
The optimal length scale

for the Smagorinsky

model

Master's thesis

November 2016

Student: R. B. Christoffers

Primary supervisor: Prof. R. W. C. P. Verstappen

Secondary supervisor: Prof. E. C. Wit

Abstract

The simulation of turbulence is a computationally expensive task. That is why models are used
to reduce the resolution of the computation, without losing too much accuracy. One of these
models is the Smagorinsky model, which simulates the interaction between the large scales and
the small scales that are lost by the reduced resolution. The Smagorinsky model contains the
eddy viscosity, which is given by νt = (CS∆)2‖S‖. The value ∆ is equal to the mesh width on an
uniform computational grid, but it is not clear what this value should be on a nonuniform grid.
In this research di�erent values for ∆ are tested on di�erent nonuniform grids. On each grid is
homogeneous isotropic turbulence simulated, for which the initial �eld is derived by a variation
of the method in [3]. This variant seems to hold only for a speci�c set of nonuniform grids. The
results of the simulations show that a large value for ∆ results in an excess of energy at �xed
wavenumbers in the spectrum. That is why ∆ = min dx dy dz is found to be the best value for
∆ in this research.

Contents

1 Introduction 3

2 General theory on computational �uid dynamics 4

2.1 The Navier-Stokes equations . 4
2.2 Large-Eddy Simulation . 4
2.3 The Smagorinksy-Lilly model . 5
2.4 Homogeneous and isotropic turbulence . 6
2.5 The energy spectrum . 6
2.6 The scales in the energy spectrum . 8

2.6.1 The integral scales . 8
2.6.2 The inertial scales . 8
2.6.3 The dissipative scales . 10

3 Constructing the initial velocity �eld 11

3.1 The initial velocity �eld on a uniformly spaced grid 11
3.1.1 Deriving the modi�ed wavenumber . 11
3.1.2 Constructing the direction of the Fourier terms 13
3.1.3 The amplitude of the Fourier modes . 14
3.1.4 Completing the velocity �eld . 15

3.2 The initial pressure �eld . 15
3.3 Problems for nonuniform grids . 16
3.4 Computing the initial �eld on a staggered grid 18

3.4.1 Using the modi�ed wavenumber on a staggered grid 18
3.4.2 Notes on other possible methods . 19

4 Research 20

4.1 The research . 20
4.2 The �ltered energy spectrum . 21
4.3 Choices of length scales . 22
4.4 The Reynolds number . 24
4.5 Finding the correct Smagorinsky constant . 24
4.6 Program speci�c choices . 25

5 Results 27

5.1 Results on the uniform domain . 27
5.1.1 The �ne solutions . 27
5.1.2 The optimal solution . 30

1

5.2 Results on the nonuniform domain . 33
5.2.1 Case 1: changing one length . 34
5.2.2 Case 2: changing two lengths . 37
5.2.3 Case 3: changing one length between the minimum and maximum of the

all the lengths of the domain . 40
5.2.4 Combined results . 43

6 Conclusion 45

6.1 Conclusion . 45
6.2 Discussion . 45

6.2.1 Choice of constants . 45
6.2.2 Accuracy . 46
6.2.3 The choice of LES �lter . 46

A Implementation of the initial energy spectrum. 48

A.1 Fitting the CBC data . 48
A.2 Algorithm for the implementation of the spectrum 49
A.3 Algorithm for the LES . 49

B Derivation of a velocity �eld on a nonuniform grid 51

C Source code 54

D All results from the uniform domain with a regular grid 64

2

1 | Introduction

An important aspect in the �eld of computational �uid dynamics is turbulence simulation. The
problem with turbulence simulation is that the big di�erence between the length scales which
produce turbulence and the scales of the turbulence itself. This means that even for simple
problems high resolution grids are necessary to get accurate results. Models are derived to lower
the resolution of the used grid and to decrease the computation time, while still keeping accurate
results.

The Smagorinsky model is a well-known model which is used for the simulation of turbulence.
It was derived by Joseph Smagorinsky in 1963 and was the �rst large-eddy simulation model.
Since then, multiple di�erent models have been derived from the it, like the dynamic Smagorinsky
model. But despite the age of the model and the use in other models, not everything is known
about it. The model simulates the eddy viscosity with,

νt = (CS∆)2‖S‖

The model and its components are explained later in this research. The main subject of this
research is the length scale ∆. This length scale is equal to the mesh width on a uniform grid
but is not clear for a nonuniform grid. A common choice is the diameter of the grid cell, but
this has not been tested thoroughly. Therefore, alternatives of ∆ are tested in this research on
a collection of di�erent nonuniform grids. For the testing of these grids initial velocity �elds
are necessary, for which a method is known for uniform grids. This method is extended in this
research to a set of nonuniform grids and also investigated for general nonuniform grids.

There are better models than the Smagorinsky model for engineering purposes, so direct
results may not seem relevant. However, since the Smagorinsky model is the basis for some other
models it is still important to investigate the e�ects of the used grid on the di�erent length scales
of a model. This research also derives and investigates a method for the creation of an initial
�eld for a nonuniform grid, which could be used for other models and simulations.

This research is divided into �ve parts. The �rst part explains the general terms in �uid
dynamics, like the theory of the Smagorinsky model and the Kolmogorov�s hypothesis. The
second part is about the construction of an initial �eld for uniform and nonuniform grids. The
third part describes the experiments and the choices made. The fourth part contains the results
of the experiments. And the �nal part consists of the conclusions and the discussion of the
results.

3

2 | General theory on computational
�uid dynamics

2.1 The Navier-Stokes equations

The Navier-Stokes equations are used to describe the behavior of �uids. They are of great impor-
tance in the �eld of �uid dynamics. The equations consist of two parts, the momentum equation
and the mass equation. Both equations are derived from their corresponding conservation laws.
In this research we assume that the �uid is incompressible. Then the momentum equation reads

ut + (u · ∇)u− ν∆u +∇p = f in Ω× (0, T) (2.1)

Where u is the three dimensional velocity �eld, p is the pressure, ν is the kinematic viscosity
and f represents all external forces acting on the �uid. For an incompressible �uid the law of
conservation of mass is described by

∇ · u = 0 in Ω× (0, T) (2.2)

Equation (2.2) states that a solution of the incompressible Navier-Stokes equation is diver-
gence free; a divergence free �eld is also called solenoidal. See [1] for a derivation of Equations
(2.1) and (2.2).

There are just a few cases for which an exact solution to the Navier-Stokes equations is
known, that is why �uid �ow problems are approximated by numerical simulations. Numerical
simulations of the Navier-Stokes equations with the discretised form of Equations (2.1) and (2.2)
are referred to as direct numerical simulations or DNS.

The problem with these kind of simulations is that these simulations have a relative high
computational cost. The main reason for the high computational cost is that a solution to a
�uid computation problem consists of di�erent scales of �ows. The smaller scale �ows are called
small eddies and although they are small they still have a signi�cant e�ect on the larger scales.
The smallest eddies captured on a grid in a DNS are determined by the mesh width. This means
that a �ne grid is required for a su�cient solution to a DNS. There are multiple alternatives to
DNS, like RANS, LES or DES, which is a hybrid of the previous two.

2.2 Large-Eddy Simulation

It was stated in Section 2.1 that simulating all the details of �uid �ow requires a �ne grid,
which results in high computation costs. To avoid this high cost it is necessary to use a coarser
grid and simulate the e�ect of the smaller scales. This is the main idea of the class of models

4

called the Large-Eddy Simulations (LES), these models are based on the larger scales. The
theory of all the large-eddy simulation models is based on applying a �lter on the Navier-Stokes
equation. The most important properties of these �lters is that they commute with space and
time di�erentiation and that they are local in the spatial and frequency domain. Examples of
�lters as well as other properties and occurring problem are discussed in [1].

The velocity u of a �ow can be split into the part u which corresponds to the velocity of the
larger scales and u′ which corresponds to that of the smaller scales. Applying a suitable �lter G
to this velocity �eld results in

G(u) = G(u + u′) = G(u) +G(u′) = u

Where u is the residual of the �lter. The theory of large-eddy simulations uses this �lter on
the Navier-Stokes Equation (2.1) to separate the largest scales from the smallest scales. This
leads to

ut + (u · ∇)u +∇ · (uu− uu)− ν∆u +∇p = f

∇ · u = 0
(2.3)

The additional terms which are not in Equation (2.1) appear because the �lter does not
commute with the nonlinearity of the convective term. This means that the �ltered Navier-
Stokes equation still contains terms which depend on the non-�ltered velocity �eld. These terms
are known as the subgrid-scale stresses and are modeled by using only the terms of the �ltered
velocity �eld. These stresses consist of three parts

L = uu− uu C = uu′ R = u′u′

Called the Leonard stress, cross stress and Reyolds stress respectively. The sum of these
stresses is denoted by τ and large-eddy Simulations try to model this term. This makes the
concerning equation as follows,

vt + (v · ∇)v +−ν∆v +∇p = f−∇ · τ
∇ · v = 0

(2.4)

where u is replaced by v because the equation is no longer solved for the exact solution u

but for the modeled situation v.

2.3 The Smagorinksy-Lilly model

There is a wide range of di�erent large-eddy simulation models. For this research the Smagorinksy-
Lilly model is chosen because it is one of the �rst LES models and one of the most well known.
Besides that, it is also one of the simpler models and the basis for a few more complex meth-
ods. The model is an eddy-viscosity model, which is a set of models based on the Boussinesq
hypothesis.

Boussinesq hypothesis: small-scale turbulent stress should be linearly proportional to
the mean (large scale) strain rates. [5]

The large scale strain rate tensor is a three dimensional matrix given by Si,j = 1
2 (∂ui∂xj

+
∂uj
∂xi

).

The hypothesis is derived from the molecular degree of freedom in kinetic theory of gases, where
there is a linear relation between the momentum �uxes and the strain rate of the large scales.
It is shown in [10] that the hypothesis in general does not hold for turbulence modeling. This is

5

one reason why better LES models than the Smagorinksy-Lilly model exist, but it can still be
accurate for some cases. From the Boussinesq hypothesis it follows that the small-scale turbulent
stress is given by

τSGSi,j = −2νSGSSi,j

Where νSGS is a scalar called the eddy viscosity. Smagorinksy derived in [11] by studying
�uid �ows in the atmosphere that the eddy viscosity for his model is given by

νSGS =
√

2(CS∆)2|S|

Where ∆ is �lter-width of the applied Large Eddy Simulation, which is directly proportional
to the grid spacing of an uniform grid. The value CS is the Smagorinksy constant which in early
work was set to be somewhere between 0.1 and 0.2. Later studies and research re�ned this value
and now it is usually set to 0.17. However other studies use 0.2 as can be seen in [8].

2.4 Homogeneous and isotropic turbulence

The experiments in this research are performed on homogeneous isotropic turbulence �elds. This
section explains the de�nition of both the terms homogeneous and isotropic and elaborates the
mathematical consequences. The �rst part is the homogeneousness of the turbulent �ow and
therefore it is useful to use statistics of a velocity �eld. A �ow is homogeneous turbulent if the
statistics of each velocity component are independent of their position in space and time. An
example of a �uid �ow with inhomogeneous turbulence is a wall �ow since the �ow close to the
wall is more likely to have a turbulence character than the �ow far from the wall, where it will
behave more like a laminar �ow. This is also described as statistically invariant under translation
of the homogeneous turbulence �eld. Closely related to the de�nition of homogeneous turbulence
is the isotropy property. An isotropic �ow is a �ow without any preference of direction. This is
statistically equivalent to an uniform probability distribution for the direction at each location in
the velocity �eld. The amplitude of the components in the velocity �eld is less of importance as
long as there is not a skew relation between the directions of the velocity vector, as demonstrated
in Figure 2.1. In this �gure it is can be seen that the directions northeast, southeast, southwest
and northwest are all uniformly represented, but the �eld is not isotropic. This is because the
amplitude of the northeast pointing vectors is dominant over the other directions, which results
in a preferred direction for the general �ow. If a �ow has no preference for any direction than
the �ow is called statistically invariant under rotation and re�ection. This explains why the �ow
in Figure 2.1 is non-isotropic since the behavior of the general �ow changes after any translation
or re�ection operation on the �eld.

2.5 The energy spectrum

Energy conservation and energy �ow are important concepts in �uid dynamics. The general
formula for the kinetic energy E(x) of an unit of mass in a turbulent �ow is given by

E(x) =
1

2
〈u · u〉 (2.5)

It is more practical to look at the average of the energy in a certain number of experiments
instead of the energy in the �ow in one experiment due to the chaotic behavior of turbulence.
The average is denoted in this research by angular brackets. The formula given in Equation (2.5)

6

Figure 2.1: An example of an non-isotropic �eld

is used for the kinetic energy in the spatial domain. In a turbulent �ow it is more suitable to
look at the kinetic energy in the frequency domain since the energy of a single particle is of less
signi�cance than the energy at a certain length scale. There are multiple methods to implement
kinetic energy in the frequency domain. The �rst method is to take the the Fourier transform
of the kinetic energy over the whole domain. The discretised Fourier transform of a function f
and its inverse is given by

f̂ =
∑
x∈Ω

f(x)e−i2πx·k f =
1

|Ω|
∑
k∈Ω̂

f̂(k)ei2πx·k

The Fourier transform is the operation which sends the nodes x from the spatial domain Ω to
the nodes k in the frequency domain Ω̂. The value |Ω| is a scalar for the volume of the domain

Ω. The term f̂ is also known as a Fourier mode of f . As a result of these equations the Fourier
transform of the energy equation is

Ê(k) =
∑
x∈Ω

〈u(x) · u(x)〉e−i2πx·k

While this formula does give the contribution of each wavenumber to the Fourier transform
of the kinetic energy formula, it does not give any direct information about the kinetic energy of
the spatial domain. Instead a similar formula to Equation (2.5) is used but in this case for the
frequency domain, which reads

E(k) = 〈û(k) · û∗(k)〉 (2.6)

where the star denotes the complex conjugate of û, since the frequency domain allows complex
numbers. The formula is similar to Equation (2.5) but is for the frequency domain instead of the
spatial domain, which means that the contribution to the energy of frequency space is given for
each wavenumber. The relation between Equation (2.5) and (2.6) becomes clear when the total
energies over both respected spaces are computed. The following holds when the total energy is
computed over a discrete spatial or frequency domain,

∑
x∈Ω

E(x) =
1

2|Ω|
〈
∑
x∈Ω

u ·
∑
k∈Ω̂

ûei2πx·k〉 =
1

2|Ω|
〈
∑
k∈Ω̂

û ·
∑
x∈Ω

uei2πx·k〉 =
1

2|Ω|2
∑
k∈Ω̂

E(k)

7

where the second equality holds because the summation in the frequency domain com-
mutes with the summation in the spatial domain and since u is real it follows that û∗(k) =∑

x∈Ω ue
i2πx·k. The relation between the total energies of both spaces follows from the discrete

version of the Parseval's theorem, which states that∑
x∈Ω

|f(x)|2 =
1

|Ω|
∑
k∈Ω

|f̂(k)|2

There are some generalizations to the energy formula in Equation (2.6) for homogeneous
isotropic turbulence �ows. These kind of �ows do not have a preference for direction, as was
noted in Section 2.4. Therefore, when we look at the average over multiple experiments the
general behavior is expected to be identical in every direction in the frequency space. This
means that the energy spectrum can be expressed in a one dimensional variable k instead of the
three dimensional k = [k1 k2 k3]. This is done by integrating over a thin shell of a sphere with
radius k = ‖k‖2 . This makes the total energy for all wavenumbers with vector length k

E(k) =
2πk2

N

∑
k<‖k‖2<k+δ

û(k) · û(k)∗ (2.7)

where δ is the thickness of the shell and N is the number of elements inside the shell.

2.6 The scales in the energy spectrum

This section provides an explanation of the energy spectrum of a homogeneous isotropic turbu-
lence �eld. The energy spectrum can be divided into three parts, which will all be described in
the following subsections:

1. The integral scales

2. The inertial scales

3. The dissipation scales

2.6.1 The integral scales

The integral scales are the domain of the largest scales in the spectrum. The three domains do not
have exact boundaries, but commonly the length scales in the integral scale are approximately
from the order O(1) to O(10−1) of the length of the domain. This means that the scales on
this domain are de�ned by the type of problem. Therefore, this range could consist of scales
larger than a kilometer, like in an atmospheric turbulence problem, or could range from a few
centimeters for a small pipe �ow problem. Generally the scales in integral range have the largest
peaks in the energy spectrum. This is because the energy injection to the system is also of
the order of these scales and that is why it referred to as the energy-containing range in some
literature [7]. The eddies in the integral scales are usually highly anisotropic in contrary to the
smaller scales.

2.6.2 The inertial scales

In 1941, Andrey Kolmogorov stated a few hypotheses for the behavior of turbulent �ows. The
�rst one stated here holds for the wave lengths in the inertial range and smaller.

8

Kolmogorov's hypothesis of local isotropy: at su�ciently high Reynolds number, the
small-scale turbulent motions are statistically isotropic. [7]

The de�nition of isotropy is explained in Section 2.4. Note that the theorem does not imply
that the whole �ow is isotropic but only the small-scale turbulence motions. This is also known
as local isotropy. This could seem to contradict popular statements like from Richardson [9],
which stated that the big scales in�uence their smaller scales and the smaller scales in�uence
their smaller scales. From this it may be assumed that since the larger scales may be anisotropic
that the e�ect on their smaller scales can only be in the direction of the larger scales and so
the smaller scales could also be anisotropic. Kolmogorov suggested in his hypothesis that the
direction biases is lost in the interaction between the larger scales and their smaller scales due
to the chaotic behavior of the scale-reduction process. The behavior of the small-scale motions
is in�uenced by the energy transferred from the higher scales or also called the dissipation rate
ε. Furthermore, the viscosity ν of any �uid could also e�ect the smaller scales. Kolmogorov
stated that small-scale motions are only in�uenced by these two variable in his �rst similarity
hypothesis.

Kolmogorov's �rst similarity hypothesis: In every turbulent �ow at su�ciently high
Reynolds number, the statistics of the small-scale motions have a universal form that is
uniquely determined by ν and ε. [7]

This means that the small-scale motions are no longer directly in�uenced by the boundary
condition and energy injection from outside the system. From the variables ε and ν it is possible
to derive the Kolmogorov length scale η ≡ (ν3/ε)1/4. This derivation follows from dimensional
analyses and this scale lays in the dissipation range, which will be explained in the Section
2.6.3. Again from dimensional analyses it follows that the dissipation rate is proportional to the
length l0 and velocity u0 of the largest motions or ε ∼ u3

0/l0. Consequently, the ratio between
the smallest-scale motions with length of the Kolmogorov length scale and largest motions is
proportional to the Reynolds number with η/l0 ∼ Re3/4. This means that for a �ow with a high
Reynolds number the largest length scales l0 is much larger than the smallest scales η. From this
can be concluded that there is a range with length l with l0 � l� η where the length scales are
small enough for the �rst similarity hypothesis of Kolmogorov to hold, but the local Reynolds
number l u(l)/ν is still big enough to make the e�ect of the viscosity �ow negligible small. This
results in Kolmogorov's second similarity hypothesis.

Kolmogorov's second similarity hypothesis: In every turbulent �ow at su�cient high
Reynolds number, the statistics of the motions of scale l in the range l0 � l � η have a
universal form that is uniquely determined by ε independent of ν. [7]

With this theorem it is possible to determine a formula for the energy spectrum in the
frequency space. This follows once again from dimension analyses. From Equation (2.7) it can
be seen that the dimensions of the total energy contained in all Fourier modes with length k is
given by [E(k)] = [u]2[l], the dimension of the rate of energy dissipation is given by [ε] = [u]3/[l]
and the dimension of the wavelength is given by [k] = 1/[l]. This results in the general form of
the energy spectrum in the inertial domain

E(k) = Cε2/3k−5/3

where C is a universal constant, which is found by experiments to be approximately 1.5.

9

Integral
scales

Inertial
range

Dissipation
range

k

E
(k
)

Figure 2.2: The energy spectrum

2.6.3 The dissipative scales

The motions in the dissipation range have the smallest length scales. They no longer satisfy
Kolmogorov's second similarity hypothesis but do still satisfy the �rst. Just like the Kolmogorov
length scale there exists the Kolmogorov velocity scale, which is given by uη = (εν)1/4. From
this and the Kolmogorov length scale can be seen that the Reynolds number corresponding to
the smallest scale in this range equals one, since Re = lu/ν = ηuη/ν = (ν3/ε)1/4(εν)1/4/ν = 1.
Therefore, the viscosity has a dominant e�ect in this range which results in the energy being
dissipated into heat. The general form of energy spectrum of a homogeneous isotropic �eld can
be seen in Figure 2.2 as seen in [4].

10

3 | Constructing the initial velocity
�eld

3.1 The initial velocity �eld on a uniformly spaced grid

The method presented for the construction of an initial velocity �eld was proposed in [3]. The
aim was to derive a random velocity �eld which was divergence free under its discretisation.
The energy spectrum must be adjustable without interfering with the isotropy or divergence
condition. This method was used in [3] to construct an initial �eld for a three-dimensional
turbulence simulation. The domain has periodic boundary conditions. The method to derive a
suitable initial �eld consists of four steps, which will be explained in the following sections.

1. We take the Fourier transform of the solenoidal property to construct the modi�ed wavenum-
ber.

2. We choose an arbitrary vector from the space orthogonal to the modi�ed wavenumber.

3. The corresponding energy spectrum is implemented.

4. The �eld is modi�ed without loss of the desired properties such that the �eld is real after
the inverse Fourier transformation.

3.1.1 Deriving the modi�ed wavenumber

The method in [3] starts with an unde�ned three-dimensional discrete velocity �eld u = [u v w]T

on a uniform grid with mesh width ∆. The grid has Nx, Ny and Nz points in the x,y and z
direction respectively. The velocity in each point u(x) can be represented by Fourier modes as
can be seen in Equation (3.1)

u(x) =
1

NxNyNz

∑
k∈Ω̂

û(k)ei2πk·x (3.1)

where Ω̂ is a multi-index set consisting of all the wavenumbers. Since the computational domain
is three-dimensional, the frequency space is also three-dimensional. It is not necessary to have
equidistant frequencies, but it is assumed it is for the ease of the derivation. The wavenumbers
k are scaled by the length of the computational domain, which is ∆iNi. The wavenumbers are
shifted to be almost symmetrical around 0, which is necessary to get a real solution in the spatial
domain. This makes the multi-index set of the wavenumbers

11

Ω̂ =
{

k = [k1 k2 k3]T
∣∣∣ −1

2∆i
≤ ki

∆iNi
≤ 1

2∆i
− 1

∆iNi
for ki ∈ Z

}
The Fourier modes of u are computed in a similar way by taking the sum over the nodes

instead of the frequencies.

û(k) =
∑
x∈Ω

u(x)e−i2πk·x (3.2)

The Fourier transform of the solenodial property in Equation (2.2) results in k · û(k) = 0.
This means that the Fourier transform of the velocity u will always be perpendicular to the
wavenumbers k in a continuous solenoidal �eld. However, since Equation (2.2) is approximated
by a discretisation, the relation di�ers. The derivatives can be discretised in di�erent ways, which
leads to di�erent relations between the wavenumbers and the Fourier transform of velocity �eld.
In the research in [3] a second order central discretisation is used as demonstrated in Equation
(3.3). This method will also be used for the further explanation of the construction of the initial
�eld. Higher and lower order discretisations are also possible as long as similar derivation are
possible for them.

∂u

∂x
' ui−2 − 8ui−1 + 8ui+1 − ui+2

12∆x
(3.3)

The Fourier transform of this discretisation results in

∂̂u

∂x
' ûi−2 − 8ûi−1 + 8ûi+1 − ûi+2

12∆x
(3.4)

Note that since the simulations in [3] are done on a uniform grid so ∆x is constant over
the whole computational domain and in every direction. Hence, the grid width commutes with
the Fourier transform. This property however does not hold on a non-uniform grid, which will
be studied later in this research. The bene�t of evaluating the discretisation in the frequency
space is that it is possible to express Fourier modes in terms of their neighbouring points. From
Equation (3.2) results

ûi+1(k) =
∑
x∈Ω

ui+1(x)e−i2πk·x

=
∑
x∈Ω

ui(x)e−i2π(k·x− k1
∆Nx

∆)

+
∑
x∈Γ1

ui(x)e−i2π(k·x− k1
∆Nx

∆) −
∑
x∈Γ2

ui(x)e−i2π(k·x− k1
∆Nx

∆)

(3.5)

where Γ1 is the set of nodes left from the computational domain Ω and Γ2 are the nodes on
the right side in the domain, see Figure 3.1. Since the boundary conditions are periodic it holds
that u(x0) = u(x0 + ∆[Nx 0 0]T) = u(xNx) for x0 ∈ Γ1 and xN ∈ Γ2. From this it can be seen
that any node in Γ1 corresponds uniquely to a node in Γ2, with the same y and z coordinate
and with the same velocity. The only di�erence between the summations over the sets Γ1 and
Γ2 could come from the x coordinate in the exponent. However, the following equation shows
that these two exponents are equal.

e−i2πk·xNx = e−i2π(k·x0+
k1

∆Nx
∆Nx) = e−i2π(k·x0)e−iπk1 = e−i2π(k·x0)

Consequently, Equation (3.5) can be simpli�ed to

12

Ω : the computational domain

Γ1 : the nodes outside the left boundary of Ω

Γ2 : the nodes on the right boundary of Ω

Figure 3.1: The domains Ω,Γ1 and Γ2

ûi+1(k) =
∑
x∈Ω

ui(x)e−i2π(k·x− k1
∆Nx

∆)

+
∑
x∈Γ1

ui(x)e−i2π(k·x− k1
∆Nx

∆) −
∑
x∈Γ2

ui(x)e−i2π(k·x− k1
∆Nx

∆)

=

(∑
x∈Ω

ui(x)e−i2πk·x
)
ei2πk1/Nx

= ûi(k)ei2πk1/Nx

(3.6)

Similar relations can be derived in directions of v and w and also between ûi(k) and ûi+2(k).
Using these relations on the earlier given Fourier transform of the discretised �rst order derivative
results in

ûi−2 − 8ûi−1 + 8ûi+1 − ûi+2

12∆x
= i

8 sin 2πk1

Nx
− sin 4πk1

Nx

6∆x
û(k) = K1û(k) (3.7)

where the element K1 is the �rst element of the modi�ed wavenumber. The other elements
follow from the discretisations of the derivatives of v and w. It can be concluded that in a
discrete velocity �eld the Fourier modes are orthogonal to the modi�ed wavenumber vector
K = [K1(k1)K2(k2)K3(k3)], which depends on the real wavenumber k = [k1, k2, k3].

3.1.2 Constructing the direction of the Fourier terms

The second step in the construction of a divergence free isotropic velocity �eld is to choose at
each wavenumber a vector orthogonal to the modi�ed modi�ed wavenumber, which was de�ned
in the previous section. The set of all vectors orthogonal to the modi�ed wavenumber vector
form a plane in the three-dimensional real frequency space. It is possible to derive all divergence
free vectors from the Fourier modes in span of the vectors in this plane and its complex variant.
Taking any such vector at random results in an isotropic velocity �eld if the �eld contains enough
nodes. An e�cient method to take a random Fourier mode is to solve the real and imaginary part
separately. These vectors are taken such that they have unit length because the amplitude will
not in�uence the orthogonality and by using this length could the real and complex components
be combined in the end. The functions in Equation (3.8) are used as a method to �nd a �xed
unit vector û(k) in the orthogonal real plane for each wavenumber k. The only exception is
k = 0 for which we get û(0) = 0.

13

K

û1

û2

θ1

Figure 3.2: Constructing an arbitrary orthogonal vector

û = 1√
2K2

1+K2
2+2K2K3+K2

3

K2 +K3

−K1

−K1



v̂ = 1√
2K2

2+K2
1+2K1K3+K2

3

 −K2

K1 +K3

−K2



ŵ = 1√
2K2

3+K2
1+2K1K2+K2

2

 −K3

−K3

K1 +K2


(3.8)

The obtained vector û1 is then rotated around the axis K with an arbitrary angle θ1. This
results in the vector û2 which represents the real part of the random unit vector. The same
method is then repeated with the same û1 but with a di�erent angle θ2 to get vector û3 which
represents the imaginary part. Both parts are combined to one vector with unit length by a third
random angle θ3 such that û = sin θ3û2 + i cos θ3û3. This method makes it possible to get the
set of Fourier modes with unit length which corresponds to a divergence free velocity �eld. By
changing the amplitude of the Fourier mode it is possible to extent this set to the whole space
of Fourier modes which lead to a divergence free velocity �eld.

3.1.3 The amplitude of the Fourier modes

In the previous section was found the whole set of all unitary Fourier modes which lead to
a divergence free velocity �eld. The Fourier modes can be altered such that their spectrum
corresponds to that of a homogeneous isotropic turbulence �ow. This is done by changing the
amplitude of the Fourier modes, which does not change their solenoidal property. The amplitudes
can be derived from the relation between the Fourier modes and the energy stated in Equation
(2.7). For this an energy spectrum is required, which is similar to Figure 2.2, to be relevant for a
homogeneous isotropic �ow. The limitation of the obtained relation is that it is one dimensional.
To �nd a three-dimensional �eld we can divide the energy spectrum in the maximum number of
intervals such that each interval contains at least one wavenumber corresponding to the discrete
frequency space. The following assumption is made in this research:

Assumption for the energy distribution: The energy in an interval in the spectrum
as de�ned above should be divided equally over all relevant wavenumbers corresponding to

14

this range to ensure that the �eld is homogeneous isotropic.

This assumption is clear for a grid with the same number of nodes in each direction, since
taking any other distribution of the energy will result in a dominant direction in the frequency
space, which will have an impact on the spatial domain. This assumption makes it possible to �x
the amplitude of the Fourier modes if an energy spectrum function is available. See Appendix
A for the choice of the energy spectrum function for this research. The aim is to derive a
homogeneous isotropic velocity �eld which is a velocity �eld with no preference for direction in
the spatial domain. This means that the frequency domain is homogeneous isotropic as well.
Equation (2.7) then reads for a homogeneous isotropic initial velocity �eld:

E(k) = 2πk2‖û(k)‖22
for any vector k in the frequency domain with length k. With this function it is possible to

derive the correct Fourier modes for each wavenumber such that the corresponding velocity �eld
is homogeneous isotropic and has the correct energy spectrum.

3.1.4 Completing the velocity �eld

The last step of the construction of the initial velocity �eld is to ensure that the velocity �eld will
be real. This can be achieved by computing halve the Fourier modes and derive the complete
Fourier space by using the complex conjugate with û(k) = −û∗(k). Any complex component
which could appear in Equation (3.1) at a wavenumber k is canceled out by the complex term of
the Fourier modes at wavenumber −k. The only modes in the frequency domain which do not
have a negative counter part are the modes with ki = −Ni/2 for any i. The contribution of these
modes to the total energy is small and reduces further for �ner grids. That is why these modes
are set to zero and they are not included in the second step of the method described above for
the construction of the initial �eld. Using Equation 3.1 will complete the construction of the real
homogeneous isotropic velocity which also has the desired spectrum.

3.2 The initial pressure �eld

Section 3.1 explained how the initial velocity �eld u can be constructed. Other variables like the
viscosity, density and external forces of the �uid are assumed to be known for the simulation.
The pressure is not known beforehand and has to be derived at every time iteration including
for the initial step. Deriving the pressure at any point in the initial velocity �eld can be done by
using the Navier-Stokes equations and the velocity �eld derived in the current time step. The
problem for the initial time step is that the Navier Stokes equation includes a time derivative as
can be seen in Equation (2.1). Since the discretisation of this time derivative requires at least
two complete velocity �elds and in the initial step only one is given it follows that the initial
pressure can not be derived the same way as the pressure at other iterations. This problem can
be solved by taking the divergence of Equation (2.1). Because the time derivative and divergence
operator commutes it follows through the solenoidal property that the time derivative vanishes.
For the Navier-Stokes equation without any model and external forces this results in

∆p = ∇ ·
(

∆u− ν(u · ∇)u

)
(3.9)

Solving this Poisson equation can be done by using the Fourier transform. Section 3.1 showed
that the Fourier transform of an exact derivative is equivalent to an inner product between the

15

wavenumber vector k in the frequency domain, while the Fourier transform of the discretised
derivative results in an inner product with a modi�ed wavenumber K(k). Since the Laplacian is
the same as a double derivative are there multiple methods for the approximation of the right-
hand side. The �rst method uses the exact representation of the derivatives of the Laplacian.
This works and is su�cient for an exact solution, but does not hold for the discrete solution. An
alternative method it to use the discretisation from Equation 3.3 twice to derive a second order
derivative discretisation. Using this method will give a discrete solution for the pressure �eld,
without any additional error [3]. The discretisation in a single direction is the following,

1

144∆2

(
pi−4 − 16pi−3 + 64pi−2 + 16pi−1 − 130pi + 16pi+1 + 64pi+2 − 16pi+3 − 16pi+3 + pi+4

)
By taking the Fourier transform of this discretisation and using Equation (3.6) follows,

1

72∆2

(
−65+16 cos 2π∆k1/Nx+64 cos 4π∆k1/Nx−16 cos 6π∆k1/Nx+cos 8π∆k1/Nx

)
p̂ = K ′p̂

where K ′ has similarities to the modi�ed wavenumber in Section 3.1. Since the right-hand
side of Equation (3.9) is known for the initial �eld from the method described in Section 3.1 it
follows that the Fourier modes of p can be computed and therefore the initial spatial pressure
�eld.

3.3 Problems for nonuniform grids

The method described in Section 3.1 was based on the discretised version of the solenoidal
property in Equation (2.2). For a uniform grid this property is global and so holds on the whole
domain. This explained why the grid width commutes with the Fourier transform in Equation
(3.4). For the nonuniform grid the discretized solenoidal property is di�erent between at least
two points in the domain. This means that the grid width in general no longer commutes with
the Fourier transform, which makes it harder to separate the velocity components from the
components which strictly depend on the wavenumber and mesh width, similarly to Equation
(3.4). To explain other problems for the nonuniform grid we look at a two dimensional problem
with a second order discretisation. The discretised solenoidal free velocity is then given by

u(ξi+1,j)− u(ξi−1,j)

ξi+1,j − ξi−1,j
+
v(ξi,j+1)− v(ξi,j−1)

ξi,j+1 − ξi,j−1
= 0 (3.10)

where ξ corresponds to any nonuniform grid. The aim is to create a homogeneous isotropic
velocity �eld so the spectrum needs to satisfy the properties stated in Section 2.5. That is why
the Fourier transform is needed to translate Equation (3.10) to the frequency domain. There
are some nonuniform grids for which the grid width does commutes with the Fourier inverse,
namely when ξi,j − ξi−1,j = ξi+2n,j − ξi−1+2n,j and ξi,j − ξi,j−1 = ξi,j+2n − ξi,j−1+2n holds for
n ∈ N and any node in the grid. The previous equalities contain more terms for higher order
discretisations and since these equalities hold for any node it follows that the only cases for which
the grid width term commutes with the Fourier transform are the cases when the grid is uniform.
In general it holds in the nonuniform Fourier transform that the terms for the grid and for the
velocity are hard to separate. This can be solved by taking the transform over a uniform grid x
with ξi,j = φ(xi,j), where φ is a transformation between the uniform and nonuniform grid. The
Fourier transform of Equation (3.10) over the uniform grid will become

16

0 = F
(

1
φ(xi+1,j)−φ(xi−1,j)

(
u(φ(xi+1,j))− u(φ(xi−1,j))

))
+ F

(
1

φ(xi,j+1)−φ(xi,j−1)

(
v(φ(xi,j+1))− v(φ(xi,j−1))

)) (3.11)

The bene�t of a Fourier transform over this uniform grid is that the convolution theorem
holds. The discrete convolution between two functions f and g in a two dimensional domain is
given by

(f ∗ g)[n,m] =

N∑
s=1

M∑
t=1

f [n− s,m− t]g[s, t]

The convolution operation also exists for other dimensions. The convolution theorem states
that F(f ∗ g) = F(f)F(g) and F(fg) = F(f) ∗ F(g). Applying the last statement on Equation
(3.11) separates the grid and velocity terms. If ξi,j already corresponded to a uniform grid then
one of the parts separated by the convolution theorem is independent of x, which means that its
Fourier transform equals the Kronecker Delta function times a constant. From this results the
earlier established relation K · û(k) = 0. The modi�ed wavenumber also needs to be derived in
the case that ξi,j corresponds to an nonuniform grid. This follows from the term containing the
velocity in Equation (3.11) which is split from the grid term by the convolution theorem. The
neighbouring principle derived in Equation (3.6) does in general not hold on a nonuniform grid
since the distance between ξi,j and its neighbours is not constant, but since the Fourier transform
was taken over xi,j it follows that F(u(ξ(xi+1,j)))(k) = F(u(ξ(xi,j)))(k)e2π∆k1 , where ∆ is the
distance between nodes in the uniform grid corresponding to x. From this we can rewrite (3.11)
as

F
(

1

φ(xi+1,j)− φ(xi−1,j)

)
∗ (sin 2π∆k1û

∗) + F
(

1

φ(xi,j+1)− φ(xi,j−1)

)
∗ (sin 2π∆k2v̂

∗) = 0

(3.12)
where û∗ and v̂∗ are the result of the Fourier transform of u and v taken on the uniform

grid. One of the problems for the nonuniform grid is that the relation between the spectrum
and the Fourier modes is not known. When û and û are obtained from the nonuniform Fourier
transform on the grid corresponding to ξi,j , then the relation stated in Equation (2.7) holds.
However, in general it does not hold that û = û∗ and v̂ = v̂∗ because û =

∑
ξ u(ξ)e−2πikξ/Lξ 6=∑

x
u(φ(x))e−2πikx/Lx = û∗. An additional problem is that the derivation on the uniform grid

contained an inner product between the velocity �eld and the modi�ed wavenumber, while for
the nonuniform grid it is necessary to derive the complete kernel of the sum of two convolution
operations. It is possible to �nd a solution, but it is signi�cantly harder to �nd the entire set
which is needed to pick an element at random to get the �nal �eld homogeneous isotropic. This
means that the method above is not suitable for a general nonuniform grid but could still be used
to derive one nonuniform grid for which the method does work. This is when the mapping φ is
φ(xi) = ∆ixi for any real ∆i. The nonuniform grid which follows from this operation consists
of equally shaped rectangles and is also called a regular grid. On a regular grid the convolution
in Equation (3.12) is simpli�ed to[

sin 2π∆k1

2∆1

sin 2π∆k2

2∆2

]
·
[
û
v̂

]
= 0

which is similar to the equation on the uniform grid. In Appendix B is an example of
derivation of an initial �eld on a nonuniform grid but which is too ine�cient for practical use.

17

ρ(xi,j,k)

ui,j,k

vi,j,k

vi,j+1,k

ui+1,j,k

Figure 3.3: Example of a cell in a staggered grid

3.4 Computing the initial �eld on a staggered grid

The method described in Section 3.1 is speci�c for a collocated grid, which means that the velocity
component u, v and w scalar variables, like the pressure, are all located on the intersections of the
grid lines. A problem which could arise from using a collocated grid is odd-even decoupling, which
is a discretisation error where the odd and even numbered elements act signi�cant di�erently
from each other. A solution to this problem is to use a staggered grid. A staggered grid divides
the domain in cells with at the center of each cell the scalar variables, like pressure and density,
and the velocity components each in the centers of their corresponding faces of the cell, as can
be seen in Figure 3.3. There are multiple ways to use the method explained in Section 3.1 to
construct an initial �eld for a staggered grid. Most of these methods use a variant of the modi�ed
wavenumber. This section describes one method which is similar to the method in Section 3.1
and preserves the same properties.

3.4.1 Using the modi�ed wavenumber on a staggered grid

The discretisation used in Equation (3.3) is chosen such that it was intuitive for the solenoidal
property to hold at the grid nodes of a collocated grid. Using the same discretisation on a
staggered grid gives the �rst order derivatives which are located at the faces of the cell where
they are derived, so the solenoidal property is de�ned as the sum over velocity components which
are not located at the same location. A better discretisation for the �rst order derivatives is one
which uses the direct faces of the cell and its neighbouring cells for a higher order discretisations.
This yields,

qi =
−ui+1 + 27ui − 27ui−1 + ui−2

24∆x
(3.13)

which is also a fourth order discretisation. With this discretisation ∂xu, ∂yv and ∂zw are all
located in the center of the cells in the staggered grid. The solenoidal property corresponds in
this case to the centers of each cell, which makes it possible to take the Fourier transform of the
sum of Equation (3.13) and the other corresponding derivatives. From this Fourier transform
does not directly follow a similar relation for û, v̂ and ŵ as in Equation (3.4), since those terms
are found by transforming over their corresponding face instead of the cell center. This can be
solved on a uniform grid by stating that∑

x∈Ω1

qie
−2iπk·x = eiπk1∆x

∑
x∈Ω2

qie
−2iπk·x (3.14)

18

where Ω1 is the set of all the nodes in the center of the cells and Ω2 the set of all points in
the center of the left face of each cell. The neighbouring principle of Equation (3.6) still holds
on a staggered grid. Using this equation with the previous statement for the solenoidal equation
gives the following de�nition for modi�ed wavenumber on a staggered grid.

Ki =

[
27 sin(πki∆xi)− sin(3πki∆xi)

12∆xi

]
Di�erent discretisation will also result in di�erent modi�ed wavenumbers. The fourth order

discretisation is chosen in this research for its accuracy and also for the similarities with the
research in [3]. Besides the change of the modi�ed wavenumber it is also necessary to take a
Fourier transform to the corresponding staggered grid. This can be done by �rst using the inverse
of the shift in Equation (3.14) and then apply the Fourier transform.

3.4.2 Notes on other possible methods

The method described above creates a velocity �eld with the same properties as the one in
Section 3.1. Other methods could be used to construct a velocity �eld, but may result in a loss
of one or more of these properties.

Halving the mesh width: It is possible to derive a staggered velocity �eld if a grid is given
with double the amount of grid points in each direction. A subset of the solution given by
the velocity �eld forms a isotropic �eld and by using a suitable modi�ed wavenumber it is
possible to make the �eld solenoidal. The downside to this method is that the corresponding
spectrum is no longer certain and doubling the number of nodes increases the computation
time.

Shifting a collocated grid: Another option is to change the modi�ed wavenumber such that
the solenoidal property lies between two grid nodes on a otherwise collocated grid. Using
a shift transformation on the computed velocity �eld could result in a velocity �eld for a
staggered grid. The problem is that this method only works for lower order discretisations
or could result in a complex modi�ed wavenumber.

19

4 | Research

4.1 The research

The aim of this research is to �nd the best length scale for the Smagorinsky model on di�erent
kind of grids. The di�erent length scales are chosen based on the known length scale for the uni-
form case. An exact solution is needed to test the results of the LES done with the Smagorinsky
model. This exact solution is approximated by a �ne simulation without any model, which is
also referred to as a direct numerical simulation or DNS. As stated in Section 3.3, it is hard to
compute a velocity �eld for an arbitrary anisotropic grid, so we test the di�erent length scales
on regular grids. The tests on the regular grids can be divided in two main categories:

1. Constant domain: The simulations in this set are done on a uniform domain with a varying
number of grid points. The lengths of the domain for all simulations are lx = ly = lz = 1.
The number of grid points for the �ne simulation is Nx = Ny = Nz = 256 and the uniform
LES computations are done with Nx = Ny = Nz = 64. Nonuniform grids are created by
dividing the number of grid nodes by two or four. The number of nodes has to be a power
of 2 to ensure that the fast Fourier transform works. The bene�t to the simulations in
this set is that every LES on any grid approximates the �ne simulation on the grid with
Nx = Ny = Nz = 256. The disadvantage is that the grid can only be coarsened a few times
without getting a too high numerical error.

2. Constant number of nodes: The other set of tests are done with a varying domain. The
uniform computations in this set are the same as in the other set with Nx = Ny = Nz = 256
for the �ne simulation, Nx = Ny = Nz = 64 for the LES and a uniform domain with lx =
ly = lz = 1. The other simulations keep the same number of nodes for the �ne simulation
and LES and vary in lengths of the domain. This set of tests can be categorized in three
cases and all of them have ly = 1. The �rst case only changes lx with lx = {1, 2, ..., 10}
and has lz = ly, the second case also changes lz with the same rate as lx and the last
case has lx = 10 and lz varies the same as lx did in the other cases. The bene�t to the
simulations in this set are that more simulations are possible compared to the number of
simulations in the other set because there is no restriction on the length of the domain.
The disadvantage is that the simulations on di�erent domains do not correspond to each
other. The simulations with the constant domain and di�erent choices of grid all simulated
the same �ow, while the �ows in this set have di�erent length scales which lead to di�erent
characteristics.

The initial spectrum for all simulations are as described in Appendix A.

20

4.2 The �ltered energy spectrum

The initial �eld of a large-eddy simulations di�ers from the initial �eld of the �ne simulation. If
the method for the initial �eld of the �ne solution is also used for the initial �eld of the large-eddy
simulation then the resulting spectrum has less energy at the highest obtainable wavenumbers
than the �ne solution has at the same wavenumbers. The velocity �eld of a LES u is the result
of �ltering a velocity �eld u with a �lter G such that the e�ect of the higher wavenumbers is
negated, while the lower wavenumbers are preserved. The choice of this �lter a�ects the �ltered
energy spectrum and the relation with it to the non �ltered spectrum. An usual choice for a
�lter is the following variant of a three-dimensional Gaussian �lter

G(x) =

(
3

√
γ

π

1

∆A

)3

exp

(
− γx2

∆2
A

)
Where γ is a constant which is often set to 6 and ∆A is the �lter length scale. Filters are applied
by computing the convolution between the velocity �eld and the �lter. From the convolution
theorem it then follows that for the Fourier transform of the �ltered velocity �eld is

F(u) = F(G ∗ u) = F(G) · F(u) = exp

(
− ∆2

A

4γ
k2

)
) · û

From this relation between the �ltered and un�ltered velocity �eld and Equation 2.6 results
the �ltered energy spectrum E(k) is

E(k) = exp

(
− (k1∆A,1)2 + (k2∆A,2)2 + (k3∆A,3)2

2γ

)
E(k)

With this de�nition for the �ltered energy spectrum it is possible to construct the amplitude
of the �ltered velocities with a similar relation as in Equation 2.7. The bene�t to the Gaussian
�lter is that the �ltering process is revertible. The function G(x) and its Fourier transform Ĝ(k)
tend to go to zero for large positive or negative values for x and k. However, they never reach
zero so a cut-o� is necessary for numerical implementation. This method uses an additional step
in the post processing to translate E tot E. In addition to that may the Gaussian �lter need
di�erent values for γ for regular grids with di�erent lengths.

For this research not a Gaussian �lter is used but the sharp cut-o� spectral �lter. This �lter
gives an identical spectrum for the lower wavenumbers until the cut-o� length k after which the
energy is zero for all wavenumbers. The bene�t to this �lter is that it is has local support in the
frequency domain where it has the same spectrum as the �ne simulation. The only parameters of
the sharp cut-o� �lter are the longest wavenumbers in each direction. The downside to this �lter
is that the homogeneous isotropic turbulence property might be in�uenced. This follows from the
fact that some wavenumbers are only present in some directions, for example the wavenumbers
corresponding to the longest diagonal. These wavenumbers get energy distributed by the method
for the construction of the initial �eld, while other wavenumbers with the same length do not get
any energy. This means that the overall behavior of the �ow might be dominant in the direction
of the diagonals. Another disadvantage to this �lter is that it is not local in the spatial domain.

All the energy spectra discussed in this section are represented in Figure 4.1. The �ltered
spectrum is given for E(k) and not E(k).

21

k

E
(k
)

Fine spectrum
Coarse spectrum
Cut-off spectrum
Filtered spectrum

Figure 4.1: Di�erent spectra for the LES

4.3 Choices of length scales

In Section 2.3 it was stated that the Smagorinksy model has the variable ∆ which depends on
the dimensions of the grid cells. For a uniform grid this variable is equal to the length of a grid
cell. In this research di�erent functions for ∆ are tested for di�erent values of dx, dy and dy.
All of these functions should satisfy the following conditions. First, the function preserves value
when all the variables are the same. This follows from the uniform case for which it is known
that dx = dy = dz = ∆. The second condition is that the function is invariant under exchange,
i.e. changing the order of the variables dx,dy and dz does not a�ect ∆. This property needs
to hold because the �ow is isotropic, so rotation of the computational domain cannot have any
in�uence on ∆. The last condition is that the function for ∆ has to be homogeneous of the �rst
order. This means that if dx, dy and dz are scaled by the same scaler than ∆ also scales by the
value. The following six functions satisfy these conditions and are tested in this research.

Minimum

The Smagorinksy model is an eddy-viscosity model which simulates the smaller scales in the
spectrum by adding additional dissipation to the coarse simulation. If the contribution from
the model is not enough the result will be a simulation where the energy is transported to the
higher wavenumbers at a larger rate than it could dissipate, which can be seen in the spectrum
as an accumulation of energy at the higher wavenumbers. Associated to this length scale is the
following function for ∆

∆min = min (dx, dy, dz)

This function will be the lower bound for the search space of functions tested in this research.
It is assumed that when the ratio between the dimensions of the cells varies signi�cantly the
value for ∆ will result in energy excess at the higher wavenumbers.

22

Maximum

The maximum function will be the upper bound to the search space, similar to the previous
function for the lower bound. The result of taking a function for ∆ which is too large will be
that the eddy-viscosity model will add too much dissipation. This can be seen in the spectrum
as a function which decays too fast in respect to the �ne simulation. The maximum function will
be the upper bound to the search space, similar to the previous function for the lower bound.
The result of taking a function for ∆ which is too large will be that the eddy-viscosity model
will add too much dissipation. This can be seen in the spectrum as a function which decays too
fast in respect to the �ne simulation.

∆max = max (dx, dy, dz)

Arithmetic mean

Commonly known as mean is a common choice for any kind of research in any �eld. The bene�t of
this and the following function over the previous two is that they depend on all three dimensions.
The variables dx, dy and dz have a linear relation in this function for ∆.

∆AM =
dx+ dy + dz

3

Geometric mean

The geometric mean is related to the volume of a grid cell. When the volume is enlarged by a
value then ∆ is enlarged by the cube root of that value.

∆GM = 3
√
dx dy dz

Harmonic mean

With the previous two means, the harmonic mean forms the three classical Pythagoras means.
It is commonly used when the ratios between values are of interest.

∆HM =
3

1
dx + 1

dy + 1
dz

Root mean square

The root mean square is also used for the reference velocity. Beside that it is also directly
proportional to the longest diagonal of the grid cell.

∆RMS =

√
dx2 + dy2 + dz2

3

All of these functions fall under the generalized mean function given byMp =

(
1
n

∑n
i=1 x

p
i

) 1
p

.

The minimum and maximum are given by p = −∞ and p = ∞ respectively and the geometric
mean follows when p → 0. All of these functions satisfy the mean inequality which states that
Mp ≤ Mq if and only if p ≤ q and the equality only holds when the means are taken over a
uniform set. It yields that that ∆Min ≤ ∆HM ≤ ∆GM ≤ ∆AM ≤ ∆RMS ≤ ∆max. From these
inequalities and the data a value for p can be derived if the optimal function for ∆ is in the
family of the generalized mean function.

23

4.4 The Reynolds number

The Reynolds number is the dimensionless characteristic of a �ow which indicates the e�ect of
the inertial and viscous forces. Di�erent �ows with a similar Reynolds number will have similar
characteristic. The Reynolds number can be computed by

Re =
UrefLref

ν
(4.1)

where Lref is the reference length scale, Uref is the reference velocity and ν the kinematic
viscosity. The kinematic viscosity depends on the kind of �uid, the temperature and its den-
sity. In this research the temperature �uctuation is negated and it is assumed that the �ow is
incompressible, which means that the kinematic viscosity is constant over the whole domain.
The kinematic viscosity is set to ν = 1.5 · 10−5, which is based on the settings in the research in
[12]. The reference length Lref depends on the kind of domain and simulation. For this research
Lref = 1, which corresponds to the lengths of the uniform domain. The simulations with varying
domain lengths use the same reference length to not lose the e�ect of the scales corresponding
to the smallest domain length by the force of the scales of the largest domain lengths.

A di�erent Reynolds number could be used for the simulations on the �ne grid and the grid
of the LES. This is because the reference velocity is di�erent. The reference velocity is equal to
the root mean square velocity.

Uref =

√∑
x∈Ω

u(x)2 + v(x)2 + w(x)2

3NxNyNz

From the earlier mentioned Parseval theorem it follows that the reference velocity is equal to
the area under the spectrum function. The LES are constructed such that they have the same
spectrum as the �ne solution for the lower wavenumbers, but is cut-o� in the frequency space.
The reference velocity of the �ne solution is at least higher than that of the LES. But it is decided
to use the same Reynolds number for the �ne simulation and for the LES. This is because the
missing part of the spectrum is modeled by the subgrid-scale model. The simulations are done
with Re = 10129.18133.

4.5 Finding the correct Smagorinsky constant

Section 2.3 stated that the Smagorinsky constant is theoretical derived to be around the CS =
0.17 for homogeneous isotropic turbulence. The simulations in this research aim to simulate
homogeneous isotropic turbulence, but since numerical errors and simulation errors could be
made it is decided to test di�erent values for CS . Another reason for a di�erent choice of the
Smagorinsky constant follows from the DNS data, which is used in this research as an exact
solution. The resolution for the �ne simulation in this research could be too low to be an exact
solution. Taking a suitable CS could change the LES to better �t the �ne simulation instead
of an real exact solution. This way the value for ∆ is not in�uenced by the error between the
�ne and a exact solution. The value for CS is derived from the uniform grid on the uniform
domain, because the optimal value for ∆ is known for LES on this grid. The domain used for
the investigation of CS is Ω = [0, 1]3, with Nx = Ny = Nz = 256 for the �ne simulation and
Nx = Ny = Nz = 64 for the LES. The results can be seen in Figure 4.2. Testing the Smagorinsky
model with CS = 0.5 resulted in a spectrum with too much dissipation in comparison to the
DNS data. For CS = 0 the LES is equivalent to a DNS with Nx = Ny = Nz = 16. When
the choice of optimal CS is based on the total error than the best optimum would be a CS

24

around CS = 0.16. The problem with this choice is that the error made is only compensated
at the higher wavenumbers by adding a small spike in the energy spectrum. The spectrum for
CS = 0.17 does have less energy than the DNS and a higher total error than some other choice
for CS . However, it represents the shape of the spectrum from Section 2.6.2 more accurate. This
is an characteristic property for homogeneous isotropic turbulence simulation so it is decided to
keep CS = 0.17 for the Smagorinsky constant.

10
1

10
2

10
3

10
−4

10
−3

k

E
(k
)

DNS
CS = 0.00
CS = 0.16
CS = 0.17
CS = 0.50

Figure 4.2: Results of simulations with di�erent values of Cs at t = 1.59432 · 10−1

4.6 Program speci�c choices

The program for the computation of the initial �eld on a regular grid is written speci�c for this
research. The source code can be found in Appendix C. Most algorithms used are described in
Section 3.1 except the fast Fourier inverse for a staggered grid. The relevant input parameters
of this code are the dimensions of the spatial domain, the number of grid cells in each direction
and a function for the shape of the spectrum. The spectrum used in this research is given
in Appendix A. The output of the program is a data �le with a three-dimensional solenoidal
velocity �eld with the desired spectrum. In addition, the pressure is computed from the velocity
�eld based on a fourth-order discretisation. The data �le is compatible with the in-house code
of the Computational Mechanics and Numerical Mathematics department of the University of
Groningen. This code o�ers di�erent methods to compute the evolution of a velocity �eld over
time. One of these methods is using the Smagorinksy model, but with ∆ �xed to the mesh
width dx. Multiple versions of this program were made, each with one of the functions for ∆ as
described in Section 4.3 and one without any model.

There are multiple parameters which are the same for all versions of the program. The �rst
one is the Reynolds number which is chosen as in Section 4.4. The next three are nt, dt and
nse, which are the number of time steps, the time step width and the number of steps after
which the velocity �eld is stored respectively. The choice of the Reynolds number and dt are
important for the stability of the simulation. After testing it was found that the simulation is

25

stable for dt = 1.59432 · 10−4. The number of time steps is nt = 4000. For the computation of
the spectrum it is necessary to compute the Fourier transform of the velocity �eld, which is often
a costly operation. That is why it was chosen to implement the Fast Fourier transform (FFT),
which uses a recursive algorithm. The in-house code is written in Fortran and since recursive
programs are not supported in older versions of Fortran, the velocity �eld is exported to Matlab.
Here the derivation of the spectrum was done as well as other post processing. The storage of
the velocity �eld is a time and memory consuming operation so the number of iterations after
which the velocity is stored is set to nse = 1000.

The simulation computes from the previous velocity �eld the next velocity �eld by using it
corresponding models at every iteration. From the new velocity the pressure is computed by
using a Poisson solver as described in Section 3.2. The tolerance for the Poisson solver is kept
at its original value at tol = 10−14. The next step is to check if the �eld is still divergence free,
which could have changed due to numerical precision and rounding errors. If this is not the
case then the code automatically tries to �x this or terminates if the error is too big. After it is
checked whether the results are still stable the process is repeated.

All the spatial discretisation used are of fourth-order and especially designed for staggered
grids. The boundary condition are all set to be periodic so u(x1, y, z) = u(xn, y, z), u(x, y1, z) =
u(xn, yn, z) and u(x, y, z1) = u(x, y, zn) for all x, y and z.

26

5 | Results

Di�erent kind of test cases were conducted for the investigation of the optimal value for ∆. The
�rst tests were done on an uniform domain but with a di�erent number of grid cells to create a
nonuniform grid.

5.1 Results on the uniform domain

5.1.1 The �ne solutions

The choice of Nx,Ny and Ny does not e�ect the kind of �uid which the simulations approximates,
but only the accuracy of the approximation. This means that taking a di�erent grid gives
approximately the same results as long as the grid is �ne enough. This is tested for the �ne grid
with Nx = Ny = Nz = 256. Dividing the number of cells in some direction by two or four gives
a spectrum which still simulates the same �uid. The resulting spectra from the simulations on
these grids can be seen in Figure 5.1. Similar results between Figures 5.1a and 5.1b can be seen,
especially for the lower wavenumbers. The di�erence between both �gures is noticeable in the
bump in the spectrum of Figure 5.1b where an accumulation of energy happens for the earliest
timesteps. The same happens at the same k in Figure 5.1d, where more energy is accumulated
and the e�ect is also present at the later timesteps. It seems that the origin of this phenomenon
lies at k = 128π, which is the largest wavenumber contained in the x direction. This is equivalent
to the smallest length captured in the most coarse direction. In general energy is transported
from the larger scales to the smaller scales where the energy dissipates. The smallest scales in
the x direction are too large to dissipate the energy fast enough and there are less options to
transport the energy to than for other wavenumbers with the same length but in the y and z
direction. The result is that the energy is accumulated until it dissipates or can be transported
to the higher wavenumbers. The energy in Figure 5.1d can not be dissipated fast enough in both
the x and z directions, which explains why the excess of is larger than in Figure 5.1b. The excess
of energy at a certain wavenumber also happens at k = 64π in the cases where Nx = 64.

In contrast to the energy excess at the largest wavenumber in a speci�c direction are the
smaller values for k. The smaller values for k lose their energy faster on a nonuniform grid
than on the uniform grid. This e�ect can also be seen in DNS with a low resolution, as can
be seen in Figure 4.2 for CS = 0. This e�ect follows from the coarsening of the grid, where
the lower wavenumbers produce extra dissipation and the higher wavenumbers need more. This
last e�ect can clearly be seen in Figure 5.1f where the energy increases over time at the higher
wavenumbers.

The energy from the highest wavenumbers on the uniform grid can not be captured on the
nonuniform grid because the largest wavenumber possible on a nonuniform grid scales with the

27

resolution with

√
Nx
2lx

2
+

Ny
2ly

2
+ Nz

2lz

2
. The energy lost due to the moving cut-o� boundary is

negligible for most simulations since most of the energy is contained at the lower wavenumbers.

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(a) Nx = Ny = Nz = 256

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(b) Nx = 128, Ny = Nz = 256

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(c) Nx = 64, Ny = Nz = 256

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(d) Nx = Nz = 128, Ny = 256

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(e) Nx = 64, Ny = 256, Nz = 128

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(f) Nx = Nz = 64, Ny = 256

Figure 5.1: The spectrum at di�erent times: initial spectrum (), t = 0.159432 (), t =
0.318864 (), t = 0.478296 (), t = 0.63772 () and t = 0.79716 ()

28

0 200 400 600 800 1000 1200
−1

−0.5

0

0.5

1

1.5

2

2.5

k

d
(E

(k
))

(a) Nx = 128, Ny = Nz = 256

0 200 400 600 800 1000 1200
−1

−0.5

0

0.5

1

1.5

2

2.5

k

d
(E

(k
))

(b) Nx = 64, Ny = Nz = 256

0 200 400 600 800 1000 1200
−1

−0.5

0

0.5

1

1.5

2

2.5

k

d
(E

(k
))

(c) Nx = Nz = 128, Ny = 256

0 200 400 600 800 1000 1200
−1

−0.5

0

0.5

1

1.5

2

2.5

k

d
(E

(k
))

(d) Nx = 64, Ny = 256, Nz = 128

0 200 400 600 800 1000 1200
−1

−0.5

0

0.5

1

1.5

2

2.5

k

d
(E

(k
))

(e) Nx = Nz = 64, Ny = 256

Figure 5.2: The numerical relative di�erences d of the spectra compared to the spectrum of the
uniform grid: t = 0.159432 (), t = 0.318864 (), t = 0.478296 (), t = 0.63772 () and
t = 0.79716 ()

29

5.1.2 The optimal solution

The best results of a simulation on a nonuniform grid for the uniform domain tested in this
research are from the grid with Nx = 32 and Ny = Nz = 64. This is because it has the highest
resolution of all the tested nonuniform grids. The results of the tested choices for ∆ on this grid
are given in Figure 5.7. From these results is it possible to de�ne an optimal function for ∆.
However, the choice of the optimal depends on multiple factors. The optimal ∆ could be the
value for which the total error over time and all k is the smallest, but since all the models are
known to to have have bad results for k around the cut-o� value could it be better to exclude
the end of the spectrum. The choice of the largest k included in the error computation could be
smaller if the wavenumbers in the spectrum beyond the energy excess are excluded. This excess
was discussed in Section 5.1.1. Besides the choice of k included in the error computation it is
also possible to exclude certain time results. Di�erent time results can be included or excluded
if an optimal ∆ is needed for shorter or longer simulation.

In Figure 5.8 the cumulative relative error for each k at each t is determined. From these
results can be concluded that the ∆ = max dx, dy, dz works the best for short simulations where
only the �rst few wavenumbers are important. In other situations this choice of ∆ is not optimal
and it is suggested to pick one of the other choices. The minimum seems one of the best choices
for k > 150, since it has the lowest total error at any time after this wavenumber. The problem
with the choice ∆ = min dx, dy, dz is that it has the largest error for the lowest wavenumbers.
The other four models for ∆ are very close to each other in the value for ∆ and their error. They
all perform better than ∆ = min dx, dy, dz for the smallest wavenumbers but worse at the higher
ones. The opposite holds for the comparison with ∆ = max dx, dy, dz.

In this research are all the errors given at t = 0.159432 and t = 0.79716 to show the e�ects of
the models at a instance after a short and long time. This error is taken over all wavenumbers
contained on the grid of the LES, which results in Tables 5.3 and 5.4. Besides that also the total
error of the energy dissipation rate is given, which is derived with

ε =
∑
k<k

k2
(
Efine(k)− ELES(k)

)
for the cut-o� length k. These results can be seen in Tables 5.5 and 5.6. Two things can be

concluded from these results. The �rst thing is that the minimum is the optimal choice for any
resolution, under the de�nition of the earlier stated error computation. This means that only
a upper-bound for ∆ is found, since ∆ = min dx, dy, dz was the lowest tested value. A lower
value for ∆ could also have the same e�ect as lowering the Smagorinsky constant CS . The result
of lowering the Smagorinsky is that the decrease of energy at the higher wavenumbers weakens,
which resulted in a less constant spectrum. That is why it is advised to not use a value for ∆
which is lower than the minimum, to preserve a smooth spectrum. The second conclusion from
the tables is that a higher resolution in one direction does not means that the simulation will
be better. The results for grids which are coarse in two directions and �ne in one are noticeably
better than the results with one additional resolution re�nement in one direction.

30

Grid resolution ([Nx, Ny, Nz])
Function for ∆ [64,64,64] [32,64,64] [16,64,64] [32,64,32] [16,64,32] [16,64,16]
Minimum 0.0077 0.0255 0.0314 0.0155 0.0197 0.0108
Harmonic mean 0.0077 0.0275 0.0353 0.0178 0.0281 0.0226
Geometric mean 0.0077 0.0280 0.0371 0.0187 0.0302 0.0260
Mean 0.0077 0.0286 0.0387 0.0194 0.0319 0.0281
RMS 0.0077 0.0291 0.0398 0.0199 0.0331 0.0292
Maximum 0.0077 0.0313 0.0415 0.0216 0.0362 0.0311

Figure 5.3: Errt=0.159432 of each model at each grid

Grid resolution ([Nx, Ny, Nz])
Function for ∆ [64,64,64] [32,64,64] [16,64,64] [32,64,32] [16,64,32] [16,64,16]
Minimum 0.0037 0.0048 0.0072 0.0029 0.0037 0.0040
Harmonic mean 0.0037 0.0049 0.0075 0.0032 0.0055 0.0047
Geometric mean 0.0037 0.0049 0.0076 0.0035 0.0059 0.0047
Mean 0.0037 0.0049 0.0078 0.0037 0.0063 0.0049
RMS 0.0037 0.0049 0.0081 0.0038 0.0065 0.0052
Maximum 0.0037 0.0055 0.0087 0.0044 0.0074 0.0059

Figure 5.4: Errt=0.79716 of each model at each grid

Grid resolution ([Nx, Ny, Nz])
Function for ∆ [64,64,64] [32,64,64] [16,64,64] [32,64,32] [16,64,32] [16,64,16]
Minimum 2.6580 7.5438 8.8746 3.8086 4.4471 2.2370
Harmonic mean 2.6580 8.1316 9.9896 4.3665 6.3525 4.6864
Geometric mean 2.6580 8.2803 10.4790 4.5749 6.8293 5.3822
Mean 2.6580 8.4387 10.9532 4.7429 7.2232 5.8207
RMS 2.6580 8.5885 11.2531 4.8690 7.4963 6.0492
Maximum 2.6580 9.2533 11.7262 5.3019 8.1856 6.4420

Figure 5.5: εt=0.159432 of each model at each grid

Grid resolution ([Nx, Ny, Nz])
Function for ∆ [64,64,64] [32,64,64] [16,64,64] [32,64,32] [16,64,32] [16,64,16]
Minimum 1.2933 1.4256 2.0299 0.7146 0.8375 0.8347
Harmonic mean 1.2933 1.4344 2.1137 0.7941 1.2535 0.9758
Geometric mean 1.2933 1.4353 2.1575 0.8488 1.3375 0.9804
Mean 1.2933 1.4380 2.2187 0.8970 1.4163 1.0100
RMS 1.2933 1.4438 2.2799 0.9353 1.4776 1.0739
Maximum 1.2933 1.6389 2.4505 1.0809 1.6654 1.2284

Figure 5.6: εt=0.79716 of each model at each grid

31

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(a) Minimum

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(b) Harmonic mean

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(c) Geometric mean

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(d) Mean

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(e) Root mean square

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(f) Maximum

Figure 5.7: The spectrum at di�erent times: initial spectrum (), t = 0.159432 (), t =
0.318864 (), t = 0.478296 (), t = 0.63772 () and t = 0.79716 ()

32

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

k

d
(E

(k
))

(a) t = 0.159432

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

k

d
(E

(k
))

(b) t = 0.318864

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

k

d
(E

(k
))

(c) t = 0.478296

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

k

d
(E

(k
))

(d) t = 0.63772

Figure 5.8: The total relative error of all models with a right bound k for the error computation
domain: Minimum (), Harmonic mean (), Geometric mean (), Mean (), Root mean
square () and Maximum ()

5.2 Results on the nonuniform domain

The following results are derived on nonuniform grids on nonuniform domains. The number of
grid cells for the �ne simulations are [Nx, Ny, Nz] = [256, 256, 256] and for the LES [64, 64, 64].
The varying of the length of the domain can be divided in three cases. The �rst case starts on
a uniform domain and increases the length of one side of the domain for each new simulation,
the second case starts on the same uniform domain but increases two sides by one for each new
simulation and the last case starts from the last domain from the �rst case and changes one side
by one for each simulation such that it will become the same domain as the last simulation in
the second case. All cases contain ten di�erent domains.

33

5.2.1 Case 1: changing one length

The simulations on the uniform domain all approximated the same �ow, which is not the case for
the nonuniform domain. One of the reasons why each �ow on each domain is di�erent is because
the reference length could vary. This means that each �ow has a di�erent Reynolds number to
have the same behavior, but this is not done for this research. This is because there are methods
to derive the best value for Lref , but the best value is found a posteriori and that is not possible
since the optimal value for ∆ is not known either.

Before the spectra of the LES are researched should the spectra of the �ne simulation be
understood. Two of the spectra of the �ne solution from case 1 can be seen in Figure 5.9.
There are two clear di�erences between the two �gures and the uniform case in Figure 5.1a.
These di�erences are that when one length of the domain increases the energy at the lower
wavenumbers decreases slower and the energy at the higher wavenumbers decreases faster. This
was not the case for the simulations on the uniform domain and could be because of two di�erent
reasons. The �rst is that for the large stretched domains there are more wavenumbers captured
by the grid in the range of the smaller wavenumbers. In these additional wavenumbers more
energy could be stored which explains the slower decrease. Similarly are there less wavenumbers
captured at the higher wavenumbers so the energy has to dissipate faster. The other reason
could be because of the use of the same Reynolds number on every domain, which results in a
�ow being simulated that has more dissipation than the �ow on the uniform domain.

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(a) lx = 5, and ly = lz = 1

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(b) lx = 10, and ly = lz = 1

Figure 5.9: The energy spectra of the �ne simulations where only one direction is changed. Initial
spectrum (), t = 0.159432 (), t = 0.318864 (), t = 0.478296 (), t = 0.63772 ()
and t = 0.79716 ()

In Tables 5.10 and 5.11 are all the LES results from the �rst case. Similarly to the conclusion
of the uniform grid can be seen that the minimum is the optimal choice for ∆. The overall trend
seems that the error increases when the size of the domain increases, which partially follows from
the larger discretisation error. There are some exceptions like the domain with lx = 8, where
the total error is signi�cantly less for all models in comparison to the domains with lx = 7 and
lx = 9. The spectrum of the optimal solution can be seen in Figure 5.14.

34

Length of lx
Function for ∆ 1 2 3 4 5
Minimum 0.0074 0.0079 0.0109 0.0102 0.0141
Harmonic mean 0.0074 0.0116 0.0158 0.0174 0.0200
Geometric mean 0.0074 0.0131 0.0192 0.0217 0.0256
Mean 0.0074 0.0142 0.0231 0.0291 0.0348
RMS 0.0074 0.0155 0.0272 0.0358 0.0424
Maximum 0.0074 0.0253 0.0410 0.0513 0.0578

Length of lx
Function for ∆ 6 7 8 9 10
Minimum 0.0127 0.0241 0.0156 0.0308 0.0263
Harmonic mean 0.0186 0.0276 0.0199 0.0332 0.0288
Geometric mean 0.0252 0.0330 0.0266 0.0376 0.0336
Mean 0.0367 0.0430 0.0400 0.0477 0.0454
RMS 0.0458 0.0511 0.0500 0.0556 0.0542
Maximum 0.0616 0.0648 0.0651 0.0677 0.0670

Figure 5.10: Errt=0.159432 of each model at each grid

Length of lx
Function for ∆ 1 2 3 4 5
Minimum 0.0035 0.0044 0.0046 0.0083 0.0112
Harmonic mean 0.0035 0.0049 0.0067 0.0114 0.0148
Geometric mean 0.0035 0.0054 0.0083 0.0129 0.0167
Mean 0.0035 0.0056 0.0085 0.0149 0.0190
RMS 0.0035 0.0060 0.0096 0.0154 0.0213
Maximum 0.0035 0.0090 0.0151 0.0223 0.0298

Length of lx
Function for ∆ 6 7 8 9 10
Minimum 0.0122 0.0152 0.0129 0.0181 0.0162
Harmonic mean 0.0157 0.0177 0.0157 0.0206 0.0188
Geometric mean 0.0185 0.0212 0.0196 0.0243 0.0240
Mean 0.0224 0.0262 0.0278 0.0328 0.0342
RMS 0.0261 0.0314 0.0350 0.0393 0.0413
Maximum 0.0363 0.0413 0.0452 0.0484 0.0506

Figure 5.11: Errt=0.79716 of each model at each grid

35

Length of lx
Function for ∆ 1 2 3 4 5
Minimum 1.2067 1.4245 1.9300 1.6860 1.9635
Harmonic mean 1.2067 2.0152 2.7170 2.6614 2.7044
Geometric mean 1.2067 2.2113 3.1202 3.2079 3.3203
Mean 1.2067 2.3945 3.5847 3.9547 4.1634
RMS 1.2067 2.5986 4.0010 4.5309 4.7625
Maximum 1.2067 3.6034 5.0756 5.5782 5.6926

Length of lx
Function for ∆ 6 7 8 9 10
Minimum 1.6035 2.4102 1.5722 2.5279 2.0892
Harmonic mean 2.3066 2.8165 2.0247 2.7720 2.3264
Geometric mean 3.0111 3.3401 2.6703 3.1772 2.7649
Mean 4.0282 4.1876 3.7628 3.9728 3.6686
RMS 4.6957 4.7442 4.4220 4.4716 4.2090
Maximum 5.5922 5.4666 5.1977 5.0653 4.8174

Figure 5.12: εt=0.159432 of each model at each grid

Length of lx
Function for ∆ 1 2 3 4 5
Minimum 0.3532 0.4178 0.5651 0.8635 1.0599
Harmonic mean 0.3532 0.5596 0.8600 1.2445 1.4732
Geometric mean 0.3532 0.6077 0.9940 1.4407 1.7173
Mean 0.3532 0.6595 1.0881 1.6458 1.9783
RMS 0.3532 0.7043 1.2041 1.7602 2.1717
Maximum 0.3532 0.9661 1.5838 2.1627 2.5779

Length of lx
Function for ∆ 6 7 8 9 10
Minimum 1.0953 1.3272 1.0928 1.4462 1.2624
Harmonic mean 1.4985 1.6226 1.4103 1.6670 1.4825
Geometric mean 1.8128 1.9343 1.7818 1.9642 1.8421
Mean 2.1758 2.3317 2.3272 2.4537 2.4076
RMS 2.4158 2.6000 2.6529 2.7301 2.7024
Maximum 2.8301 2.9693 3.0235 3.0411 3.0124

Figure 5.13: εt=0.79716 of each model at each grid

36

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

Figure 5.14: Spectrum of LES with ∆ = min(dx, dy, dz)

5.2.2 Case 2: changing two lengths

Changing two sides at the same rate enhances the e�ect seen in case 1 where the decrease of
energy is slower for the lower wavenumbers than for the higher wavenumbers. Besides that the
cut-o� wavenumber is lower for higher values of lx and lz. This means that even the DNS will
have problems with simulating the actual �ow and so is a higher resolution necessary. The
results can be seen in Tables 5.16 and 5.17. While a bigger domain in general leads to a bigger
discretisation error, does it not mean that the total error increases for each increase in lx and
ly. This follows from the fact that a larger mesh width increases the accuracy of the higher
wavenumbers and since these wavenumbers have the most energy, it follows that stretching the
domain gives a more accurate simulation. Stretching the domain too much could mean that
the error at the lower wavenumbers a�ects the total accuracy which was gained by adding more
wavenumbers to the lower frequency range.

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(a) lx = lz = 5, and ly = 1

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(b) lx = lz = 10, and ly = 1

Figure 5.15: The energy spectra of the �ne simulations where two direction are changed. Initial
spectrum (), t = 0.159432 (), t = 0.318864 (), t = 0.478296 (), t = 0.63772 ()
and t = 0.79716 ()

37

Lengths of lx and lz
Function for ∆ 1 2 3 4 5
Minimum 0.0074 0.0085 0.0064 0.0046 0.0169
Harmonic mean 0.0074 0.0134 0.0137 0.0116 0.0205
Geometric mean 0.0074 0.0153 0.0176 0.0168 0.0242
Mean 0.0074 0.0171 0.0211 0.0215 0.0280
RMS 0.0074 0.0183 0.0234 0.0246 0.0304
Maximum 0.0074 0.0234 0.0293 0.0308 0.0350

Lengths of lx and lz
Function for ∆ 6 7 8 9 10
Minimum 0.0161 0.0279 0.0212 0.0357 0.0383
Harmonic mean 0.0187 0.0291 0.0223 0.0362 0.0386
Geometric mean 0.0223 0.0312 0.0245 0.0373 0.0394
Mean 0.0264 0.0339 0.0277 0.0390 0.0408
RMS 0.0289 0.0356 0.0296 0.0401 0.0416
Maximum 0.0334 0.0385 0.0328 0.0419 0.0430

Figure 5.16: Errt=0.159432 of each model at each grid

Lengths of lx and lz
Function for ∆ 1 2 3 4 5
Minimum 0.0033 0.0070 0.0083 0.0066 0.0083
Harmonic mean 0.0033 0.0081 0.0084 0.0090 0.0115
Geometric mean 0.0033 0.0089 0.0107 0.0128 0.0158
Mean 0.0033 0.0100 0.0135 0.0169 0.0202
RMS 0.0033 0.0103 0.0153 0.0194 0.0228
Maximum 0.0033 0.0128 0.0196 0.0242 0.0273

Lengths of lx and lz
Function for ∆ 6 7 8 9 10
Minimum 0.0084 0.0156 0.0126 0.0237 0.0268
Harmonic mean 0.0116 0.0177 0.0146 0.0248 0.0275
Geometric mean 0.0164 0.0212 0.0186 0.0271 0.0294
Mean 0.0215 0.0254 0.0236 0.0303 0.0322
RMS 0.0242 0.0276 0.0262 0.0321 0.0338
Maximum 0.0287 0.0313 0.0302 0.0348 0.0361

Figure 5.17: Errt=0.79716 of each model at each grid

38

Length of lx
Function for ∆ 1 2 3 4 5
Minimum 1.2088 1.2582 0.8651 0.6399 1.9114
Harmonic mean 1.2088 1.9557 1.7856 1.4465 2.2659
Geometric mean 1.2088 2.1630 2.1714 1.9581 2.5993
Mean 1.2088 2.3343 2.4973 2.4150 2.9353
RMS 1.2088 2.4684 2.7178 2.6968 3.1389
Maximum 1.2088 2.9586 3.2384 3.2414 3.5086

Length of lx
Function for ∆ 6 7 8 9 10
Minimum 1.6621 2.4472 1.8259 2.5706 2.5398
Harmonic mean 1.9121 2.5487 1.9127 2.6035 2.5596
Geometric mean 2.2278 2.7149 2.0860 2.6817 2.6146
Mean 2.5768 2.9236 2.3210 2.7997 2.7041
RMS 2.7817 3.0481 2.4581 2.8694 2.7570
Maximum 3.1317 3.2582 2.6828 2.9858 2.8439

Figure 5.18: εt=0.159432 of each model at each grid

Length of lx
Function for ∆ 1 2 3 4 5
Minimum 0.3444 0.6234 0.6840 0.5173 0.7581
Harmonic mean 0.3444 0.8343 0.9338 0.9283 1.0878
Geometric mean 0.3444 0.9232 1.1063 1.2130 1.3823
Mean 0.3444 1.0058 1.2951 1.4756 1.6454
RMS 0.3444 1.0571 1.4109 1.6249 1.7882
Maximum 0.3444 1.2729 1.6805 1.8939 2.0229

Length of lx
Function for ∆ 6 7 8 9 10
Minimum 0.7298 1.1960 0.9487 1.5033 1.5771
Harmonic mean 1.0172 1.3499 1.0909 1.5657 1.6176
Geometric mean 1.3442 1.5722 1.3432 1.6999 1.7211
Mean 1.6448 1.8062 1.6253 1.8725 1.8659
RMS 1.7985 1.9273 1.7651 1.9615 1.9409
Maximum 2.0327 2.1093 1.9669 2.0933 2.0511

Figure 5.19: εt=0.79716 of each model at each grid

39

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

Figure 5.20: Spectrum of LES with ∆ = min(dx, dy, dz)

5.2.3 Case 3: changing one length between the minimum and maxi-

mum of the all the lengths of the domain

The domains in this case have ly = 1 for the shortest length, which is the same as the other
cases, and the longest length on every domain is lx = 10. The third length lz varies between the
values of lx and ly, such that the �rst and last domain have similarities to the last domains of
case 1 and 2 respectively. The results of all simulations are given in Tables 5.22 and 5.23.

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

Figure 5.21: The energy spectrum of the �ne simulations with lx = 10,lz = 5, and ly = 1. Initial
spectrum (), t = 0.159432 (), t = 0.318864 (), t = 0.478296 (), t = 0.63772 ()
and t = 0.79716 ()

40

Length of lz
Function for ∆ 1 2 3 4 5
Minimum 0.0264 0.0165 0.0298 0.0255 0.0192
Harmonic mean 0.0288 0.0196 0.0314 0.0270 0.0207
Geometric mean 0.0336 0.0237 0.0335 0.0293 0.0232
Mean 0.0454 0.0324 0.0377 0.0331 0.0271
RMS 0.0543 0.0403 0.0416 0.0365 0.0302
Maximum 0.0670 0.0553 0.0518 0.0460 0.0394

Length of lz
Function for ∆ 6 7 8 9 10
Minimum 0.0354 0.0510 0.0720 0.0547 0.0383
Harmonic mean 0.0361 0.0513 0.0724 0.0548 0.0386
Geometric mean 0.0374 0.0518 0.0733 0.0552 0.0394
Mean 0.0395 0.0527 0.0748 0.0558 0.0408
RMS 0.0411 0.0533 0.0757 0.0562 0.0416
Maximum 0.0459 0.0552 0.0782 0.0570 0.0430

Figure 5.22: Errt=0.159432 of each model at each grid

Length of lz
Function for ∆ 1 2 3 4 5
Minimum 0.0163 0.0099 0.0174 0.0142 0.0101
Harmonic mean 0.0190 0.0147 0.0202 0.0170 0.0129
Geometric mean 0.0238 0.0201 0.0238 0.0209 0.0173
Mean 0.0343 0.0295 0.0296 0.0264 0.0229
RMS 0.0413 0.0366 0.0343 0.0304 0.0267
Maximum 0.0506 0.0482 0.0445 0.0404 0.0364

Length of lz
Function for ∆ 6 7 8 9 10
Minimum 0.0219 0.0341 0.0596 0.0389 0.0268
Harmonic mean 0.0234 0.0347 0.0605 0.0392 0.0275
Geometric mean 0.0261 0.0360 0.0625 0.0401 0.0294
Mean 0.0297 0.0378 0.0653 0.0415 0.0322
RMS 0.0320 0.0390 0.0669 0.0422 0.0338
Maximum 0.0382 0.0422 0.0706 0.0439 0.0361

Figure 5.23: Errt=0.79716 of each model at each grid

41

Length of lz
Function for ∆ 1 2 3 4 5
Minimum 2.0897 1.2511 2.3340 2.1199 1.7196
Harmonic mean 2.3268 1.5448 2.4636 2.2442 1.8410
Geometric mean 2.7654 1.9062 2.6389 2.4331 2.0466
Mean 3.6681 2.6100 2.9566 2.7338 2.3519
RMS 4.2096 3.1743 3.2371 2.9778 2.5751
Maximum 4.8170 4.0664 3.8688 3.6077 3.1973

Length of lz
Function for ∆ 6 7 8 9 10
Minimum 2.7043 3.5357 4.3671 3.4847 2.5396
Harmonic mean 2.7566 3.5525 4.3945 3.4936 2.5596
Geometric mean 2.8585 3.5897 4.4593 3.5169 2.6147
Mean 3.0108 3.6473 4.5587 3.5546 2.7040
RMS 3.1165 3.6855 4.6202 3.5778 2.7567
Maximum 3.4344 3.8007 4.7773 3.6286 2.8438

Figure 5.24: εt=0.159432 of each model at each grid

Length of lz
Function for ∆ 1 2 3 4 5
Minimum 1.2666 0.6481 1.1220 0.9765 0.7902
Harmonic mean 1.4900 1.0026 1.3117 1.1620 0.9760
Geometric mean 1.8382 1.3553 1.5292 1.4003 1.2452
Mean 2.4078 1.8912 1.8472 1.7074 1.5678
RMS 2.7031 2.2401 2.0785 1.9143 1.7651
Maximum 3.0118 2.7099 2.5144 2.3554 2.2137

Length of lz
Function for ∆ 6 7 8 9 10
Minimum 1.4463 2.0586 3.2230 2.1845 1.5769
Harmonic mean 1.5369 2.0915 3.2758 2.2029 1.6176
Geometric mean 1.6929 2.1584 3.3887 2.2484 1.7212
Mean 1.8880 2.2492 3.5367 2.3140 1.8658
RMS 2.0040 2.3030 3.6166 2.3505 1.9404
Maximum 2.2927 2.4433 3.7919 2.4224 2.0511

Figure 5.25: εt=0.79716 of each model at each grid

42

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

Figure 5.26: Spectrum of LES with ∆ = min(dx, dy, dz)

5.2.4 Combined results

The total error of all models with the minimum are given in Figure 5.27. The most notable e�ect
can be seen in all cases for l = 8, here cases 1 and 2 have a local minimum and case 3 has a local
maximum. For cases 1 and 2 the result can be explained by the shape of the used data from the
CBC experiment, which has a peak at the wavenumber corresponding to the length l = 8. The
di�erence between the error for l = 7 and l = 8 follows from a better representation of this peak.
The domains in Case 3 captures this peak from the CBC data also for l = 7, which explains why
there is no local minimum for Case 3 at l = 8. The local maximum at l = 8 is the result of the
similar e�ect of the energy excess at certain wavenumbers in the uniform domain. For case 3
and l = 8 is there one direction which contains the energy of the peak in Figure 5.27 but cannot
transport it to the lower wavenumbers. This explains the large error for all choices of ∆.

Most of the results of all the cases have that the simulations with an even value for l perform
better than the simulations with l− 1, while the discretisation error is bigger. This could follow
from a better approximation of the peak in the CBC data but this is not clear.

43

1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

l

E
r
r

Case 1
Case 2
Case 3

Figure 5.27: The error on each domain with the minimum function for ∆

44

6 | Conclusion

6.1 Conclusion

The results of every simulation in this research showed that the optimal value for the length
scale in the Smagorinsky model is given by ∆ = min dx, dy, dz. This was tested on two sets of
regular grids, one set which consists of regular grids on an uniform domain and the other set of
grids with a constant resolution of di�erent stretched domains. Lower values for ∆ were tested
by lowering the Smagorinsky constant, this resulted in an irregular spectrum around the cut-o�
length.

The error of the tested models is in�uenced by multiple factors. The �rst factor was noted in
the simulations on the uniform domain which showed that the lowest component of the resolution
of the grid resulted in energy excess at �xed wavenumbers. This excess was in�ated by models
which added too much dissipation, which explained the good results of the minimum function. If
the e�ect of the resolution on the spectrum only occurs at high wavenumbers close to the cut-o�
length than higher order average models could be used, like the harmonic mean or the geometric
mean functions. However, the minimum function is advised for all other cases. Another e�ect
on the error of the models was the used spectrum. In this research the spectra are based on
the CBC data. While this in�uenced the results on the nonuniform domain, this has no further
in�uence on the conclusion of this research.

The Smagorinsky model does have problems for simulations on nonuniform grids. This mainly
follows from solving a three dimensional problem with a one dimensional parameter. Problems
can occur in the direction, which needed a change of ∆, but this also in�uences the other
directions.

The conclusion of this research is that the minimum function is the best choice for the
Smagorinksy model on a nonuniform grids. However, the Smagorinsky model with this ∆ is
not the best method for simulating a �ow on a nonuniform grid. There are better models
available which are more suitable to use on a nonuniform grid. A good alternative is the Dynamic
Smagorinsky, explained in [6]. This model automatically searches the correct value product of
CS and ∆.

6.2 Discussion

6.2.1 Choice of constants

Some assumptions were made for the simulations on the nonuniform domains. The �rst one
is that the reference length was the same for all simulation. This was justi�ed by taking the
reference length in the y direction such that Lref = ly = 1 for all simulations. Similarly was the
Smagorinsky constant kept at CS = 0.17 for all LES on every grid and domain. These choices

45

were based on the aim to make the resulting spectra for every domain similar, but this did not
work. The spectrum of the �ne simulation for lx = 2 and ly = lz did still have similarities
to the uniform domain, although this was no longer the case when the domain was stretched
much further. It can be discussed that the simulation no longer simulates homogeneous isotropic
turbulence for these stretched domains. Therefore a di�erent Smagorinsky constant can give
better results since CS = 0.17 was speci�c derived for homogeneous isotropic turbulence. This
can be tested by using the found optimal value for ∆. The new value for CS can then be used
to test the optimal value for ∆. Repeating this process could lead to a better optimal value for
both ∆ and CS .

6.2.2 Accuracy

For this research N = 256 was used for the DNS results, while other current researches use
N = 512 or N = 1024. This resolution was not feasible with the available resources. The result
of a higher accuracy could be a steeper spectrum in the inertial range, because this e�ect was
observed when the accuracy for the DNS in this research was set from N = 128 to N = 256. The
optimal Smagorinsky model needs to give extra dissipation to account for this steeper spectrum,
which means that CS or the choice of ∆ should be increased. This might explain why some
people prefer to use the geometric mean for ∆ instead of the minimum. Conclusions in this
research are generally for coarse grids with N = 64 and other choices for ∆ could follow from
a �ner grid. It is not advised to use a coarser grid for similar simulations, since those gave in
accurate results in this research.

6.2.3 The choice of LES �lter

A di�erent result might occur when a di�erent �lter is used for the separation of the higher and
lower wavenumbers. The sharp cut-o� �lter in the frequency domain is used because of its local
support and direct relation to the energy spectrum of the non �ltered velocity �eld. Since other
�lters tend to amplify the spectrum at the lower wavenumbers and decrease the e�ect of the
higher wavenumbers could it be possible that a higher value for ∆ is needed to approximate the
�ltered energy spectrum better.

46

Bibliography

[1] R.B. Christo�ers. Report on di�erent large eddy simulation models, 2013.

[2] Geneviève Comte-Bellot and Stanley Corrsin. Simple eulerian time correlation of full-and
narrow-band velocity signals in grid-generated, `isotropic' turbulence. Journal of Fluid
Mechanics, 48(2):273�337, July 1971.

[3] W.C. Reynolds D. Kwak and J. H. Ferziger. Three-Dimensional Time Dependent Compu-
tation of Turbulent Flow. Stanford University, 1974.

[4] T.Iliescu L.C. Berselli and W.J.Layton. Mathematics of Large Eddy simulation of Turbulent
Flow. Springer, 2006.

[5] J.M. McDonough. Introductory lecures on turbulence. University of Kentucky, 2004.

[6] Robert Peston. The digital economy bill, 9 April 2010. Accessed 8 February 2012.

[7] S.B. Pope. Turbulent Flows. Cambridge university press, 2000.

[8] J.H. Ferziger R.A.Clark and W.C. Reynolds. Evaluation of subgrid-scale models using an
accurately simulated turbulent �ow. Journal of Fluid Mechanics, 91(1):1�16, March 1979.

[9] L.F. Richardson. Weather Prediction by Numerical Process. Cambridge university press,
1922.

[10] F.G. Schmit. About Boussinesq± turbulent viscosity hypothesis: historical remarks and a
direct evaluation of its validity. Elsevier Masson, 2007.

[11] J. Smagorinksy. General circulatio experiment with the primitive equations. Monthly
Weather Rview, 91(3):99�164, March 1963.

[12] W.Rozema. Low-dissipation methods and models for the simulation of turbulent subsonic
�ow. PhD thesis, University of Groningen, 2015.

47

A | Implementation of the initial en-
ergy spectrum.

A.1 Fitting the CBC data

Di�erent energy spectra could be used for the construction of the initial velocity �eld. That
is why the created software also allows di�erent kind of input for the energy spectrum, which
could be a set of data or a function. For the simulation of homogeneous isotropic turbulence it is
necessary that chosen spectrum represents the scales de�ned in Section 2.6. The spectrum used
in the research is based on the experimental results from Geneviève Comte-Bellot and Stanley
Corrsin who wrote about it in [2]. This dataset is referred to as the CBC data in reference to
the creators. Another research as well as software using these results is found in [12]. The data
�ts the Kolmogorov theorem in the inertial range, since it has the −5/3 factor which can be seen
in Figure (A.1). The data is only available for the measured locations, which are denoted by a
square, so it is necessary to interpolate the intermediate points and extrapolate for the values
of k which are smaller than the �rst measurements. The interpolation is linear and computed
on the logarithmic values of k and E, because of the linearity after this transformation in the
inertial range. This means that the energy E at a point k between measure points k1 and k2 is
given by

E(k) = exp

(
log
(
k/k1

)
log
(
k2/k1

) log
(
E(k2)/E(k1)

)
+ log

(
E(k1)

))
for k1 < k2. The extrapolation is similar but takes the two smallest measure points and uses

these to derive any smaller values. Additional to this it is ensured that the energy is positive
and else the energy is set to 0. The CBC spectrum is scaled such that the largest values of k can
not be simulated on the �ne grid with Nx = Ny = Nz = 256, so an extrapolation for the larger
wavenumbers is not needed.

48

0 2 4 6 8 10 12
0

0.002

0.004

0.006

0.008

0.01

0.012

k

E
(k
)

CBC experiment

(a) Normal scale

10
0

10
1

10
−4

10
−3

10
−2

k

E
(k
)

CBC experiment

(b) logarithmic scale

Figure A.1: The initial spectrum domain based on the CBC data

A.2 Algorithm for the implementation of the spectrum

For the �ne simulation is Equation (2.7) used. In addition to that is the energy �rst integrate
over the grid cell in the spatial domain to ensure a smooth spectrum where much of the energy
is preserved. This energy is then divided over the grid in the frequency domain, which results in:

‖û‖22 =

√
E(k)

2π((k/(dx dy dz))2

dk1 dk2 dk3

dx dy dz

A.3 Algorithm for the LES

If the previous algorithm is used for the coarse grid of the LES then the spectrum will have a
similar shape around the cut-o� wavenumber k =

√
max(k1)2 + max(k2)2 + max(k3)2 as the �ne

simulation has in its dissipation range. This results in a spectrum which seems to be dissipating
too fast by itself even without the e�ect of any model. A better spectrum for the LES is a
spectrum which is the same as the spectrum of the �ne simulation up until the cut-o� length
after which it is set to zero for all wavenumbers. This can be implemented with the following
algorithm

‖û‖22(k) =

√
E(k)

2π((k/(dx dy dz))2

dk1 dk2 dk3

dx dy dz

√
#N256

#N64

where #N256 is the number of wavenumber of length k captured in the �ne grid grid of the
�ne simulation and #N64 the same for the coarse grid.

The CBC spectrum used for this research and two derived spectra can be seen in Figure A.2.
Three things discussed earlier can be seen in this �gure. The �rst is that CBC data reaches a
bit further than the spectrum with Nx = Ny = Nz. The second is that the total energy for the
initial spectrum of the LES is less than that of the �ne solution.

49

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

k

E
(k
)

CBC
Nx = 256
Nx = 64

Figure A.2: The used CBC spectrum and two derived initial spectra

50

B | Derivation of a velocity �eld on
a nonuniform grid

In this section is a derivation of a homogeneous isotropic turbulence velocity �eld on a nonuniform
grid to demonstrate the problems regarding e�ciency. The example consists of a two dimensional
four by four collocated grid as given in Figure B.1.

The discretisation for the derivatives is the same as in Equation (3.10). The boundary
conditions are periodic which means that 18 unknown variables must be solved. In Section
3.3 it is stated that taking the Fourier transform of the divergence free condition resulted in
solving the kernel of a convolution. This is in general a costly operation and that is why this
example uses another method. The divergence free condition can be written as DU = 0 where
U = [u1,1, ..., u3,3, v1,1, ..., v3,3]T and the discretisation matrix D is given by

D =



6 −6 4 −4
−4 4 4 −4
4 4 4 −4

2 −2 −2 2
−4 4 −2 2
4 −4 −6 6

6 −6 4 −4
−4 4 4 −4
4 −4 4 −4



x1,1

x1,2

x1,3

x1,4

x2,1

x2,2

x2,3

x2,4

x3,1

x3,2

x3,3

x3,4

x4,1

x4,2

x4,3

x4,4

∆x,1 = 1
4

∆x,2 = 1
4

∆x,3 = 1
2

∆y,1 = 1
4

∆y,2 = 1
2

∆y,3 = 1
4

Figure B.1: An example of a nonuniform grid

51

This means that each solenoidal �eld is in the nullspace of D. A few vectors in this space
can be directly found because of the sparsity of the matrix. By reducing the matrix with these
found elements and by reducing the problem to row echelon form it follows that the following
set can be found as a basis for the nullspace of D.

1
1
1





2

−3

1

1
3

−1





2

−3

−3
2





1
1
1





3

−2

3

−2





3

−2
−3
2





1
1
1





3
−2

3
−2

3
−2





1

1

1


These vectors will be denoted with l1, l2, ..., l9. Any vector in the span of this set of vectors

is divergence free. The next step is to limit this set to a smaller set which has the correct energy
spectrum. For this it is needed to compute the Fourier modes corresponding to the velocity �eld.
This can be done with the product of each basis of the null space and the following matrix

Q(k1, k2) =[
1 ... e−2πi(k1xi+k2yj) ... e−2πi(

3k1
4 +

k2
2) 0 ... 0

0 ... 0 1 ... e−2πi(k1xi+k2yj) ... e−2πi(
3k1
4 +

k2
2)

]

The Fourier transform of the velocity �eld will be of the form

F(u)(k1, k2) = Q(k1, k2)[q1l1 + q2l2 + q3l3 + q4l4 + q5l5 + q6l6 + q7l7 + q8l8 + q9l9] = Q(k1, k2)L

Using these Fourier modes allows us to adjust the velocity �eld such that the energy spectrum
is as in Section 2.5. An example of such a restriction is that the mean �ow velocity is 0. This is
equivalent to stating that the largest �ow on the grid has no energy or by using Equation (2.7)
E(0) = ‖F(u)(0, 0)‖22. This results in solving the nonlinear system

(3q1 + 3q2 + 3q3 − q4 − q5 + q6 + q7)2 + (3q4 − q5 + q6 − q7 + 3q8 + 3q9)2 = 0

For the other restriction to the �nal velocity �eld it is necessary to de�ne the energy spectrum
and a grid for the frequency domain. The frequency domain grid can be chosen to be uniform
while the spatial grid is nonuniform. This is suggested to ensure that the qi ∈ R for all i without
introducing new restrictions. If the same number of nodes for the grid is chosen as in the spatial
domain then it follows that the energy spectrum is only de�ned for ‖k‖2 ∈ {0, 1,

√
2}. A possible

52

choice for the spectrum could be

f =

{
x−5/3 if x > 0
0 elsewhere

This results in solving the following nonlinear system for all qi

0 = ‖Q(0, 0)L‖2
1 = ‖Q(1, 0)L‖2 + ‖Q(−1, 0)L‖2 + ‖Q(0, 1)L‖2 + ‖Q(0,−1)L‖2

2−5/6 = ‖Q(1, 1)L‖2 + ‖Q(−1, 1)L‖2 + ‖Q(1,−1)L‖2 + ‖Q(−1,−1)L‖2
Solving such a system is hard but can be done by a computer. However it is not possible

to �nd the whole solution set. It is possible to derive multiple solutions and to pick one from
that set at random to approach a homogeneous isotropic �eld. However this means that a lot of
solutions are necessary to represent the solution space well enough, which will take to long for
any real problem.

53

C | Source code

1 function [] = init_field_main(Nx,Ny ,Nz,lx ,ly,lz,flag_spectrum ,folder ,variant ,note)
2

3 % This programm is used to create an initial velocity field for a staggered
4 % grid. Created by R. B. Christoffers for his master thesis research project
5

6 % Flags
7 finite_difference_scheme = ...
8 'init_field_central_fourth_order_uniform_staggered ';
9 %'init_field_central_second_order_uniform_staggered ';

10 used_spectrum = flag_spectrum;
11 % = 1 Spectrum based on CBC results
12 % = 2 Spectrum based on CBC results with sharp cutoff
13 compute_Reynolds = 0;
14 compute_velocity_field = 0;
15 compute_pressure = 0;
16 test_the_results = 1;
17 create_fld00 = 0;
18

19

20 % Counter
21 counter = 1;
22

23 % Dimensions of the problem
24 tic
25

26 %% Resolution
27 % Nx = 32;
28 % Ny = 32;
29 % Nz = 32;
30

31 pressure = zeros(Nx,Ny,Nz);
32

33 %% Dimensions domain
34 % lx = 1;
35 % ly = 1;
36 % lz = 1;
37

38 % Step size
39 dx = lx/Nx;
40 dy = ly/Ny;
41 dz = lz/Nz;
42

43 % Grid
44 x = [dx/2:dx:lx - dx/2];
45 y = [dy/2:dy:ly - dy/2];
46 z = [dz/2:dz:lz - dz/2];
47

48 viscosity = 1.5*10^-1;
49

50 %folder = fullfile('/data/s1892487/',folder);
51 %mkdir(folder);
52

53

54 T = toc;
55 fprintf (['Phase %i: Initiation compleet\n\t\t within %f4 seconds\n'],...
56 counter ,T)

54

57 counter = counter + 1;
58

59

60 % Constructing the amplitudes of the Fourier components
61 tic
62 if (used_spectrum)
63 quantity = init_field_wavenumbers_length_k(...
64 Nx,Ny,Nz,lx,ly ,lz,rounded_spectrum_to_ints);
65 if (used_spectrum == 8)
66 quantity_fine = init_field_wavenumbers_length_k(...
67 256 ,256 ,256,lx,ly ,lz,rounded_spectrum_to_ints);
68 else
69 quantity_fine = [];
70 end
71 amplitudes = init_field_amplitudes(...
72 quantity ,Nx,Ny ,Nz,lx ,ly,lz,used_spectrum ,quantity_fine);
73 fprintf (['Phase %i: Completed the construction of the ',...
74 'correct amplitudes\n\t\t within %f4 seconds\n'],counter ,T)
75 counter = counter + 1;
76

77 % Computing the Fourier Modes
78 tic
79 [uk,vk,wk] = init_field_gen_Fourier_nodes(Nx,Ny,Nz,lx,ly ,lz,...,
80 dx,dy,dz,finite_difference_scheme ,amplitudes ,rounded_spectrum_to_ints);
81 T = toc;
82 fprintf (['Phase %i: Completed the spectrum space\n\t\t',...
83 ' within %f4 seconds\n'],counter ,T)
84 counter = counter + 1;
85

86 % Compute the Reynolds number
87 if (compute_Reynolds == 1)
88 tic
89 Re = init_field_compute_Reynolds_freq(uk,vk ,wk,viscosity ,Nx,Ny,Nz);
90 T = toc;
91 fprintf (['Phase %i: The Reynolds number is %f4 \n\t\t',...
92 ' within %f4 seconds\n'],counter ,Re,T)
93 counter = counter + 1;
94 end
95

96 % Constructing the velocity field
97 if (compute_velocity_field == 1)
98 tic
99 [u,v,w]= init_field_inverse_fourier(uk,vk ,wk,Nx ,Ny,Nz,lx,ly,lz);

100 T = toc;
101 fprintf (['Phase %i: Constructed the velocityfield\n\t\t',...
102 ' within %f4 seconds\n'],counter ,T)
103 counter = counter + 1;
104 end
105

106 % Compute the pressure
107 if (compute_pressure == 1)
108 tic
109 [pressure] = init_field_pressure(u,v,w,viscosity ,Nx ,Ny,Nz ,lx,ly,lz);
110 T = toc;
111 fprintf (['Phase %i: Computed the pressure\n\t\t',...
112 ' within %f4 seconds\n'],counter ,T)
113 counter = counter + 1;
114 end
115

116 % Create fld00.dat file
117 if (create_fld00 == 1)
118 tic
119 init_field_writefield(u,v,w,pressure ,Nx,Ny,Nz,folder)
120 T = toc;
121 fprintf (['Phase %i: Created fld00.dat file\n\t\t',...
122 ' within %f4 seconds\n'],counter ,T)
123 counter = counter + 1;
124 end
125

126 % Test the results
127 if (test_the_results == 1)
128 fprintf('\nTest results :\n')
129 if (compute_velocity_field == 1)

55

130 test_div_free_spatial
131 end
132 test_div_free_Fourier
133 test_spectrum
134 fprintf('\tThe spectrum is displayed in the figure\n')
135 if (compute_velocity_field == 0)
136 fprintf(...
137 '\tset the compute_velocity_field flag to true\n')
138 end
139 end
140 end

Listing C.1: Main �le

1 function [quantity_at_wavenumber] = init_field_wavenumbers_length_k ...
2 (Nx ,Ny,Nz ,lx,ly ,lz,rounded_spectrum_to_ints)
3

4 % Description:
5 % This code gives for any wavenumber k the number of vectors which have
6 % the same length. This number is number is given by element
7 % quantity_at_wavenumber (||k||^2). Note that quantity_at_wavenumber (0) is
8 % not included since it is trivial that quantity_at_wavenumber (0) = 1.
9 %

10 % Input:
11 % Nx -> number of Fourier node in k1-direction
12 % Ny -> number of Fourier node in k2-direction
13 % Nz -> number of Fourier node in k3-direction
14 % lx -> length of the domain in the x-direction
15 % ly -> length of the domain in the y-direction
16 % lz -> length of the domain in the z-direction
17 %
18 % Output:
19 % quantity_at_wavenumber -> number of wavenumbers with same length
20

21 counter = 0;
22 for ii = -Nx/2 + 1:Nx/2 - 1
23 for jj = -Ny/2 + 1:Ny/2 - 1
24 for kk = -Nz/2 + 1:Nz/2 - 1
25 if (ii == 0 && jj == 0 && kk == 0)
26 else
27 counter = counter + 1;
28 occuring_wavenumber(counter) = 2*pi*sqrt((ii/lx)^2 + (jj/ly)^2 + (kk/lz

)^2);
29 if (rounded_spectrum_to_ints == 1)
30 occuring_wavenumber(counter) = round(occuring_wavenumber(counter));
31 end
32 end
33 end
34 end
35 end
36

37 occuring_wavenumber = sort(occuring_wavenumber);
38 counter = 1;
39 quantity_at_wavenumber(counter ,2) = 0;
40

41 for ii = 1: length(occuring_wavenumber) - 1
42 quantity_at_wavenumber(counter ,1) = occuring_wavenumber(ii);
43 quantity_at_wavenumber(counter ,2) = quantity_at_wavenumber(counter ,2) + 1;
44 if (quantity_at_wavenumber(counter ,1) == occuring_wavenumber(ii + 1))
45 else
46 counter = counter + 1;
47 quantity_at_wavenumber(counter ,2) = 0;
48 end
49 end
50 quantity_at_wavenumber(counter ,2) = quantity_at_wavenumber(counter ,2) + 1;

Listing C.2: Code for counting the number of wavenumbers with a certain length

1 function [amplitude] = init_field_amplitudes(quantity_at_wavenumber ,...
2 Nx,Ny,Nz,lx,ly ,lz,used_spectrum ,quantity_at_wavenumber_fine_mesh)
3

56

4 % Description:
5 % This program constructs a vector AMPLITUDE with at AMPLITUDE(i) the
6 % amplitude of an Fourier nodes with the length of the wavenumber as sqrt(i).
7 % (example K = [1 2 -1] -> i = 6)
8 %
9 % Input:

10 % Nx -> number of Fourier node in k1-direction
11 % Ny -> number of Fourier node in k2-direction
12 % Nz -> number of Fourier node in k3-direction
13 % quantity_at_wavenumber -> number of wavenumber with this length
14 %
15 % Output:
16 % amplitude -> the amplitude of each wavenumber
17

18 [n,m] = size(quantity_at_wavenumber);
19 amplitude = [quantity_at_wavenumber (:,1), zeros(n,1)];
20

21 elseif (used_spectrum == 1)
22 for ii = 1:n
23 if(amplitude(ii ,1) == 0)
24 amplitude(ii ,2) = 0;
25 else
26 dx = lx/Nx;
27 dy = ly/Ny;
28 dz = lz/Nz;
29 amplitude(ii ,2) = sqrt(init_field_energyspectrum_CBC(

quantity_at_wavenumber ...
30 (ii ,1))/(2*pi*(quantity_at_wavenumber(ii ,1))^2))/(dx*dy*dz)*(2

*pi)^1.5/(lx*ly*lz)^0.5;
31 end
32 end
33 elseif (used_spectrum == 2)
34 for ii = 1:n
35 if(amplitude(ii ,1) == 0)
36 amplitude(ii ,2) = 0;
37 else
38 dx = lx/Nx;
39 dy = ly/Ny;
40 dz = lz/Nz;
41

42 jj = find(quantity_at_wavenumber(ii ,1) ==
quantity_at_wavenumber_fine_mesh (:,1));

43

44 amplitude(ii ,2) = sqrt(init_field_energyspectrum_CBC(
quantity_at_wavenumber ...

45 (ii ,1))/(2*pi*(quantity_at_wavenumber(ii ,1))^2))/(dx*dy*dz)*(2
*pi)^1.5/(lx*ly*lz)^0.5*...

46 (quantity_at_wavenumber_fine_mesh(jj ,2)/quantity_at_wavenumber
(ii ,2))^0.5;

47 end
48 end
49 end

Listing C.3: Code for computing the amplitude of each Fourier term

1 function [energy] = init_field_energyspectrum_CBC(k)
2

3 % Description:
4 % This code is used to compute the energy at k. The shape of the spectum is
5 % given by f,g and h.
6 %
7 % Input:
8 % k -> the current square of the wavenumber length
9 %

10 % Output:
11 % energy -> the energy at all wavenumber with length sqrt(k)
12

13

14 %E = [129 230 322 435 457 380 270 ...
15 % 168 120 89 70.3 47 24.7 12.6 ...
16 % 7.42 3.9 2.33 1.35 0.8];
17 %K = [0.2 0.25 0.3 0.4 0.5 0.7 1.0 ...

57

18 % 1.5 2.0 2.5 3.0 4.0 6.0 8.0 ...
19 % 10.0 12.5 15 17.5 20.0];
20

21 E = [0.003123 0.005568 0.007795 0.010530 ...
22 0.011063 0.009199 0.006536 0.004067 ...
23 0.002905 0.002154 0.001702 0.001138 ...
24 0.000598 0.000305 0.000180 0.000096 ...
25 0.000056 0.000033 0.000019];
26

27 K = [11.176000 13.970000 16.764000 22.352000 ...
28 27.940000 39.116000 55.880000 83.820000 ...
29 111.760000 139.700000 167.640000 223.52000 ...
30 335.280000 447.040000 558.800000 698.50000 ...
31 838.200000 977.900000 1117.600000];
32

33 if (k == 0)
34 energy = 0;
35 else
36 if any(k == K)
37 energy = (E(k==K));
38 else
39 if (k > K(end))
40 k1 = K(end - 1);
41 k2 = K(end);
42 E1 = E(end - 1);
43 E2 = E(end);
44 elseif (k < K(1))
45 k1 = K(1);
46 k2 = K(2);
47 E1 = E(1);
48 E2 = E(2);
49 else
50 index = find(K>k,1);
51 k1 = K(index - 1);
52 k2 = K(index);
53 E1 = E(index - 1);
54 E2 = E(index);
55 end
56 energy = max(0,exp(log(k/k1)/log(k2/k1)*log(E2/E1) + log(E1)));
57 end
58 end

Listing C.4: Code for implementing the right shape of the spectrum

1 function [K] = init_field_central_fourth_order_uniform_staggered(k,L,N)
2

3 % Description:
4 % This code derives the modified wavenumber corresponding to wavenumber k and
5 % The fourth order central derivative
6 %
7 % Input:
8 % k -> current wavenumber
9 % L -> Length of the domain

10 % N -> number of node in corresponding direction
11 %
12 % Output:
13 % amplitude -> the modified wavenumber
14

15 K = (27*sin(pi*k/N) - sin(3*pi*k/N)) / (12*L/N);
16 end

Listing C.5: Code for the used discretisation and the modi�ed wavenumber

1 function [uk,vk ,wk] = init_field_gen_Fourier_nodes(...
2 Nx,Ny,Nz,lx,ly ,lz,dx ,dy,dz ,finite_difference_scheme ,amplitudes ,...
3 rounded_spectrum_to_ints)
4

5 % Description:
6 % This subroutine construct the general Fourier nodes.
7 %
8 % Input:

58

9 % Nx -> number of Fourier node in k1-direction
10 % Ny -> number of Fourier node in k2-direction
11 % Nz -> number of Fourier node in k3-direction
12 % dx -> gridwidth x-direction
13 % dy -> gridwidth y-direction
14 % dz -> gridwidth z-direction
15 % finite_difference_scheme -> the scheme corresponding to the problem
16 % amplitudes -> the amplitude of each wavenumber
17 %
18 % Output:
19 % uk -> Fourier terms corresponding to u
20 % vk -> Fourier terms corresponding to v
21 % wk -> Fourier terms corresponding to w
22

23 % Initialisation
24 uk = zeros(Nx ,Ny,Nz);
25 vk = zeros(Nx ,Ny,Nz);
26 wk = zeros(Nx ,Ny,Nz);
27 Random_degree = 100000;
28 rng('shuffle ')
29

30 % Calling the right function or the modified wavenumber
31 scheme = str2func(finite_difference_scheme);
32

33 % Constructing the Fourier nodes
34 for k3 = -Nz/2 + 1 : 1 : Nz/2 - 1
35 for k2 = -Ny/2 + 1 : 1 : Ny/2 - 1
36 for k1 = -Nx/2 + 1 : 1 : 0 % only need halve the k`s since u is real
37

38 % Square of the length of the wavenumbervector
39 tempk = 2*pi*sqrt((k1/lx)^2 + (k2/ly)^2 + (k3/lz)^2);
40

41 % The restrictions are to make sure that we ddo not compute unnecessary modes
42 if (k1 < 0 || (k1 == 0 && (k2 < 0 || (k2 == 0 && k3 < 0))))
43

44 % Deriving the Modified wavenumbers for each direction
45 K1 = scheme(k1,lx ,Nx);
46 K2 = scheme(k2,ly ,Ny);
47 K3 = scheme(k3,lz ,Nz);
48

49 % Constructing the orthogonal unit vector
50 if (K1 ~= 0)
51 L = 1/sqrt(2*K1^2 + K2^2 + 2*K2*K3 + K3^2);
52 u_temp = L*(K2 + K3);
53 v_temp = L*-K1;
54 w_temp = L*-K1;
55 elseif (K2 ~= 0)
56 L = 1/sqrt(2*K2^2 + K1^2 + 2*K1*K3 + K3^2);
57 u_temp = L*-K2;
58 v_temp = L*(K1 + K3);
59 w_temp = L*-K2;
60 elseif (K3 ~= 0)
61 L = 1/sqrt(2*K3^2 + K1^2 + 2*K1*K2 + K2^2);
62 u_temp = L*-K3;
63 v_temp = L*-K3;
64 w_temp = L*(K1 + K2);
65 end
66

67 L = sqrt(K1^2 + K2^2 + K3^2);
68 K1 = K1/L;
69 K2 = K2/L;
70 K3 = K3/L;
71

72 % Constructing the real part
73 angle = 2*pi/Random_degree*randi(Random_degree ,1);
74

75 u_real = (K1*K1*u_temp + K2*K1*v_temp + K3*K1*w_temp)*...
76 (1 - cos(angle)) + u_temp*cos(angle) + (K2*w_temp - K3*v_temp)*...
77 sin(angle);
78 v_real = (K1*K2*u_temp + K2*K2*v_temp + K3*K2*w_temp)*...
79 (1 - cos(angle)) + v_temp*cos(angle) + (K3*u_temp - K1*w_temp)*...
80 sin(angle);
81 w_real = (K1*K3*u_temp + K2*K3*v_temp + K3*K3*w_temp)*...

59

82 (1 - cos(angle)) + w_temp*cos(angle) + (K1*v_temp - K2*u_temp)*...
83 sin(angle);
84

85 % Constructing the imaginary part
86 angle = 2*pi/Random_degree*randi(Random_degree ,1);
87

88 u_imag = (K1*K1*u_temp + K2*K1*v_temp + K3*K1*w_temp)*...
89 (1 - cos(angle)) + u_temp*cos(angle) + (K2*w_temp - K3*v_temp)*...
90 sin(angle);
91 v_imag = (K1*K2*u_temp + K2*K2*v_temp + K3*K2*w_temp)*...
92 (1 - cos(angle)) + v_temp*cos(angle) + (K3*u_temp - K1*w_temp)*...
93 sin(angle);
94 w_imag = (K1*K3*u_temp + K2*K3*v_temp + K3*K3*w_temp)*...
95 (1 - cos(angle)) + w_temp*cos(angle) + (K1*v_temp - K2*u_temp)*...
96 sin(angle);
97

98 % Putting both parts together
99 angle = 2*pi/Random_degree*randi(Random_degree ,1);

100

101 u_temp = sin(angle)*u_real + i*cos(angle)*u_imag;
102 v_temp = sin(angle)*v_real + i*cos(angle)*v_imag;
103 w_temp = sin(angle)*w_real + i*cos(angle)*w_imag;
104

105 % Fixing the amplitude
106 if (rounded_spectrum_to_ints == 1)
107 temp = (amplitudes (:,1) == round(tempk));
108 else
109 temp = (amplitudes (:,1) == tempk);
110 end
111 amp = amplitudes(temp ,2);
112 uk(k1 + Nx/2 + 1, k2 + Ny/2 + 1, k3 + Nz/2 + 1) = u_temp*amp;
113 vk(k1 + Nx/2 + 1, k2 + Ny/2 + 1, k3 + Nz/2 + 1) = v_temp*amp;
114 wk(k1 + Nx/2 + 1, k2 + Ny/2 + 1, k3 + Nz/2 + 1) = w_temp*amp;
115 end
116 end
117 end
118 end
119

120 for kk = 2:Nz
121 for jj = 2:Ny
122 for ii = Nx/2 + 2 : Nx
123 uk(ii,jj ,kk) = conj(uk(Nx + 2 - ii ,Ny + 2 - jj, Nz + 2 - kk));
124 vk(ii,jj ,kk) = conj(vk(Nx + 2 - ii ,Ny + 2 - jj, Nz + 2 - kk));
125 wk(ii,jj ,kk) = conj(wk(Nx + 2 - ii ,Ny + 2 - jj, Nz + 2 - kk));
126 end
127 end
128 end
129

130 for kk = 2:Nz
131 for jj = Ny/2 + 2:Ny
132 for ii = Nx/2 + 1
133 uk(ii,jj ,kk) = conj(uk(Nx + 2 - ii ,Ny + 2 - jj, Nz + 2 - kk));
134 vk(ii,jj ,kk) = conj(vk(Nx + 2 - ii ,Ny + 2 - jj, Nz + 2 - kk));
135 wk(ii,jj ,kk) = conj(wk(Nx + 2 - ii ,Ny + 2 - jj, Nz + 2 - kk));
136 end
137 end
138 end
139

140 for kk = 2:Nz
141 for jj = Ny/2 + 1
142 for ii = Nx/2 + 1
143 uk(ii,jj ,kk) = conj(uk(Nx + 2 - ii ,Ny + 2 - jj, Nz + 2 - kk));
144 vk(ii,jj ,kk) = conj(vk(Nx + 2 - ii ,Ny + 2 - jj, Nz + 2 - kk));
145 wk(ii,jj ,kk) = conj(wk(Nx + 2 - ii ,Ny + 2 - jj, Nz + 2 - kk));
146 end
147 end
148 end

Listing C.6: Code for the construction of the Fourier terms

1 function [Re] = init_field_compute_Reynolds_freq(uk ,vk,wk ,viscosity ,Nx,Ny ,Nz)
2

60

3

4 u_ref = sqrt(sum(sum(sum(uk.*conj(uk) + vk.*conj(vk) + wk.*conj(wk))))/(3*(Nx*Ny*
Nz)^2));

5

6 l_ref = 2*pi;
7

8 Re = u_ref*l_ref/viscosity;

Listing C.7: Code for the derivation of the Reynolds number

1 function[u,v,w] = init_field_inverse_fourier(uk ,vk,wk ,Nx,Ny,Nz,lx,ly ,lz)
2

3 % Transform the modes to the location corresponding to the staggeredd grid
4 kx = [-Nx/2:Nx/2 - 1];
5 ky = [-Ny/2:Ny/2 - 1];
6 kz = [-Nz/2:Nz/2 - 1];
7

8 trans_fac_x = exp(1i*pi*kx/Nx);
9 trans_fac_y = exp(1i*pi*ky/Ny);

10 trans_fac_z = exp(1i*pi*kz/Nz);
11

12 for kk = 1:Nz
13 for jj = 1:Ny
14 for ii = 1:Nx
15 uk(ii,jj ,kk) = trans_fac_x(ii)*uk(ii,jj ,kk);
16 vk(ii,jj ,kk) = trans_fac_y(jj)*vk(ii,jj ,kk);
17 wk(ii,jj ,kk) = trans_fac_x(kk)*wk(ii,jj ,kk);
18 end
19 end
20 end
21

22 % Matlab routine works with shifted values
23 uk_shift = ifftshift(uk);
24 vk_shift = ifftshift(vk);
25 wk_shift = ifftshift(wk);
26

27

28 % perform the Fourier transform
29 u = ifftn(uk_shift);
30 v = ifftn(vk_shift);
31 w = ifftn(wk_shift);
32

33 end

Listing C.8: The Matlab implementation of the Fourier Inverse

1 function [pressure] = init_field_pressure(u,v,w,viscosity ,Nx,Ny ,Nz,lx,ly,lz)
2

3

4 Delta_x = lx/Nx;
5 Delta_y = ly/Ny;
6 Delta_z = lz/Nz;
7

8 % Derivative of the velocity
9

10 dudx = (u([end ,1:end - 1],:,:) - 27*u(:,:,:) + 27*u([2:end ,1],:,:) ...
11 - u([3:end ,1:2] ,: ,:))/(24*Delta_x);
12 dudy = (u(:,[end ,1:end - 1],:) - 27*u(:,:,:) + 27*u(: ,[2:end ,1],:) ...
13 - u(:,[3:end ,1:2] ,:))/(24*Delta_y);
14 dudz = (u(:,:,[end ,1:end - 1]) - 27*u(:,:,:) + 27*u(:,:,[2:end ,1]) ...
15 - u(:,:,[3:end ,1:2]))/(24*Delta_z);
16

17 dvdx = (v([end ,1:end - 1],:,:) - 27*v(:,:,:) + 27*v([2:end ,1],:,:) ...
18 - v([3:end ,1:2] ,: ,:))/(24*Delta_x);
19 dvdy = (v(:,[end ,1:end - 1],:) - 27*v(:,:,:) + 27*v(: ,[2:end ,1],:) ...
20 - v(:,[3:end ,1:2] ,:))/(24*Delta_y);
21 dvdz = (v(:,:,[end ,1:end - 1]) - 27*v(:,:,:) + 27*v(:,:,[2:end ,1]) ...
22 - v(:,:,[3:end ,1:2]))/(24*Delta_z);
23

24 dwdx = (w([end ,1:end - 1],:,:) - 27*w(:,:,:) + 27*w([2:end ,1],:,:) ...
25 - w([3:end ,1:2] ,: ,:))/(24*Delta_x);

61

26 dwdy = (w(:,[end ,1:end - 1],:) - 27*w(:,:,:) + 27*w(: ,[2:end ,1],:) ...
27 - w(:,[3:end ,1:2] ,:))/(24*Delta_y);
28 dwdz = (w(:,:,[end ,1:end - 1]) - 27*w(:,:,:) + 27*w(:,:,[2:end ,1]) ...
29 - w(:,:,[3:end ,1:2]))/(24*Delta_z);
30

31

32 du2dx2 = (...
33 dudx([end -1,end ,1:end -2],:,:) - 8*dudx([end ,1:end -1],:,:) +...
34 8*dudx ([2:end ,1],:,:) - dudx ([3:end ,1,2],:,:))/(12*Delta_x);
35 du2dy2 = (...
36 dudy(:,[end -1,end ,1:end -2],:) - 8*dudy(:,[end ,1:end -1],:) +...
37 8*dudy (: ,[2:end ,1],:) - dudy (:,[3:end ,1,2],:))/(12*Delta_y);
38 du2dz2 = (...
39 dudz(:,:,[end -1,end ,1:end -2]) - 8*dudz(:,:,[end ,1:end -1]) +...
40 8*dudz (:,:,[2:end ,1]) - dudz (:,:,[3:end ,1,2]))/(12*Delta_z);
41

42 dv2dx2 = (...
43 dvdx([end -1,end ,1:end -2],:,:) - 8*dvdx([end ,1:end -1],:,:) +...
44 8*dvdx ([2:end ,1],:,:) - dvdx ([3:end ,1,2],:,:))/(12*Delta_x);
45 dv2dy2 = (...
46 dvdy(:,[end -1,end ,1:end -2],:) - 8*dvdy(:,[end ,1:end -1],:) +...
47 8*dvdy (: ,[2:end ,1],:) - dvdy (:,[3:end ,1,2],:))/(12*Delta_y);
48 dv2dz2 = (...
49 dvdz(:,:,[end -1,end ,1:end -2]) - 8*dvdz(:,:,[end ,1:end -1]) +...
50 8*dvdz (:,:,[2:end ,1]) - dvdz (:,:,[3:end ,1,2]))/(12*Delta_z);
51

52 dw2dx2 = (...
53 dwdx([end -1,end ,1:end -2],:,:) - 8*dwdx([end ,1:end -1],:,:) +...
54 8*dwdx ([2:end ,1],:,:) - dwdx ([3:end ,1,2],:,:))/(12*Delta_x);
55 dw2dy2 = (...
56 dwdy(:,[end -1,end ,1:end -2],:) - 8*dwdy(:,[end ,1:end -1],:) +...
57 8*dwdy (: ,[2:end ,1],:) - dwdy (:,[3:end ,1,2],:))/(12*Delta_y);
58 dw2dz2 = (...
59 dwdz(:,:,[end -1,end ,1:end -2]) - 8*dwdz(:,:,[end ,1:end -1]) +...
60 8*dwdz (:,:,[2:end ,1]) - dwdz (:,:,[3:end ,1,2]))/(12*Delta_z);
61

62

63 u_aver = (-u([end ,1:end -1],:,:) + 9*u(:,:,:) +...
64 9*u([2:end ,1],:,:) - u([3:end ,1,2],:,:))/16;
65 v_aver = (-v(:,[end ,1:end -1],:) + 9*v(:,:,:) +...
66 9*v(:,[2:end ,1],:) - v(:,[3:end ,1,2],:))/16;
67 w_aver = (-w(:,:,[end ,1:end -1]) + 9*w(:,:,:) +...
68 9*w(:,:,[2:end ,1]) - w(:,:,[3:end ,1,2]))/16;
69

70 RighthandSideU = viscosity.*(du2dx2 + du2dy2 + du2dz2) - ...
71 (u_aver.*dudx + v_aver.*dudy + w_aver.*dudz);
72 RighthandSideV = viscosity.*(dv2dx2 + dv2dy2 + dv2dz2) - ...
73 (u_aver.*dvdx + v_aver.*dvdy + w_aver.*dvdz);
74 RighthandSideW = viscosity.*(dw2dx2 + dw2dy2 + dw2dz2) - ...
75 (u_aver.*dwdx + v_aver.*dwdy + w_aver.*dwdz);
76

77 GradRHS = ...
78 (RighthandSideU ([end -1,end ,1:end -2],:,:) ...
79 - 8*RighthandSideU ([end ,1:end -1],:,:) ...
80 + 8*RighthandSideU ([2:end ,1],:,:) ...
81 - RighthandSideU ([3:end ,1,2],:,:))/(12*Delta_x) + ...
82 (RighthandSideV (:,[end -1,end ,1:end -2],:) ...
83 - 8*RighthandSideV (:,[end ,1:end -1],:) ...
84 + 8*RighthandSideV (:,[2:end ,1],:) ...
85 - RighthandSideV (: ,[3:end ,1,2],:))/(12*Delta_y) + ...
86 (RighthandSideW (:,:,[end -1,end ,1:end -2]) ...
87 - 8*RighthandSideW (:,:,[end ,1:end -1]) ...
88 + 8*RighthandSideW (:,:,[2:end ,1]) ...
89 - RighthandSideW (:,:,[3:end ,1 ,2]))/(12*Delta_z);
90

91

92 FourierRHS = fftn(GradRHS);
93

94 % Orientation of [k1,k2 ,k3] is based on the fft from Matlab
95 for k3 = 0:Nz - 1
96 for k2 = 0:Ny - 1
97 for k1 = 0:Nx - 1
98

62

99 K_pressure(k1 + 1,k2 + 1,k3 + 1) = ...
100 (cos(8*pi*k1/Nx) - 16*cos(6*pi*k1/Nx) + ...
101 64*cos(4*pi*k1/Nx) + 16*cos(2*pi*k1/Nx) - 65) ...
102 / (72*Delta_x ^2) + ...
103 (cos(8*pi*k2/Ny) - 16*cos(6*pi*k2/Ny) + ...
104 64*cos(4*pi*k2/Ny) + 16*cos(2*pi*k2/Ny) - 65) ...
105 / (72*Delta_y ^2) + ...
106 (cos(8*pi*k3/Nz) - 16*cos(6*pi*k3/Nz) + ...
107 64*cos(4*pi*k3/Nz) + 16*cos(2*pi*k3/Nz) - 65) ...
108 / (72*Delta_z ^2);
109

110 end
111 end
112 end
113

114 Fourier_pressure = zeros(Nx,Ny,Nz);
115 I = (K_pressure ~= 0);
116 Fourier_pressure(I) = FourierRHS(I)./ K_pressure(I);
117

118 pressure = ifftn(Fourier_pressure);
119

120 end

Listing C.9: The Matlab implementation for the computation of the pressure

1 function [] = init_field_writefield(u,v,w,p,Nx ,Ny,Nz ,folder)
2

3 counter = 1;
4

5 for kk = 1:Nz
6 for jj = 1:Ny
7 big ([(counter - 1)*Nx + 1: counter*Nx],:) = real([u(:,jj ,kk),v(:,jj ,kk),w(:,jj ,

kk),p(:,jj,kk)]);
8 counter = counter + 1;
9 end

10 end
11

12 if (exist(fullfile(folder ,'fld00.dat')))
13 delete(fullfile(folder ,'fld00.dat'))
14 end
15

16 str = ' 0.000000 ';
17 dlmwrite(fullfile(folder ,'fld00.dat'),str ,'-append ','delimiter ','', 'newline ', 'pc

')
18 dlmwrite(fullfile(folder ,'fld00.dat'),big ,'-append ','delimiter ','','precision ','

%26.17f', 'newline ', 'pc')
19

20 end

Listing C.10: The Matlab implementation for the creation of �d00.dat

63

D | All results from the uniform do-
main with a regular grid

64

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(a) Minimum

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(b) Harmonic mean

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(c) Geometric mean

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(d) Mean

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(e) Root mean square

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(f) Maximum

Figure D.1: Nx = Ny = Nz = 64: (), t = 0.159432 (), t = 0.318864 (), t = 0.478296
(), t = 0.63772 () and t = 0.79716 ()

65

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(a) Minimum

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(b) Harmonic mean

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(c) Geometric mean

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(d) Mean

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(e) Root mean square

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(f) Maximum

Figure D.2: Nx = 32 and Ny = Nz = 64: (), t = 0.159432 (), t = 0.318864 (),
t = 0.478296 (), t = 0.63772 () and t = 0.79716 ()

66

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(a) Minimum

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(b) Harmonic mean

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(c) Geometric mean

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(d) Mean

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(e) Root mean square

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(f) Maximum

Figure D.3: Nx = 16 and Ny = Nz = 64: (), t = 0.159432 (), t = 0.318864 (),
t = 0.478296 (), t = 0.63772 () and t = 0.79716 ()

67

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(a) Minimum

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(b) Harmonic mean

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(c) Geometric mean

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(d) Mean

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(e) Root mean square

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(f) Maximum

Figure D.4: Nx = Nz = 32 and Ny = 64: (), t = 0.159432 (), t = 0.318864 (),
t = 0.478296 (), t = 0.63772 () and t = 0.79716 ()

68

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(a) Minimum

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(b) Harmonic mean

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(c) Geometric mean

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(d) Mean

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(e) Root mean square

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(f) Maximum

Figure D.5: Nx = 16, Ny = 64 and Nz = 32: (), t = 0.159432 (), t = 0.318864 (),
t = 0.478296 (), t = 0.63772 () and t = 0.79716 ()

69

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(a) Minimum

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(b) Harmonic mean

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(c) Geometric mean

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(d) Mean

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(e) Root mean square

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

k

E
(k
)

(f) Maximum

Figure D.6: Nx = Nz = 16 and Ny = 64: (), t = 0.159432 (), t = 0.318864 (),
t = 0.478296 (), t = 0.63772 () and t = 0.79716 ()

70

	Introduction
	General theory on computational fluid dynamics
	The Navier-Stokes equations
	Large-Eddy Simulation
	The Smagorinksy-Lilly model
	Homogeneous and isotropic turbulence
	The energy spectrum
	The scales in the energy spectrum
	The integral scales
	The inertial scales
	The dissipative scales

	Constructing the initial velocity field
	The initial velocity field on a uniformly spaced grid
	Deriving the modified wavenumber
	Constructing the direction of the Fourier terms
	The amplitude of the Fourier modes
	Completing the velocity field

	The initial pressure field
	Problems for nonuniform grids
	Computing the initial field on a staggered grid
	Using the modified wavenumber on a staggered grid
	Notes on other possible methods

	Research
	The research
	The filtered energy spectrum
	Choices of length scales
	The Reynolds number
	Finding the correct Smagorinsky constant
	Program specific choices

	Results
	Results on the uniform domain
	The fine solutions
	The optimal solution

	Results on the nonuniform domain
	Case 1: changing one length
	Case 2: changing two lengths
	Case 3: changing one length between the minimum and maximum of the all the lengths of the domain
	Combined results

	Conclusion
	Conclusion
	Discussion
	Choice of constants
	Accuracy
	The choice of LES filter

	Implementation of the initial energy spectrum.
	Fitting the CBC data
	Algorithm for the implementation of the spectrum
	Algorithm for the LES

	Derivation of a velocity field on a nonuniform grid
	Source code
	All results from the uniform domain with a regular grid

