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Abstract 
 
Chronic obstructive pulmonary disease (COPD), including chronic bronchitis and 
emphysema, is a progressive respiratory condition and a leading cause of mortality and 
morbidity worldwide. Emphysema is characterized by loss of alveolar structure and 
destruction of the extracellular matrix, resulting in irreversible enlargement of alveolar 
spaces. Although various treatment options for COPD exist, none has been found to repair or 
reverse emphysematous destruction of the lung. Mesenchymal stem/stromal cells (MSCs) 
have however been identified as a novel possible strategy for the treatment of emphysema in 
COPD patients. Although MSC therapy in animal studies has showed promising results 
concerning reparation of alveolar epithelial damage, no beneficial effects of MSCs in human 
clinical trials have been observed yet. Therefore, this review provides an overview of our 
current knowledge of the molecular pathogenesis of emphysema and aims to investigate the 
characteristics and mechanisms of action of MSCs necessary in order to restore or 
regenerate alveolar epithelial damage in emphysema. In addition, this review attempts to 
explore the reasons behind the lack of significant results of MSC therapy in COPD patients, 
in contrast to promising animal studies.  
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Introduction 
 
Chronic obstructive pulmonary disease (COPD) is the most frequent chronic respiratory 
disease and a leading cause of mortality and morbidity worldwide. COPD is characterized by 
a progressive, poorly reversible loss of lung function, and an abnormal inflammatory 
response of the lungs to noxious gases and particles (Guan et al., 2013). Tobacco smoking 
is the most common risk factor associated with COPD. However, an estimated 25-45% of 
patients with COPD have never smoked (Guan et al., 2013). Exposure to indoor and outdoor 
air pollution may also play a role in the development of COPD in some individuals. Other 
possible risk factors include genetic predisposition and long-standing asthma (Wecht et al., 
2016).  
 
The pathogenesis of COPD is a complex process and includes both chronic obstructive 
bronchitis and pulmonary emphysema. Pulmonary emphysema is a key pathological change 
in COPD and is characterized by destruction of terminal bronchioles and alveolar walls, 
resulting in an irreversible enlargement of alveolar spaces (Akram et al., 2012). Normally 
functioning lungs are elastic, efficiently expanding and recoiling as air passes freely through 
the bronchus reaching the alveoli, where oxygen is moved into the blood and carbon dioxide 
is filtered out. In emphysema, collapse of the alveoli contributes to reduced lung elastic recoil, 
which decreases the driving force of air from the lungs. Furthermore, alveolar break down in 
emphysema results in a disruption of the gas exchange taking place in the alveoli (Jones et 
al., 2016). In severe cases of emphysema, coughing and breathlessness (dyspnea) occur, 
which severely affect the quality and productivity of a patient’s life (Taraseviciene-Stewart 
and Voelkel, 2008). While there are several treatment options for COPD, none of these 
treatments have been found to repair or reverse the damage done to the lungs in 
emphysema (Wecht and Rojas, 2016). Therefore, there is a pressing need to find innovative 
treatment options for patients with emphysema.  
 
Stem cell therapy is one of the novel approaches believed to have the potential to reverse a 
lung disease or halt its further progression. A stem cell is defined as an undifferentiated cell 
with three primary functions: clonality, self-renewal and differentiation into different types of 
cells and tissues (Wecht and Rojas, 2016). Development of cell therapies for lung diseases 
has rapidly progressed over the past 10 years (Weiss, 2014). Specifically, mesenchymal 
stem cells (MSCs), a population of non-haematopoietic multipotent stromal cells, have 
attracted the attention of scientists and clinicians for their potential use in treatment of lung 
diseases, including emphysema, because of their ability to migrate to the site of injury and 
initiate tissue repair. Furthermore, MSCs have been shown to exhibit anti-inflammatory and 
protective abilities, which could assist in the reparation or regeneration of destroyed lung 
tissue caused by emphysema. Huh et al. were the first to demonstrate the reparative effects 
of MSCs in a smoke-induced rat model of emphysema. Female rats treated with MSCs after 
cigarette smoke exposure exhibited restored alveolar architecture 2 months after MSC 
treatment (Huh et al., 2011). In addition, Zhen and colleagues demonstrated that systemic 
administration of bone-marrow derived MSCs improved emphysematous changes in 
irradiation and papain-induced experimental mouse models (Zhen et al., 2008).  
Donation of MSCs to various animal models with emphysema has thus shown very promising 
results, indicating the first steps of alveolar regeneration. In addition, a placebo-controlled, 
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randomized trial of MSCs in COPD revealed that MSC administration appears to be safe in 
patients with moderate to severe COPD (Weiss et al., 2013). On the other hand, no 
beneficial effects on the emphysematous characteristics in the lungs of the COPD patients 
after MSC administration were observed in this clinical trial (Weiss et al., 2013). Therefore, 
there are still many unanswered questions concerning the characteristics of MSCs and the 
mechanisms of actions of these cells necessary in lung repair and regeneration in 
emphysema. This review discusses the molecular pathogenesis of emphysema and aims to 
investigate which mechanisms of action of MSC therapy are relevant in order to repair or 
regenerate the alveolar epithelial damage caused by emphysema. In addition, this review 
attempts to explore the reasons behind the lack of significant results of MSC therapy in 
COPD patients, in contrast to promising animal studies.  
 
 
1. Molecular pathogenesis of emphysema 
 
Pulmonary emphysema is defined as airspace enlargement as a result of alveolar breakdown 
in the adult lung (Figure 1). Human emphysema is originally described by Ruysch in 
Amsterdam at the end of the 17th century, and in the 19th century by a French physician 
named Laennec. Laennec noted “marked variations in the size of air vesicles, which might be 
smaller than a millet seed or as a large as a cherry stone or haricot. Vesicles of the latter size 
were produced by the coalescence of adjacent air spaces following rupture of the alveolar 
walls” (Snider et al., 1985; Laennec, 1819; Laennec, 1834). Since these original descriptions, 
the pathogenesis of emphysema is an arena of ongoing, active research, and new 
developments continue to arise.  
 

Emphysema is a complex disease, as various 
pathological processes occur simultaneously. 
These processes work individually or in concert 
and are often interrelated, but all eventually 
result in the loss of alveolar septal cells and 
airspace enlargement (Taraseviciene-Stewart 
and Voelkel., 2008). In this chapter, an 
overview of our current knowledge of the 
molecular pathogenesis of emphysema, 
according to recent literature, is given.  
 
1.1 Chronic inflammation and development 
of emphysema 
Chronic inflammation can be considered as one 
of the key aspects in the development of 
emphysema. Inflammation is defined as the 
presence of inflammatory cells and altered 
levels of mediators of inflammation in the 
parenchyma. Cigarette smoke exposure, the 
foremost risk factor for COPD development, 
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has been shown to directly activate macrophages, a type of phagocytic white blood cell. 
Macrophage activation results in the release of inflammatory substances that mediate 
alveolar wall destruction and contribute to the establishment of emphysema. For instance, 
one of the effects of macrophage activation is the release of pro-inflammatory cytokines such 
as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). In 
addition, the release of chemokines such as interleukin-8 (IL-8), monocyte chemotactic 
protein-1 (MCP-1), and leukotrine B4 attracts additional immune and inflammatory cells to 
the lungs, including T-cell and neutrophils. T-cells are a type of lymphocyte that play a central 
role in cell-mediated immunity. Neutrophils are the most abundant type of granulocytes. 
Cigarette-smoke activated neutrophils have been shown to advance alveolar destruction via 
the release of oxidants and proteases. Activated T-cells, mainly CD8+ T-cells, are able to 
release cytotoxic perforins such as granzyme B and TNF-α, directly leading to cell death and 
apoptosis of alveolar epithelial cells.  
 
Besides activating macrophages, cigarette smoke can activate epithelial cells in the lung to 
secrete a variety of inflammatory mediators, thereby supporting the inflammatory processes 
that contribute to the development of emphysema (Jin et al., 2014). Inflammation in 
emphysema is thus a synergy of multiple immune cells activated by cigarette-smoke, which 
are able to release various pro-inflammatory substances that mediate alveolar wall 
destruction and contribute to development of emphysema.  
 
1.2 Protease/antiprotease imbalance in emphysema  
In the lung, a delicate balance between protease and antiprotease activity is required for 
appropriate lung maintenance. Proteases can enzymatically degrade lung extracellular matrix 
(ECM) proteins, and antiproteases protect against their destruction (Jin et al., 2014; 
Taraseviciene-Stewart and Voelkel, 2008). The ECM is a highly dynamic three-dimensional 
network of non-cellular components present within all tissues and organs. The ECM consists 
of various ECM proteins, such as collagens, elastin, fibronectin, laminin and proteoglycans 
(PGs). The ECM provides structural support and affects cell shape and function. Especially in 
the alveolar compartment, the ECM forms a strong yet expansile framework that supports the 
alveolar epithelial-capillary interface (Straaten van et al., 1999). A derangement of the 
protease/antiprotease balance can result in increased alveolar destruction caused by break 
down of the ECM proteins in the alveoli, inappropriate repair of the lung, and eventually the 
development of emphysema (Taraseviciene-Stewart and Voelkel, 2008; Jin et al., 2014).  
 
Cigarette smoke and the associated inflammatory processes have been shown to both 
increase protease production and protease release from inflammatory cells and structural 
cells. Macrophages and neutrophils are the two main sources of proteases in the lungs, and 
many studies have shown correlations between the degree of neutrophil and macrophage 
inflammation and the severity of airflow obstruction (Sharafkhaneh et al., 2008; Saetta et al., 
2001).  
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A group of proteases known to play a vital 
role in emphysema are the matrix 
metalloproteinases (MMP’s), a group of 
calcium-dependent zinc-containing 
endopeptidases, capable of degrading all 
kinds of ECM proteins. Especially MMP-12 
(an elastase), MMP-8 (a collegenase) and 
MMP-9 (a gelatinase) have been shown to 
influence the development of emphysema 
(Inamdar and Inamdar, 2013). For 
example, MMP-12 knockout mice showed 
resistance to development of emphysema 
after exposure to cigarette smoke 
(Hautemaki et al., 1997). In addition to the 
MMP’s,  the serine protease neutrophil-
elastase and lysosomal proteases 
cathepsins S,L and G, are other proteases 
released by inflammatory cells upon 
exposure to cigarette smoke, that may 
play an important role in the development 
of emphysema (Sharafkhaneh et al., 
2008).  
 
Neutrophil-elastase and MMP-12 are both 
types of elastases, and are able to 
enzymatically destroy the elastin scaffold 
of the alveolar spaces. Elastin is a highly 
elastic protein in the connective tissue of 
the lung and is essential for the elasticity 
and extensibility of lung tissue 

(Taraseviciene-Stewart and Voelkel, 2008). Multiple studies have shown a decrease in 
elastin in the alveoli and small airways in COPD patients of varying severity (Eurlings et al., 
2014; Merrilees et al., 2008). Break down of the elastin network contributes to the alveolar 
breakdown in emphysema. Moreover, the resulting elastin fragments are in turn chemotactic 
and attract even more inflammatory cells to sites of injury, reinforcing the joint role of 
inflammatory cells and proteases (Figure 2) (Sharafkhaneh et al., 2008; Taraseviciene-
Stewart and Voelkel, 2008).  
 
Besides up-regulation of proteases, cigarette smoke reduces the activity of antiproteases, 
such as α1-antitrypsin (AAT) (Jin et al., 2014). Normally, AAT inhibits neutrophil elastase and 
therefore protects against the destruction of the elastin network in the lung. For example, 
AAT protects against experimental emphysema in rodents. A decrease in AAT as a result of 
exposure to cigarette smoke further stimulates the degradation of the ECM scaffold in the 
alveoli. Another group of antiproteases are the tissue inhibitors of metalloproteinases 
(TIMPS). TIMPS are the endogenous inhibitors of MMPs. Alveolar macrophages from COPD 
patients release less TIMP’s in vitro compared to macrophages from smokers without COPD 
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and non-smokers. Thus, cigarette smoke induces release of MMPs from macrophages, 
without inducing an increase in TIMPs, which inhibit MMPs, leading to a strengthening of the 
protease/ antiprotease imbalance and destruction of ECM proteins (Pons et al., 2005). 
For example, besides a decrease in elastin, van Straaten et al. found a diminished staining of 
the interstitial PGs, decorin and biglycan, in the peribronchiolar area, in lung tissue from 
patients with severe emphysema, compared with lung tissue from control patients (Straaten 
van et al. 1999). Interstitial PGs are able to interact with fibrillar collagens and fibronectin, 
and are known to stabilize the fibrillar collagen matrix in vivo (Danielson et al., 1997). The 
observed alterations in interstitial PGs might therefore affect the structural collagen network 
of the lung tissue and thereby the respiratory function of COPD patients (Straaten van et al., 
1999).  
 
Examples of the involved proteases and antiproteases illustrate how complex proteolytic lung 
destruction may be, particularly given the large number of involved enzymes as well as their 
targets – many structural proteins. Overall cigarette smoke results in a disruption in the 
delicate balance of the protease/antiprotease activity, which contributes to alveolar wall 
destruction and airspace enlargement via degradation of ECM proteins.  
 
1.3 Oxidative stress in emphysema  
Several types of reactive species are generated in the body as a result of metabolic reactions 
in the mitochondria, in the form of free radicals, or non-free radicals. These species may be 
either oxygen or nitrogen derived, and are called (pro)-oxidants (Irshad and Chaudhuri, 
2002). These oxidants attack macromolecules including proteins and DNA, causing cellular 
and tissue damage. Fortunately, to counter the effect of these destructive oxidants, the body 
has another category of compounds called antioxidants (Irshad and Chaudhuri, 2002).  
 

Under normal conditions, a 
pulmonary intra- and extracellular 
antioxidant defense system protects 
our lung cells from oxidant damage, 
by maintaining a balance between 
oxidants and antioxidants. 
However, a shift in this delicate 
balance towards oxidants, resulting 
from either a depletion of 
antioxidants or an increase in the 
level of oxidants, is referred to as 
oxidative stress (Jin et al., 2015).  
 
Exposure to cigarette smoke has 
been associated with a disruption of 
the balance between oxidants and 
antioxidants. The oxidative stress 
resulting from the disruption of the 
balance between oxidants and 

Figure	
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antioxidants has been suggested as an important pathogenic mechanism in patients with 
emphysema (Jin et al., 2014).  
 
In smokers, an increased oxidant burden derives from the fact that cigarette smoke contains 
various reactive oxygen species (ROS), such as superoxide (O2-) and hydroxyl radicals 
(•OH), which are present in high concentrations in the gaseous phase of cigarette smoke. 
These gaseous-phase ROS cause local damage in the lung (Toorn van der et al., 2009). 
Furthermore, lipid-soluble components in cigarette smoke induce mitochondrial production of 
ROS in epithelial cells in the lung (Toorn van der et al., 2009). Other factors, such as 
infections and air pollutants that may exacerbate COPD, also have the potential to increase 
levels of oxidative stress in the lungs (Rahman, 2005). Moreover, the oxidant burden in the 
lungs of patients with emphysema is even further enhanced by the release of ROS from 
macrophages and neutrophils. Macrophages and neutrophils are known to migrate in 
increased numbers into the lungs upon exposure to cigarette smoke and can generate ROS 
via the NAPD-oxidase system (Rahman et al., 1996). To crown it all, smoking and 
exacerbations of COPD result in decreased antioxidant capacity in plasma and in the 
bronchoalveolar lavage fluid (Rahman et al., 1996).  
 
The contribution of oxidative stress to emphysema is thought to encompass a variety of 
mechanisms. For example, oxidative stress has been suggested to contribute to lung 
inflammation via induction of redox-sensitive inflammatory transcription factors such as 
nuclear factor-κB (NF-κB) (Jin et al., 2014). In addition, oxidative stress has been associated 
with a strengthening of the protease/antiprotease imbalance and increased alveolar 
apoptosis by blockage of the VEGF receptor, leading to elevated tissue injury (Figure 4) 
(Carp and Janoff, 1978; Kasahara et al., 2000). For example, oxidants in cigarette smoke 
can inactivate the antioxidant AAT by oxidation of the methionine residue at its active site 
(Rahman, 2005). In addition, it has been suggested that the oxidative component of cigarette 
smoke may stimulate alveolar macrophages to release increased amounts of MMP-9, which 
is involved in remodeling of the ECM in the alveolar spaces (Rahman, 2005).  
 
1.4 Maintenance of alveolar structure and apoptosis in emphysema 
Apoptosis is a tightly regulated form of cell death. Apoptosis is critical for the maintenance of 
normal tissue homeostasis, and which under normal conditions, is in equilibrium with cell 
proliferation (Jin et al., 2014). In the pathogenesis of emphysema, apoptosis of alveolar 
epithelial cells is known to play an essential role. In patients with emphysema, increased 
apoptosis of alveolar epithelial cells is not balanced by an increase in proliferation resulting in 
loss of alveolar cells (Hodge et al., 2005).  
 
One factor involved in survival of alveolar epithelial cells is vascular endothelial growth factor 
(VEGF), which is normally abundantly expressed in the adult lung. The receptor for VEGF, 
mainly type 2 (VEGFR2), is expressed on both epithelial and endothelial cells 
(Taraseviciene-Stewart and Voelkel, 2008). VEGF is critical for endothelial cell proliferation, 
lung development and plays a central role in several lung disorders including emphysema. 
Specifically, it has been suggested that alveolar septal endothelial cells may vitally depend 
on paracrine and autocrine VEGF survival signals, and are therefore vulnerable to VEGFR2 
blockade or VEGF withdrawal (Stevens et al., 2005). Effective transcription of the VEGF 
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gene is controlled by hypoxia-inducible factor 1α (HIF-1α) in endothelial cells. Synthesis of 
prostacylin (PGI2) and nitric oxide (NO) is one of the outcomes of VEGFR2 activation, 
resulting in increased epithelial cell survival (Figure 3) (Taraseviciene-Stewart and Voelkel, 
2008).  
 

Decreases in VEGF and VEGFR2 at both the 
mRNA and protein levels have been described in 
lungs of emphysematous patients and smokers 
(Kanazawa and Yoshikawa, 2005). In addition, 
Kasahara and colleagues showed that knockout 
of the VEGF gene or VEGFR2 blockade caused 
apoptosis of alveolar cells and subsequently the 
development of emphysema in rats (Kasahara et al., 2000; Tang et al., 2004). The reduced 
levels of VEGF and VEGFR2 may lead to a decrease in NO and PGI2 expression and 
subsequently diminished survival signals to the alveolar epithelial cells resulting in apoptosis 
(Taraseviciene-Stewart and Voelkel., 2008).  VEGF and VEGFR2 could therefore be in part 
responsible for the decrease in epithelial cell survival and the inability to maintain alveolar 
structure in emphysema.  
 
Besides the VEGF-dependent homeostasis of alveolar cells, another mechanism possibly 
involved in apoptosis of alveolar epithelial cells is an alteration in the expression of apoptotic 
or anti-apoptotic genes (Jin et al., 2015). As mentioned, oxidative stress caused by cigarette 
smoke and the inflammatory burden has well been established in emphysematous lungs. 
Oxidative stress can damage DNA and can lead to the activation of transcription factors such 
as p53, which is an important transcription factor influencing cell survival. P53 is strongly 
linked to the DNA damage response through the up-regulation of proapoptotic genes 
including Bax. More specifically, in response to a stress signal, cytoplasmic p53 rapidly 
translocates to mitochondria. In mitochondria p53 interacts with multi-domain members of the 
anti-proapoptotic Bcl-2 family members to either inhibit or activate them. The Bcl-2 family 
consist of anti-apoptotic members such as Bcl-2 and pro-apoptotic members including Bax. 
Upon activation Bax insert into the outer mitochondrial membrane and forms dynamic lipid 
pores that release lethal proteins from the mitochondrial intermembranous space into the cell 
cytoplasm resulting in apoptosis. P53 participates thus directly in the intrinsic apoptosis 
pathway by interacting with members of the Bcl-2 family (Vaseva and Moll, 2008). In a study 
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performed by Imai and colleagues, higher expressions of the pro-apoptotic proteins Bax and 
Bad were detected in emphysema patients, while this was not the case in healthy controls 
(Imai et al., 2005).  
 
 
2. MSC’s and regeneration and reparation of destroyed lung tissue caused by 
emphysema  
 
2.1 General properties of MSCs 
MSCs are non-haematopoietic multipotent stromal cells. MSCs, under the influence of 
appropriate growth factors, can differentiate into multiple cell lines, in particular osteoblasts, 
chondrocytes, adipocytes and smooth muscle cells. Interestingly, a number of recent reports 
suggested an additional differentiation capacity of MSCs into a wide range of non-
mesodermal and mesodermal adult phenotypes, including cardiomyocytes, hepatocytes, 
neurons, lung and epithelial cells (Akram et al., 2012).  
 
MSCs can be isolated from various sources, but bone marrow derived MSCs (BM-MSCS) are 
still the most frequently used MSCs in experimental research. Adipose tissue, peripheral 
blood, the lung, and the myocardium are all documented as potential sources of MSCs, while 
the placenta, umbilical cord and cord blood have been studied as potential birth-associated 
sources of MSCs. However, differences within the phenotypes, quality and quantity of MSCs 
collected at the various sites exist. Although no specific marker for MSCs has yet been 
identified, there is an abundance of non-specific surface markers for MSCs described (Akram 
et al., 2012). The International Society for Cellular Therapy has provided guidance on MSC 
markers: MSCs must express CD73, CD90, CD105 and lack the expression of CD45, CD34, 
CD14, CD11b, CD19 or MCH class II antigens (Dominici et al., 2006).  
 
MSC based therapy has generated a great interest in clinicians for their anti-inflammatory, 
immunomodulatory and regenerative capacities. MSCs can secrete multiple anti-
inflammatory cytokines. These cytokines modify the microenvironment within damaged 
tissues. Furthermore, MSCs exert immunomodulatory effects by means of direct cell to cell 
contact (Jin et al., 2014; Inamdar and Inamdar, 2013). In addition MSCs produce 
hematopoietic and non-hematopoietic growth factors. A few animals and in vitro studies have 
shown that MSCs could differentiate into alveolar epithelial cells. Finally, homing to injured 
tissue, up-regulation of micro-RNA’s (miRNA) and protection from proteolytic ECM 
destruction, are other unique properties of MSCs making them an ideal candidate for the 
treatment of challenging lung conditions like emphysema (Jin et al., 2014; Inamdar and 
Inamdar, 2013).  
 
Multiple animal studies have already demonstrated that application of MSCs stimulates 
wound repair and regeneration with efficient amelioration of a number of clinical conditions, 
including emphysema (Huh et al., 2011; Zhen et al., 2008). Additionally, MSCs, in general, 
have established a very good safety profile as validated though clinical studies (Inamdar and 
Inamdar, 2013; Weiss et al., 2013). However, no beneficial effects on emphysematous 
characteristics in the lungs of COPD patients after MSC administration were observed in 



M.C. Schipper  |  S2716887 

12 
 

human clinical trials (Weiss et al., 2013). In this chapter, the precise mechanisms of action of 
MSC therapy that could contribute to reparation or regeneration of the alveolar epithelial 
damage caused by emphysema are explored. Besides elucidating the mechanisms of action 
of MSCs, this chapter discusses possible reasons behind the lack of significant results of 
MSC therapy in COPD patients, in contrast to promising animal studies.  
 
2.2 Homing and migration of transplanted MSCs  
In order to restore alveolar epithelial damage in the lung, MSCs, after administration, must 
first migrate to the source of injury to subsequently initiate tissue repair. The process by 
which MSCs migrate to, and engraft in the tissue in which they exert local and functional 
effects is called homing. Homing involves a cascade of events. After migration, adhesive 
reactions are initiated between the vascular endothelium at the target tissue and flowing 
cells. Homing receptors expressed on circulating cells mediate this process, resulting in cell-
tethering and rolling contacts on the endothelial surface. This is followed by activation of 
integrin adhesiveness, triggered by chemokine activation, firm adhesion and subsequently 
extravasation (Yagi et al., 2010; Sackstein, 2005) (Figure 5). The homing ability of MSCS has 
already been demonstrated in settings of wound healing and tissue regeneration in various 
animal models (Yagi et al., 2010).  
 
Integrins are known to play a key role in cell migration, adhesion and chemotaxis. 
Furthermore, integrins are essential for cell survival and tissue persistence.  Specifically, 
integrin α4/β1, a cell surface heterodimer, and integrin β1, mediate cell-cell and cell-
extracellular matrix interactions through adhesion to vascular cell adhesion molecule 
(VCAM)-1 and to a specific region of the ECM protein fibronectin, called the V-region (Yagi et 
al., 2010). De Ugarte and colleagues demonstrated that MSCs derived from bone marrow 
expressed many integrins on their cell surface, including high levels of integrin α4/β1 and β1 
(De Ugarte et al., 2003).  Furthermore, it has been shown that MSCs interact in a coordinated 
fashion with endothelial cells by integrin α4/β1-VCAM-1 interaction (Ruster et al., 2006). 
Fibronectin plays a major role in cell migration, adhesion, growth, and differentiation. 
Fibronectin can expose its V-region, containing the site for integrin α4/β1 binding which is 
expressed on MSCs. These fragments of fibronectin enhance integrin α4/β1 mediated cell 
binding, allowing them to adhere to the surrounding matrix, suggesting that integrin α4/β1-
fibronectin interactions plays an important role in transmigration of MSCs into the 
extracellular matrix of the lung (Figure 5) (Yagi et al., 2010). As mentioned in chapter 1, the 
protease/antiprotease imbalance and oxidative stress in emphysema, have been shown to 
be involved in remodeling of the ECM in the lung. Several studies have shown breakdown of 
the elastin network and decreased interstitial PGs, ECM proteins known to interact and 
stabilize collagens and fibronectin, in patients with emphysema (Eurlings et al., 2014; 
Straaten van et al., 1999). Therefore, it could be hypothesized that in patients with 
emphysema, altered ECM assembly, after administration of MSCs, could lead to reduced 
adhesion of MSCs to the ECM, less integrin activation, and subsequently less survival of 
MSCs. This effect could in turn contribute to less significant results of administered MSCs in 
patient trials, since migration and adhesion of MSCs to the injured lung are crucial factors in 
alveolar epithelial regeneration in emphysema.  
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Furthermore, Sordi et al. reported a chemotactic responsiveness of MSCs to specific 
chemokines. One important chemokine is stromal-cell-derived factor 1 (SDF-1), which is 
officially designated as chemokine (C-X-C motif) ligand 2 (CXCL12), a small chemotactic 
cytokine that activates leukocytes and is induced by proinflammatory stimuli such as TNF-α 
or interleukin-1 (IL-1). The receptor for this chemokine is called C-X-C chemokine receptor 
type 4 (CXCR4). MSCs migrated appreciably in response to SDF-1, consistent with their 
expression of the chemokine receptor CXCR4. Based on these data, they stated that SDF-
1/CXCR4 expression is important in MSC adhesion to endothelial cells and migration (Sordi 
et al., 2005; Yagi et al., 2010). Disturbances in the SDF-1/CXCR4 pathway could therefore 
result in defective MSC mobilization. Karagiannis and colleagues studied bone-marrow 
derived MSCs from 15 COPD patients. Measured SDF-1 expression was decreased in bone-
marrow derived MSCs from COPD patients compared to healthy controls.  They suggested 
that migration of MSCs from the bone marrow through SDF-1/CXCR4 is defective in COPD 
patients (Karagiannis et al., 2013). Disturbances in the SDF-1/CXCR4 pathway could 
therefore might be a challenge in successful migration of administered and resident MSCs to 
injured lung tissue in COPD patients. 
 
Another factor that has been suggested to modulate MSC migration and adhesion is basic 
fibroblast growth factor (bFGF), whereas low concentrations of bFGF can lead to an 
attraction of MSCs (Yagi et al., 2010). Moreover, Steingen et al. showed that transendothelial 
migration of MSCs is at least partially regulated by MMP-2 (Steinegen et al., 2008). Taking 
everything into consideration, the mechanisms of action responsible for the ability of MSCs to 
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migrate to the source of injury and initiate tissue repair may involve strong interactions 
between integrin α4/β1 and VCAM-1 on epithelial cells and the chemotactic responsiveness 
of MSCs to SDF-1.  
 
2.3 Alveolar differentiative potential of transplanted MSCs 
After the administered MSCs have migrated to the source of injury, differentiation of MSCs 
into the type of epithelial cells present in the lung could help restore alveolar epithelial 
damage.  
 
The adult lung epithelium is replaced over time. After injury, the lung harbors a remarkable 
capacity to regenerate and restore its function. The composition of the epithelium in the lung 
varies along a proximal-distal axis, which is reflected in the diverse physiological functions of 
the lung. In the most distal region of the lung, approximately 90% of the alveolar epithelium is 
composed of a flattened alveolar type 1 (AT1) cells (Voclkaert and de Langhe., 2014). These 
AT1 cells are in close proximity to the capillary endothelium, which allows for rapid and 
efficient gas exchange, and cuboidal alveolar type 2 (AT2) cells that express surfactant. 
These epithelial regions of the lung are maintained and repaired by distinct stem cell 
populations. Lineage tracing, identification of all progeny of a single cell, during normal 
homeostasis has identified three main stem cell populations responsible for maintaining the 
lung epithelium: club cells, basal cells and AT2 cells (Volckaert and de Langhe., 2014).  
 
Club cells are the predominant stem cell population responsible for maintaining the 
bronchiolar epithelium. As a population, club cells are replaced over time by new club cells 
derived from basal cells. The alveolar epithelium is primarily maintained by AT2 cells, which 
can self-renew and can give rise to the flattened AT1 cells (Volckaert and de Langhe, 2014). 
Furthermore, additional distal progenitor cell populations have been shown to contribute to 
the regeneration of alveolar epithelium, including an integrin (Itg) α6/β4+ (Itgα6β4+) alveolar 
epithelial stem cell population, which has the potential to give rise both AT2 and club cells in 
vitro and in vivo (Chapman et al., 2011; McQualter et al., 2010). Furthermore, 
bronchioalveolar stem cells (BASCs), another population of stem cells located at 
bronchioalveolar duct junctions, can self-renew and give rise to both chronchiolar and 
alveolar cell lineages in vitro and in vivo. To what extent these additional cell populations 
contribute to alveolar repair after injury is not clear (Kim et al., 2005; Lee et al., 2014).  
 
Lung stem cells must give rise to the appropriate number of differentiated progeny in order to 
achieve homeostasis and to restore the functional organ after injury such as alveolar break 
down seen in emphysema (Voclkaert and de Langhe, 2014). The behavior of the epithelial 
progenitors is controlled by the interplay between intrinsic transcriptional programs and 
extrinsic signals. These extrinsic signals are provided by the niche; the local tissue 
environment that hosts and influences the behaviors or characteristics of stem cells and 
comprises both ECM and other cell types. For example, fibroblast growth factor 10 (Fgf10) is 
expressed in several stem cell niches in the lung and influences stem cell maintenance and 
activation after injury (Volckaert and de Langhe, 2014). In addition, delivery of Fgf10 in the 
lungs of rats has been shown to increase the amount of lung resident mesenchymal stem 
cells in treated lungs (Tong et al., 2016).  
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The beneficial role of transplanted MSCs in emphysema has been attributed in part to the 
differentiation of MSCs into alveolar epithelial cells. However, the exact type of cell is an area 
of controversy. Both differentiation of MSCs into AT1 and/ or AT2 cells has been shown in rat 
models of cigarette smoke- and lipopolysaccharide-induced emphysema, and in bleomycin-
induced lung injury (Zhao et al., 2014; Rojas et al., 2005; Jin et al., 2014). This ability of 
MSCs to engraft in lung tissue and differentiate into alveolar cells suggests that exogenously 
administered MSCS may contribute to the repair of the alveolar epithelium following injury. 
However, little is known about the detailed mechanisms underlying the epithelial 
differentiation potential of MSCs in vivo. 
 
Sun et al. investigated the possible regulation mechanisms of MSC differentiation in 
treatment for acute lung injury. Acute lung injury is a clinical syndrome, characterized by 
acute hypoxemic respiratory failure and lung tissue edema, finally leading to lung 
fibrogenesis. Sun and colleagues suggested that the differentiation process of MSCs may be 
regulated by various cytokines and special signal pathways at the injury sites in the lung. For 
example, they demonstrated that canonical Wnt/ β-catenin signaling is involved in regulating 
the process of epithelial differentiation of MSCs. Wnt/β-catenin signaling is a crucial regulator 
in tissue repair, wound closure, fibrosis and tissue remodeling. Activated Wnt signaling 
inhibited the epithelial differentiation process of MSCs in a co-culture system.  However, 
inhibition of Wnt signaling caused by Wnt antagonist Dickkopf-I (DKKI) promoted MSCs to 
differentiate into alveolar epithelial cells including type 2 alveolar epithelial cells. These 
findings suggest a strong link between Wnt/β-catenin signaling and the epithelial 
differentiation of MSCs towards lung epithelial cells (Sun et al., 2013; Wang et al., 2009).  
 
The differentiation of MSCs into specific cells at the injury sites has been considered a very 
important process in the effect of MSCs therapy. Unfortunately, differentiation of MSCs in 
vivo and engraftment rates are still very low (Ingenito et al., 2012). This suggests that the 
mechanisms by which MSCs protect the lung might not only be via their ability to engraft and 
differentiate into alveolar epithelial cells, but also by other mechanisms. MSCs can also have 
a reparative effect through paracrine signaling, by releasing biologically active molecules that 
affect survival, proliferation and differentiation of the surrounding cells. Analysis of MSCs 
conditioned medium indicate that MSCS are able to secrete many known mediators of tissue 
repair including growth factors, cytokines and chemokines, specifically, hepatocyte growth 
factor (HGF), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF) and 
keratinocyte growth factor (KGF). These humoral factors secreted by MSCS may play an 
important role in approving tissue damage caused by emphysema (Katsha et al., 2011; 
Maxson et al., 2012). Various animal models of emphysema or emphysema related lung 
injuries revealed that paracrine mechanisms, in contrast to differentiation of MSCs, are 
essential in amelioration of lung tissue injury. Katsha et al. showed that MSCs could 
ameliorate elastase-induced emphysema in mice. Furthermore, they suggested that release 
of paracrine factors derived from MSCs was the main mechanism responsible for the 
observed protection of lung tissues from elastase injury (Katsha et al., 2011). Other animal 
model-based studies demonstrated that MSC-paracrine factors attenuated pulmonary fibrosis 
through modulation of inflammation and suppression of fibrogensis (Akram et al., 2013).  
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In the lung, development of epithelial cells depends on precise coordination of signals, such 
as Fgf, Sonic Hedgehog (Shh), retinoic acid, Notch, and TGF-β.  Disruption of these signals 
can result in dramatic changes in differentiation of the lung epithelium. Recent studies, 
including a genome-wide association analysis, suggest that some molecular regulators 
described to be involved in developmental processes in the lung may be altered in patients 
with COPD (Shi et al., 2009). For example, retinoic acid has been shown to have stage-
specific effects on lung development, and could down regulate maturation of lung epithelial 
cells. In addition, altered TGF-β signaling has been implicated in the pathogensis of 
emphysema. Disruption of the TGF-β signaling results in abnormalities in the respiratory tract 
and the immune system. Specifically, blockade of TGF-β signaling in embryonic lung MSCs 
results in retarded lung branching, whereas overexpression of TGF-β could arrest lung 
growth and epithelial cell differentiation. Thus, appropriate TGF-β signaling activity is 
essential for normal lung development. It could be hypothesized that changes in the 
microenvironment in patients with COPD and emphysema could disturb the differentiation 
process of MSCs leading to relatively low rates of engraftment and differentiation of MSCs 
towards alveolar epithelial cells, since the fate of stem cells in vivo is mainly regulated by the 
microenvironment (Shi et al., 2009)  
  
To conclude, MSCs can migrate to sites of injury repairing damaged tissue, and facilitating 
tissue regeneration. Both differentiation of MSCs into alveolar epithelial cells and paracrine 
signaling by MSCs influencing proliferation and differentiation of surrounding cells, have been 
implicated as mechanisms by which MSCs can possibly improve tissue damage.  
 
2.4 Inhibition of inflammation by transplantation of MSCs 
One of the mechanisms postulated for MSC protection against emphysema is suppression of 
the chronic inflammatory response by modulating the release of soluble (anti)-inflammatory 
molecules and activation of cellular anti-inflammatory pathways (Jin et al., 2014). Several 
studies have shown that MSCs actively inhibit the function of several immune cells through 
secreted cytokines, growth factors and enzymatic action (Yagi et al., 2010). For example, 
administration of MSCs in a rat model of cigarette smoke induced emphysema has been 
shown to improve emphysematous pathology in these animals, partly via down-regulation of 
pro-inflammatory mediators such as TNF-α, IL-1β, IL-6 and MCP-1 (Guan et al., 2013). 
Moreover, infusions of allogeneic MSCs suppressed levels of circulating C-reactive protein, 
an annular protein found in blood plasma whose levels rise in response to inflammation, in a 
clinical trial with patients suffering from COPD (Weiss et al., 2013). Furthermore, MSCs can 
alter the cytokine secretion profile of dentritic cells (DCs), naïve and effector T cells, and 
natural killer (NK) cells to induce a more anti-inflammatory phenotype. Specifically, MSCs 
caused mature DCs type 1 to decrease secretion of TNF-α and mature DC type 2 to increase 
interleukin-10 (IL-10), an anti-inflammatory cytokine. MSCs can cause T-cells to decrease 
IFN-y expression and increase the proportion of regulatory T suppressor cells. (Yagi et al., 
2010). These results indicate that MSC administration can suppress inflammatory processes 
via paracrine mechanisms.  
 
Besides secretion of soluble anti-inflammatory mediators, MSCs are capable of modulating 
the immune system through interactions with a wide range of immune cells. Macrophages 
are the predominant immune effector cells and act as mediators of the inflammatory 
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response.  Gu et al. proposed that MSCs are able to reverse inflammatory processes and 
restore impaired lung function in emphysema through their interaction with macrophages (Gu 
et al., 2015). MSC administration alleviated airway inflammation and emphysema through the 
down-regulation of cyclooxygenase-2 (COX-2) and COX-2 mediated prostaglandin E2 
(PGE2) production, though the effect on alveolar macrophages. COX-2 is an enzyme linked 
to inflammatory responses. PGE2 is a lipid mediator derived from metabolism of arachidonic 
acid by COX, and is an important mediator in inflammation. Co-culture experiments showed 
that MSCs down-regulated COX-2/PGE2 in macrophages through inhibition of the activation-
associated phosphorylation of p38, mitogen-activated protein kinase (MAPK) and ERK (Gu et 
al., 2015).  
 
The described immune modulating properties of MSCs are rather complex. As mentioned, 
immune modulation by MSCs is not only attributed to secretion of soluble factors, but is also 
dependent on MSC-to immune cell contact. In addition, a study by Waterman and colleagues 
established a connection between the stimulation of specific Toll-like receptors (TLRs) and 
the immune modulating responses of human MSCs. TLRs are able to recognize danger 
signals. Activation of TLRs leads to profound  cellular and systemic responses that mobilize 
innate and adaptive host immune cells. The TLRs consist of a relatively large family of 
evolutionary conserved receptors: TLR1-TLR9 (Waterman et al., 2010). Waterman et al. 
observed distinct effects after stimulation of a specific type TLR, namely TLR3, compared 
with activation of TLR4, another type of TLR. TLR3 stimulation of MSCs supports the 
immunosuppressive effects of MSCs, while TLR4 activation of MSCs provides a pro-
inflammatory signature (Waterman et al., 2010). These results suggest that MSCs can be 
induced to develop into two diverse but homogenously acting phenotypes; exposure with 
TLR4 polarizes MSCs towards a pro-inflammatory MSC1 phenotype important for early injury 
responses, whereas TLR3 exposure polarizes MSCs toward an immunosuppressive MSC2 
phenotype essential to later-anti-inflammatory responses that help resolve tissue injury 
(Waterman et al., 2010). Emphysema is associated with an enhanced chronic inflammatory 
response in the lungs. Although MSCs have multiple anti-inflammatory characteristics, it 
could be hypothesized that in patients with emphysema, lung resident and administered 
MSCs may polarize towards a more pro-inflammatory MSC1 phenotype, and therefore 
contribute to the establishment of the inflammatory response and tissue injury. This could in 
part explain the lack of significant results of MSC therapy in patients with emphysema.  
 
2.5 Inhibition of protease release by MSC transplantation 
In emphysema, a protease/antiprotease imbalance contributes to alveolar wall destruction 
and airspace enlargement via degradation of ECM proteins and promoting apoptosis of 
structural cells in the alveolar walls (Jin et al., 2014). Pulmonary administration of MSCs has 
been shown to reverse the induction of the proteases MMP-9 and MMP-12 in the lungs of 
rats with cigarette smoke-induced emphysema, both at the mRNA and protein levels (Figure 
6). The mechanistic basis of this effect is not completely understood, however, it has been 
attributed in part to the inhibition by MSCs of a positive feedback loop, involving the release 
of proteases by inflammatory and structural cells activated by cigarette smoke (Guan et al., 
2013). 
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2.6 Inhibition of oxidative stress by MSC transplantation  
The contribution of oxidative stress to the development of emphysema is thought to 
encompass a variety of functions. For example, oxidative stress in emphysema has been 
suggested to enhance lung inflammation via induction of redox-sensitive inflammatory 
transcription factors such as NF-kB. Modulation of the redox environment by MSCs is an 
area of emerging interest (Jin et al., 2014). Increased survival in rats with lipopolysaccharide-
induced lung injury after transplantation with bone marrow derived MSCs has been shown to 
be accompanied by decreased levels of oxidative stress (Li et al., 2012). In addition, 
transplantation of bone-marrow derived MSCs is known to decrease oxidative stress in the 
brain of a rat model of spontaneous stroke. These encouraging results suggest that MSCs 
may also decrease oxidative stress in animal models of cigarette smoke-induced 
emphysema. However, the effects of MSCs on oxidative stress in emphysema are not yet 
fully understood (Calió et al., 2014). 
 
In addtion, Cho et al. showed that MSC-mediated resolution of liver injury may occurs 
through a specific antioxidative process. After being injected with carbon tetrachloride 
(CCL4), mice were injected with bone marrow derived MSCs.  CCL4 treatment generates free 
radicals that rigger a cascade of events, resulting in fibrosis in the liver. The treatment with 
CCL4 up-regulated the level of reactive oxygen species (ROS) in liver cells, this effect was 
attenuated by co-culturing with MSCs. Furthermore, MSCs increased superoxide dismutase 
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(SOD) activity. SOD catalysis the conversion of superoxide to H2O2, the latter is converted 
into water and oxygen by catalase and peroxidase. Therefore, SOD is a major antioxidant 
defense that protects tissues within the body from oxidative stress.  Since SOD secreted by 
MSCs decreased levels of ROS in injured liver cells and improved hepatic endothelial 
dysfunction, one could speculate a similar mechanism could be involved in reducing oxidative 
stress by MSCs in alveolar epithelial cells (Cho et al., 2012).  
 

 

Recently, it has been shown that MSCs have the extraordinary capacity of executing 
mitochrondrial transfer. Oxidative stress can results in damaged mitochondria, which 
subsequently leads to even higher levels of oxidative stress. It has been shown in a mouse 
model of induced acute lung injury that the therapeutic effect of MSCs was associated with 
mitochondrial transfer to alveolar epithelial cells and thereby allowed the mouse to recover 
from lung injury. In these mice, bone marrow derived MSCs formed connexin 43(Cx43)-
containing gap junctional channels (GJCs) with the alveolar epithelium, releasing 
mitochondria-containing microvesicles that the epithelium subsequently engulfed. This 
mitochondrial transfer process increased levels of alveolar ATP and protected the mice 
against acute lung injury by restituting alveolar bioenergetics and improving lung function 
(Islam et al., 2012). A possible role of mitochondrial transfer in amelioration of lung damage 
in emphysema needs to be further investigated. 
 
2.7 Inhibition of alveolar cell apoptosis by MSC transplantation  
Apoptosis of alveolar epithelial cells is known to play a pivotal role in the pathogenesis of 
emphysema. As mentioned in chapter 1, blocking the VEGF signaling pathway leads to 
apoptosis of the alveolar cell; and decreases in VEGF and VEGF receptor 2 (VEGFR2) at 
both the mRNA and protein levels have been described in emphysematous patients and 
smokers (Jin et al., 2014; Kanazawa and Yoshikawa, 2005). Interestingly, MSCs may 
beneficial inhibit alveolar cell apoptosis since they have been described to stimulate VEGF 
secretion and VEGFR2 induction. Therefore, measured amelioration by MSC transplantation 
of alveolar cell apoptosis in the lungs of papain- or cigarette smoke-induced rat models of 
emphysema has been postulated to involve reversal of the effects of cigarette smoke 
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exposure on the VEGF signaling pathway (Guan et al., 2013; Zhen et al., 2010). Figure 6 
shows part of the results of research done by Guan and colleagues, showing that mRNA and 
protein levels of VEGF in lungs were significantly lower in cigarette smoke exposed rats 
compared with sham exposed rats, while these levels were higher in MSCs-treated rats 
(Figure 7 A-B). One hypothesis is that MSCs transplantation in rats can promote VEGF 
release from alveolar epithelial cells by regulating the lung local microenvironment, together 
with VEGF release from the MSCS, which may account for the elevated VEGF in lungs and 
amelioration of alveolar cell apoptosis (Guan et al., 2013).  
 
MSCs may also suppress alveolar cell apoptosis and ameliorate emphysema by an 
alternative mechanism. This mechanism has been suggested to involve alterations in the 
expression of apoptotic or anti-apoptotic genes in these cells. For example, it has been 
reported that the apoptotic gene Bax and the anti-apoptotic gene Bcl-2 are repressed and 
induced respectively, after pulmonary administration of MSCs in a papain-induced rat model 
of emphysema (Zhen et al., 2008).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A third mechanism for MSC mediated amelioration of alveolar apoptosis is the suppression of 
alveolar levels of cleaved caspase 3, which is a key player in the apoptotic programme in 
epithelial cells (Kim et al, 2012). Caspases are a family of cysteine proteases that are 
activated during apoptosis. Caspase 3 is the ultimate apoptotic proenzyme in most types of 
cells. Activation of caspase 3 requires proteolytic processing of its inactive symogen into 
activated fragments resulting in cleaved caspase 3. Cleaved caspase 3 is primarily 
responsible for the cleavage of full length Poly (ADP-ribose) polymerase (PARP), which 
plays a central role in the execution of the apoptotic program in epithelial cells (Figure 8). 
Therefore, activation of caspase 3 suggests cell apoptosis. Guan et al showed that MSCs 
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administration inhibited lung cell apoptosis and therefore protected the epithelial in the lung, 
supported by reduced cleaved-caspase 3 and increased full-length PARP levels (Figure 7C) 
(Guan et al., 2013). 
 
Taking everything in consideration, 
MSCs can suppress alveolar cell 
apoptosis via multiple mechanisms 
including stimulation of VEGF 
secretion and VEGFR2 induction, 
repression of the apoptotic gene Bax 
and stimulation of the anti-apoptotic 
gene Bcl-2, and reduction of cleaved-
caspase 3 levels.  
 
2.8 Other protective mechanisms 
of MSCs 
In addition to the protective 
mechanisms of MSCs mentioned 
above, recent studies have 
recognized another novel 
mechanism that could contribute to 
the protective and regenerative 
capacities of MSC therapy. For 
example, Lee and colleagues 
performed a proteomic analysis of MSC-conditioned medium which revealed the presence of 
a number of proteins including CD63, CD81, moesin, lactadherin (MFGE8), heat-shock 
protein 90 (hsp90), and hsp70. These proteins have been reported to be associated with 
secreted vesicles known as exosomes (Lee et al., 2012). Exosomes are small 
heterogeneous microvesicles stored within multivesicular bodies (MVB) and released upon 
fusion with the plasma membrane. Exosomes have been recognized as important mediators 
of intercellular communication, especially in the immune system. In addition, exosomes can 
act as a vector for the transfer of genetic information such as mRNA and micro-RNAs to 
recipient cells. Micro-RNAs are critical regulators of gene expression and hence many 
cellular functions in health and disease. In cells in the airway, microRNA expression profiles 
can be regulated by multiple factors, including growth factors, inflammatory agents, 
mechanical forces and hypoxia. Furthermore, micro RNAs have been demonstrated to play a 
critical role in many inflammatory diseases and asthma because of their anti-inflammatory 
effects (Lee et al., 2012). Lee et al demonstrated that the protective functions of MSCs in 
lung injury are partly mediated by these secreted microvesicles. Administration of MSC 
secreted exosomes (MEX) led to an up-regulation of the miRNA-17 superfamily of micro-
RNA clusters and miRNA-204 in a murine model of pulmonary hypertension. They 
hypothesized that MEX might be one of the paracrine anti-inflammatory mediators of MSC 
action in the lung (Lee et al., 2012). However, a possible role of MEX in amelioration of lung 
damage in emphysema needs to be further investigated.  
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Discussion 
 
COPD is a progressive lung disease with high rates of mortality and morbidity. The term 
COPD includes both emphysema and chronic obstructive bronchitis. This review focused on 
emphysema, which is defined by the enlargement of airspaces as a result of alveolar 
breakdown in the adult lung. The pathogenesis of emphysema is a complex process and is 
unable to be attributed to a single mechanism. Multiple pathological processes occur 
simultaneously and are often interrelated. In addition, many aspects of the pathobiology of 
human emphysema remain unclear (Taraseviciene-Stewart and Voelkel, 2008). In this 
review, recent literature was used to provide an overview of our current knowledge of the 
molecular pathogenesis of emphysema.  
 
Chronic inflammation can be considered as one of the key aspects in the development of 
emphysema. Cigarette smoke activates immune cells including macrophages, neutrophils 
and T-cells, which subsequently release pro-inflammatory substances that mediate alveolar 
wall destruction. Furthermore, in emphysema, the delicate balance between proteases and 
antiproteases can shift towards a dominance of proteases, resulting in degradation of ECM-
proteins and eventually proteolytic lung destruction. In patients with emphysema, an increase 
in apoptosis of alveolar epithelial cells is not balanced by an increase in proliferation, 
resulting in alveolar breakdown, which is partly mediated by the VEGF pathway. Finally, 
oxidative stress has been suggested as a pathogenic mechanism in patients with 
emphysema, which, among others, contributes to lung inflammation (Taraseviciene-stewart 
and Voelkel, 2008; Inamdar et al., 2013; Jin et al., 2014). 
 
As of today, no treatment has been found to repair or reverse the damage done to the lungs 
by emphysema. MSCs, however, because of their anti-inflammatory and protective abilities, 
are a promising therapeutic alternative for emphysema, although many questions regarding 
the mechanisms of action of MSC therapy in lung reparation and regeneration remain 
unanswered. After exploring the pathogenesis of emphysema, this review aimed to 
investigate the underlying mechanisms of action of MSCs that could contribute to 
regeneration or reparation of alveolar epithelial damage caused by emphysema. 
 
First, MSCs have been shown to migrate to the source of injury and initiate tissue repair. The 
homing ability of MSCs is made feasible by strong interactions between integrin α4/β1 on the 
MSCs and VCAM-1 on epithelial cells and a chemotactic responsiveness of MSCs to SDF-1. 
Furthermore, MSCs have been shown in several animal models to be able to differentiate in 
both AT1 and AT2 cells, which suggest that administered MSCs may contribute to repair of 
the alveolar epithelium following injury. Recently, Wnt/β-catenin signaling has been shown to 
be involved in regulating the process of epithelial differentiation of MSCs. Paracrine signaling 
by MSCs further influences proliferation and differentiation of the surrounding cells and 
contributes to repair of tissue damage in the lung. Modifying the host immune response by 
the release of soluble anti-inflammatory molecules and direct contact with macrophages via 
the COX-2/PGE2 pathway, is another valuable quality making MSCs a promising therapeutic 
tool for emphysema. Finally, inhibition of protease release, reduction of oxidative stress 
mediated by levels of SOD, and prevention of apoptosis of alveolar epithelial cells by 
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stimulation of VEGF secretion and alteration of the apoptotic-anti-apoptotic gene ratio by 
MSCs have been shown to contribute to prevention of emphysema in various mice and rat 
models. An overview of the mechanisms of action of MSCs in emphysema is shown in figure 
10.  

 
 
 
 
 
 
 
 
 
 
Although multiple pre-clinical animal models of emphysema show encouraging results 
concerning the alleviation of emphysema by MSC therapy, in human clinical trials no 
beneficial results of MSC therapy in COPD have been observed yet. Besides unraveling the 
mechanisms of action of MSCs, this review aimed to explore possible reasons behind the 
lack of significant results of MSC therapy in COPD patients, in contrast to promising animal 
studies. For example, the breakdown of the elastin network and interstitial PGs in patients 
with emphysema, as a result of protease/antiprotease imbalance and oxidative stress, could 
lead to reduced adhesion of MSCs to the ECM, less integrin activation and possibly less 
survival of MSCs, after administration (Eurlings et al., 2014; Straaten van et al., 1999). 
Furthermore, disturbances in the SDF-1/CXC4 pathway, measured in bone-marrow derived 
MSCs from COPD patients, could lead to defective MSC mobilization (Karagiannis  et al., 
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2013). Since migration and adhesion of MSCs to the injured lung are crucial factors in 
alveolar epithelial regeneration in emphysema, this could contribute to less significant results 
of MSC therapy.  
 
The fact that ECM breakdown in emphysema might prevent MSCs from migrating towards 
injured tissue in the lung, suggests that the measured beneficial effect of MSCs in improving 
alveolar tissue damage in emphysema-induced mice models might be the result of paracrine 
functions of MSCs in stead of differentiation of MSCs at the injured alveolar epithelium. 
MSCs are capable of secretion of various anti-inflammatory mediators and growth-factors. 
Several animal studies whereby administered MSCs improved emphysematous 
characteristics in the lung, attributed these beneficial effects to paracrine mechanisms of 
MSCs. In addition, several studies mentioned low engraftment rates of MSCs and 
differentiation of MSCS to be rare in animal and human cells (Fritzell et al., 2009; Liebler et 
al., 2008). Lung development is a complex process and depends on very precise 
coordination of signals. In COPD changes in the differentiation prolife of the airway 
epithelium takes place. It could be hypothesized that changes in the microenvironment in 
patients with COPD and emphysema could disturb the differentiation process of MSCs 
leading to relatively low rates of engraftment and differentiation of MSCs towards alveolar 
epithelial cells, since the fate of stem cells in vivo is mainly regulated by the 
microenvironment (Shi et al., 2009). 
 
Interspecies differences should also be considered when translating information from murine 
or rat models to humans. For example, there are important interspecies differences in the 
distribution and abundance of specific cell types in the airways. These differences may 
influence the response of the lung to particular types of injury. Moreover, some mouse 
models may be unable to reproduce all the characteristics of the disease phenotype of 
emphysema seen in humans (Shi et al., 2009).  
 
BM-MSCs are still the most frequently used MSCs in experimental research. However, MSCs 
can be isolated from various sources and differences between phenotype, quality and 
quantity of MSCs collected at these various sites exist. It could be possible that MSCs 
isolated from different sources result in different outcomes when administrated as a therapy 
for emphysema (Akram et al., 2012). Riccardi and colleagues isolated, expanded and 
characterized MSCs from normal adult human lungs, lung resident human MSCs (L-MSCs), 
and compared these cells with human BM-MSCs (Ricciardi et al., 2012). They found no 
differences in terms of immunophenotype, stemness gen profile, mesodermal differentiation 
potential and modulation of immune cells such as T, B and NK cells. However, L-MSCs did 
show higher epithelial cell polarization, although they questioned the real capability of 
acquiring epithelial functions by MSCs. This specific characteristics of lung-MSCs may be 
useful in reparation of alveolar epithelial damage in emphysema (Ricciardi et al., 2012). 
Hoffman and colleagues found lung retention efficiency and evasion of phagocytosis to be 
higher for L-MSCs than BM-MSCS on 4 days and 32 days after transplantation of MSCs in 
mice. They mentioned paucity of receptors on BM-MSCs for endothelial ligands as a 
proposed mechanism involved in low engraftment of BM-MSCS in lung tissue. In this study, 
L-MSCs consistently expressed higher levels of several surface proteins, including ICAM-1, 
PDGFRα, and Itgα2. Furthermore, these proteins were shown to modulate essential 
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engraftment-related functions; adherence, migration and invasion, in L-MSCs. They 
concluded that L-MSCs exhibit phenotypic and functional characteristic that are distinct from 
BM-MSCs (Hoffman et al., 2011). Ratajczak et al. believed that the family of BM-MSCs 
consists of commited tissue-specific stem cells for various organs. This theory believes that 
only the lung-specific/commited BM-MSCs can be driven to differentiation into type 2 alveolar 
epithelial cells (Ratajczak  et al., 2014). Besides the source, determination of the optimal 
route of administration (intravenously vs intratracheal) and dose are important aspects that 
require more study.  
 
The molecules and pathways involved in regulating the differentiation of MSCs in vivo are 
thus  complex, and there is need for further research on the exact regulatory mechanisms 
involved in differentiation of MSCs and approaches that increase survival and engraftment of 
MSCs in host organs (Sun et al., 2014). In addition, we could shift our attention from using 
BM-MSCs towards L-MSCs in experimental research because L-MSCs tend to showed 
higher epithelial cell polarization and lung retention efficiency. Moreover, the evaluation of 
MSCs as safe and effective therapeutic modality in the treatment of COPD including 
emphysema is still in its infancy. There has only been one fully completed trail evaluating the 
safety and efficacy of non-modified bone-marrow derived MSs in the treatment of COPD. The 
recently completed study, sponsored by ‘Mesoblast International Sàrl’, was evaluating the 
efficacy and safety of the use of MSCs in patients with moderate to severe COPD. A total of 
62 patients received 4 monthly infusions of 100 x 106 allogeneic MSCs or a placebo. The 
patients were followed up for a time period of 2 years after the first infusion, at the end of 
which safety, pulmonary function, systemic inflammation, quality of life, and a 6-min walk test 
(6MWT) were evaluated. During the course of this study, no adverse events were observed. 
However, no significant changes in pulmonary function were detected during this study either 
(Weiss et al. 2013). A larger trail and a more effective dosage and treatment schedule may 
be necessary to evaluate efficacy more accurately. 
 
To conclude, the unique properties of MSCs in homing, differentiation, immunomodulation, 
restoring protease/antiprotease balance and inhibition of alveolar epithelial cell apoptosis and 
oxidative stress make them an ideal candidate for the treatment of challenging lung 
conditions like emphysema. However, further research is necessary to unravel all the 
unsolved mysteries of the mechanisms of action of MSCs in emphysema both in vivo and in 
vitro, in order to further develop and establish MSCs as a novel therapeutic tool to ameliorate 
emphysema in COPD patients.  
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