datasets for this research, MNIST and
CIFAR-10 which are described in the next two sec-
tions. Some examples of the datasets are shown in
Figure 3.1.

3.1.1 MNIST

This dataset contains hand-written digits (0-9) in
black and white. There are 60.000 train and 10.000
test images. For this dataset it is easier to do clas-
sification because the images of the same class are
more alike than in CIFAR-10. The size of the im-
ages is 28x28 pixels. It is a modified version of the
NIST database [3].

3.1.2 CIFAR-10

CIFAR-10 is a benchmark dataset for image classi-
fication containing 50.000 colored train and 10.000
test images, which are all labeled. There are 10
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Figure 3.1: Example images for both datasets

classes ranging from vehicles to animals. The im-
ages contain these objects in different contexts, ori-
entations and lighting. The size of each is 32x32
pixels [4].

3.2 Experiment design

The experiment is composed of a 10-fold Monte
Carlo cross validation. For the MNIST dataset the
images are re-scaled to 40x40 pixels using cubic
interpolation. Patches have a size of 34x34 pixels
and the HOG feature descriptor is set up to use
16 bins with a cell size of 4. We use no padding,
which means that the effective size of the patch is
32x32. This leads to an input vector of size 1024
and we employ a total of 900.000 random patches
for the training process. The training processes for
both MLPs are 50 epochs long. The class proba-
bility MLP has 500 hidden units, while the weight
MLP uses 300. The learning rate for the first MLP
is 0.001 and for the second 0.02. The training for the
second MLP is done on the validation set to learn
a better function that generalizes over the dataset.
If it would be trained on the training data that has
already been learned by the first MLP the weights
will be higher and more uniform since the errors on
these are lower since the system has learned these
already.

The parameters of the MLPs for the CIFAR-10
dataset are 36x36 pixels for the images also using
the cubic interpolation and 26x26 pixels for the

patches. The HOG descriptor is using 9 bins and
the cell size is 3x3 pixels with no padding used.
This leads to an input feature vector of size 576.
The MLP has 1500 units in the hidden layer. The
learning rate is 0.01 and in 30 epochs the class MLP
learns its weights using 950.000 random patches.
For the weighting MLP the parameters are 500 hid-
den units and a learning rate of 0.02. The input
units are the same as for the class MLP since they
are using the same parameters for the feature de-
scriptor.

3.3 Measurements

Since both datasets are completely labeled we are
measuring the accuracy of the single MLP and the
weighted MLP by comparing the predicted label of
the image to the actual label on the test set. This
gives us an error rate. Time could also be measured
but is secondary to the accuracy of the system.
We are also measuring the average certainty of the
MLPs by looking at the output vectors and of the
patches. The average certainty is defined as the sum
of the values that are at the index of the right class
of the final vote vector divided by the number of im-
ages. Since the outputs are converted into probabil-
ities for each class we can see how certain the neural
network was making its decisions on the class of the
patch.



Weighting MNIST CIFAR-10
mean | SD mean | SD

no 0.628 | 0.032 | 26.13 | 0.14

yes 0.64 0.055 | 26.26 | 0.15

Table 4.1: Error rates (in %) with their cor-
responding standard deviations for the MINIST
and CIFAR-10 datasets

4 Results

In this section we will present the results from 10-
fold Monte Carlo cross validation for the following
scenarios: testing with and without weighting for
the MNIST and the CIFAR-10 datasets. The im-
portant measures of performance are the error rates
from the testing phase. Secondary we are looking
at the corresponding certainties with which the im-
ages were classified.

4.1 MNIST

The results of our 10-fold Monte Carlo cross-
validation show that with a mean of 0.628% the
system not using weighted patches has a lower error
rate than the system that uses weighting where the
score is 0.64% on average as shown in Table 4.1. But
even though the mean and median of the system
without weighting are higher, the lowest error rate,
0.55% (obtained on a single test set), was produced
by the MLP using weighted patches as seen in Fig-
ure 4.1(a). Furthermore Figure 4.1(a) shows that
the range of the values of the error rates is inflated
in both directions. We performed an unpaired two-
tailed Student’s t-test which showed that the differ-
ence in results were not significant (t-value = -0.59,
p-value = 0.56). This could lead to the conclusion
that weighting the patches is not a method to im-
prove the prediction rate of a MLP.

Figure 4.2(a) and Figure 4.1(b) show that the cer-
tainties of the system using weights for the patches
are higher than without the weights across the
range of the error rates. The exceptions are the two
values on the far end of the spectrum. Since these
two have certainties so much lower than the rest of
the experiments with weights they can be consid-
ered outliers. They will not be excluded from the
results but it should be mentioned that they exist.

4.2 CIFAR-10

The results for the CIFAR-10 dataset show that
weighting the patches did not perform as well as
not doing so. In Table 4.1 you can see that the dif-
ference between using weights and not using them
is 0.128%. Even though this difference is not sig-
nificant with a unpaired two-tailed Student’s t-test
with a t-value of 1.99 and a p-value of 0.06 we can
see in Figure 4.1(c) that the error rates are higher
and the certainties are lower when using weighted
patches (Figure 4.2(b) and Figure 4.1(d)).

5 Conclusion

The results we got for our experiments on the
MNIST dataset (0.628% and 0.64% error rate) are
fairly comparable to state-of-the-art results for this
dataset with a neural network. The best 2-layered
network is from Simard et al. paper from 2003 [15]
with an error rate of 0.7%, the best feedforward
neural network is from Ciresan et al. (2010) [16].
It has a 6-layer architecture and produces an error
of 0.35%. The overall best performance has been
obtained with a convolutional multilayered neural
net using droput [17] with an error rate of 0.21%.

The architectures for the last two papers are far
more complex than the one from the paper from
Simard which has an architecture closest to the one
we were using in this paper.

For the CIFAR-10 dataset the results obtained with
or without weighted patches are not comparable to
the state-of-the-art results. The best results of a
similar architecture were realized by Sato et al. [18]
with an MLP using augmented data. They achieved
an error rate of 14.06%. This is still not the golden
standard which was accomplished by Graham in
2014 [19] with an error rate of just 3.47% with a
technique called ’fractional max-pooling’.

The difference in certainties for the MNIST
dataset, being 0.967 (without weighted patches:
0.943), and the CIFAR-10 dataset, being 0.348
(0.4863), indicates that the CIFAR-10 is a more
complex dataset. This is also shown in the error
rates. But the certainty shows that the system it-
self has difficulties differentiating between classes,
S0 it is not just classifying more images wrong but
also it is not as sure about the decisions.

In conclusion we can say that using weighted
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Figure 4.1: Error rates in % and average certainties with and without weighting for both datasets

patches does not increase the classification rate of
the MLP.

6 Discussion

In this thesis we proposed an idea to improve the
accuracy of a MLP, which uses patches, by giving
them a weight. The results showed that there was
no improvement. A particularity for the MNIST
dataset while doing experiments for parameter fine
tuning was that with a learning rate slightly higher
than we used in the final experiments the weights in
the first MLLP would explode to the point that they
were overflowing the double variables. This caused
the outputs to turn out N/A values.

With more time we might be able to find better
parameters for the weight MLP to improve the re-
sults especially for the CIFAR-10 dataset.

More ideas to improve on the MLP image classifi-
cation system could be for example to only allow
patches that have a high certainty for the classifi-
cation to take part in the voting for the final classi-
fication. This would eliminate the patches with low
weights completely and could increase the perfor-
mance of the system. Another possibility is to use
more regularization methods similar to dropout.
There is a promising method, called 'dropconnect’
[20] [17], which will set weights to be zero and there-

fore dropping a connection between nodes in the
training process but the node can potentially still
be activated. That is the difference to ’dropout’.
Another method worth exploring is called 'momen-
tum’ [10] It could potentially increase the learning
speed of the MLP since at the moment it takes
around seven days to complete the training of the
MLPs for the CIFAR-10 dataset. Here the weight
change of the previous epoch also influences the
current weight change. Essentially it means that
the weight change goes into a similar direction as
it was in the epoch before.

As shown in the paper of Sato et al. [18] and Gra-
ham [19] data augmentation can lead to lower error
rates. This could be a possibility to improve the
MLP we are using in this paper. A slight change
in the architecture could yield a similar effect like
adding more layers [16] or changing the network
type from a feed forward MLP to a convolutional
neural net. Since the system as it is of now takes a
long time to run using GPUs is a good idea.

To finalize this thesis, it can be said that there is
still some research to be done on this topic since
there are so many ways that it could still be im-
proved.
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