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Abstract

This paper deals with the construction of a distributed observer. A distributed ob-
server is a network of m observers, where each observer uses only local information to
approximate the state of a given system. Sufficient conditions for the existence of a dis-
tributed observer are found. In particular, if the graph underlying the observer network
is strongly connected, and the system is globally observable, it is shown that there exists
a distributed observer of dimension mn+m−1, where n is the dimension of the observed
system. Furthermore, it is shown that the convergence rates of the estimates can be pre-
assigned at arbitrary values. The proofs provide ideas for a construction strategy, which
is described in the end of the paper.
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1 Introduction

In many control problems it is required to know the state of the system to be controlled.
In practical applications, however, it is often the case that the state is not available for
measurement, hence it has to be approximated by an observer. An observer is a linear system
that yields an asymptotically correct estimate of the state of a given linear system by using
the available output measurement. For the system ẋ = Ax, with output y = Cx, it is well
known that a full-state observer exists, provided that the matrix pair (C,A) is detectable.
Methods for constructing an observer of least dimension are also known [1].

The classic observer requires the output measurement to be available at a single location,
but in practice it might happen that the measurement is acquired by multiple agents. This
motivates the generalization of the observer problem to a network of m observers, each of
which can observe part of some global output measurement. We require that each observer
arrives at an asymptotically correct estimate of the state x, while using information only from
the observers in its reception range. We call such an observer a distributed observer. The
goal is to provide sufficient conditions for the existence of a distributed observer together
with construction techniques. We begin by formally defining the problem and establishing
concrete conditions for the existence of an observer. These conditions come in the form of
equations with certain restrictions stemming from the network topology and the definition
of an observer. The equations are then simplified and related to the well studied topics of
decentralized stabilization and decentralized control. Finally, using the work in [2], [3], [4]
and [5], we arrive at the final result of this paper.

2 Notation and Preliminaries

This section is meant to introduce some of the notation and preliminary concepts that will
be used throughout this paper. To begin with, let In and 0n denote the identity and zero
matrix, respectively, of size n×n, and let 1m denote the m-dimensional vector with ones as its

elements, that is 1m =
(
1 · · · 1

)T
. For matrices A ∈ Rm×n and B ∈ Rk×`, the Kronecker

product A⊗B is the mk × nl matrix defined by

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 ,

where aij is the element in row i and column j of A. The Kronecker product has the following
properties:

1. (A+B)⊗ C = A⊗ C +B ⊗ C, if the addition is defined.

2. A⊗ (B + C) = A⊗B +A⊗ C, if the addition is defined.

3. (A⊗B)(C ⊗D) = AC ⊗BD, if the multiplication is defined.

4. rank(A⊗B) = rankA rankB.

The discussion in this paper requires some basic knowledge of graph theory. A graph is
defined as an ordered pair of sets (V, E), where V is the set of vertices and E is the set of
edges. The set of vertices is just a labelling set, while the set of edges consists of ordered
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pairs of vertices, indicating the vertices the edge connects as well as the direction of the edge.
For example, if i and j are vertices, then (j, i) ∈ E if and only if there is an edge from j to
i. Often we will not explicitly define the set of edges, but only describe the condition under
which there is an edge from j to i. For notational convenience, we will denote the graph with
a symbol, like G, and write ij instead of (j, i) for the edge from j to i. A graph is said to be
strongly connected if there is a path between any two vertices in the graph. A path from j to i
is a sequence of vertices (v1, . . . , vp), where v1 = j and vp = i, such that there is an edge from
vk to vk+1 for all k ∈ {1, . . . , p− 1}. Similarly, a graph is said to be weakly connected if there
is a weak path between any two nodes, where a weak path is a path in which the direction
of the edges connecting consecutive vertices is irrelevant. The incidence matrix of a graph is
an m×n matrix M , where m and n are the number of vertices and edges, respectively. Each
edge corresponds to a column in M and the column corresponding to the edge from j to i is
given by ej − ei, where ei ∈ Rm is the ith standard basis vector. The rank of the incidence
matrix depends on the connectivity properties of the graph. In particular, Theorem 8.3.1
in [2] states that rankM = m− d where d is the number of weakly connected components of
the graph.

Finally, we will need some basic concepts from systems theory. Consider the linear system

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rq,

y = Cx, y ∈ Rp.

which is completely determined by the matrices A, B and C, and will be denoted by (C,A,B).
The pair (A,B) is called controllable if

rank
(
B AB A2B · · · An−1B

)
= n,

and it has controllability index m if m is the smallest integer such that

rank
(
B AB A2B · · · Am−1B

)
= n.

The definition of controllability index makes sense only for a controllable pair, and in such
a case the controllability index is not greater than n and not smaller than n

q , where q is the
number of columns in B. On the other hand, the pair (C,A) is called observable if the pair
(AT , CT ) is controllable, and it has observability index m if (AT , CT ) has controllability index
m. The system (C,A,B) is called minimal if (C,A) is observable and (A,B) is controllable.
Throughout this paper, we will consider the system without input, given by

ẋ = Ax, x ∈ Rn,

y = Cx, y ∈ Rp,

where the pair (C,A) is assumed to be observable. A linear system of the form

ż = Hz +Ky, z ∈ Rn, (1)

is called an observer if the state z is an asymptotically correct estimate of the state x. In
other words, if we define the estimation error as ε = z−x, then the linear system in (1) is an
observer if ε→ 0 as t→∞. The error dynamics, given by

ε̇ = Hz +Ky −Ax = Hε+ (H +KC −A)x,
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suggest that if the equation H = A−KC is satisfied and σ(H) ∈ C−, then

ε̇ = Hε ⇒ ε→ 0 as t→∞.

Given that (C,A) is observable, there exists a matrix K ∈ Rn×p such that σ(A−KC) ∈ C−,
hence finding such a K and setting H = A−KC makes the linear system in (1) an observer.
The observer design equation in the following chapter will be derived in a very similar way.

3 Observer Design Equation

In this paper we are interested in constructing m observers, each of which has access to only
part of the output of the system

ẋ = Ax, x ∈ Rn,

y = Cx, y ∈ Rp.

In particular, let C =
(
CT

1 . . . CT
m

)T
and y =

(
yT1 · · · yTm

)T
, and suppose that observer

i has access to
yi = Cix, yi ∈ Rpi .

We assume that the pair (C,A) is observable, but making this assumption for any of the pairs
(Ci, A) would be too restrictive. Instead, we allow the observers to communicate in order to
estimate the state of the system, thus creating a communication network. If we let Ni be
the set of observers in the range of observer i, together with i itself, then the network can be
formally described by a graph Y with vertices inM = {1, . . . ,m} and set of edges defined by
E = {ij : i ∈M, j ∈ Ni}.

We are looking to construct a family of m linear systems of the form

żi =
∑
j∈Ni

Hijzj +Kijyj , zi ∈ Rn, i ∈M, (2)

such that every state zi, i ∈ M, is an asymptotically correct estimate of the state x. If we
define the estimation error of observer i as εi = zi−x, then the family of linear systems in (2)
is called a distributed observer if εi → 0 as t→∞ for all i ∈ M. To construct a distributed
observer, we need to find matrices Hij and Kij , for all ij ∈ E , such that all estimation errors
converge to zero.

To begin with, we will establish more concrete conditions that need to be satisfied in order
for the family of linear systems (2) to be a distributed observer. Let H = (Hij) denote the
mn×mn matrix defined by

H =

H11 · · · H1m
...

. . .
...

Hm1 · · · Hmn

 ,

where Hij = 0n if ij /∈ E . Similarly, let K = (Kij) and Kij = 0 if ij /∈ E , so that the joint
observer equations can be expressed more compactly as

ż = Hz +Ky, z =

 z1
...
zm

 ∈ Rmn, y =

 y1
...
ym

 ∈ Rp.
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The estimation errors can be collected in a vector ε ∈ Rmn, where

ε =

 ε1
...
εm

 =

 z1
...
zm

−
x...
x

 = z − 1m ⊗ x,

and the requirement for a distributed observer is that ε→ 0 as t→∞. Just like in the single
observer case, we look at the error dynamics given by

ε̇ = Hz +Ky − 1m ⊗Ax
= Hε+ (H(1m ⊗ In) +KC − 1m ⊗A)x.

The latter suggests that if the matrices H and K are such that the equation

H(1m ⊗ In) = 1m ⊗A−KC (3)

is satisfied, then ε̇ = Hε, hence ε→ 0, provided that σ(H) ∈ C−. We will refer to (3) as the
design equation for our distributed observer. To emphasize the fact that H and K need to
have a specific zero pattern due to communication restrictions, we can write out (3) as the
set of equations ∑

j∈Ni

Hij = A−
∑
j∈Ni

KijCj , i ∈M.

Although these equations are not necessary for the existence of an observer, they will prove
to be sufficiently general for the purpose of this paper.

4 Distributed Observer

In this section we propose a method for the construction of a distributed observer in the case
when Kij = 0 for i 6= j. This means that each observer is allowed to use information from its
own output only and the matrix K is block diagonal. The approach we are taking involves
relating condition from the design equation (3) to the well studied topic of decentralized
stabilization [3]. To achieve this, we need to express H as the dynamics matrix obtained
after stabilization by output feedback, which should not be surprising given that H has to be
stable.

In our new set up, the design equation (3) can be expanded to m equations that read

m∑
j=1

Hij = A−KiiCi, i ∈M,

and we can rearrange terms to get

Hii = A−KiiCi −
m∑
j=1
j 6=i

Hij , i ∈M.
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Using these equations, we can obtain an expression for H such that the design equation (3)
is implicitly satisfied. With this in mind, note that substituting Hii from the equation above
in the ith block row of H yields(
Hi1 · · · Hii · · · Him

)
= A

(
0 · · · I · · · 0

)
+Hi1

(
I · · · −I · · · 0

)
+ · · ·

· · · −Kii

(
0 · · · Ci · · · 0

)
+ · · ·+Him

(
0 · · · −I · · · I

)
.

To arrive at something more comprehensible, let ei denote the ith standard basis vector in
Rm and consider the matrices Cij and Fij , i ∈M, j ∈M, defined by

Cij =

{
eTi ⊗ Ci, if i = j,

(eTj − eTi )⊗ In, otherwise
, Fij =

{
−Kii, if i = j,

Hij , otherwise.

Now we can write the ith block row of H like

(
Hi1 · · · Hii · · · Him

)
= A

(
0 · · · I · · · 0

)
+

m∑
j=1

FijCij .

If, in addition, we define Bi = ei ⊗ In, then H can be written out like

H =
m∑
i=1

Bi

(
Hi1 · · · Him

)
= Im ⊗A+

m∑
i=1

m∑
j=1

BiFijCij .

Taking into account the restriction that Fij = 0 if (i, j) /∈ E , results in

H = Im ⊗A+
∑
ij∈E

BiFijCij , (4)

and in this form it should be clear that H has the required zero pattern. Additionally, given
the definition of the matrices Fij , ij ∈ E , using (4) to define H and setting K = blockdiag(Fii :
i ∈M), implies that the design equation (3) is implicitly satisfied. Therefore, the problem is
reduced to finding Fij , ij ∈ E , such that σ(H) ∈ C−, where H is defined by (4). Note that
H can be seen as the dynamics matrix obtained after applying feedback laws uij = Fijyij to
the system

ε̇ = (Im ⊗A)ε+
∑
ij∈E

Biuij , yij = Cijε, ij ∈ E , (5)

hence the problem is translated to stabilization of the error dynamics. In this context, we can
turn to methods from decentralized stabilization [3] and decentralized control [4] to arrive at
the final result of this paper. At this point we make a small remark about the definition of
Cij for ij ∈ E and i 6= j. The vector cij , defined as the row in the transpose of the incidence
matrix of the graph Y corresponding to the edge from j to i, can be written as cij = eTj − eTi ,
thus we have Cij = cij ⊗ In, ij ∈ E , i 6= j. The fact that the matrices Cij , ij ∈ E , are related
to the incidence matrix of Y will be used in the proofs to come later in this paper.
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4.1 Decentralized stabilization

As already mentioned, the problem of constructing a distributed observer is reduced to finding
appropriate matrices Fij , ij ∈ E , such that the system in (5) is stabilized. One way to do this
is to first find matrices Fij , ij ∈ E , such that the system (Ck`, H,Bk) is minimal for some
k` ∈ E . Having accomplished this, we can use standard centralized techniques to construct a
stabilizing controller for the system (Ck`, H,Bk). With this in mind, consider the following
theorem:

Theorem 1. If the graph Y is strongly connected, then there exist matrices Fij , ij ∈ E , such
that for all k` ∈ E the system (Ck`, H,Bk) is minimal with controllability index m, where m
is the number of vertices of Y.

The proof of this theorem is fairly involved and will be presented in the next subsection
but, in the meantime, we will write down the equations for a distributed observer by using
this result. Firstly, note that although the theorem makes a statement for all k` ∈ E , we need
to choose a particular k` to use for stabilization. It will be shown that the resulting observer
equations differ depending on whether k = ` or k 6= `, but in both cases the total dimension
of the distributed observer will be the same.

In any case, we can fix a pair k` ∈ E and consider the system (Ck`, H,Bk) given by

ε = Hε+Bkuk`,

yk` = Ck`ε

where H is defined by (4). This is the system that results after applying feedback laws
uij = Fijyij to the system in (5) and neglecting the unnecessary input and output channels.
Using the techniques described in [5], we can construct a stabilizing controller of the form

˙̄z = Āz̄ + B̄yk`,

uk` = C̄z̄ + D̄yk`

where z̄ ∈ Rm−1 due to the fact that m is the controllability index of the pair (H,Bk`). The
resulting stable closed loop system is given by(

ε̇
˙̄z

)
=

(
H +BkD̄Ck` BkC̄

B̄Ck` Ā

)(
ε
z̄

)
⇒

(
ε
z̄

)
→ 0 as t→∞,

hence, in particular, ε converges to zero as t→∞. It is not yet clear how we can use this in
the equations for our distributed observer. Unlike in the beginning, where we had ε̇ = Hε,
we now have

ε̇ = (H +BkD̄Ck`)ε+BkC̄z̄,

together with the dynamics of the stabilizing controller

˙̄z = Az̄ + B̄Ck`ε.

Nevertheless, if we impose that ε = z−1m⊗ x and use this to derive the observer equations,
then the resulting estimation error will be given by ε, hence it will converge to zero as t→∞.
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With this in mind, let K = blockdiag(Fii : i ∈ M), so that the design equation (3) is
implicitly satisfied. The observer equations would have to be such that

ż = ε̇+ 1⊗ ẋ = (H +BkD̄Ck`)ε+BkC̄z̄ + (1m ⊗A)x

= Hz +BkD̄Ck`ε+BkC̄z̄ + (1m ⊗A−H(1m ⊗ In))x

= Hz +BkD̄Ck`ε+BkC̄z̄ +KCx

= Hz +Ky +BkC̄z̄ +BkD̄Ck`ε.

The difference between the case when k = ` and k 6= ` is only in the very last term, for which
we have

Ck`ε =

{
z` − zk, if k = `

Ckzk − yk, if k 6= `.

Therefore, in the case when k = `, we can write

ż = Hz +Ky +BkC̄z̄ +BkD̄(z` − zk)

˙̄z = Āz̄ + B̄(z` − zk).

To show that the communication restriction is not violated, note that ` ∈ Nk and we can
write out the observer equations in detail, like

żi =
∑
j∈Ni

Hijzj +Kiiyi, i ∈M \ {k},

żk =
∑
j∈Nk

Hkjzj +Kkkyk + D̄(z` − zk) + C̄z̄,

˙̄z = Āz̄ + B̄(z` − zk).

It is clear that for m − 1 of the observers the equations are unchanged, while for the kth
observer the dynamics differ slightly and the state has been extended by the new state com-
ponent z̄. In other words, the stabilizing controller can be seen as a controller of the kth
observer. In this way we have constructed a distributed observer where m−1 of the observers
have dimension n and one observer has dimension n+m− 1.

Quite similarly, in the case when k = `, we obtain the observer equations

żi =
∑
j∈Ni

Hijzj +Kiiyi, i ∈M \ {k},

żk =
∑
j∈Nk

Hkjzj +Kkkyk + D̄(Ckzk − yk) + C̄z̄,

˙̄z = Āz̄ + B̄(Ckzk − yk),

where, just like before, we have m−1 observers of dimension n and one observer of dimension
n+m− 1. There does not seem to be any advantage to picking either k = ` or k 6= `, at least
not in terms of dimension and complexity of the equations.

The pole placement method described in [5] allows us to assign an arbitrary spectrum to
the closed loop matrix (

H +BkD̄Ck` BkC̄
B̄Ck` Ā

)
.

This implies that, in principle, we can preassign arbitrary convergence rate of the distributed
observer approximation.
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5 Analysis

In this section we aim to provide a proof of Theorem 1, which will be done in two parts. In
the context of the proof, we can treat the set of matrices Fij , ij ∈ E , as a point in some
finite dimensional space F . Therefore a point in F corresponds to a matrix H through the
equation in (4) and we can talk about the set of matrices H as a set of points in F . We will
first show that the set of points H for which all pairs (H,Bi), i ∈ M, have controllability
index m is open and dense in F . Then we will show that the set of points H for which
all systems (Cij , H,Bi), ij ∈ E , are minimal is open and dense in F , thus the intersection
of those two sets must also be open and dense. This would imply that the intersection is
non-empty, or that there exists a point in F that corresponds to an H that satisfies both
conditions. In other words, we would have shown that there exists a set of matrices Fij ,
ij ∈ E , such that all systems (Cij , H,Bi), ij ∈ E , are minimal with controllability index m,
thus proving Theorem 1.

5.1 Decentralized control

This subsection is meant to provide a summary of the relevant results from decentralized
control [4] which will be used throughout the proof of Theorem 1. The notation used here is
restricted to this section only and should not be confused with notation used up to now.

Let I be some indexing set and consider the linear system system

ẋ = Ax+
∑
i∈I

Biui, x ∈ Rn,

yi = Cix, i ∈ I,

which we will denote by (C, A,B), where C = blockcol(Ci : i ∈ I) and B = blockrow(Bi :
i ∈ I). Consider feedback laws of the form ui = Fiyi and let AF denote the matrix that gives
the resulting dynamics, that is AF = A+

∑
i∈I BiFiCi. The following is an interpretation of

Theorem 3 and Corollary 1 from [4].

Theorem 2 (Corollary 1 in [4]). There exist matrices Fi, i ∈ I, such that the triple
(Cj , AF , Bj) is minimal for all j ∈ I if and only if the system (C, A,B) is minimal and
complete.

To define completeness of a system we need the notion of a complementary subsystem.
Let C ⊂ I be a non-empty proper subset and define B(C) = blockrow(Bi : i ∈ C) and
C(C) = blockcol(Ci : i ∈ I \ C). Then (C(C), A,B(C)) is called a complementary subsystem
of (C, A,B), which can be written out as

ẋ = Ax+
∑
i∈C

Biui, yi = Cix, i ∈ I \ C.

Although it appears that the definition of a complementary subsystem depends on the order-
ing, the properties that characterize completeness do not.

Definition 3. The system (C, A,B) is complete if for each proper subset C ⊂ I the resulting
complementary subsystem (C(C), A,B(C) has a non-zero transfer matrix C(C)(sI−A)−1B(C)
and the matrix

π(C) =

(
λI −A B(C)
C(C) 0

)
12



has rank no less than n for all λ ∈ C.

The condition that all complementary subsystems of (C, A,B) have a non-zero transfer
matrix can be described in terms of the graph of (C, A,B). The graph of (C, A,B) is a graph
with vertices in I and set of edges given by {ij : Ci(sI − A)−1Bj 6= 0}. Lemma 8 from [4]
states the following.

Lemma 4 (Lemma 8 in [4]). The transfer matrices of all complementary subsystems of
(C, A,B) are non-zero if and only if the graph of (C, A,B) is strongly connected.

Finally, Theorem 1 from [4] is a statement for a fixed i ∈ I which we can extend to a
statement for all i ∈ I by using the definition of completeness of a system.

Theorem 5 (Theorem 1 in [4]). There exist matrices Fi, i ∈ I, such that the pair (AF , Bj)
is controllable for all j ∈ I if and only if the system (C, A,B) is controllable and complete.

5.2 Controllability index

In this subsection we will show that the set of points for which all pairs (H,Bk), k ∈M, have
controllability index m is open and dense in F . Let k ∈ M and note that the pair (H,Bk)
has a controllability index m if

rank
(
Bk HBk · · · Hm−1Bk

)
= mn. (6)

Since Bk has nm rows and n columns, the matrix on the left-hand side of (6) is square, hence
m is the smallest possible controllability index the pair (H,Bk) can attain. Moreover, the
rank condition (6) is equivalent to

det
(
Bk HBk · · · Hm−1Bk

)
6= 0.

The matrix H can be written in terms of the unknown matrices Fij , ij ∈ E , and the deter-
minant in the last equation can be seen as a multivariable polynomial, where the variables
are the unknown elements of all matrices Fij , ij ∈ E . Provided that the polynomial is not
the zero polynomial, its zero set is a proper algebraic variety, the complement of which is
open and dense in F . This complement is precisely the set of points for which the rank
condition (6) holds. If we can show that there exists at least one point for which the rank
condition (6) holds, then we guarantee that the polynomial is not the zero polynomial, hence
the set of points for which (H,Bk) has controllability index m is open and dense in F . As
the intersection of open and dense sets is open and dense, showing there exists a point for
which (6) holds for all pairs (H,Bk), k ∈M, implies that the set of points for which all pairs
(H,Bk), k ∈M, have controllability index m is open and dense in F .

To show such a point exists, we will consider the case when Fii = 0, i ∈M. Furthermore,
let Ē = E \ {ii : i ∈M} and consider matrices of the form Fij = fijIn, ij ∈ Ē , where fij are
scalars. The equation for H in (4) is reduced to

H = Im ⊗A+
∑
ij∈Ē

Bi(fijI)Cij

= Im ⊗A+
∑
ij∈Ē

fij (ei ⊗ In) (cij ⊗ In)

= Im ⊗A+
∑
ij∈Ē

(fijeicij)⊗ In.

13



This can be simplified by defining

F =
∑
ij∈Ē

fijeicij , (7)

so that the equation for H can be written as

H = Im ⊗A+ F ⊗ In. (8)

In this form, we can relate the rank condition in (6) to a similar one in lower dimensions using
the following lemma.

Lemma 6. There exists an mn×mn nonsingular matrix Tk such that(
Bk HBk · · · Hm−1Bk

)
=
(
ek ⊗ In Fek ⊗ In · · · Fm−1ek ⊗ In

)
Tk

where H = Im ⊗A+ F ⊗ In and Bk = ek ⊗ In.

Proof. Writing out Hj−1Bk yields

Hj−1Bk = (Im ⊗A+ F ⊗ In)j−1 (ek ⊗ In)

=

j∑
i=1

(
j − 1
i− 1

)
(Im ⊗A)j−i (F ⊗ In)i−1 (ek ⊗ In) .

Using the properties of the Kronecker product, we obtain

Hj−1Bk =

j∑
i=1

(
j − 1
i− 1

)(
Im ⊗Aj−i) (F i−1 ⊗ In

)
(ek ⊗ In)

=

j∑
i=1

(
j − 1
i− 1

)
F i−1ek ⊗Aj−i,

and since F i−1ek is a column vector for all i, we can write

Hj−1Bk =

j∑
i=1

(
j − 1
i− 1

)(
F i−1ek ⊗ In

) (
1⊗Aj−i)

=

j∑
i=1

(
F i−1ek ⊗ In

)
·
(
j − 1
i− 1

)
Aj−i.

Let the matrices Tij ∈ Rn×n, i ∈M, j ∈M, be defined by

Tij =


(
j − 1
i− 1

)
Aj−i , if i 6 j,

0n , otherwise,

which then implies that

Hj−1Bk =
m∑
i=1

(
F i−1ek ⊗ In

)
Tij .
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The last expression looks like the result of multiplying a block row vector with a block column
vector and, in particular, if we define the matrix Tk by Tk = (Tij), then(

Bk · · · Hm−1Bk

)
=
(
ek ⊗ In Fek ⊗ In · · · Fm−1ek ⊗ In

)
Tk.

To show that Tk is nonsingular, note that Tk is block upper triangular because the blocks Tij
are zero for i > j. On the block diagonal we have Tii = In, hence Tk is upper triangular with
ones on the diagonal and as such it is nonsingular.

The fact that Tk is nonsigular implies that the rank condition in (6) is equivalent to

rank
(
ek ⊗ In Fek ⊗ In · · · Fm−1ek ⊗ In

)
= nm,

which can be written as

rank
((
ek Fek · · · Fm−1ek

)
⊗ In

)
= nm.

Given that rank In = n, the latter is equivalent to

rank
(
ek Fek · · · Fm−1ek

)
= m,

and because F ∈ Rm×m, we can recognize this as the condition for which the pair (F, ek) is
controllable. This way, the problem is reduced to finding scalars fij , ij ∈ Ē , such that the
pair (F, ek) is controllable. We can relate the definition of F in (7) to the outcome of applying
feedback laws vij = fijwij , ij ∈ Ē , to the system

ϕ̇ =
∑
ij∈Ē

eiuij , wij = cijϕ, ij ∈ Ē . (9)

With this in mind, we are looking for feedback laws that make the system in (9) controllable
through a specific input channel. The discussion in this subsection so far has been for an
arbitrary k ∈ M, hence if we show that there exist scalars fij , ij ∈ Ē , such that the pair
(F, ek) is controllable for all k ∈ M, then we would have shown that there exist matrices
Fij , ij ∈ E , (where Fii = 0 and Fij = fijIn) such that the pair (H,Bk) has controllability
index m for all k ∈ M. To do that, we will show that the system in (9) is controllable and
complete. Let b = blockrow(bij : bij = ei, ij ∈ Ē) and c = blockcol(cij : ij ∈ Ē), so that the
system in (9) can be denoted by (c, 0m,b).

Lemma 7. If Y is strongly connected then the system (c, 0m,b) is controllable.

Proof. The fact that Y is strongly connected implies that all basis vectors ei, i ∈ M, are
included as columns in b. Therefore rank b = m and the system (c, 0m,b) is controllable.

Let G denote the graph of (c, 0m,b) with vertices in Ē and and edge from k` ∈ Ē to ij ∈ Ē
if cij(sI)−1ek 6= 0. Note that this definition implies that if cij(sI)−1ek 6= 0, then there is an
edge from k` to ij for all ` ∈ N̄k, where N̄k = Nk \ {k}. The following two lemmas will be
enough to show that the system (c, 0m,b) is complete.

Lemma 8. If Y is strongly connected then G is strongly connected.

15



Proof. Let k ∈M and recall that cki = eTi −eTk for all i ∈ N̄k, which implies that cki(sI)−1ek =
−1

s 6= 0 for all i ∈ N̄k. Therefore, there is an edge from kj to ki for all j ∈ N̄k and all i ∈ N̄k.
Since this is true for all k ∈ M, the subgraph Gk with vertices in the set {ki : i ∈ N̄k} must
be complete for all k ∈M.

Let Q be the graph with vertices in M and an edge from ` ∈ M to k ∈ M if there is an
edge from G` to Gk. Given that Gk is complete for all k ∈ M, showing that Q is strongly
connected would imply that G is strongly connected too. To this end, note that there is an
edge from G` to Gk if and only if there is an edge from `j to ki for some i ∈ N̄k and j ∈ N̄`,
equivalently, if cki(sI)−1e` 6= 0 for some i ∈ N̄k. Considering the definition of cki, the latter
is true if and only if ` = k or ` ∈ N̄k. Therefore, there is and edge G` to Gk if and only if
` ∈ Nk, which suggests that Q = Y, hence Q is strongly connected and so is G.

Lemma 9. If Y is strongly connected, then for any non-empty proper subset C ⊂ Ē, the
matrix

π(C) =

(
λI b(C)

c(C) 0

)
has rank no less than m for all λ ∈ C, where b(C) = blockrow(bij : bij = ei, ij ∈ C) and
c(C) = blockcol(Ci : ij ∈ Ē \ C).

Proof. Let C ⊂ Ē be a non-empty proper subset and note that the structure of π(C) implies
that rankπ(C) > rank b(C)+rank c(C) for all λ ∈ C, so showing that rank b(C)+rank c(C) > m
is sufficient. If d denotes the number of distinct integers k ∈ M such that kj ∈ C for some
j ∈ N̄i, then there are d distinct basis vectors among the columns of b(C), hence rank b(C) = d.
Therefore it is enough to show that rank c(C) > m− d. Let c∗(C) be the matrix obtained by
removing the rows cki from c(C) for which there is some j ∈ N̄k such that kj ∈ C. Note that
c is the transpose of the incidence matrix of Y, hence c∗(C) is the transpose of the incidence
matrix of Y∗, the graph obtained after removing all incoming edges of d distinct vertices of
Y. If we group every one of these distinct vertices with the vertices they have a path to,
then the leftover vertices cannot have an incoming edge from any of these d groups. But no
incoming edges of the leftover vertices have been removed and Y is strongly connected, which
is a contradiction, therefore these d groups contain all vertices of Y∗. This implies that Y∗
has at most d weakly connected components and from Theorem 8.3.1 in [2] we know that the
incidence matrix of Y∗ has rank not less than m− d. The same holds for the transpose of the
incidence matrix, hence rank c∗(C) > m− d and the proof is complete.

The only thing left is to trace the steps back and arrive at the result of this subsection,
stated below.

Proposition 10. If the graph Y is strongly connected, then there exist matrices Fij , ij ∈ E ,
such that the pairs (H,Bk) have controllability index m for all k ∈M.

Proof. From Lemma 8 we know that the graph of (c, 0m,b) is strongly connected, and with
Lemma 4 this implies that the transfer matrices of all complementary subsystems of (c, 0m,b)
are non-zero. Moreover, with the result from Lemma 9 and Lemma 7 we can conclude that
(c, 0m,b) is controllable and complete, hence Theorem 5 implies that there exist scalars
fij , ij ∈ Ē , such that the all pairs (F, ek), k ∈ M are controllable, where F is defined by
(7). Fix those fij , ij ∈ Ē , and let Fii = 0, i ∈ M, and Fij = fijIn, ij ∈ Ē ,, so that
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H = Im ⊗ A + F ⊗ In. From Lemma 6 we know that for all k ∈ M there exist nonsingular
matrices Tk such that(

Bk HBk · · · Hm−1Bk

)
=
(
ek ⊗ In Fek ⊗ In · · · Fm−1ek ⊗ In

)
Tk,

and as a consequence, we obtain

rank
(
Bk HBk · · · Hm−1Bk

)
= nm, for all k ∈M.

This shows that all pairs (H,Bk), k ∈M have controllability index m, as desired.

5.3 Minimality

In this subsection we will show that the set of points for which all systems (Ck`, H,Bk), k` ∈ E ,
are minimal is open and dense in F . Given that the condition for observability is dual to
the condition for controllability, it should be clear that the set of points for which all systems
(Ck`, H,Bk), k` ∈ E , are minimal is either empty or open and dense in F . Therefore, it is
enough to show that the set is non-empty, or that there exists a set of matrices Fij , ij ∈ E ,
such that all systems (Ck`, H,Bk), k` ∈ E , are minimal.

Let B = {Bij : Bij = Bi, ij ∈ E} and C = {Cij : ij ∈ E}, so that the system in
(5) can be denoted by (C, Im ⊗ A,B). Note that Proposition 10 and Theorem 5 imply that
the system (C, Im ⊗ A,B) is controllable and complete, hence it is enough to show that the
system is observable in order to use Theorem 2.

Lemma 11. The system (C, Im ⊗A,B) is observable.

Proof. We will show that all eigenvalues of Im⊗A are observable. To this end, suppose there
exists a non-zero vector v ∈ Rnm such that Cijv = 0, ij ∈ E , and (Im ⊗ A)v = λv. If we let

v =
(
vT1 · · · vTm

)T
, where vi ∈ Rn, i ∈M, then we can write

Avi = λvi, i ∈M,

Civi = 0, i ∈M,

vj − vi = 0, ij ∈ Ē ,

where we used the definitions Cii = eTi ⊗ Ci, i ∈ M, and Cij = (eTj − eTi ) ⊗ In, ij ∈ Ē .
Note that vj = vi, ij ∈ Ē , implies that vi = vj for any i and j connected with a path in Y,
and because Y is strongly connected this also implies that vi = v1, i ∈ M. Now we have
that Av1 = λv1 and Civ1 = 0 for all i ∈ M, equivalently Cv1 = 0, and given that (C,A) is
observable, this implies that v1 = 0, hence v = 0. We conclude that all eigenvalues of Im⊗A
are observable, or that the system (C, Im ⊗A,B) is observable.

We can finally provide a proof for Theorem 1:

Proof of Theorem 1. Proposition 10 implies that the set of points for which all pairs (H,Bk),
k ∈ M, have controllability index m is non-empty, hence the set must be open and dense in
F . This and Theorem 5 suggest that the system (C, Im⊗A,B) is controllable and complete,
which, together with Lemma 11 and Theorem 2, implies that there exists a set of matrices
Fij , ij ∈ E , such that all systems (Ck`, H,Bk), k` ∈ E , are minimal. Again, the set of
points for which this holds must be open and dense in F because it is non-empty, hence the
intersection of those two sets must also be open and dense. More importantly, it is non-empty,
so there exists a set of matrices Fij , ij ∈ E , such that all systems (Ck`, Im ⊗ A,Bk), ij ∈ E ,
are minimal with controllability index m.
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Remark 12. The fact that the set of points for which all systems (Ck`, Im⊗A,Bk), ij ∈ E , are
minimal with controllability index m is open and dense in F , suggests that picking Fij , ij ∈ E ,
at random will almost certainly result in a matrix H that satisfies the property described in
Theorem 1. Even if this fails, the proofs also suggest that a small perturbation in almost
any direction will eventually lead to an appropriate H. This can be seen as a construction
strategy.

In view of this remark, we can write down a step-by-step algorithm for the construction
of a distributed observer, assuming that the graph Y is strongly connected and (C,A) is an
observable pair. The steps are as follows:

1. Pick random matrices Fij , ij ∈ E , where Fij ∈ Rn×n if i 6= j, and Fij ∈ Rn×pi if i = j.

2. Define
H = Im ⊗A+

∑
ij∈E

BiFijCij ,

and fix an edge k` ∈ E . Because of Theorem 1 and Remark 12, we will almost certainly
have that the system (Ck`, H,Bk) is minimal with controllability index m.

3. Using the techniques described in [5], find matrices Ā, B̄, C̄ and D̄ such that

σ

(
H +BkD̄Ck` BkC̄

B̄Ck` Ā

)
⊂ C−,

where Ā ∈ R(m−1)×(m−1) and the rest have corresponding dimensions.

4. Let Kii = Fii, i ∈M, and

Hij =


A− FiiCi −

∑
r∈Ni\{i}

Fir, if i = j,

Fij , otherwise.

In the case when k 6= `, the equations for the distributed observer are given by

żi =
∑
j∈Ni

Hijzj +Kiiyi, i ∈M \ {k},

żk =
∑
j∈Nk

Hkjzj +Kkkyk + D̄(z` − zk) + C̄z̄,

˙̄z = Āz̄ + B̄(z` − zk),

while in the case when k = `, they are given by

żi =
∑
j∈Ni

Hijzj +Kiiyi, i ∈M \ {k},

żk =
∑
j∈Nk

Hkjzj +Kkkyk + D̄(Ckzk − yk) + C̄z̄,

˙̄z = Āz̄ + B̄(Ckzk − yk).
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6 Conclusion

In this paper we have shown sufficient conditions and techniques for the construction of
a distributed observer consisting of m observers. Assuming that the graph describing the
distributed observer network is strongly connected and the observed system is observable, it
has been shown that we can construct a distributed observer consisting of m− 1 observers of
dimension n, the dimension of the state of the observed system, and one observer of dimension
n+m−1. Furthermore, the construction method allows for arbitrary convergence rate of the
state approximations. The proof of Theorem 1 also suggest that the observers are stable in
the sense that small perturbation in the matrices that determine the observer dynamics will
almost never substantially affect the convergence properties of the distributed observer.

It would be interesting to investigate the construction of a distributed observer with
smaller dimension. The output corresponding to each observer already gives some information
about the state, hence each observer is required to approximate only the leftovers. However,
this would require a more general form of the observer equations to include an output for
each observer, which will serve as the approximation of the state of the observed system.
Moreover, this will lead to more general observer design equations, and the observers would
almost certainly have to use the output measurements of neighbouring observers.

On the other hand, applications in control problems might require the construction of a
distributed observer for the system

ẋ = Ax+

m∑
i=1

Biui,

where observer i can measure the input signal ui. In this setting, we can think of decentralized
control with the use of a distributed observer. Another problem might be to regard the
inputs ui as disturbances that have to be ignored by the potential observer. However, in the
problems suggested here, the connection with decentralized stabilization does not seem to be
as straightforward as in the problem solved in this paper. Instead, a new approach to the
solution might be necessary in order to find a way to expand on the results.
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