
UNIVERSITY OF GRONINGEN

BACHELOR THESIS

Automatic Monitoring of
Test Performance Evolution for

Web Services

Author:
Thijs KLOOSTER

Supervisors:
Dr. Mircea LUNGU

Dr. Vasilios ANDRIKOPOULOS

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Computing Science

in the

Software Engineering and Architecture Group
Department of Computing Science
Faculty of Science and Engineering

July 30, 2017

http://www.rug.nl/
https://kloostert.github.io/
https://mircealungu.github.io/
http://www.cs.rug.nl/search/People/VasiliosAndrikopoulos
http://www.cs.rug.nl/search/
http://www.cs.rug.nl/search/
http://www.rug.nl/research/fse/

1

University of Groningen

Abstract
Faculty of Science and Engineering
Department of Computing Science

Bachelor of Computing Science

Automatic Monitoring of
Test Performance Evolution for

Web Services

by Thijs KLOOSTER

This thesis presents a novel library for Python-based Flask applications to gain in-
sight into the evolving performance of a web service. As of yet, there is no library
that supports the developer of a Flask web application to track its performance dur-
ing the development lifetime of the project.

In order to track the performance, two solutions are possible. One is observing
the evolution of unit test performance as the project evolves over time, the other
is observing the evolution of live performance of a deployed service as this service
evolves over time. This thesis presents and evaluates a system that enables the for-
mer: monitoring the evolution of the system via the monitoring of the test cases.

As a case study for testing the tool, a platform for vocabulary learning in a for-
eign language was utilized. It is a web application written in Python using Flask.
Results of deploying the tool on this platform are discussed here as well.

http://www.rug.nl/
http://www.rug.nl/research/fse/
http://www.cs.rug.nl/search/
https://kloostert.github.io/

2

Acknowledgements
I would like to thank Mircea Lungu and Vasilios Andrikopoulos for their support
and assistance during this project. Without them, this project would not have been
possible. Also, they co-authored a paper (Lungu et al., 2017) about the tool pre-
sented in this thesis, which will be published by VISSOFT, a conference on software
visualization.

I would also like to thank Mircea Lungu, for his support in deploying the system
presented in this thesis in the context of the Zeeguu API, to be used as a case study.

Lastly, I would like to thank Patrick Vogel, with whom I worked jointly on the
implementation of the tool described in this thesis.

3

Contents

Abstract 1

Acknowledgements 2

1 Introduction 5

2 Background and Related Work 7
2.1 Web Services . 7

2.1.1 Python web services . 7
2.1.2 Flask . 7

2.2 Service evolution . 8
2.2.1 Git . 8
2.2.2 TravisCI . 9

2.3 Measuring service performance . 10
2.3.1 Development environment . 10
2.3.2 Production environment . 10

2.4 Unit testing . 10
2.4.1 Creating tests . 11
2.4.2 Running tests . 12

2.5 Related work: Software performance visualization 13
2.5.1 Visualizing parallelism . 14
2.5.2 Visualizing project evolution . 14

3 Implementation 16
3.1 The Dashboard . 16

3.1.1 Solution design . 16
3.1.2 Data visualization . 18
3.1.3 Technology stack . 19
3.1.4 Dashboard look . 21

3.2 Dashboard usage . 25
3.2.1 The Flask app . 25
3.2.2 Configuration options . 25
3.2.3 User variable . 27
3.2.4 Binding . 28
3.2.5 Dashboard routes . 28
3.2.6 Travis integration . 30

4 Evaluation 32
4.1 Case study . 32
4.2 Results . 33

4.2.1 Service utilization . 33
4.2.2 Endpoint performance . 35
4.2.3 User experience . 37

Contents 4

4.2.4 Unit test performance . 38

5 Conclusion and Future Work 40
5.1 Conclusion . 40
5.2 Future Work . 41

5.2.1 Case studies . 41
5.2.2 Meta-dashboard . 41
5.2.3 Error tracking . 41
5.2.4 Flask core . 42

A Availability of Flask Dashboard 43

Bibliography 44

5

Chapter 1

Introduction

This digital age is upon us. More and more people are browsing the Internet and
with that, the number of web services is growing rapidly. Web services can be for
example sources of information, sources of entertainment or social platforms. Of
course, users of these services want to have the best possible user experience. This
means that the aim of the developer should be to achieve the highest possible service
quality. This includes, but is not limited to, the very important aspect of performance
of the service. This thesis focuses on monitoring the performance of a web service
throughout its development lifetime. The research question that this thesis will an-
swer is:

"How to create a tool that allows the automatic performance monitoring of evolving unit
tests for Flask services in a way that affects these services in the least amount possible?"

There are two ways of monitoring the impact of the system evolution on the per-
formance of the service. One is observing the evolution of unit test performance
as the project evolves over time, the other is observing the evolution of live perfor-
mance of a deployed service as this service evolves over time. This thesis presents
and evaluates a system that enables the former: monitoring the evolution of the sys-
tem by monitoring its unit tests. The thesis by Patrick Vogel presents and evaluates a
system that enables the latter: monitoring the evolution of the system by monitoring
its live deployment (Vogel, 2017).

Python has become one of the most popular programming languages lately. In
fact, the TIOBE Index1 shows Python as the fourth most popular language as of
June 2017. Python is also a very popular language in the programming of web ap-
plications. There is a library for Python called Flask, which is quite popular and
free-to-use. It allows the developer to create Python web services with very little
effort. The tool presented in this research is aimed at these web applications. The
tool is implemented using Python and Flask as well, in order to easily extend the
monitored service with a monitoring dashboard.

This thesis contains background information and related work in Chapter 2.
Then, it talks about the implementation of the tool created during this research in
Chapter 3. It continues talking about the evaluation of the created tool in Chapter 4,
by detailing the results of a case study that has been done in this research. Lastly, a
conclusion is given along with possible future work in Chapter 5.

1TIOBE programming community index is a measure of popularity of programming languages
(https://www.tiobe.com/tiobe-index/)

https://www.tiobe.com/tiobe-index/

Chapter 1. Introduction 6

The work presented in the thesis by Vogel (2017) in combination with the work
presented in this thesis resulted also in the publication of a paper written by Lungu
et al., 2017. This paper will be published by VISSOFT2, a conference on software
visualization. The paper presents Flask Dashboard (the tool presented in the thesis
by Vogel and this one), a plug-in for Python-based Flask web applications that mon-
itors them and provides their developers with information about the performance
of these applications. The paper also talks about a case study in which the plug-in
has been tested, and that based on the results of these tests, the plug-in has been
improved.

2http://vissoft17.dcc.uchile.cl/

http://vissoft17.dcc.uchile.cl/

7

Chapter 2

Background and Related Work

2.1 Web Services

The biggest part of the web consists of services that entertain users, allow their users
to gather information, or act as a social platform. All of the aforementioned possi-
bilities need some kind of server, which enables users to find these services on the
web and actually use them. Web services are defined by W3C1 as a software system
designed to support interoperable machine-to-machine interaction over a network
(Haas, 2004).

These services use the Hypertext Transfer Protocol (HTTP) for communication
between the service requester and the service provider. Data that is being exchanged
can be for example XML or JSON, or HTML in combination with CSS and JavaScript,
which a browser of a client (the requester) will render into the requested web page.

The architecture that is being used more and more for achieving this is Represen-
tational State Transfer (REST). This architecture consists of a set of predefined state-
less operations, some of which correspond to the HTTP verbs GET, PUT, POST,
DELETE. These enable the client to access and/or manipulate the data on the server.
(Fielding et al., 1999)

2.1.1 Python web services

Python has been around for quite some time now, as it was first released in 1991.
This programming language emphasizes code readability by using white space to
delimit code blocks. It has a syntax that allows the programmer to say more with
less lines of code than other languages would need to express the same thing.

Creating web applications in Python is made relatively simple also due to the
number of web frameworks available for this language. These include Django2,
Pyramid3 and Flask4. All of these frameworks aim to improve the simplicity of
setting up a Python-based web service.

2.1.2 Flask

Flask is called a micro web framework, since it is a very lightweight and minimalistic
framework for creating Python-based web applications. It is based on Werkzeug5

and Jinja 26. Werkzeug is a Web Server Gateway Interface (WSGI) utility library.
WSGI has been adopted as the standard for Python web application development.

1World Wide Web Consortium (https://www.w3.org/)
2https://www.djangoproject.com/
3https://trypyramid.com/
4http://flask.pocoo.org/
5Werkzeug WSGI library (http://werkzeug.pocoo.org/)
6Jinja 2 template engine (http://jinja.pocoo.org/)

https://www.w3.org/
https://www.djangoproject.com/
https://trypyramid.com/
http://flask.pocoo.org/
http://werkzeug.pocoo.org/
http://jinja.pocoo.org/

Chapter 2. Background and Related Work 8

Jinja 2 is a full featured template engine for Python. To create a simple "Hello World"
web application using Flask, one only needs five lines of Python code (Ronacher,
2010):

from flask import Flask
app = Flask(__name__)

@app.route("/")
def hello():

return "Hello World!"

When running this code, this live "Hello World" application will be available by
default on localhost:5000/. It will only have one page, which would be the
index page (/) of the application. It will render the plain text "Hello World" on the
page in your browser.

For the implementation of the tool presented in this research, Flask is used to
create a dashboard to let the developer interact with the tool in a user-friendly way.
Since the tool is made to also monitor Python-based Flask applications, extending
such an application with the monitoring dashboard will be made easier.

2.2 Service evolution

During the development lifetime of a piece of software, there will be updates that
should make the software better in some way (Papazoglou, Andrikopoulos, and
Benbernou, 2011). These updates come in the form of new versions of the software.
For example, if a bug is found, oftentimes the developers will try to fix this bug.
After they are confident their changes to the software got rid of the bug, they have
a newer version of their software. There are version control systems that provide a
way for the developers to track these versions of their evolving piece of software.

2.2.1 Git

One example of a version control system is Git7. It is free, fast, open source and
probably by far the most popular choice. It is used for tracking changes in files
as well as allowing easy collaboration by more people on the same project or even
on the same file. Git was created in 2005 for the development of the Linux kernel
(Chacon and Straub, 2014).

GitHub8 is a web service that facilitates the hosting of repositories that are using
version control (using Git). A repository is used for storing the source code of a soft-
ware project, where collaborators can update the source code by creating ’commits’
and pushing them to the repository. This way, evolution of a project is tracked by
retaining the complete history of the repository and its commits.

Using Git is fairly easy. After installing Git, a repository can be initialized by
creating a new project folder or by moving to an already existing one. Inside this
folder, in the terminal, the command git init will initialize the repository. What
this does is create a hidden folder named .git, in which the magic of Git happens.
The repository is now set-up and ready to be used.

Initially, the repository has only one ’branch’, named Master. This is by de-
fault the main branch of a repository. A branch represents an independent line of

7https://git-scm.com/
8https://github.com/

https://git-scm.com/
https://github.com/

Chapter 2. Background and Related Work 9

development within your project repository. Files on one branch can be changed
without affecting the ones on other branches. Branches can be used to create differ-
ent features of the software under development. After the feature is implemented,
the branch containing this feature can then be merged back into the Master branch
to add it to the main line of development.

A command that is very useful is git status, which will give some informa-
tion about the current branch, as well as a list of added, modified or deleted files.
Running this command after creating a new file results in Git saying that the newly
created file is untracked. To track the changes made to this file, it can be added to
Git by issuing the command git add <filename>. To add everything to Git, the
command git add . can be used.

Now that new, updated or removed files are added to Git, they can be ’comitted’
to the repository. This will create a new ’commit’, a snapshot of the files, and add it
to the version control system. A commit has a branch it is applied on, the user that
applied it, a time stamp, a commit message that describes the commit, and the list
of changed files of course. These commits can be seen as versions of the software
project. Git will automatically hash these commits based on the contents and the
commit message, resulting in a unique character string that represents the commit.
This hash could be used to denote the version of the software, since it describes a
snapshot of it during the development phase.

Updates from collaborators can be downloaded to the local repository by issuing
git pull. Updates in the local repository can be uploaded to enable collaborators
to download them by issuing git push. Using these commands, commits will be
downloaded and uploaded, respectively. Differences between the last commit and
newly downloaded updates can be viewed by issuing git diff.

The commands described here are only a small subset of the ones available through
Git. This makes it a great free and open source version control system to be used for
software projects under development.

2.2.2 TravisCI

For software projects that have version control, there is the possibility of automatic
continuous integration testing. The idea of continuous integration is that during
the development of a piece of software, it would be tested for integration a few
times a day for example. This way, developers gain more confidence in the newer
versions of their software, in the sense that these updated versions do not break the
functionality that was previously there. A form of testing the continuous integration
would be running unit tests (see Chapter 2.4 for further explanation about unit tests).

TravisCI9 is an example of a continuous integration service that builds and tests
software projects hosted on GitHub for free. To configure Travis to do this for your
repository, a file named .travis.yml should be added to the root of the repository.
This file specifies the different settings that the developer would like Travis to use,
and what to build. An example of such a file would be something like:

services:
− mysql

before_install:
− mysql −e "create database IF NOT EXISTS test;" −uroot
− pip install coveralls
9https://travis-ci.org/

https://travis-ci.org/

Chapter 2. Background and Related Work 10

language: python
python:

− "3.6"

install: "python setup.py develop"

script: "./run_tests.sh"

This file specifies the services that Travis should use in order to test the project,
the commands that it should run before the installation of the project, as well as the
programming language and version of that language. It needs to specify how to
install the project, and scripts to run the tests the project could contain.

When continuous integration testing is enabled on Travis for the repository you
added the .travis.yml file to, whenever a new commit is made, Travis will auto-
matically run the build and tests for this new version of the project. It will notify the
developer whenever a build failed, so that he knows he has broken the build with
his last commit. This way, the developer can fix this and create an updated version
of the project again, or he could choose to revert back to some earlier version.

2.3 Measuring service performance

There are two environments in which one could evaluate the performance of a web
service as the service evolves during its development phase (Ellison, 2015). First
off, we have a kind of static evaluation in the development environment. This in-
cludes unit testing, which will be explained in the next section. Secondly, we have
a dynamic evaluation environment, namely the production environment. Since the
web is dynamic, the only way to obtain statistical information about a service under
development is by actually deploying it and then collecting the information.

2.3.1 Development environment

The development environment is also called sandbox. This is where unit testing is
performed by the developer. End-users have no access to this environment. Since
this is the case, tests can be run as many times as the developer desires, and the
service can be interrupted or down as long as he likes.

2.3.2 Production environment

The production environment is sometimes also called the live environment, due to
the fact that end-users have access to this environment. They will be able to directly
use the service that has been deployed in this environment. Usually, only major
versions of the application will be deployed here, since deployment often requires a
service interruption.

2.4 Unit testing

Unit Testing is a level of testing where the components of a piece of software are
tested individually (Ellison, 2015). Its purpose is to validate that each component
of the software performs like it is supposed to. It is a kind of white-box testing,

Chapter 2. Background and Related Work 11

where the tester knows the internal implementation of the component being tested.
During the evolution of a piece of software under development, if one unit test fails
suddenly where it succeeded before, the developer knows that the newest version
of the software has a bug that prevents the software from working the way it is
supposed to.

2.4.1 Creating tests

Creating a unit test is relatively easy, as the internal implementation of the thing you
are testing is known to you. There are libraries for writing unit tests for every major
programming language. In the case of Python, the library called unittest would
be a good example of such a unit testing framework. Setting up unit tests here is
quite straightforward (PythonSoftwareFoundation, 2010):

import unittest

class TestStringMethods(unittest.TestCase):

def test_upper(self):
self.assertEqual(’foo’.upper(), ’FOO’)

def test_isupper(self):
self.assertTrue(’FOO’.isupper())
self.assertFalse(’Foo’.isupper())

def test_split(self):
s = ’hello world’
self.assertEqual(s.split(), [’hello’, ’world’])
with self.assertRaises(TypeError):

s.split(2)

Naturally, we need to import the unittest library. Then, we can define a unit
test class, which contains the actual tests the developer wants to run. Such a class
will be a subclass of unittest.TestCase. Each test will be defined as a separate
function inside this subclass. Following the naming convention, the names of the
test functions will start with the word ’test’. Inside those tests, one has access to a set
of tools one might need. In the example above, only a small subset of the available
tools are demonstrated. This shows that using only a few of the tools will suffice to
meet the needs of most testers.

In the example, we have three tests. The first will test whether or not the conver-
sion to upper case of some string results in some other string. This is done by using
the equality assertion. The second will test whether or not some string consists of
upper case letters. This is done by either using the assertion of something being false,
or the assertion of something being true. The third test will test the equality of two
given values again, as well as testing if some function call with certain arguments
will throw an error of some type.

These basic tools will grant the developer/tester to test almost everything they
would want to. After creation of these tests, they have to be actually run, of course.

Chapter 2. Background and Related Work 12

2.4.2 Running tests

To run a unit test case like the one used as an example in the previous section, two
simple lines of code have to be appended to it:

if __name__ == ’__main__’:
unittest.main()

This will run the unit tests in the class defined in this python script. When running
unit tests from another script or from the interpreter for example, two different lines
of code should be appended to the test case:

suite = unittest.TestLoader().\
loadTestsFromTestCase(TestStringMethods)

unittest.TextTestRunner(verbosity=2).run(suite)

These will also give the tester a finer level of control over the tests to be run and the
output verbosity of the tests.

Las but not least, a developer can use the test discovery functionality. This means
that on the command line, when the working directory is your project directory, a
command can be run to execute the unit tests. This command will search for all unit
tests within your project directory and then execute them:

$ python -m unittest discover

When the names of the tests follow the naming convention, the test discovery func-
tionality will be able to find them automatically. After the execution of the tests,
the command line will output some information about the tests that have been run.
When the -v flag is appended to the command, the output will be verbose.

The output of running the example will be something like:

test_isupper (test.TestStringMethods) ... ok
test_split (test.TestStringMethods) ... ok
test_upper (test.TestStringMethods) ... ok

--
Ran 3 tests in 0.001s

OK

It shows that each of the three test cases have been run successfully. This means that
all assertions were evaluated and the results were as expected. Now suppose we
make one of the assertions fail, like for example changing the assertion in test_upper:

self.assertEqual(’foo’.upper(), ’FOOD’)

The output will now be something like:

test_isupper (test.TestStringMethods) ... ok
test_split (test.TestStringMethods) ... ok
test_upper (test.TestStringMethods) ... FAIL

==
FAIL: test_upper (test.TestStringMethods)

Chapter 2. Background and Related Work 13

--
Traceback (most recent call last):

File "test.py", line 6, in test_upper
self.assertEqual(’foo’.upper(), ’FOOD’)

AssertionError: ’FOO’ != ’FOOD’
- FOO
+ FOOD
? +

--
Ran 3 tests in 0.001s

FAILED (failures=1)

From this, we can see that only two of the three tests have passed, while the one
that we altered, did not. Since one of the tests failed, the whole unit test run gets
marked as being failed. Now that we have a failing test, the library gives additional
information about why that test failed. It gives information about the file in which
the failing test resides, the line number of the code that causes the test to fail, and
the values that have been tested for the assertion. In this case they were ’FOO’ and
’FOOD’, which obviously are not equal. The difference between them is also shown.

This process of writing tests and running them will help the developer to gain more
confidence in the current version of the software, when the tests all pass. Another
advantage of unit testing is that this way, bugs can be found early in the develop-
ment cycle, making them relatively less costly to deal with.

A software development process that makes use of unit tests the most would be
Test-driven development (TDD). This process has a very short development cycle
that consists of turning requirements into test cases first, after which the actual soft-
ware is improved to pass these newly added tests. This way, all components of the
software are tested so that they will behave exactly the way they are supposed to.
This also inspires confidence in the software under development.

2.5 Related work: Software performance visualization

Techniques to visualize the performance of software are being used for quite a while
now. An example of a tool that does this specifically for web services that use the
Simple Object Access Protocol (SOAP) is Web Services Navigator (Pauw et al., 2005).
It visualizes characteristics and components of service-oriented architectures. In-
formation about web service requests and responses is tracked and stored. Then,
the information is retrieved and visualized in order for the developer to gain more
insight into the performance of the service under development.

Within the research area of software visualization, a few related techniques are
summarized in the following sections. They consist of visualizing software paral-
lelism and visualizing the evolution of a software project. This makes them relate
to the research that is done here, since the former is a kind of software performance
monitoring, while the latter is a form of software evolution visualization. These
aspects are both part of this research as well.

Chapter 2. Background and Related Work 14

2.5.1 Visualizing parallelism

The complexity of modern software rises continuously. Optimizing the performance
of large programs becomes therefore more and more difficult. Performance analysis
and visualization are therefore very important in the software development process.
One way of performance analysis is to study execution traces. This means recording
the history of process events and inter-process messages in a parallel application. Vi-
sualizations of these recordings will give the developer insight into the performance
of such an application. (Isaacs et al., 2014)

A case study in the paper written by Isaacs et al. (2014) investigates an 8-ary
merge tree calculation. The parallel execution traces of the original implementa-
tion of this calculation is visualized for 1024 and 16384 processes. The visualiza-
tion shows that in both cases there is a lot of white space, indicating processes are
waiting. Of course, the waiting time of processes in a parallel program should be
minimized. This possibly makes the program as a whole execute faster and take up
less resources. So, after this discovery, the developers improved the implementation
of the calculation. A new visualization, using the same amount of processes, shows
greater parallelism and less white space. Using this visualization technique, this case
study shows that performance of software is improved by letting the developers see
what aspects of their software could be performing sub-optimally.

To optimize the performance of software, one approach developers could use is
parallelism. Tasks that a piece of software would normally run sequentially, might
be able to run in a parallel manner just as well. Oftentimes this leads to faster run
times of the same executed task. Therefore, this approach is one that could be used
in certain cases to improve software performance drastically.

Unfortunately, identifying possible pieces of code that could be run in parallel
has proven to be more difficult as the complexity of the software increases. There
are automatic methods of finding these pieces of code, but they can only identify
parallelism within simple loops or at the instruction level of program execution.

In a paper written by Wilhelm et al. (2016), a visualization framework for iden-
tifying parallelism in a piece of software is presented. This framework consists of
three views for parallelism detection. It is part of Parceive, a tool that traces C, C#
and C++ programs. Its goal is to assist in detecting parallelism opportunities at vari-
ous granularity levels. It utilizes static binary analysis and dynamic instrumentation
to collect the trace data. This is related to the research presented in this thesis, since
it consists of performing static and dynamic performance analysis on a web service,
saving the obtained data, and visualizing it in the most useful way.

2.5.2 Visualizing project evolution

Since the research in this thesis is about visualizing the performance of software as
it evolves over time, some kind of version control system like GitHub would be ap-
propriate to use. It has built-in graphs that show information about the repositories,
but Feist et al. (2016) state that those fall short on showing the effective contribu-
tions made by each collaborator. Therefore, they present TypeV: a tool for visualiz-
ing Java source code repositories. This tool does not use information like additions
and deletions in lines of code, but rather extracts detailed type information by using
differences between abstract syntax trees (ASTs) of committed code. This way, addi-
tions and deletions in terms of declarations and type invocations are used and can

Chapter 2. Background and Related Work 15

therefore be visualized this way too. The data can now be visualized by grouping by
kinds of additions and deletions, which gives more insight in the software evolution.

Visualizing the evolution of a software project can also be done by using a tool
called Softwarenaut, presented by Lungu, Lanza, and Nierstrasz, 2014. The tool
they present can be used for architecture recovery, which is needed for systems
whose initial architectures have been eroded. When dealing with a large system,
this cannot be done manually, without the assistance of tools for the recovery pro-
cess. The tool supports this process by visualizing the software and by interactively
exploring it. The tool consists of features like filtering and details on demand, as
well as the support for multi-version software systems. The latter enables the evo-
lution of the system to be visualized in terms of the analysis results of the tool.
Softwarenaut uses version information of a software system to be able to assist
in the evolutionary software architecture recovery process. The tool presented in
this thesis also uses version information of a software system, in this case to monitor
the evolving performance of this system.

16

Chapter 3

Implementation

The main goal of this research is to develop a tool that enables its user to gain insight
into the evolving performance of a web service during its development phase. This
tool should perform analytics on the monitored service, while changing the exist-
ing service in the least amount possible. The usage of this tool should be made as
simple as possible, so that the developer has to make the least amount of effort to
monitor his service. In order to track the evolution of the system, the tool should
allow integration with Git. To add the monitoring dashboard to the existing moni-
tored service, the tool has to allow integration with Flask services. For the automatic
unit testing, the tool should allow for integration with TravisCI.

The programming language Python was used in the implementation of this tool.
This was decided since this language is very expressive and thus needs fewer lines
of code than other languages might to achieve the same result. It also a language
that scores high in the code readability aspect, which is also a good reason to work
with the language. Python also has a vast collection of available libraries which are
free to use, which makes the life of a developer easier still.

A library used in the implementation of this tool is Flask. Flask is a free-to-use
library for Python that enables the developer to implement and deploy a web appli-
cation with minimal effort, due to the way Flask can be set-up in a Python project.
As mentioned before, with a few lines of code, a fully functional web application can
be created and deployed. This saves the developer really a lot of effort, since using
this library prevents the developer from reinventing the wheel.

3.1 The Dashboard

First off, a short description of how the dashboard was made is given. This includes
the technology stack that was used, as well as some of the bigger design decisions
that were made during the development of the tool.

3.1.1 Solution design

To measure execution times of a web service, in this case a Flask application, the tool
should attach itself to this app. This way, when a request comes in, a timer could
be started. Then when the app handled the request and sends back a response, the
timer could be stopped. The measured time is the execution time the service needed
to handle that specific request.

Data collection is needed to satisfy the requirement of performing analytics on
a monitored service. To be able to collect data, the dashboard has to know when a
request comes in on the monitored web service. To achieve this, wrapper functions
are used. A wrapper function is a subroutine in a piece of software whose main pur-
pose is to call another subroutine. This comes in handy, since when a request comes

Chapter 3. Implementation 17

in, a subroutine is called that handles this request and possibly render a HTML page
as a response. If this subroutine could be wrapped by another, this other subroutine
could then collect information about the incoming request and the request handling.

Python has a very nice design pattern that enables the achievement of this effect.
This is called the FunctionWrapper pattern. What this does is demonstrated in
the following example1:

def trace_in(func, ∗args, ∗∗ kwargs):
print "Entering function", func.__name__

def trace_out(func, ∗args, ∗∗ kwargs):
print "Leaving function", func.__name__

@wrap(trace_in, trace_out)
def calc(x, y):
return x + y

Calling print calc(1,2)would then result in the following output:

Entering function calc
Leaving function calc
3

This shows that by adding the @wrap annotation before a function definition, when
that function gets called, the function wrappers are also executed. This is exactly
what is needed for the data collection of the incoming requests. These data should
then be persisted, which can be done by using a database. After persistence, the
database lets the dashboard easily retrieve all of its past measurements for visual-
ization purposes.

For the collection of data, the dashboard should support a few methods that take
care of this:
The first is the collection of the last access times of all of the endpoints found in
the web application that is being monitored. This means that the dashboard tracks
every request the web service gets, and see for which endpoint the request is in-
tended. It then updates the last access time of this endpoint to the time the request
came in. The way this is done is by finding all of the functions that act as a route
of the monitored web application. This means finding all of the functions that get
executed when the corresponding requests to the web service are made. When these
functions are found, the dashboard adds a wrapper function to each of them. This
wrapper function then retrieves the current time and the name of the endpoint that
it is wrapped around. Then, this information is stored in the database by updating
the time stamp of the last access time of this specific endpoint.

The second method is the collection of execution time data. This is only done
for the subset of the endpoints that the user of the dashboard selects. The dash-
board adds another wrapper function to each of the selected endpoint functions.
This wrapper function retrieves the current time before execution of the wrapped
endpoint function, as well as the current time after the execution of the endpoint
function. It can then calculate the difference between the two to get the time it took
for the request to be handled by the corresponding endpoint function. This result

1https://wiki.python.org/moin/FunctionWrappers

https://wiki.python.org/moin/FunctionWrappers

Chapter 3. Implementation 18

is then stored in the database by adding the execution time in combination with the
executed endpoint to a table in the database.

The third method is the collection of unit test execution time data. Unit tests can
be run automatically using a continuous integration tool like Travis, as mentioned in
Section 2.2.2 on page 9. This enables the developer of the web application to let the
unit tests be run automatically when a new commit is made on GitHub. This auto-
matic run of the unit test suite could then post its results to the deployed dashboard,
so that the user of the dashboard can inspect them. This way, the data collection
for the unit testing can be implemented. Whenever Travis detects a new commit,
it starts to build the service under development. Then, it searches for any and all
unit tests that are present in the project, after which it runs them. Just before and
just after a test is run, the current time is retrieved. The difference between these
two times is then calculated as being the execution time of that specific run of that
specific test. This result is then appended to a list of execution times. When all tests
have been run and the execution times are all appended to this list, the list is then
sent to the deployed dashboard. It then stores the results in its database, such that
they are included in the visualizations on the dashboard. Section 3.2.6 on page 30
explains how to set-up the automatic unit test monitoring.

3.1.2 Data visualization

When the dashboard has collected some data, the visualizations become active. The
types of graphs used in the dashboard are heat maps, bar charts, box plots, time
series and dot plots.

The heat maps are used for visualizing the behavioral patterns of the users of
the service. It shows times of the day where the service has higher loads and the
times of the day where the service has lower loads. From this, usage patterns can
be spotted. This could be used to adapt the service to increase performance during
times of the day when there is a high load. Such a graph has the 24 hours of every
day on the y-axis, while on the x-axis the previous 30 days are listed. So for every
hour of every day, the corresponding cell is colored with a warmer color when the
load is high, while the cell is a colder color when there is a low load at that time.

The bar charts give more insight into the distribution of the requests of the users
of the monitored service over the different endpoints that are being monitored. For
every day, there is a stacked bar, where each segment has a different color and repre-
sent the number of requests made for a certain endpoint that day. This gives insight
into which endpoints receive the most requests each day and also which endpoints
are becoming more or less popular.

The box plots are a type of graphical representation of groups of numerical data,
by showing the quartiles of these data (see Figure 3.1). The quartiles of a data set
are the three points that divide the data set into four equal groups. One of these
points is the median, which is the ’middle’ value of the data set. Box plots can also
have lines extending from them, which are named ’whiskers’. They represent the
variability outside the upper and lower quartiles. When present, outliers in a data
set are represented by individual points. These box plots are used by the dashboard
for depicting collected measurement data, in this case for certain groups of execution
time data. They were chosen since they nicely show the spread of data in a set,
which proves to be quite handy for quickly obtaining insight into the differences in
execution times in this case.

Chapter 3. Implementation 19

FIGURE 3.1: Example of a box plot with whiskers

The time series plots have on the y-axis the execution time in milliseconds or
number of hits, while the x-axis contains the actual time series. This gives insight
into the execution time evolution over time and the number of hits over time for a
certain endpoint. This could show increases or decreases in endpoint popularity, as
well as the days for which this specific endpoint has decreased performance and/or
a high load.

The dot plots show the average execution time of a certain endpoint for a certain
user. The user could be determined by the user name as well as the IP address the
request was made from. These plots show differences in execution times over the
evolution of the web service for a specific user, as well as differences in execution
times for different users of the same version of the service. This could be used for
spotting users that experience exceptionally high execution times, such that these
users could be investigated further. Then the service could be updated to improve
the experience for these users.

These are all the different types of graphs used by the dashboard to visualize the
measured data. The graphs mentioned here are explained further with examples in
Section 4.2 on page 33.

3.1.3 Technology stack

The programming language Python2 was used in the implementation of this tool. A
library for this language that was used is Flask3.

Another library that was used is SQLAlchemy4, which is a toolkit for using SQL
in Python. Since the dashboard makes use of a database to store the measurements
in, a library that provides a way of creating and interacting with such a database
would save a lot of development effort. SQLAlchemy was used since this is a library
that gives the developer many choices for the type of database he wants to use. Also,
the library comes with an extensive amount of functionality that proves to be quite
useful. The database type used by this tool is SQLite5, since this is a very simple
solution that provides a database without being a client-server engine. This means

2https://www.python.org/ (version 3.6.1)
3http://flask.pocoo.org/ (version 0.12.2)
4https://www.sqlalchemy.org/ (version 1.1.11)
5https://www.sqlite.org/ (version 3.18.0)

https://www.python.org/
http://flask.pocoo.org/
https://www.sqlalchemy.org/
https://www.sqlite.org/

Chapter 3. Implementation 20

that the dashboard can directly interact with the database file without setting up a
database server, which makes it a simpler solution.

Plotly6 is the library that is being used by the tool for visualization of the obtained
data. This library provides a way to easily create interactive graphs for on-line use,
which is perfect for the implementation of the dashboard. This library saves a huge
amount of implementation effort for the data visualization part, since it provides the
developer with a large amount of different interactive graphs and charts that can be
rendered and placed on a web page quite easily.

In addition to these main libraries that were used, a few others were used:
First off, the configparser library (in Python version 3.6.1) provides a way of
easily parsing a configuration file. In our case this would be a file named
dashboard.cfg, containing some custom settings of the dashboard.

Secondly, psutil7 was used for retrieving additional information about the cur-
rent CPU usage and memory utilization. This comes in handy when some request to
the web service being monitored gets flagged as being an outlier, in which case addi-
tional information is logged. This gives the dashboard user more insight into what
might have caused that specific request to take longer to be handled than others of
the same type.

Thirdly, colorhash8 was used for hashing the name of a page of the monitored
web application to a color in the form of a red-green-blue (RGB) color value. This
assigns a color to every page, which is used in the visualization of the measurement
data of such a page. Hashing is used to map data of one form (in this case a string
of characters) into a different form (in this case an RGB color value). This way, the
same color is used in the visualization of the collected data of some web application
page.

Finally, requests (in Python version 3.6.1) is used for its functionality to do
HTTP requests to some web address. The specific functionality needed from this
library is for doing a POST-request to the /dashboard/submit-test-results
page of the dashboard, containing the collected results of running the test suite of
the monitored application. This is explained further in Section 3.2.5 on page 30.

The software applications used for the development of the tool, were the following:
The integrated development environment (IDE) that was used for implementing the
tool is PyCharm9. This free-to-use IDE provides a Python source code editor, build
automation tools and a debugger, as well as code completion and intelligent on-the-
fly error checking. This makes it a very powerful tool for Python software develop-
ment. These great features make choosing an IDE very easy.

To test the web application and actually see what it looks like when it is de-
ployed, two different web browsers were used. One is Google Chrome10, which
is the browser that has the greatest market share (netmarketshare.com, 2017). The
other is Mozilla Firefox11, which has the third greatest market share (netmarket-
share.com, 2017).

6https://plot.ly/ (version 2.0.12)
7https://pypi.python.org/pypi/psutil (version 5.2.2)
8https://pypi.python.org/pypi/colorhash (version 1.0.2)
9https://www.jetbrains.com/pycharm/ (version)

10https://www.google.com/chrome (version 59.0.3071)
11https://www.mozilla.org/en-US/firefox/ (version 54.0.1)

https://plot.ly/
https://pypi.python.org/pypi/psutil
https://pypi.python.org/pypi/colorhash
https://www.jetbrains.com/pycharm/
https://www.google.com/chrome
https://www.mozilla.org/en-US/firefox/

Chapter 3. Implementation 21

Another application that was used for working in collaboration on the imple-
mentation of the tool is Git12. This provides a great way of version control and issue
tracking, as mentioned in Section 2.2.1 on page 8.

3.1.4 Dashboard look

Having talked about the internals of the dashboard, now it is time for its appear-
ance. This dashboard satisfies the requirement to enable its user to gain insight into
the evolving performance of a web service during its development phase. When the
dashboard is deployed and the user visits it, a login page is shown and the user has
to login to be able to use the dashboard. This login page looks like Figure 3.2. The
user should fill in the user name and the corresponding password, after which the
login button should be pressed. The dashboard redirects the user to the measure-
ments page by default, upon successful login.

FIGURE 3.2: Dashboard - Login page

The measurements page of the dashboard looks like Figure 3.3. On the top of
the page, there is a bar that contains the name of the tool along with its short de-
scription. In the top-right corner of this bar, there is a drop-down menu where
the user can go to the settings page or logout of the dashboard. On the left-hand
side of the page, there is a navigation bar that enables the user to jump from one
section of the dashboard to another. The three main sections are Measurements,
Rules and Testmonitor. The page that is currently open is highlighted in this
navigation bar. The remainder of the page contains the actual content. In the case
of Measurements, the first page tab that is shown here would be the overview.
This contains some information about the endpoints that are being monitored by the
dashboard. The contents of this overview are explained further in Section 3.2.5 on
page 28.

12https://git-scm.com/ (version 2.10.1)

https://git-scm.com/

Chapter 3. Implementation 22

FIGURE 3.3: Dashboard - Measurements page

The first link in the navigation bar on the left-hand side of the page is the Rules
page. This looks like Figure 3.4. This page contains a list of all of the rules of the
service being monitored that the dashboard automatically found. The user can select
any of these rules to enable the monitoring of this specific rule. When no rules are
selected, no rules are monitored and so the dashboard does not collect request data.
It collects the last access times for the endpoints, though.

FIGURE 3.4: Dashboard - Rules page

The final link in the navigation bar is the one which leads to the Testmonitor
page. This looks like Figure 3.5. This page contains all of the unit tests that the
dashboard automatically found. When no tests have been run yet, the status would

Chapter 3. Implementation 23

be Never run in black. When the current status of some test is Succeeded, this is
shown in green. When the current status of some test is Failed, this is shown in
red. When the user clicks on a certain test, the user is redirected to the details page
of that specific unit test. This is discussed further in Section 4.2, starting on page
33. Oftentimes, not all of the tests are relevant for the monitoring of web service
evolution. Only the tests which are testing a single endpoint each should be used
for the monitoring. This could be achieved by allowing the user to select a subset
of the tests that have been found, just like the user can do with the endpoints. Only
the selected tests could then be used for the evaluation of the service performance
evolution.

FIGURE 3.5: Dashboard - Testmonitor page

The link for the settings in the drop-down menu in the top-right corner of the
page leads to a page showing the current dashboard settings, which looks like Figure
3.6. It shows the current link for visiting the dashboard, along with the current
version of the monitored service. It shows the current user variable, the location
of the database, the specified location of the unit tests of the project, and the login
credentials of the user.

Chapter 3. Implementation 24

FIGURE 3.6: Dashboard - Settings page

Lastly, the design of the page containing the detailed results of a certain endpoint
looks like Figure 3.7. It shows the version of the service where the endpoint first
appeared in, along with the time stamp of when that version became active. This
page has a tab pane where the user can go through the different visualizations for
that specific endpoint. All of these visualizations are discussed in more depth and
in the context of the case study discussed in Section 4.2, starting on page 33.

FIGURE 3.7: Dashboard - Endpoint page

Chapter 3. Implementation 25

3.2 Dashboard usage

3.2.1 The Flask app

A Flask application has at least a main Python script containing the code for set-
ting up the app. To satisfy the requirement of integration with Flask services, the
dashboard uses Flask as well. The often-used "Hello World" example was shown in
Chapter 2 on page 7. To satisfy the requirements of changing the existing service
in the least amount possible and that attaching the tool to a Flask app should be as
simple as possible, the tool is implemented such that only two lines of code have to
be added in the main Python script. In case of the example:

from flask import Flask
import dashboard

app = Flask(__name__)
dashboard.bind(app)

@app.route("/")
def hello():

return "Hello World!"

The added lines are ’import dashboard’ to import the library, and
’dashboard.bind(app)’ to bind the tool to the Flask application.

3.2.2 Configuration options

The user of the dashboard can specify a number of configuration options. The dash-
board can optionally be given a configuration file to read these options. This can be
done by simply inserting one additional line of code into the main Python script. In
case of our example, the code would become:

...
app = Flask(__name__)
dashboard.config.from_file(’dashboard.cfg’)
dashboard.bind(app)
...

To show all of the different configuration options that are available, an example of
dashboard.cfg would be (where <proj> is the path to your web service project
and <serv> is the URL to your live service):

[dashboard]
APP_VERSION=1.0
CUSTOM_LINK=dashboard
USERNAME=admin
PASSWORD=admin
GUEST_USERNAME=guest
GUEST_PASSWORD=guest_password
DATABASE=sqlite:////<proj>/dashboard.db
GIT=/<proj>/.git/
TEST_DIR=/<proj>/tests/
N=5
SUBMIT_RESULTS_URL=<serv>/dashboard/submit-test-results

Chapter 3. Implementation 26

OUTLIER_DETECTION_CONSTANT=2.5
COLORS={’main’:[0,97,255], ’static’:[255,153,0]}

To explain this configuration file in more detail, each option is listed below:

• First off, using APP_VERSION, one can manually specify the version of the web
service. This functionality can be used when there is no integration with Git.
By default, this value is 1.0.

• Then, with CUSTOM_LINK, the user can define the URL where the dashboard
is available at. This can be necessary when the web service already has an
endpoint named dashboard, which is the default link.

• A user can also set a custom user name and password for logging in to the
dashboard as administrator, which by default is admin for both USERNAME
and PASSWORD.

• Users that do not have administrative privileges can be given other login cre-
dentials. They can be specified by setting GUEST_USERNAME and
GUEST_PASSWORD, which by default is guest and guest_password, respec-
tively. Users that login using these credentials can only see the visualizations
and the results of the monitoring, but cannot change anything in the dash-
board.

• A custom DATABASE name and location can also be set. In this case, we use
SQLite, so we prepend the location where we want the database to reside with
sqlite:////, and append the database name to this new string. By default,
the value is sqlite:///flask-dashboard.db, which places the database
relative to your project and name it flask-dashboard.

• A very important option is GIT, which specifies where the .git folder of your
web service project resides. This is used by the dashboard in order to satisfy
the integration with Git requirement and thus tracking the versions of the ser-
vice automatically. By default, when this value is not specified, the dashboard
uses the manual APP_VERSION for determining the version of the service. The
dashboard uses the .git folder to automatically find the current HEAD of the
repository, from which the most recent commit can be retrieved and used as
the version of the service. When a new version of the service is deployed, the
dashboard detects this and tag all new measurements with this new version.

• Also, a directory can be specified where the unit tests reside. By default,
TEST_DIR has no value. When specified, the dashboard searches for unit tests
within this directory. The pattern that the dashboard scans for is *test*.py,
which means that it finds unit tests that are defined in Python files with test
anywhere in the filename.

• Then, a number for N can be specified, which denotes the number of times
each unit test should be executed when running the tests. By default, this is 1,
so each test runs only once. This functionality can be useful when users want
more measurements of the same test, since they can vary due to load of the
service, load of the CPU and memory usage for example.

• Also, a URL can be specified by setting SUBMIT_RESULTS_URL, where the
unit test results should be submitted to. Since unit tests are oftentimes not
run on the deployed service but instead in another (local) environment or for

Chapter 3. Implementation 27

example on Travis13, this link is necessary to be able to view the unit test results
on the dashboard of the live service.

• A constant for outlier detection, OUTLIER_DETECTION_CONSTANT, can also
be set. This constant is multiplied with the current average execution time of
a certain endpoint. The resulting value is used as a threshold to determine if
some request took longer than usual and if so, it gets flagged as an outlier and
additional information about that specific request is collected.

• Lastly, the option to manually define a RGB color for a specific endpoint, user
or version is available by setting COLORS. The value for this should be a Python
dictionary14, which by default is an empty one. By default, semi-random col-
ors are used. If a user wants to set the color of some endpoint named ’main’ to
blue, the key-value pair ’main’:[0,97,255] could for example be added to
the dictionary.

3.2.3 User variable

For some endpoints, it might be that the performance depends on the user that made
the request to that endpoint. Execution speed can depend on the way the endpoint is
used, for example if one user has much more data than another. Endpoints that have
to do something with these data obviously have higher execution time when there
are more data. In order for the developer to gain more insight into why some user
has a higher response time than another, functionality is added to the dashboard to
achieve this.

The dashboard can be configured to associate a request with some user of the
monitored service. The Flask architecture uses global request objects to store infor-
mation about the requesting entity, which can be taken advantage of for linking a
user to some request that is being monitored. This could be implemented as a for
example turning a session ID into a user ID, by retrieving the session ID of the re-
quest first, after which the corresponding user ID is retrieved from the web service,
given that session ID. A possible implementation for some specific Flask app could
be something like:

def get_user_id():
sid = int(flask.request.args[’session’])
session = User.find_for_session(sid)
return user_id

Now that a function is defined for obtaining the user variable, it can be set in the
configuration for the dashboard like so:

dashboard.config.get_group_by = get_user_id

This last line of code assigns the newly defined function to the dashboard, which in
turn is able to group the monitored incoming requests by user. This gives the user
the option to see a visualization where the measurements are grouped by user, to
spot possible users which have a user experience that is worse than intended.

The complete code of our small example would now be:

13https://travis-ci.org/
14https://docs.python.org/2/tutorial/datastructures.html#dictionaries

https://travis-ci.org/
https://docs.python.org/2/tutorial/datastructures.html#dictionaries

Chapter 3. Implementation 28

from flask import Flask
import dashboard

app = Flask(__name__)

def get_user_id():
sid = int(flask.request.args[’session’])
session = User.find_for_session(sid)
return user_id

dashboard.config.from_file(’dashboard.cfg’)
dashboard.config.get_group_by = get_user_id
dashboard.bind(app)

@app.route("/")
def hello():

return "Hello World!"

3.2.4 Binding

When binding to an app, routes for the dashboard are added to the existing Flask
app. These routes are bindings of functions to their corresponding URLs. This way,
when the URL for such a function is requested, the function gets executed. These
additional routes make up the interactive dashboard.

The dashboard searches for all endpoints present in the Flask app. This basically
means that it goes over all valid URLs of the service, and see what their correspond-
ing functions are. The dashboard stores these in its database, along with whether
or not that specific endpoint should be monitored. This way, the user can make a
selection of endpoints that he is interested in. This can be done on one of the pages
of the dashboard, which lists all endpoints that have been found and gives the user
the option to check any endpoint for monitoring.

The last access time is tracked for every endpoint, the ones that are being mon-
itored as well as the ones that are not. This way, the user already has some kind of
notion about which endpoints are being used more frequently than others. The user
can also decide based on this which endpoints should definitely be monitored and
which ones have lower priority.

The dashboard also searches for unit tests within the project. When found, they
are also saved in the database and listed on a different page of the dashboard. This
way, users can already see the tests that can be run and monitored by the dashboard.

3.2.5 Dashboard routes

There are quite a number of routes that are added to an existing Flask app, when a
dashboard is bound to it. By default, the base URL is that of the existing Flask app,
with /dashboard appended to it. The main routes that are added are:

/dashboard/login -> log in to the dashboard
/dashboard/logout -> log out of the dashboard
/dashboard/settings -> show the current settings
/dashboard/rules -> list all found endpoints

Chapter 3. Implementation 29

/dashboard/measurements -> show overall measurements
/dashboard/result/<e> -> show endpoint measurements
/dashboard/testmonitor -> list all found unit tests
/dashboard/testmonitor/<t> -> show test measurements
/dashboard/submit-test-results -> submit test measurements
/dashboard/export-data -> export measurement data
/dashboard/download-csv -> download measurement data

For most of the endpoints listed above, it is quite clear what they do. For the ones
that are a bit more complex, an additional description is provided below.

• The /dashboard/rules page contains a table with all of the endpoints that
the dashboard has found when scanning the monitored Flask application. For
every entry of this table, the URL is given, along with the name of the end-
point. Every endpoint gets its own color, such that the visualizations of mea-
surements of these endpoints are colored accordingly. With every endpoint,
the allowed HTTP methods are also shown. For every endpoint that was al-
ready visited since the deployment of the dashboard, a last access time is also
given. Last but not least, every endpoint has a box that can be checked when
the user wants that endpoint to be monitored.

• The /dashboard/measurements page contains a tabbed view that consists
of one tab with a table of a summary of the monitored endpoints, while the
other tabs contain plots of the overall measurements of the service. The plots
that are available here are named Heatmap of number of requests,
Requests per endpoint, Time per version, and
Time per endpoint.

The summary table has entries for every monitored endpoint. Its name, color
and last access time are shown here again, but now also the total number of
hits a specific endpoint has gotten is shown. For every endpoint, the average
execution time is also in the table. Every entry has a link that redirects to the
measurements and their visualizations of that specific endpoint. This page is
explained next.

• The /dashboard/result/<e> page gives the user more detailed informa-
tion about a specific endpoint. This page contains a number of plots that
show all kinds of visualizations of the measured data for that endpoint. The
plots that are available here are named Heatmap, Time per hour, Hits
per hour, Time per version per user, Time per version per ip,
Time per version, and Time per user.

Information about the endpoint is also shown, like the version of the service
it first occurred in, along with the date it was added to the service. There is
also a tab for gaining more insight into outliers, which are requests that took
far longer than the average execution time for this specific endpoint. A con-
stant can be specified by the user that is multiplied with the current average
execution time. When a request takes longer to handle than this time, it gets
flagged as an outlier and additional information is collected like request vari-
ables, CPU and memory usage, and the stack trace.

• The /dashboard/testmonitor page consists of a table with all of the unit
tests that the dashboard has found. For every test, the current status is shown.
This would be Never run, Succeeded or Failed. For each of the tests, the

Chapter 3. Implementation 30

number of times this test has been run overall is shown, as well as the number
of times on the current app version. An overall average execution time along
with the average execution time for the current app version is given as well.
The final column specifies the time stamp of the time the test has been run
last. In addition to this table, there is also a graph that shows box plots of the
execution times per run of the test suite.

• The /dashboard/testmonitor/<t> page can be visited by clicking any of
the unit tests in the table on the previously mentioned page. It shows a box
plot graph of the execution times for every run of the test suite again, but this
time only for the selected test. This enables the user to gain more insight into
the performance of a specific test.

• The /dashboard/submit-test-results page cannot be visited by the user
of the dashboard, but instead it is there so that an automatic run of the test suite
is able to post the test results to the deployed dashboard. By doing so, this en-
ables the user of the dashboard to see the visualized test result data on the
deployed dashboard.

3.2.6 Travis integration

Now that the dashboard is deployed and working properly for the web service that
it is configured to monitor, it is time to configure Travis to automatically run the
unit tests of the project and post the test results to the deployment of the dashboard.
This satisfies the requirement of allowing for integration with TravisCI. This way,
the unit test results are available to the live dashboard to create visualizations of
for the user to inspect. In order to achieve this, the project repository should be
hosted on GitHub, such that the developer can link the GitHub account to Travis.
This way, automatic continuous integration testing and automatic unit testing can
be turned on for the repository. For every new commit that is made to the repository,
Travis detects it and build the project according to a build specification that should
be made in a file called .travis.yml. This file should reside in the root of the
project repository. An example of such a file is given in Section 2.2.2 on page 9.

A few steps have to be taken in order to get Travis working with the dashboard
and the monitored service. In the future, these steps could be made easier by fa-
cilitating this configuration differently, but for now, the following steps have to be
taken:

1. The first is copying the file called collect_performance.py to the direc-
tory where the .travis.yml file resides. The collect_performance.py
is downloaded along with the dashboard. It is a python script that can be run
by Travis in order to find all unit tests of the project, run them and post the
results to the link to the deployed dashboard.

2. Now, the configuration file for the dashboard (dashboard.cfg for example)
should be updated to include at least three additional values, TEST_DIR,
SUBMIT_RESULTS_URL and N. The first specifies where the unit tests of the
project reside, the second where Travis should upload the test results to, and
the third specifies the number of times Travis should run each unit test, as
discussed in Section 3.2.2.

3. Then, a dependency to the dashboard should be added to the setup.py file
of the web service. This is so that Travis tests the continuous integration of

Chapter 3. Implementation 31

the web service while it includes the dashboard plug-in. This can be done by
simply adding flask_monitoring_dashboard to the
install_requires list argument of the setuptools.setup() function
call.

4. Lastly, in the .travis.yml file, two commands should be added to the script
section:

script:
− export DASHBOARD_CONFIG=dashboard.cfg
− python ./collect_performance.py

The first command specifies an environment variable that contains the con-
figuration file to be used. The second command runs the python script that
handles the automatic unit testing and the sending of the results to the dash-
board. The rest of the .travis.yml file could be used to specify the build
Travis has to do to test the continuous integration or run some other type of
testing.

Whenever a new commit is made to the repository, this is detected by Travis and the
unit tests are run the specified amount of times. The results are added to a list, after
which the list is sent to the deployed dashboard. For every test, the result consists
of the name of the test, its execution time for that run, the time stamp when that run
took place, whether or not the test passed, and which iteration of the tests the result
belongs to.

32

Chapter 4

Evaluation

FIGURE 4.1: The Zeeguu platform

4.1 Case study

The case study of this research is the deployment of the dashboard on a live web
service that has quite a few users. This web service is called Zeeguu1 (see figure 4.1).
It is a platform for accelerating vocabulary learning in a foreign language (Lungu,
2016). At the moment of writing this thesis, the platform has about 200 active beta-
testers.

The core of the system consists of an application programming interface (API)
implemented with Python and using Flask. Together with a number of connected
applications, it offers three features for the language learner:

1. Contextual translations - Providing effortless translations for the texts that
prove to be too difficult for the reader.

2. Personalized exercises - Exercises that are generated based on the preferences
of the learner. (Avagyan, 2017)

3. Article recommendations - Recommendations for articles which are deemed
to be on an appropriate difficulty level for the reader. (Brand, 2017)

The core of this system provides the functionality to make these three features
possible. The API of the system will be used in this research as a case study. Three

1https://www.zeeguu.unibe.ch/

https://www.zeeguu.unibe.ch/

Chapter 4. Evaluation 33

major versions of the dashboard were deployed on this API. The first version con-
tained the functionality for monitoring the selected endpoints, as well as some ba-
sic graphs visualizing the execution times of these endpoints. The second version
contained an improvement on the visualization aspect, consisting of additional and
neater graphs. This version also came with a web site design update, making the
dashboard look more professional. The third version consisted of the functionality
for flagging outliers in the requests, as well as the functionality for integration with
Travis for unit test monitoring. All of the obtained results will come from the actual
deployment of the dashboard on the live Zeeguu API.

4.2 Results

After deploying the monitoring tool on the platform as described in the previous
chapter, the maintainer of Zeeguu selected a few of the endpoints that he was inter-
ested in. These are the ones that the dashboard has been monitoring for five weeks
now. On May 29, 2017, the dashboard was first deployed on the case study. On July
2, 2017, the case study ended, but only in the sense that results of the case study
were taken from these five weeks. The maintainer of Zeeguu wanted the deploy-
ment of the tool to continue its monitoring, and for it to stay available for viewers
which can then see the visualization part of the tool in action. The screen-shots of
the dashboard and its visualizations were taken on July 16, 2017.

In the following sections, all of the results of the deployed dashboard are pre-
sented. The appendix on page A describes how to see the up-to-date visualizations
of the deployed dashboard on this case study.

There are four main visual perspectives that the dashboard provides. One which
presents usage information about all of the endpoints that were selected to be mon-
itored, one which presents their execution times, one which presents user-specific
performance experience information, and one which presents the performance unit
tests in the form of their execution times.

4.2.1 Service utilization

A basic insight that a developer needs will be that of service utilization. The dash-
board contains a few graphs that may help the developer in gaining this insight.

First off, there is a stacked bar chart that visualizes the number of hits to the
selected endpoints, grouped by day. An example of this is shown in Figure 4.2. On
the y-axis, the days are enumerated. The x-axis contains the number of requests. The
different colors of the segments of the bars represent the different endpoints that are
being monitored, as shown in the legend. This visualization shows that the service
has 12.000 hits per day at its peak. Since the requests are grouped by endpoint,
the activity distribution over the endpoints can be observed from this visualization
as well. Also, the popularity of some endpoint can increase and decrease over a
number of days, which will also show up in this graph.

Chapter 4. Evaluation 34

FIGURE 4.2: Measurements - Requests per endpoint

A related visualization is the heat map, which can show cyclic patterns of usage
per hour of day. An example of this is shown in Figure 4.3. On the y-axis, the 24
hours of every day are enumerated. On the x-axis, the days are enumerated. This
gives each day 24 cells that are colored with a color. The warmer the color, the
higher the number of requests that hour. The colder the color, the lower the number
of requests for that hour. The graph shows that that the hour where there was a
peak was at 9 PM on June 28, where the number of requests was about 2500. This
also shows that the service is not used during the night, with most of the requests
coming in on working hours and some activity in the evening. The graph shows
that the spike of June 28 which was clearly visible in the previous visualization, was
during the afternoon and the evening.

Chapter 4. Evaluation 35

FIGURE 4.3: Measurements - Heatmap of number of requests

4.2.2 Endpoint performance

The dashboard also visualizes the performance of the individual endpoints. The
dashboard contains a visualization that is made up of box plots, one for every mon-
itored endpoint. An example of this is shown in Figure 4.4. On the y-axis, the end-
points that are being monitored are listed. The x-axis contains the execution time in
milliseconds. The different colors represent the different endpoints again. This vi-
sualization summarizes the execution times of the endpoints and can help identify
performance variability and balancing issues. This visualization shows that there
are three endpoints that have a high variability in performance, and could therefore
become a higher priority for the developer to be optimized.

Chapter 4. Evaluation 36

FIGURE 4.4: Measurements - Time per endpoint

Based on the previous visualization, the developer decided to try and improve
the get_possible_translations endpoint. If we navigate to the results page
of this endpoint, we can see the visualization in Figure 4.5. This is again a graph
that contains box plots. On the y-axis, the version of the service along with its time
stamp is listed. The x-axis contains the execution time in milliseconds again. This
visualization shows that the performance gets better in the most recent versions of
the service, since the median of the box plot moves to the left. In the most recent
version, the median is about one second.

FIGURE 4.5: Endpoint - Time per version

Chapter 4. Evaluation 37

4.2.3 User experience

Real-time computations can take longer for one user than it takes for another. This
is due to the fact that such computations could become more complex and will take
longer for users that have a higher load. For example, figure 4.4 shows the highest
execution times and the highest variability for the endpoint named
get_feed_items_with_metrics. This is due to the fact that users of Zeeguu
can be subscribed to any number of article sources and for each of these, the system
computes the personalized difficulty of each article for the user. A user that is sub-
scribed to only one source will therefore experience faster execution times than one
that is subscribed to thirty of them.

The dashboard provides a visualization that shows differences in experienced
performance of multiple users. An example of this is shown in Figure 4.6. On the
y-axis, a subset of the users of the service is listed. The x-axis contains the execution
time in milliseconds again. This visualization clearly shows that the execution time
for some user could be at least twice as long as that of another.

FIGURE 4.6: Endpoint - Time per user

The previous visualization presents all of the execution times of the requests of a
certain endpoint for a certain user, but these requests are aggregated over the differ-
ent versions of the service. The dashboard also has a visualization that also shows
these different versions of the service. An example of this is shown in Figure 4.7.
On the y-axis, a subset of users of the service is listed again. On the x-axis, the ver-
sions along with their time stamps are listed. For a certain combination of version
and user, there could be a bubble. Such a bubble represents the average execution
time experienced by that user for that version. The bigger the bubble, the longer the
execution time. The visualization shows no clear trend. This could be due to the fact
that the workload for one user is different than that of another, and the workload of
a user could also change over time, becoming greater or smaller.

Chapter 4. Evaluation 38

FIGURE 4.7: Endpoint - Time per version per user

4.2.4 Unit test performance

In addition to inspecting the performance of the live deployment of the web ser-
vice based on dynamic requests by the users of the service, the dashboard also has
visualizations for unit test performance during the evolution of the service.

On the Testmonitor page of the dashboard, there is a visualization for the
overall execution times of the unit tests. An example of this is shown in Figure 4.8.
On the y-axis, the number of the test suite (or the number of the Travis build) that
the measurements belong to is listed along with the amount of measurements in that
suite (between parentheses). The x-axis contains the execution times in milliseconds
again.

This visualization shows that the most recent build resulted in the best overall
execution times of the unit tests, since its median moved to the left compared to the
builds that preceded it. When comparing Figure 4.8 to Figure 4.5, the trend of the
unit test performance seems to match the trend of the live system performance. This
means that unit test monitoring can indeed be applied to get an indication of the
performance changes in the eventually live system. This visualization also shows
one outlier that is extremely far away from the other data points in every build. This
could be explained by the fact that one of the unit tests has an execution time that is
very long, about 28 seconds.

In order to investigate this further, the user of the dashboard can go to the table
on the dashboard above the visualization of Figure 4.8. This table contains all of the
unit tests that have been run, along with their average execution times, number of
times executed, and time of last execution. When sorting the table on execution time
by clicking that column header, one unit test will stand out. This is the test named
test_get_feed_items_with_metrics. When the user clicks on this test, a page
containing the visualization for this specific test will be shown.

Chapter 4. Evaluation 39

FIGURE 4.8: Testmonitor - Time per build

The visualization for a specific unit test could look something like Figure 4.9. As
can be seen, the median does move to the left in the most recent build, which means
the performance improves. Also, this unit test is indeed the one that produces the
extreme outlier of 28 seconds. As can be seen, the unit test is being run five times
each build. The outlier corresponds to the first run of the test, which will cache the
result of some calculation making the successive calls have an execution time that is
rather small compared to the original one.

FIGURE 4.9: Testmonitor - Time per test

40

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Software monitoring can be done by observing the evolution of unit test perfor-
mance as the software project evolves over time. It can also be done by observing
the evolution of the live performance of a deployed software project as it evolves
over time. Both of these approaches are implemented in the tool presented in this
thesis. This shows that it is possible to create a monitoring solution that gives the
developer of a web service insight into the utilization and performance of the ser-
vice. It also shows that such a solution does not need to take a great amount of effort
to deploy.

This research is aimed at web application projects that are under development
and are using Python in combination with Flask. These projects may not have the
time nor the money to either use a commercial tool or create their own. The dash-
board provides a free-to-use way for these projects to easily achieve evolving perfor-
mance monitoring. A similar architecture could be applied to other languages and
frameworks in order to create a tool that provides evolving performance monitoring
for those other languages and frameworks.

In the case study discussed in this work, the trend of the unit test performance
seems to match the trend of the live system performance. This means that unit test
monitoring can indeed be applied to get an indication of the performance changes
in the eventually live system. By monitoring the unit test performance of a project,
a developer can prematurely implement functionality or make certain functionality
more high-performing, without having to deploy the project and test the live service
first.

The research question of this thesis is:
"How to create a tool that allows the automatic performance monitoring of evolving unit
tests for Flask services in a way that affects these services in the least amount possible?"

This research presents a way of achieving this. The tool allows automatic perfor-
mance monitoring of Flask web services that are under development. It tracks the
versions of these services, such that the evolution of the service is taken into account
when visualizing the performance measurements on the dashboard of the tool. The
tool is very simple to integrate in a pre-existing service, which will be changed min-
imally in order for the tool to work.

For the availability of the tool, see the appendix on page 43.

Chapter 5. Conclusion and Future Work 41

5.2 Future Work

5.2.1 Case studies

Future work for this research includes performing more case studies using other
systems to deploy the dashboard on. The goal of this is to discover other needs of
such a tool that are currently absent from the dashboard, as well as finding possible
aspects of the dashboard that are less useful and could therefore be removed from
the dashboard. This way, more essential and informative visualizations will have
room to grow in the tool.

Another goal of doing more case studies is to see if the dashboard will scale with
an increase in web service users. All of the visualizations should still behave as
intended with a database that is considerably larger than the one being used in the
case study within this research. The dashboard itself should also still perform quite
well with a huge increase in data points it has to take into consideration and requests
it has to monitor.

The purpose of these studies is to test and improve the aspects of usability, scal-
ability, reliability, stability and security. The tool would not be very helpful if it did
not have a high usability, or if it would not be very scalable to projects that have
a massive user-base. Of course, any tool should be reliable and stable in order for
it to be used professionally. Obviously, security is also a big thing that should not
be forgotten, since the dashboard deals with user-specific information and when the
security is compromised, the privacy of the users of the monitored service will be
compromised as well. Security could be improved by encrypting the database, for
example by hashing the entries. Communication with the dashboard could also be
improved security-wise by only allowing HTTPS connections, which encrypt this
communication.

5.2.2 Meta-dashboard

Another thing that could be viewed as possible future work would be the creation
of a meta-dashboard. This would mean that one deployment of such a dashboard
will enable its user to monitor multiple deployments of their web application. This
way, results could be aggregated or shown for each separate project. This will give
the user more options in the area of which deployments to monitor, since this will
enable developers of applications with a load-balancer for example to also make use
of the dashboard. Then the measurements of every node will be aggregated into one
dashboard and they do not need an individual dashboard for every node.

A meta-dashboard could also be nice when developing multiple web applica-
tions, so that the user could login to this dashboard and then be presented with a
list of applications that it is currently monitoring. The user could then select one of
them to go to the visualizations for that specific application. This could be handy for
software testers, who probably have to test multiple web applications at the same
time.

5.2.3 Error tracking

The live tracking of requests which result in errors could be another possible ex-
tension of the research done here. The monitoring tool could track every incoming
request to the monitored web service and see if the request gets handles properly.
If this is not the case, and the service encounters an error while handling a request,
the dashboard could notify the developer of this immediately. The dashboard could

Chapter 5. Conclusion and Future Work 42

then also collect the dynamic request values and the state of the service when the
error occurred. This could help the developer to recreate the situation and maybe
also improve the service so that the error will not be thrown again in the future.

5.2.4 Flask core

A final possibility of future work could be to try and make the monitoring tool avail-
able as part of the core of the Flask micro-framework. This would make it even easier
for developers of Flask web services to deploy their service with built-in automatic
monitoring of their evolving application. This would mean that the maintainer of
Flask has to be contacted and asked for his opinion of the monitoring tool. When
he is convinced of the usefulness of the tool and its quality, he might then decide it
would be a nice addition to the currently available version of Flask.

Before this would even be considered, the tool in its current state should first
endure additional testing and going through other case studies. The scalability, re-
liability and stability of the tool should be proven to be at a high enough level first.
Several improvements will need to be made based on these tests and case studies,
before the tool is ready to be shipped in the form of a default extension of Flask on
its website.

43

Appendix A

Availability of Flask Dashboard

Most of the figures used in this thesis are screen-shots of the actual deployment of
Flask Dashboard on the Zeeguu platform. If the tool is still deployed on this case
study at the moment of reading this thesis, it should be available for viewing on-line
at:

https://zeeguu.unibe.ch/api/dashboard

Username: guest
Password: vissoft

Flask Dashboard is available to download on the Python Package Index:

https://pypi.python.org/pypi/flask-monitoring-dashboard

It can be installed on any system that has Python installed by issuing the following
command:

$ pip install flask_monitoring_dashboard

The source code of Flask Dashboard is published under a permissive MIT license on
GitHub:

https://github.com/mircealungu/automatic-monitoring-dashboard

To install Flask Dashboard using the cloned GitHub repository, issue the following
command:

$ python setup.py develop

https://zeeguu.unibe.ch/api/dashboard
https://pypi.python.org/pypi/flask-monitoring-dashboard
https://github.com/mircealungu/automatic-monitoring-dashboard

44

Bibliography

Avagyan, Martin (2017). Building Blocks for Online Language Practice Platforms. Bach-
elor Thesis, University of Groningen.

Brand, Luc van der (2017). Prometheus: Efficiency and Usability in a Personalized Multi-
lingual Feed Manager. Bachelor Thesis, University of Groningen.

Chacon, Scott and Ben Straub (2014). Pro Git. https://git-scm.com/book/
en/v2/Getting-Started-A-Short-History-of-Git. [Online; accessed
13-July-2017].

Ellison, Rich (2015). How To Be A Tester.
Feist, M. D. et al. (2016). “Visualizing Project Evolution through Abstract Syntax Tree

Analysis”. In: 2016 IEEE Working Conference on Software Visualization (VISSOFT),
pp. 11–20. DOI: 10.1109/VISSOFT.2016.6.

Fielding, Roy et al. (1999). “Hypertext transfer protocol–HTTP/1.1”. In: RFC 2616.
Haas, Hugo (2004). Web Services Glossary, World Wide Web Consortium. https://

www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice. [On-
line; accessed 03-July-2017].

Isaacs, K. E. et al. (2014). “Combing the Communication Hairball: Visualizing Par-
allel Execution Traces using Logical Time”. In: IEEE Transactions on Visualization
and Computer Graphics 20.12, pp. 2349–2358. ISSN: 1077-2626. DOI: 10.1109/
TVCG.2014.2346456.

Lungu, Mircea, Michele Lanza, and Oscar Nierstrasz (2014). “Evolutionary and Col-
laborative Software Architecture Recovery with Softwarenaut”. In: Science of Com-
puter Programming 79.0, pp. 204 –223. DOI: 10.1016/j.scico.2012.04.007.
URL: http://scg.unibe.ch/archive/papers/Lung14a.pdf.

Lungu, Mircea et al. (2017). “A Low-Effort Analytics Platform for Visualizing Evolv-
ing Flask-Based Python Web Services”. In: 2017 IEEE Working Conference on Soft-
ware Visualization (VISSOFT).

Lungu, Mircea F. (2016). “Bootstrapping an Ubiquitous Monitoring Ecosystem for
Accelerating Vocabulary Acquisition”. In: Proccedings of the 10th European Con-
ference on Software Architecture Workshops. ECSAW 2016. Copenhagen, Denmark:
ACM, 28:1–28:4. ISBN: 978-1-4503-4781-5. DOI: 10.1145/2993412.3003389.
URL: http://doi.acm.org/10.1145/2993412.3003389.

netmarketshare.com (2017). Browser market share. https://www.netmarketshare.
com/browser-market-share.aspx. [Online; accessed 16-July-2017].

Papazoglou, M. P., V. Andrikopoulos, and S. Benbernou (2011). “Managing Evolving
Services”. In: IEEE Software 28.3, pp. 49–55. ISSN: 0740-7459. DOI: 10.1109/MS.
2011.26.

Pauw, W. De et al. (2005). “Web Services Navigator: Visualizing the execution of
Web Services”. In: IBM Systems Journal 44.4, pp. 821–845. ISSN: 0018-8670. DOI:
10.1147/sj.444.0821.

PythonSoftwareFoundation (2010). Basic unittest example. https://docs.python.
org/2/library/unittest.html#basic-example. [Online; accessed 04-
July-2017].

https://git-scm.com/book/en/v2/Getting-Started-A-Short-History-of-Git
https://git-scm.com/book/en/v2/Getting-Started-A-Short-History-of-Git
http://dx.doi.org/10.1109/VISSOFT.2016.6
https://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice
https://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice
http://dx.doi.org/10.1109/TVCG.2014.2346456
http://dx.doi.org/10.1109/TVCG.2014.2346456
http://dx.doi.org/10.1016/j.scico.2012.04.007
http://scg.unibe.ch/archive/papers/Lung14a.pdf
http://dx.doi.org/10.1145/2993412.3003389
http://doi.acm.org/10.1145/2993412.3003389
https://www.netmarketshare.com/browser-market-share.aspx
https://www.netmarketshare.com/browser-market-share.aspx
http://dx.doi.org/10.1109/MS.2011.26
http://dx.doi.org/10.1109/MS.2011.26
http://dx.doi.org/10.1147/sj.444.0821
https://docs.python.org/2/library/unittest.html#basic-example
https://docs.python.org/2/library/unittest.html#basic-example

BIBLIOGRAPHY 45

Ronacher, Armin (2010). Quickstart. http://flask.pocoo.org/docs/0.12/
quickstart/#quickstart. [Online; accessed 04-July-2017].

Vogel, Patrick (2017). Automatic Performance Monitoring of evolving live Web Services.
Bachelor Thesis, University of Groningen.

Wilhelm, A. et al. (2016). “A Visualization Framework for Parallelization”. In: 2016
IEEE Working Conference on Software Visualization (VISSOFT), pp. 81–85. DOI: 10.
1109/VISSOFT.2016.35.

http://flask.pocoo.org/docs/0.12/quickstart/#quickstart
http://flask.pocoo.org/docs/0.12/quickstart/#quickstart
http://dx.doi.org/10.1109/VISSOFT.2016.35
http://dx.doi.org/10.1109/VISSOFT.2016.35

	Abstract
	Acknowledgements
	Introduction
	Background and Related Work
	Web Services
	Python web services
	Flask

	Service evolution
	Git
	TravisCI

	Measuring service performance
	Development environment
	Production environment

	Unit testing
	Creating tests
	Running tests

	Related work: Software performance visualization
	Visualizing parallelism
	Visualizing project evolution

	Implementation
	The Dashboard
	Solution design
	Data visualization
	Technology stack
	Dashboard look

	Dashboard usage
	The Flask app
	Configuration options
	User variable
	Binding
	Dashboard routes
	Travis integration

	Evaluation
	Case study
	Results
	Service utilization
	Endpoint performance
	User experience
	Unit test performance

	Conclusion and Future Work
	Conclusion
	Future Work
	Case studies
	Meta-dashboard
	Error tracking
	Flask core

	Availability of Flask Dashboard
	Bibliography

