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Abstract

Everyday we are presented with simple choices such as the
choice between an apple or a candy-bar as a snack. Value-
based decision-making research tries to investigate which
factors contribute to the decision-making process for such
choices. Previous studies found that visual attention plays an
important part in value-based decision-making, and that this
process can be quantitatively and accurately modeled using
computational models such as the Drift-Diffusion Model. Us-
ing eye-gaze data, the internal process of the value comparison
of options can be accurately modeled for both binary and tri-
nary choices. However, these studies all rely on usage of an
expensive standalone eyetracker for collecting eye-gaze data
and are therefore conducted in a clinical setting, limiting the
applications of this type of research.
In this thesis a methodology was developed for using a com-
modity webcam to extract information about eye-gaze using
the OpenFace framework and inferring the intrinsic value of
options in a value-based decision-making task. An experiment
was conducted (n = 17) in which binary simple choice was
investigated using Hierarchical Drift-Diffusion Models aug-
mented with gaze information simultaneously collected from a
webcam and eyetracker. By exposing the connection between
gaze and intrinsic value, predictions can be made about up-
coming decisions using only information collected through the
webcam, thus providing an intrinsic measure of item prefer-
ence using commonly available hardware.
We concluded that value-based decision-making research is
possible using a webcam instead of an eyetracker, and that
similar conclusions are reached irregardless of the gaze col-
lection method. The methodology developed in this thesis en-
ables researchers to conduct value-based decision-making re-
search through online questionnaires (provided that a webcam
is available) allowing for larger sample sizes while maintaining
low research costs.

Introduction
Most behavioral studies are carried out on Western university
students participating for student credit or a small financial
compensation, but a growing body of evidence suggests that
findings from this population do not necessarily apply to hu-
manity as a whole (Henrich, Heine, & Norenzayan, 2010a).
This heavily researched population is described as WEIRD
(Western, educated, industrialized, rich and democratic) and
while research on it has yielded many interesting findings, its
validity as a fair representation of the generic human popula-
tion is challenged by recent developments in various fields
suggesting differences in basic cognitive and motivational
processes between industrialized and small-scale societies
and western and non-western societies. For example, sub-
stantial perceptual differences have been shown among pop-
ulations by Segall, Campbell, and Herskovits (1966) using a
Müller-Lyer illusion. They found that members of industri-
alized societies perceived a greater illusion than small-scale

societies, due to the visual system having adapted more to
recurrent features (e.g. "carpentered corners") in the local vi-
sual environment. This shows that even a basic cognitive pro-
cess such as visual perception is susceptible to environmental
changes and that particular cultural evolutionary trajectories
can substantially affect cognitive processes (Henrich, Heine,
& Norenzayan, 2010b). Another example of these differences
is that both analytical and holistic reasoning strategies are
employed differently in western and non-western societies:
while both strategies are available in all normal adults, west-
ern societies tend to rely more on analytical reasoning (i.e.
perceiving an object as separate from its context and focusing
on its attributes) in contrast to non-western societies which
rely more on holistic reasoning (i.e. perceiving an object in
its context or field as a whole and focusing on its relations
to other objects in that field) (Nisbett, 2010; Peng & Nis-
bett, 1999). This reliance on different reasoning strategies
in turn affects cognitive processes such as attention: Chua,
Boland, and Nisbett (2005) found that gaze patterns differ for
Americans and East-Asians when attending a visual scene.
Americans gaze at focal objects longer than East Asians, who
in turn gaze at the background more than Americans. These
cognitive and motivational differences could have large con-
sequences in the field of decision making, as both cognitive
and motivational processes are common elements in theories
on decision making. As most research on decision making is
carried out on the WEIRD population due to economical and
practical reasons, it could very well be that many insights in
this field cannot be properly generalized to other populations.

One specific insight in the area of decision making con-
cerns how the brain makes simple choices, such as the choice
between an apple or a Mars candy-bar as a snack. Most re-
searchers agree that the brain first assigns a value to all avail-
able options, and selects the best choice by comparing these
values. The intrinsic value attributed to each option can be
affected by many factors, originating internally (e.g. blood-
sugar level, craving for chocolate) and externally (e.g. other
people’s choices, price of the item). The perceived difference
between intrinsic values of options can be implicitly (e.g. by
investigating gaze-patterns) or explicitly (e.g. by asking sub-
jects to rate each item on a fixed scale) measured and is ex-
pressed as ’value preference’ (Rangel, Camerer, & Montague,
2008; Rangel & Hare, 2010).

A relatively simple paradigm for investigating the influ-
ence of value preference on decision making processes is the
value-based decision-making task. In this task, subjects are



first asked to rate a selection of items (e.g. consumer prod-
ucts such as candy-bars) on their subjective value. Next they
are presented with a series of choices between the rated items,
varying in difficulty based on the difference in rating between
the presented items. For each trial, the chosen item, time to
choose (response time) and gaze information (using an eye-
tracker) is collected to provide insight into the underlying de-
cision making process. The collected behavioral data (e.g.
response times, eye-gaze) can be used as input for compu-
tational models such as the Drift Diffusion Model (DDM)
(Ratcliff, 1978) to test competing theories of decision mak-
ing on their predictive power.

Drift Diffusion Models enable decision making researchers
to parametrize the decision making process by offering an es-
timation of how evidence accumulation, represented by drift
rate parameter (α), and response caution, represented by de-
cision threshold parameter (θ), contribute to the decision pro-
cess. These parameters are acquired by modeling individual
accuracy and response times (RT) distributions. A higher drift
rate represents greater accumulation of evidence and results
in better accuracy and shorter RT, while a higher decision
threshold represents increased response caution and results
in better accuracy and longer RT (Ratcliff & McKoon, 2008).
Ultimately, these simplified parameters provide insight in the
underlying cognitive processes associated with value-based
decision making.

Many studies have investigated the effects of value pref-
erences in simple choice using (parts of) the paradigm de-
scribed above (Armel, Beaumel, & Rangel, 2008; Krajbich,
Armel, & Rangel, 2010; Krajbich & Rangel, 2011). These
studies found that visual attention plays an important part
of in the decision making process, and that this process
can be quantitatively and accurately modeled using computa-
tional models such as the DDM. Manipulation of visual atten-
tion positively affects choice likelihood for appetitive items,
while it negatively affects choice likelihood for aversive items
(Armel et al., 2008). Using eye-gaze data, the internal process
of the value comparison of options can be accurately modeled
for both binary (Krajbich et al., 2010) as trinary (Krajbich &
Rangel, 2011) choices.

Using the techniques described above, Cavanagh, Wiecki,
Kochar, and Frank (2014) found that both eye gaze and pupil
dilation reflect latent dissociated decision processes (i.e. both
reflect internal decision processes which do not directly in-
fluence each other). They found that eye gaze dwell time, ad-
ditionally to perceived stimuli value (Krajbich et al., 2010),
has a direct influence on the rate of evidence accumulation
as modeled by the drift-rate parameter in the DDM, while
changes in pupil dilation can be used as a predictor for the
decision threshold parameter, which represents the minimal
required evidence for making a choice. These findings show
that valuable information about the decision making process
is reflected in the eyes, and suggest that it should be possible
to infer the intrinsic value of options by collecting eye-gaze
data, thus paving the way for an implicit method of measuring

item preference.
Still, the findings by Cavanagh et al. (2014); Krajbich et

al. (2010) are based on WEIRD subjects and therefore suf-
fers from the same over-generalization of its conclusions to
humans as a whole. To circumvent this, researchers would
have to target a more representable set of subjects without
damaging the economic feasibility of their research (i.e. the
recruitment process should be roughly as expensive as it is
now). While the internet could be used to target a much wider
range of individuals, it is paramount that the collected data
are valid. However, the collection of eye-gaze data poses an-
other problem: since very few people have an eyetracking de-
vice at home, another method for collecting eye-gaze data us-
ing more commonly available hardware should be used when
conducting decision making research using the internet.

Various endeavors have been made to use commonly avail-
able webcams as an input source for eyetracking (Sewell &
Komogortsev, 2010; Skovsgaard, Agustin, Johansen, Hansen,
& Tall, 2011; San Agustin et al., 2010). San Agustin et al.
(2010) showed that eye-typing (i.e. accurately entering char-
acters into a computer using gaze and eyeblinks) is possi-
ble using a low-cost (infrared) webcam. Skovsgaard et al.
(2011) assessed and compared the performance of a similar
setup against two commercial eyetrackers and found that their
webcam-based gaze-tracker has a performance comparable to
the two commercial devices. While these studies show the
promise of webcam-based eyetrackers as a means of cheaply
collecting eye-gaze data, both studies required modifications
to the webcam such as adding an infrared light which thereby
prohibit any large-scale real-world applications.

Both normal commercial eyetrackers as the experiments
by San Agustin et al. (2010); Skovsgaard et al. (2011)
use infrared-cameras with two (internal or external) infrared
light-sources to produce a glint reflection on the eyes. Using
these glints, the exact position and angle of the pupils can be
triangulated as the distance between the two light-sources is
known. Furthermore, the usage of an infrared camera pro-
duces a less noisy image than produced by a commodity we-
bcam which captures images in red, blue and green channels
on a higher resolution and lower framerate. In other words,
a commodity webcam collects less relevant data in the same
timeframe as infrared cameras and cannot provide a frame of
reference to a known spatial location.

Instead of relying on heuristics, such as the position and
angle of the pupils in relation to glints, a commodity webcam-
based eyetracking solution should rely on other techniques
which are more resilient to noisy data to enable its usage in a
large-scale real-world application.

Sewell and Komogortsev (2010) tried to tackle this chal-
lenge by developing a webcam-based eyetracker which em-
ploys a simple perceptron-style neural network for estimating
gaze coordinates from a greyscale image of the pupil. In their
set-up, a RGB-image from an unmodified webcam is prepro-
cessed so that a greyscale image of the pupil remains. This
greyscale image is used as input to the neural network which



is trained using supervised learning. Target outputs are pro-
vided by a calibration round in which subjects look in turn at
48 different targets on the screen. After this training, subjects
confirmed the responsiveness of the webcam-based eyetrack-
ers. While Sewell and Komogortsev (2010) have shown the
feasibility of a webcam-based eyetracking powered by a neu-
ral network, they still rely on a preprocessing of webcam im-
ages using heuristics (e.g. pupil location using head tracking)
which exposes a weak-point in their methodology to noisy
data. Indeed, Sewell and Komogortsev (2010) reported nu-
merous calibration failures due to a failure to find the pupil in
the preprocessing step. They suggest numerous ways to im-
prove performance: image preprocessing should be improved
by employing a more robust method of pupil location which
corrects for head position and rotation; the neural network
should be pre-trained on a large set of subjects and fine-tuned
during calibration to decrease training time; and a higher res-
olution camera should be used to improve the quality of input
for the neural network.

Since the research by Sewell and Komogortsev (2010),
enormous progress has been made in the field of machine
learning through the discovery of deep learning (Krizhevsky,
Sutskever, & Hinton, 2012). As a result, many steps neces-
sary for the development of a webcam-based eyetracker are
now relatively easy, such as reliably recognizing faces di-
rectly from images using open-source frameworks such as
OpenFace (Baltrušaitis, Robinson, & Morency, 2016) and
feature reduction and detection using techniques like Deep-
Convolutional Neural Networks. This could offer a solution
for the problems encountered by Sewell and Komogortsev
(2010), as feature reduction and detection is handled by the
convolutional neural network, thus eliminating the need for
the researcher to identify and implement preprocessing algo-
rithms.

However, the usage of deep learning comes with a price:
the computational resources required for training are much
higher than for a simple perceptron network and a sub-
stantial dataset with enough labelled training data is needed
(Goodfellow, Bengio, & Courville, 2016). Thus the approach
employed by Sewell and Komogortsev (2010), in which in-
cremental training is done images as they come available, is
not possible.

Fortunately, the recently developed OpenFace framework
(Baltrušaitis et al., 2016) is equipped which various pre-
trained deep-neural networks which enable both facial land-
mark detection and tracking (Baltrušaitis, Robinson, &
Morency, 2013) and eye gaze tracking (Wood et al., 2015).

In this study we will develop a methodology for using a
commodity webcam to extract information about eye-gazes
using the OpenFace framework, and use its output to infer the
intrinsic value of options in a value-based decision-making
task as described by Krajbich et al. (2010); Cavanagh et al.
(2014). By exposing this connection between gaze and in-
trinsic value, predictions can be made about upcoming deci-
sions using only information collected through the webcam,

thus providing an intrinsic measure of item preference using
commonly available hardware.

We will assess the reliability of this methodology by simul-
taneously collecting data from the webcam and a commercial
eyetracker and comparing the single-trial influence of each on
the DDM parameters decision threshold and drift rate.

The experiment will be carried out in an up-to-date in-
ternet browser so that results from this study can be inter-
preted in the same context as an internet-conducted experi-
ment, thus paving the way for decision making studies con-
ducted through the internet while collecting eyetracking data
and maintaining economic feasibility. This should enable re-
searchers to target a more representative set of subjects than
the commonly used members of the WEIRD population.

Method
Participants
20 right-handed, healthy individuals with normal (n = 16) or
corrected-to-normal (n = 4) vision participated in the study.
Participants were recruited from the social circle of the ex-
perimenter (e.g. friends, family, colleagues) and received no
compensation for participation. Informed consent was ob-
tained digitally prior to the start of the experiment. Three
participants were excluded due to near-chance performance
on easy trials(Mscore = 55.9%± 0.9%), an indication of in-
sufficient task comprehension or motivation. In total 17 data
sets were analyzed (Mage = 30; SDage = 8.7; range 23 - 57;
female 9; male 8). All participants had attended university-
level education.

Design
A within-subject design was used in which binary-choice on
rated stimuli was compared to value-preference from a sep-
arate rating task. The decision process was modelled using
reaction times and visual fixations to determine what influ-
enced the decision process. Visual fixations were acquired us-
ing both a commercial eyetracker and a novel webcam-based
approach.

Participants performed a rating task in which they rated
50 stimuli, followed by a binary value-based decision task
(VBDT) in which the choice difficulty was manipulated using
values from the rating task. During the decision task partic-
ipants were recorded with the integrated webcam, and infor-
mation regarding eye-movements was collected using a com-
mercial eyetracker. Dependent variables were the number of
fixations and fixation durations collected per area of interest
(AOI), reaction times (RT), choice accuracy and the param-
eters of the hierarchical drift diffusion models fitted to the
behavioral data.

Stimuli
The stimuli consisted of 50 images of food items, categorized
as snacks (n = 43) or fruits (n = 7). The images were full-
color on a white background, 400 by 400px and were ob-
tained from a national supermarket website without permis-
sion. All stimuli are listed in appendix A.



Experiment
The study was conducted at various locations, such as a liv-
ing room and office, and all instructions were solely com-
municated through on-screen text to simulate the conditions
respondents to an online questionnaire generally encounter.

The researcher did not interact with participants during the
experiment, other than calibrating the eyetracker before the
decision task. The general flow of the experiment is shown in
figure 1a.

All participants completed the experiment in less than 20
minutes.

Questionnaire
Participants first completed a questionnaire regarding age,
gender, education, dexterity and vision, followed by the Eat-
ing Restraint Scale (ERS) (Polivy, Herman, & Warsh, 1978)
from which the subscales Concern for Dieting (CD) and
Weight Fluctuation (WF) were used to check for participants
with abnormal eating habits (van Strien, Breteler, & Ouwens,
2002; van Strien, Herman, Engels, Larsen, & van Leeuwe,
2007), as abnormal eating habits could potentially influence
the decision making process in ways out of scope of this the-
sis. On the WF-subscale, three participants (n = 3) scored
more than three SD higher than normal weighted females in
the study by van Strien et al. (2007), indicating a potential ab-
normal eating habit. One of these participants was excluded
from analysis due to near-chance performance on easy tri-
als. Almost all participants (n = 16) scored more than three
SD higher on the CD-subscale than normal and overweight
females in van Strien et al. (2007). This should be kept in
mind while interpreting results from this thesis, as this could
potentially indicate abnormal eating habits in almost all par-
ticipants.

Rating Task
The ERS was followed by the Rating Task. Participants were
asked to rate 50 randomly presented stimuli using a scale
from -100 (hate it) to 100 (love it). The center of the scale (0)
was labeled as neutral and was used to distinguish between
aversive (rated < 0) and preferred (rated > 0) items.

Decision Task
After rating all stimuli, participants were presented with 250
trials in which two stimuli were presented. Participants were
instructed to choose their preferred item in each trial. A
choice was made by pressing the ‘Q‘ or ‘P‘ key for left or
right item respectively. Participants were instructed to use
both index fingers for pressing the response keys. After 250
trials the experiment ended. All participants completed the
task within 12 minutes (Mtime on task = 480s ± 90s).

Participants were instructed to answer as fast and accu-
rately as possible.

Trials Figure 1b shows a graphical representation of one
trial. Each trial initiated with a centered fixation cross for
500ms, followed by a blank screen for 50ms. Afterwards, two

stimuli were presented equally spaced from the horizontal
center of the screen until the participant’s response, for a max-
imum of 3000ms. If the participant failed to respond in that
time frame, the trial was labeled as invalid and feedback was
presented for 2000ms urging to "answer more quickly". A
trial was marked correct if the chosen stimulus was the high-
est rated of the presented pair, and incorrect otherwise. Trials
were both stimuli had the exact same rating were marked as
neutral.

Conditions Choice difficulty was manipulated by present-
ing stimuli-pairs with a similar (i.e. difficult) or dissimilar
(i.e. easy) rating as supplied by the participant in the rating
task. Trials where the stimuli-pair rating difference was less
than 10 points were labeled as difficult, other trials as easy.
Overall, participants were presented with more easy than dif-
ficult trials (Peasy = 58.2%±7.9%).

Trials were also categorized on stimuli-aversion (i.e. do
the stimuli have a positive or negative rating) and on
stimuli-similarity (i.e. are both stimuli from the same stim-
uli category). Overall, participants were presented with
more non-aversive (Paversive = 24.6%±13.3%) and similar
(Psimilar = 76.6%±5.3%) trials.

Materials
The study was performed on a single Apple 13" Macbook
Pro Retina (late 2014 model) placed on a pedestal to put the
screen at eye height. A generic USB keyboard and mouse
were connected to enable user input.

Eyetracker Eyetracking data was collected during the deci-
sion task using an EyetechDS VT2 Mini (EyetechDS, 2014),
placed below the screen. The sampling rate was 80Hz. Cal-
ibration occurred before the decision task using the Quick-
Glance software bundled in the Quicklink SDK (EyetechDS,
2016).

Webcam Webcam data was collected during the decision
task using the integrated webcam (720p Facetime HD).
The recorded videos are full color with a resolution of
1280 x 720px at 30 frames per second.

Analysis
RStudio (RStudio, 2012) was used to carry out all statistical
analyses, with the exception of the HDDM analyses. Lin-
ear mixed effect models were created and fitted using the
‘lme4‘ package (Bates, Mächler, Bolker, & Walker, 2015)
and the corresponding p-values where computed using the
‘lmerTest’ package (Kuznetsova, Bruun Brockhoff, & Haubo
Bojesen Christensen, 2016). Degrees of freedom for fitted
LME models were calculated with the ‘pbkrtest‘ package
(Halekoh & Højsgaard, 2014) using Kenward-Roger approx-
imation (Kenward & Roger, 2009).

All non-responses were omitted from analysis.

Eyetracking Eyetracking fixations were calculated using
the ‘saccades‘ package (von der Malsburg, 2015). X and Y
coordinates where represented as percentages of the screen.



The ‘saccades‘ package can be tuned using the lambda pa-
rameter. Best results (in reference to Krajbich and Rangel
(2011)) were obtained using λ= 5. Figure 14a shows a graph-
ical representation of eyetracker fixations during the experi-
ment.

Webcam Webcam images were analyzed using OpenFace
(Baltrušaitis et al., 2016), from which gaze- (Wood et al.,
2015) and head tracking-data (Baltrušaitis et al., 2013) were
obtained. Gaze vectors (open f acex,y,z) of both eyes (left,
right) obtained through OpenFace, were converted to screen
pixel coordinates (gazex and gazey for X and Y pixel coor-
dinate respectively) using the webcam’s focal length ( fbase)
and sensor size (cx and cy) as shown in equations 1 till 4 us-
ing values shown in table 1.

gazex =
open f acex,le f t +open f acex,right ∗ f x

open f acez,le f t +open f acez,right
+ cx (1)

gazey =
open f acey,le f t +open f acey,right ∗ f x

open f acez,le f t +open f acez,right
+ cy (2)

f x =−2∗ cx∗ fbase

resolutionx
(3)

f y =−2∗ cy∗ fbase

resolutiony
(4)

Table 1: Values used in webcam gaze vector transformation.

cx 400
cy 300
fbase 150
resolutionx 1280
resolutiony 720

Screen pixel coordinates were then converted to screen per-
centages for comparison with eyetracker data. After normal-
ization, clusters in the webcam coordinates were mapped to
clusters found in the eyetracker data by applying kmeans(2)
and kmeans(1) in x and y coordinates respectively.

Figure 2c shows both webcam and eyetracker coordinates
on the x axis after these transformations. While both mea-
surements show similarity, in the webcam coordinates a pat-
tern is clearly visible. To correct for this pattern, two lin-
ear models were fitted on the webcam coordinates using head
tracking data (rotation and translation coordinates in x, y, z)
obtained through OpenFace as shown in equation 5 and equa-
tion 6.

gazex ∼ βRx,Ry,Rz ∗Rotation+βT x,Ty,T z ∗Translation (5)

gazey ∼ βRx,Ry ∗Rotation+βT x,Ty,T z ∗Translation (6)

The residuals of these linear models are hypothesized to
be a more accurate representation of eye gaze coordinates.
Indeed, figure 2f clearly shows that both webcam and eye-
tracker data are more similar.

Similar to the eyetracker, fixations were calculated using
the ‘saccades‘ package. Best results were obtained using
λ = 3.25.

Figure 14b shows a graphical representation of webcam
fixations during the experiment.

Webcam/Eyetracker Alignment Visual inspection
showed that webcam and eyetracking data was not fully
aligned. This was traced back to an implementation error
which failed to log the timestamps during webcam retrieval.

For every participant, this was corrected by right-aligning
the webcam data to the eyetracker data using equation 7, fit-
ting a linear model in the form of equation 8 and using the
calculated parameters to transform the webcam data using
equation 9.

twebcam = twebcam +(max(teyetracker)−max(twebcam)) (7)

teyetracker ∼ twebcam (8)

twebcam = β1 ∗ twebcam +β0 (9)

Direct correlation between eyetracker fixations and
pure webcam significantly improved with this trans-
formation (ρbe f ore(3654) = 0.58, p < 0.001;
ρa f ter(3654) = 0.63, p < 0.001; pρa f ter > ρbe f ore < 0.001),
as well as inter-trial gaze difference (i.e. dura-
tion difference between left and right fixations dur-
ing trials) did (ρbe f ore(3654) = 0.04, p < 0.05;

(a) Flow of the experiment (b) Flow of one trial in Value Based Decision Task.

Figure 1: Schematic representation of both the experimental set-up and a single trial in the Value Based Decision Task.
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(a) Eyetracker
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(b) Webcam

(c) Before head movement correction.
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(e) Webcam

(f) After head movement correction.

Figure 2: X-coordinates over time for subject (223), before and after head movement correction.

ρa f ter(3654) = 0.28, p < 0.001; pρa f ter > ρbe f ore < 0.001).

Drift Diffusion Models In Drift Diffusion Models
(DDM’s) the decision process is modelled as a noisy process
which accumulates evidence for one of two competing
choices. While DDM’s sport various parameters, the most
influential are drift rate (i.e. the rate of evidence accumu-
lation) and decision threshold (i.e. the amount of evidence
needed to reach a decision) (Ratcliff, 1978).

In this study the Hierarchical Drift Diffusion Model
(HDDM) toolbox (Wiecki, Sofer, & Frank, 2013) is used,
as it allows for easy inclusion of physiological parameters in
model fits and produces "more accurate DDM parameter es-
timates for individual and groups, particularly given low trial
numbers or when assessing coefficients between psychophys-
iological measures and behavior" (Cavanagh et al., 2014).

Following Cavanagh et al. (2014) models were fitted by
drawing 5,000 samples from the posterior, of which the first
200 were discarded as burn-in. 5% of participants were ran-
domly regarded as outliers on each sampling iteration. Re-
gression coefficients were estimated to investigate single trial
variations in psychophysiological measures (e.g. eye gaze
from eyetracker or webcam), psychological measures (e.g.
proportional difference in rating of presented stimuli) and
other influences (e.g. are presented stimuli from the same cat-
egory or different) on model parameters (drift rate, decision
threshold).

Multiple HDDM’s were fitted to investigate which model
of decision making best explains the experimental data. Fol-
lowing Cavanagh et al. (2014), we compare the indepen-
dent model of decision making (i.e. choice is influenced by
gaze and perceived stimulus value independently), attentional
DDM (aDDM; i.e. choice is influenced by the interaction of
gaze and perceived stimulus value) and hybrid aDDM (i.e.
choice is influenced by the interaction of gaze and perceived
stimulus value and gaze independently) (Krajbich et al., 2010;
Krajbich & Rangel, 2011; Krajbich, Lu, Camerer, & Rangel,
2012).

The best models were chosen using the deviance informa-
tion criterion (DIC) and visual inspection of the estimated re-

gression coefficients distributions. The DIC value decreases
when model likelihood increases and when model complex-
ity decreases, thus when comparing models, the one with a
lower DIC value is favored.

Specifications of fitted models Two models were fitted to
determine the influence of proportional rating difference and
trial similarity (i.e. are presented stimuli from the same cat-
egory) on both drift rate and decision threshold. Six models
(three using eyetracking data, three using webcam data) were
fitted to determine the influence of eye gaze (independent,
dependent or both independent and dependent on rating dif-
ference) on drift rate. These eight fitted models are further
described in table 6. Relevant regression coefficient plots are
shown in figures 21, 22 and 23.

Results
Rating Task
Stimuli had a mean rating of 19.6 ± 1.5 on a scale of -100
till 100, indicating that the overall stimuli-set was perceived
as appetitive. As ratings are categorized as appetitive or aver-
sive, it is interesting to look at both categories separately. Ap-
petitive stimuli had a mean rating of 47.0 ± 1.1 while aver-
sive stimuli had a mean rating of −41.6 ± 1.8. The overall
frequencies of aversive and appetitive stimuli are shown in
table 2, as well as frequencies per stimuli category (fruit or
candy). From table 2 it follows that the appetitive/aversive
ratio differs between fruit and candy stimuli: fruit stimuli
are almost exclusively rated as appetitive, while candy has
much more variation. Indeed, figure 3 shows that positively
rated fruit stimuli (61.6 ± 3.0) are rated significantly higher
(F(1,708) = 57.7, p < .00) than positively rated candy
stimuli (42.7 ± 1.6).

Decision Task
Neutral trials (i.e. trials were both stimuli are rated identi-
cally) were excluded because accuracy cannot be determined
on these trials (n = 274, 6.72%). Table 3 shows the frequen-
cies of trials per condition, trial aversiveness and trial stim-
uli similarity. Due to its sparse occurrence in the data, aver-
sive dissimilar trials (n= 16, 0.4%) are excluded from further



analysis.

Response Times On average, participants took 1404± 10
ms to respond. As trial difficulty was the main manipula-
tion, its effect on respond times is shown in figure 4: re-
spond times increase with trial difficulty. Figure 5 shows
how trial conditions affects RT: participants take significantly
(χ2(1) = 8.13, p < .01) longer to reach a decision on hard
trials (1436 ± 22ms, b = 2.61,SE = 0.012, t = 2.24) than
easy trials (1385 ± 16).

We then asked if RTs are affected by how long participants
have been doing the decision task. We distinguish two pos-
sible effects: RTs are affected by time-on-task or RTs are
affected by trial novelty. Indeed, RTs significantly decrease
(χ2(1) = 15.80, p < .0001, b = −3.1∗10−4,SE = 7.7∗
10−5, t = −3.99) when time-on-task increases, but they are
not affected by trial novelty (χ2(1) = 1.79, p = 0.18, ns).
The effect of time-on-task did not differ between conditions
(χ2(1) = 0.08, p = 0.77, ns).

Next we asked if aversiveness influenced RTs (i.e. does
the decision process differ for aversive stimuli and ap-
petitive stimuli). Figure 6 shows how how aversive-
ness affects RTs: participants take significantly longer

Table 2: Frequencies of fruit- and candy-stimuli rated as aver-
sive or appetitive.

Stimuli Aversive Appetitive

Fruit 6 162
Candy 301 581

Total 307 743
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Figure 3: Average appetitiveness rating of positively rated
fruit and candy stimuli. Error bars denote standard error of
the mean.

(χ2(1) = 44.17, p < .0001) to reach a decision on aversive
trials (1496± 27ms) than on appetitive trials (1377± 15ms,
b = −0.080,SE = 0.014, t = −5.53).

Finally we investigated if RTs are influenced by trial
stimuli similarity (i.e. does the decision process differ
when stimuli are from the same category or different cat-
egories). Figure 7 shows that there is indeed an influence
of trial stimuli similarity: participants are significantly faster
(χ2(1) = 7.74, p < .01) on dissimilar (e.g. fruit-candy) tri-
als (1333 ± 27ms) than on similar trials (1426 ± 15ms,
b = 0.038,SE = 0.014, t = 2.78). The effect of
trial stimuli similarity does not differ between conditions
(χ2(1) = 0.08, p = 0.77, ns).

The best fitting LME model on log(RT ) is shown in table 4.

Accuracy A trial is labeled as accurate when the highest
rated stimulus is chosen. Figure 8 shows that the placement
of a stimuli (left/right) does not have any effect on the partic-
ipants decision (F(6, 4058.9) = 1.31, p = .25, ns). How-
ever, figure 9 shows that decisions are affected by the differ-
ence in rating for the presented stimuli: the chance that the

Table 3: Frequencies of trials per condition, trial aversiveness
and trial stimuli similarity.

condition

easy hard

aversive appetitive aversive appetitive

dissimilar 10 (0.3%) 499 (13.1%) 6 (0.1%) 368 (9.7%)
similar 649 (17.0%) 1236 (32.5%) 251 (6.6%) 786 (20.7%)

2394 (62.9%) 1411 (37.1%)
Note. All dissimilar, aversive trials are excluded from analysis due to their
sparse occurrence. Percentages shown are in relation to all trials.
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higher the difference, the easier the trial. Error bars denote
SE of the mean.



left or right item is chosen is affected by the score of that
item in reference the other item.

On average, participants made an accurate decision (i.e.
the highest rated stimulus of the presented pair is chosen) on
64.6% ± 0.9% of the trials. Figure 10 shows how accu-
racy is affected by trial condition. Participants made signifi-
cantly more accurate decisions (χ2(1) = 43.06, p < .0001)
on easy (68.4% ± 1.3%) than on hard (58.2% ± 1.9%,
b = −0.106,SE = 0.016, t = −6.58) trials.

Additional to condition, trials can be categorized as
aversive (i.e. choose between two negatively rated items) or
appetitive. Figure 11 shows that accuracy is affected by stim-
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Figure 5: Response Times by condition. Participants need
more time to reach a decision on hard trials. Error bars denote
SE of the mean.
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Figure 6: Response Times by trial appetitiveness. Partici-
pants take longer to reach a decision on aversive trials. Error
bars denote SE of the mean.

uli aversiveness: accuracy on aversive items (60.1% ± 2.3%)
is significantly lower (χ2(1) = 9.06, p < .001)
than on appetitive items (65.8% ± 1.2%,
b = 0.074,SE = 0.019, t = 3.83). This effect does
not differ per condition (χ2(1) = 2.71, p = 0.10, ns).

Trials can also be categorized on the basis of stimuli sim-
ilarity (i.e. are the stimuli presented from the same stimuli
category). A fruit-candy trial is marked as dissimilar, while
both candy-candy and fruit-fruit trials are marked as similar.
Figure 12 shows how trial similarity affects accuracy: partici-
pants are significantly (χ2(1) = 4.87, p < .05) less accurate
on dissimilar trials (63.8% ± 2.3%) than on similar trials
(64.7% ± 1.3%, b = 0.042,SE = 0.019, t = 2.20).

As no feedback is presented on accuracy of the choice, we
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Figure 7: Response Times by trial stimuli similarity. A deci-
sion is reached quicker on dissimilar trials. Error bars denote
SE of the mean.
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did not expect participants accuracy scores to shift during the
experiment. Indeed, accuracy was not affected by time on
task (χ2(1) = 0.76, p = 0.38).

The best fitting LME model on trial accuracy is shown in
table 5.

Conclusions from LME models

From the best fitting LME models on RT (table 4) and ac-
curacy (table 5) we distinguish three effects on the decision
process:

Effect of difficulty Participants are slower (∼51ms) and
less accurate (∼10.2%) on hard trials (i.e. two stimuli with
similar ratings) than on easy trials. Because both stimuli have
similar ratings in the hard condition, relative evidence for
both options is much more slowly aggregated. This results
in higher RTs and lower accuracy, as random noise inherit to
the decision process can bias the slightly lesser rated option.

Table 4: Specification of the best fitting LME model and
statistics on log(RT ).

Fixed effects β t-value p-value

(Intercept) 7.231 133.62 < .0001
Condition (hard) 2.608∗10−2 2.24 < .05
Positive trial −8.006∗10−2 -5.53 < .001
Similar trial 3.828∗10−2 2.78 < .05
Trial (time on task) −3.086∗10−4 -3.99 < .0001

Random effects Variance

Subject 0.04225
Note. df = 21.66 for all parameters. Df was calculated using
Kenward-Roger approximation.
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Figure 9: Decisions are influenced by the difference in stimuli
rating.

As fixations are the only external source of information
available to participants during the decision process it is ex-
pected that more fixations are present on hard trials than on
easy trials.

Effect of aversion Participants are slower (∼119ms) on
aversive trials, but are also less accurate (∼5.7%). These
findings are unexpected in terms of the attentional DDM
(aDDM), which predicts that gaze duration (i.e. more and/or
longer fixations) should results in better avoidance on aver-
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Figure 10: Accuracy scores by trial condition. Ac-
curacy is significantly worse on hard trials (b = −
0.106,SE = 0.016, t = − 6.58). Error bars denote SE of
the mean.
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Figure 11: Accuracy scores by trial appetitiveness. Partici-
pants are significantly more accurate on appetitive than aver-
sive trials (b = 0.074,SE = 0.019, t = 3.83). Error bars
denote SE of the mean.



sive items (Armel et al., 2008), as gaze dwell time amplifies
the proportional value of the fixated relative to the non-fixated
stimulus and thus influences evidence accumulation for a de-
cision, quantified with the dri f trate parameter (Krajbich et
al., 2010; Krajbich & Rangel, 2011; Krajbich et al., 2012).
However, more recent research found that gaze duration in-
fluences stimulus selection regardless of proportional stimu-
lus value, even on aversive items (Cavanagh et al., 2014).
Effect of similarity Participants are faster (∼93ms) on dis-
similar trials, while being less accurate (∼−1%). We hypoth-
esize that this effect is the result of a change in task percep-
tion by participants. Compared to similar trials (i.e. where
both stimuli are from the same category), participants do not
evaluate the individual stimuli values but the values of the
stimuli-category (e.g. fruit or candy). As fruit stimuli are
higher rated than candy stimuli on average (see fig. 3) less in-
formation is needed to reach a decision as only the category
of each stimulus has to be determined, instead of the intrinsic
value. Therefore we expect less fixations to be found during
dissimilar trials.

But why are participants less accurate on dissimilar trials?
It is possible that the presented choice in a trial breaks with
the heuristic of choosing the highest rated stimulus-category:
a candy stimulus can be rated higher than the alternative fruit
stimulus. If the categorical heuristic is applied, less accurate
decision are to be expected on dissimilar trials.
Fixations One of the main goals of this study was to de-
velop a method to enable decision making research using
commonly available hardware such as an integrated webcam
instead of a standalone eyetracker. To enable comparison be-
tween both the webcam-based eyetracker and the native eye-
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Figure 12: Accuracy scores by trial stimuli similarity. Partici-
pants are significantly less accurate on dissimilar trials (fruit-
candy) (b = 0.042,SE = 0.019, t = 2.20). Error bars
denote SE of the mean.

tracker, both devices were active during the decision making
experiment.

Figure 13 shows the similarity in proportions of fixations
per trial for both the eyetracker and webcam source. Fur-
thermore, in figure 14 the overall heatmaps for both the eye-
tracker and webcam are shown. While the webcam-heatmap
shows a more smoothed image, it is clear from both images
(figs. 13, 14) that the webcam-based eyetracker data shares a
large similarity with the native eyetracker data (Pearson’s cor-
relation ρ(3654) = 0.63, p < 0.001). However, differences
are also found in eyetracker and webcam gaze durations (fig-
ure 19). This poses a potential problem, as gaze duration is a
paramount parameter in the attentional DDM.

The attentional DDM predicts that longer fixations to an
item should result in a higher probability of that item being
chosen (Krajbich et al., 2010; Krajbich & Rangel, 2011; Kra-
jbich et al., 2012). To investigate this, we look at the first
fixation in a trial as that marks the start of the decision pro-
cess. Figure 15 shows the proportion of trials where the first
fixated item was chosen as a function of the duration of that
fixation.

There is no significant effect of first fixation duration
on first fixated item selection (F(1,3130) = 0.487, p =
0.49,ns). This observation breaks with the expectations from
the aDDM, which states that the first fixation duration should
predict selection (Krajbich et al., 2010; Krajbich & Rangel,
2011; Krajbich et al., 2012).

Both total fixations and total fixation duration per trial in-
crease with trial difficulty (figure 16 and 17 respectively),
which is in line with earlier research (Krajbich et al., 2010;
Krajbich & Rangel, 2011; Krajbich et al., 2012; Cavanagh et
al., 2014).

The importance of (relative) gaze duration per option for
decision making is also evident from figure 18: as relative
gaze time for an option increases, the choice for that option
increases as well.

Another interesting insight into the decision process comes
from the duration of consecutive fixations within a trial. Fig-
ure 19 shows how fixation duration differs between first, sec-

Table 5: Specification of the best fitting LME model and
statistics on trial accuracy.

Fixed effects β t-value p-value

(Intercept) 0.595 23.242 < .0001
Condition (hard) -0.106 -6.577 < .0001
Positive trial 0.074 3.834 < .001
Similar trial 0.042 2.198 < .05

Random effects Variance

Subject 9.4∗10−5

Note. df = 556.72 for all parameters. Df was calculated using
Kenward-Roger approximation.



ond, last and other fixations. The first and second fixations
are relatively long, followed by variable short fixations and
finally the last fixation is of a shorter duration than the first
fixation due to the reaching of the decision threshold during
the last fixation. Participants are more likely to choose the
last fixated item when relative rating difference increases (see
figure 20).

Drift Diffusion Model

First we fitted a reference model with only reward value as a
predictor for drift-rate (DIC = 9890). We then expanded this
reference model to three alternative models in a similar way
to Cavanagh et al. (2014): an independent model in which
both gaze and value independently influence drift-rate, an at-
tention DDM (aDDM) in which gaze and value interact and
influence drift-rate and hybrid aDDM in which both the in-
teraction of gaze and value and an independent effect of gaze
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Figure 13: Proportions of trials with number of fixations per trial. The webcam and eyetracker show a similar distribution.
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influences drift-rate.

Additionally we tested whether trial stimuli similarity in-
fluences the decision threshold, as a clear effect on RTs was
visible in figure 7 and this effect was hypothesized as the ap-
plying of a heuristic by participants on dissimilar trials.

Table 6 shows the fitted HDDMs and figures 21, 22 and 23
show the relevant regression coefficient plots for the various
models.

Both table 6 and figure 21b clearly show that the decision
threshold is lower on dissimilar trials. This explains the sim-
ilarity effect visible in figure 7 and 12: due to the lowering of
decision threshold, a decision is reached more quickly (thus
lowering RT) but the quality of the decision is not improved

(as drift rate is not influenced) thus accuracy is lower on dis-
similar trials.

Adding relative gaze duration as a parameter to
drift-rate estimation improves the model fit considerably
(DICwithoutgaze = 9890, DICwithgaze = 9857). This is to be
expected as fixations to stimuli are the only (external) way of
collecting information about the stimulus and has been exten-
sively reported in previous research (Cavanagh et al., 2014;
Krajbich & Rangel, 2011; Krajbich et al., 2012).

To determine how both intrinsic value of stimuli and
relative gaze duration influences the decision process we
need to examine differences in the three alternating mod-
els (independent, aDDM, extended aDDM). Focusing on
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Figure 15: Duration of first fixation does not affect choice. Error bars denote SE of the mean.
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DIC-values, both the independent (DIC = 9559) and ex-
tended aDDM (DIC = 9559) perform better than the aDDM
(DIC = 9565). However, inspecting the posterior plots in
figure 22 shows that the extended aDDM gaze parameter en-
closes zero, indicating that this parameter does not adequately
influence drift rate. Therefore, the independent model pro-
vides the best approximation of the collected data.

While the webcam-based models (model 5, 6 & 7) per-
form worse than the eyetracker-based models, inspecting the
regression coefficients in both table 6 and figure 23 shows
that the overall pattern is consistent with the eyetracker-
based models. This shows that it is possible to use webcam-

collected gaze information to adequately model the decision
process using HDDM.

Discussion
In this thesis we developed and tested a new methodology
of studying decision making processes on a value-based de-
cision task using an integrated webcam for collecting gaze
information.

A preference for healthy food?
We noticed that almost all participants reported abnormal
concerns for dieting on the Eating Restraint Scale (ERS).
Could this have affected the results of this study?
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Figure 17: Total gaze duration per trial per relative rating difference. Note the larger total duration values of the webcam. Total
gaze duration decreases as trial difficulty decreases. Error bars denote SE of the mean.
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If participants are more concerned with dieting, it could
very well be that their valuation of healthy fruit (and alter-
natively, unhealthy candy) stimuli is influenced by this in-
creased concern. Indeed, we found that fruit stimuli were, on
average, rated much higher than candy stimuli (see figure 3).
However, it should be noted that fruit stimuli were sparsely
represented (7 out of 50, 14%) in the stimulus set, which
could give rise to some form of reversed mere-exposure ef-
fect, in which the choice for fruit stimuli is influenced by the
higher occurrence of candy trials. Future research should try
to control for this by increasing the overall stimulus set, while

aiming for equal stimuli groups and sampling a random sub-
set of the rated stimuli for the decision task, which should
decrease any stimuli related biasing effects.

Another explanation for the abnormal concerns for diet-
ing could lie in longitudinal changes in dieting concerns for
the general population since the research by van Strien et al.
(2007): since 2007 many social networking sites where peo-
ple frequently share photos of themselves have gained a lot
of popularity (e.g. Facebook, Instagram, Snapchat), which
could influence people’s physical self-appreciation. However,
more recent research by van Strien, Herman, and Verheijden
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Figure 19: Fixation durations for first, second, other and last fixation per trial. The last fixation is cut short, as hypothesized by
Krajbich and Rangel (2011) due to the decision threshold being reached. Note that the webcam shows a different pattern where
the last fixation is the longest, indicating incorrect gaze duration estimation. Error bars denote SE of the mean.
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Figure 20: Proportion of stimuli chosen per relative rating difference of last fixated stimuli vs other stimuli. Participants are
more likely to cast a final look at the desired stimulus when the relative rating increases. Error bars denote SE of the mean.



Table 6: Deviance Information Criterion Fits and Parameter Values for Each Model of the Influence of Gaze Time and Value
on Drift Rate and Trial Congruency on Decision Threshold. Adapted from Cavanagh et al. (2014).

drift-rate (v) decision threshold (a)

β1

Variable DIC β0 Value Gaze * Value Gaze (1 - Gaze) * Value β3 Gaze α0 α1 Trial Congruency

Model 0: Value 9890 .08 (.02) .57 (.00) 1.87 (.00)
Model 1: Independent 9857 .08 (.02) .57 (.00) .10 (.00) 1.85 (.00)
Model 2: Independent (similarity) 9559 .09 (.01) .56 (.00) .10 (.00) 1.75 (.00) .14 (.00)
Model 3: aDDM 9565 .09 (.01) .69 (.00) .55 (.00) 1.75 (.00) .14 (.00)
Model 4: aDDM + Gaze 9559 .09 (.01) .46 (.00) .56 (.00) .15 (.00) 1.75 (.00) .14 (.00)
Model 5: Independent (webcam) 9864 .08 (.01) .57 (.00) .15 (.00) 1.77 (.00) .14 (.00)
Model 6: aDDM (webcam) 9864 .08 (.01) .67 (.00) .57 (.00) 1.77 (.00) .14 (.00)
Model 7: aDDM + Gaze (webcam) 9865 .08 (.02) .68 (.00) .57 (.00) -.01 (.58) 1.77 (.00) .14 (.00)
Note. DIC = deviance information criterion; aDDM = attention drift diffusion model.

(2014) does not show significant changes in CD subscales
over the general population in comparison with van Strien et

al. (2007), and while these social networking sites have since
than gained even more popularity, some effect should have
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Figure 21: Posteriors of decision threshold parameters in model 1 and 2. Note the smoother posterior distribution shape of the
intercept parameter in model 2, indicating less noise in the posterior distribution.
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Figure 22: Posteriors of drift parameters in model 2, 3 and 4. Note that gaze values correspond to eyetracker gaze values. In
model 2, the drift rate is driven by the value of the stimulus and gaze direction and this is added to the baseline drift β0. In
model 3, the drift rate is driven by the interaction of gaze direction and stimulus value (i.e. looking at a highly valued stimulus),
and the interaction of gaze direction and inverse stimulus value (i.e. looking at a lowly valued stimulus) and this is added to
the baseline drift β0. Model 4 is similar to model 3, but drift rate is additionally driven by the gaze direction, independent from
stimulus value.



been visible.

Decision Task
Participants took significantly longer to reach a decision
on hard trials and were significantly less accurate (fig-
ures 5 & 10), indicating that our main manipulation func-
tioned as expected.

Additionally, it was found that participants take longer
while making a worse decision on aversive trials than on ap-
petitive trials (figures 6 & 11) . These findings are not in line
with an earlier study (Armel et al., 2008), in which longer re-
spond times on aversive trials were associated with improved
avoidance of the aversive item. However, in that study stimuli
were presented sequentially instead of simultaneously, which
results in a different avoidance strategy: when stimuli are si-
multaneously presented, avoiding to look at a specific stimuli
is achieved by looking at the other stimuli, while sequentially
presented stimuli are avoided by not looking at the stimuli
at all. In the sequential case, no new external information is
collected for the decision process, while in the simultaneous
case information about the alternative option is collected.

Indeed, a more recent study by Cavanagh et al. (2014)
found a similar effect as found here (i.e. longer RT’s and
worse avoidance on aversive items) with simultaneously pre-
sented stimuli, indicating that the decrease in accuracy on
aversive trials could indeed be the result of stimuli presen-
tation (simultaneously or sequentially).

Finally, we found that participants respond slightly faster
(fig. 7), but make more mistakes (fig. 12), on trials where
the stimuli come from different categories (e.g. fruit and
candy). We hypothesized that participants view the decision

of these type of trials differently than trials were the presented
choices are from the same stimuli category: they don’t look
at the actual stimulus anymore but only try to choose be-
tween the two presented stimuli categories (i.e. they choose
between fruit or candy, not between an apple and a Mars can-
dybar). Drift-diffusion model estimates showed that the deci-
sion threshold parameter is influenced by trial stimulus simi-
larity and inclusion of this parameter improves the model fit
(table 6 & figure 21), indicating that participants task percep-
tion is changed, and not the decision process, on these trials.

Webcam gaze-tracking
Comparison of collected webcam data and eyetracker data
(figures 13 & 14) showed that while being less accurate, sim-
ilar information regarding gaze can be collected through the
webcam and the eyetracker.

However, the current methodology has several issues.
Firstly, the current method of extracting gaze coordinates
from the webcam relies solely on data collected from the eye-
tracker. This dependency can be removed by including a we-
bcam calibration (similar to the classical eyetracker calibra-
tion) while recording through the webcam. This calibration
should be in the form of a simple game (e.g. "follow the cat
with your eyes") to prevent dropout during this stage. Sec-
ondly, due to an implementation error regarding timestamp
collection, the webcam data is linearly fitted to the eyetracker
data as a workaround. Future implementations should include
proper timestamping on webcam collected data. Lastly, the
eyetracker used performed some preprocessing on the raw
data, preventing a completely fair comparison between the
webcam and eyetracker data. Still, we are confident that these
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(c) Model 7

Figure 23: Posteriors of drift parameters in model 5, 6, and 7. Note that gaze values correspond to webcam gaze values. In
model 5, the drift rate is driven by the value of the stimulus and gaze direction and this is added to the baseline drift β0. In
model 6, the drift rate is driven by the interaction of gaze direction and stimulus value (i.e. looking at a highly valued stimulus),
and the interaction of gaze direction and inverses stimulus value (i.e. looking at a lowly valued stimulus) and this is added to
the baseline drift β0. Model 7 is similar to model 6, but drift rate is additionally driven by the gaze direction, independent from
stimulus value. Note the similarities between model 5 and 6 with model 2 and 3, indicating that the webcam eyetracker can
extract similar information concerning gaze as a commercial eyetracker. However, this does not apply to model 7 and 4, as
the interaction parameters of gaze and stimulus value switch and the posterior distribution of the independent gaze direction
encompasses zero in model 7, indicating that this effect is not significant.



problems are easily fixed and that this study’s results show the
usefulness of webcam-collected gaze information.

Fixations
The similarities between webcam- and eyetracker-collected
fixations are also evident from figure 13 which shows the dis-
tribution of fixations per trials: both distributions look alike,
indicating a common source of information. However, differ-
ences between the webcam and eyetracker are present in com-
puted fixation durations (figure 19): the webcam-based fixa-
tions show a longer last fixation per trial than the eyetracker-
based fixations. We propose several reasons for this differ-
ence: First, the timing alignment (see method) of the webcam
could be slightly off which would result in an incorrect start
or ending of the trial. Second, the eyetracker preprocessed
the data, which could influence fixation durations in an un-
known way. Third, the reduced accuracy of the webcam-gaze
collection (see figure 14) makes it more difficult to recognize
saccades, thus not recognizing different fixations, resulting in
larger fixation durations and less fixations overall.

The effect of trial difficulty (the main manipulation of the
decision task) on fixations is shown in figures 16 & 17 and is
in line with earlier research (Krajbich et al., 2010; Krajbich &
Rangel, 2011; Krajbich et al., 2012; Cavanagh et al., 2014):
Participants need more information to reach a decision as the
presented options have a similar intrinsic value on difficult
trials. Additional information to reach a decision can only be
collected externally by fixating on the options, thus to reach
a decision, more and longer fixations are needed.

First fixation duration per trial did not predict choice in
this study (figure 15), which is not in line with the attentional
DDM. Cavanagh et al. (2014) found that first fixation dura-
tion only predicted choice on easy (win-lose, a choice be-
tween an appetitive and aversive option) trials, which we’re
not presented in this study. It could be that the easy trials in
this study are not easy enough compared to these win-lose
trials (i.e. the difference in choices should be greater than the
10 rating points used in this study), or that the effect of first
fixation duration on choice is too subtle to establish in 150
decision trials.

Future research should perform a longer decision task (i.e.
many more trials) and try to create a clearer distinction be-
tween easy and hard trials: for example, hard trials have op-
tions within 10 rating points of each other, while easy trials
have options which are at least 30 rating points apart. Addi-
tionally, win-lose trials (i.e. appetitive vs aversive stimulus)
could be included to investigate if first fixation duration in-
deed predicts choice on these trials.

The Decision Making Process
While the empirical data discussed earlier provides an inter-
esting insight in the various effects on the decision process,
such as the effect of trial stimuli similarity, it cannot be used
to infer how these effects influence the decision process. For
that algorithmic decision making models such as the Hier-
archical Drift Diffusion Model (HDDM) are needed. These

DDM’s are used to test different theories of how the decision
process works by investigating which model best approxi-
mates the empirical data.

We used HDDM’s to determine how the decision process is
influenced by trial stimulus similarity (by lowering decision
threshold), how gaze and intrinsic stimulus value influence
the decision process and if webcam-collected gaze informa-
tion can be used to reach similar conclusions as eyetracker
data.

Formal comparison of both eyetracker- and webcam-based
HDDM’s (table 6) provides evidence that the Independent
Model (in which gaze and value independently influence
choice) is the best approximation of the decision process in
comparison with both the attentional DDM and hybrid at-
tentional DDM, which is in line with earlier research by
Cavanagh et al. (2014) which attributes the earlier preference
for the attentional DDM (Krajbich et al., 2010; Krajbich &
Rangel, 2011; Krajbich et al., 2012) to a lack of aversive
items in the decision task. Aversive items are important to
include, as the attention DDM makes a very clear prediction
on the effect of gaze duration on aversive stimuli: avoidance
should improve with gaze duration, which is the opposite of
what we and Cavanagh et al. (2014) found.

Further research should focus on the difference between
aversive and appetitive items and if the decision process dif-
fers between those items.

This study did not collect information regarding pupil dila-
tion, while Cavanagh et al. (2014) found that changes in pupil
dilation provide an additional predictor on choice in value-
based decision tasks. As many eyetrackers report information
about pupil dilation, this can easily be integrated in HDDM’s
to investigate the influence of pupil dilation on the decision
process.

However, pupil dilation cannot be easily extracted from
webcam-data using the OpenFace framework, so a different
approach should be used in future research to enable integra-
tion of pupil dilation in Decision Making models on the basis
of webcam-collected gaze information.

Conclusions

We conclude that it is possible to perform decision making re-
search through the webbrowser and using a webcam to collect
gaze information without losing valuable sources of informa-
tion needed to distinguish between alternative models of de-
cision making. This could have large implications for future
decision making research, as this methodology can vastly de-
crease costs, reduce time needed for participant recruitment
and enable researchers to study a more representative sam-
ple of the population instead of almost exclusively WEIRD
participants.

Additionally, in line with Cavanagh et al. (2014), we con-
clude that gaze and stimulus value independently influence
choice in a value-based decision task. This implicates that
it may be possible to influence choice by presenting visual
information and directing gaze, regardless of intrinsic value



preference, a method used by marketeers for a very long
time.
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Appendix A Stimuli

Figure 24: maltesers Figure 25: milka-melocakes Figure 26: MnMs

Figure 27: twix Figure 28: snickers Figure 29: lays-naturel

Figure 30: ah-stroopwafels Figure 31: pepsels Figure 32: tony-chocola



Figure 33: roze-koeken Figure 34: dropfruit-duos Figure 35: katja-apekoppen

Figure 36: haribo-kikkers Figure 37: karamel-fudge Figure 38: haribo-bananen

Figure 39: zure-matjes Figure 40: frisia-kabelspek Figure 41: katja-yoghurtgum



Figure 42: red-band-pretsleutels Figure 43: smarties-v2 Figure 44: chokotoff

Figure 45: kitkat Figure 46: lion Figure 47: nuts

Figure 48: tomblerone Figure 49: bros Figure 50: milkyway



Figure 51: haribo-aardbeijen Figure 52: kleine-muntdrop Figure 53: klene-ovaaltjes

Figure 54: haribo-trekdrop Figure 55: lookolook-dropveters Figure 56: lookolook-droptijden

Figure 57: lays-paprika Figure 58: pringles-v2 Figure 59: lays-bolognese



Figure 60: doritos-nacho-cheese Figure 61: tortilla-chio-rolls Figure 62: chio-heartbreakers

Figure 63: lays-thai-sweet-chili Figure 64: chio-popcorn-sweet Figure 65: chio-popcorn-salt

Figure 66: appels Figure 67: mandarijn Figure 68: snoeptomaatjes



Figure 69: wortels Figure 70: druiven Figure 71: bananen

Figure 72: aardbeien Figure 73: blauwebessen


