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Abstract

The Bayesian Poisson changepoint model, which is used to analyse
non-homogeneous data sets, does not deal with over-dispersion and is
therefore suboptimal to analyse real world taxi pick-up counts. In this
thesis several adjustments to the model are suggested and tested and they
aim for an optimization of the Bayesian Poisson changepoint model. The
Poisson-Gamma model will be replaced by the Negative-Binomial-Beta
model and information exchange on both global and sequential level will
be implemented. Eventually the improved model is used to perform
simulations on the taxi data set and an interpretation of the results is
given.

Preface

In this bachelor thesis an attempt will be made to optimize the Poisson change-
point model (CPS) in its Bayesian framework as used in a recent paper by
Grzegorczyk and Kamalabad [1]. Grzegorczyk and Kamalabad performed a
comparative evaluation study on popular non-homogeneous Poisson models
for count data, among those model was the Poisson changepoint model. In
their conclusion they stated that the Bayesian CPS might have been subop-
timal during their simulations on certain data sets and they made a request
for further research on the optimization of this model. This thesis will answer
their request for further research and is intended for undergraduate students
with a basic knowledge of Bayesian Statistics.
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1 Introduction

The field of statistical inference is divided into two main philosophical ap-
proaches. The first one is the Bayesian approach and the second is the fre-
quentist, or sometimes referred to as classical, approach.

The divergence between the frequentist and Bayesian approach finds its origin
in the two different interpretations of probabilities. Bayesians interpret proba-
bilities as subjective statements about how likely it is that an event will occur.
Frequentists on the other hand, interpret probabilities as long-run relative fre-
quency of an event when an experiment is repeated many times. For this
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reason, frequentists find bayesians approaches objectionable, and sometimes
even unacceptable. They themselves, do not make probabilistic statements
about parameters.

From the 20th century Bayesian methods increased in popularity. Statisti-
cians such as Finetti, Lindley and Wallace developed a complete method of
Statistical inference, based on Bayes theorem [3]. In this method they stated
that, since we are uncertain about the true value of the parameters, we might
as well consider them to be random variables. Following this approach, Bayes’
theorem is used in situations where y represents the observed data and x
depicts the unknown parameter that is to be estimated. Hence, the rules of
probability are directly used to learn about the parameter. Those probabilistic
statements about parameters must be seen as degrees of belief. Everyone can
make their personal beliefs about parameters. The degree of belief measures
how likely someone considers a value of the parameter to be, before having
observed the data. After obtaining and observing the data, those beliefs about
the parameters are updated.

Heated debates still take place between classical statisticians and Bayesian
statisticians. These debates are rather philosophical and there will proba-
bly never be a definitive answer to the question which approach is the best
one. However, lots of studies have been dedicated to comparison of the two ap-
proaches, among which a recent study by Grzegorczyk and Kamalabad (2017).

Grzegorczyk and Kamalabad performed a comparative evaluation study on
popular non-homogeneous Poisson models for count data. In their study they
implemented the models in both Bayesian and frequentist framework and made
a pairwise comparison between the four Bayesian and the four frequentist
models. This pairwise comparison was made to see to which extent the results
relying on the two frameworks differed. [1]

The study was performed on various Poisson synthetic data sets and on real-
world taxi pick-up counts, extracted from the recently published New York
City Taxi database. From the pairwise comparison it was concluded that the
Poisson changepoint model was the only non-homogeneous model, out of three,
that was superior to its frequentist counterpart. However, in the conclusion of
their papaer, Grzezgorczyk and Kamalabad formulated an important note: po-
tential over-dispersion was not taken into account within the presented study.
Over-disperion means that the observed variance of the data is higher than the
variance of the corresponding theoretical model (in this case the Poisson vari-
ance). When the data was actually sampled from the Poisson distributions,
over-dispersion could not have arisen. However, in the case of the taxi pick-
up counts, over-dispersion might very well occur. Therefore Grzegorczyk and
Kamalabad concluded that the Bayesian Poisson changepoint model might
have been suboptimal for the real-world data set and made a suggestion for
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further research to study possible improvement of the model. Based on his
suggestion for further research, the main goal of this thesis is to improve the
Poisson changepoint model in its Bayesian framework as used in the paper of
Grzegorczyk and Kamalabad.

Before starting off with the ideas for improvement, first a short introduction
in Bayesian statistics is given followed by an extension of all the mathematical
models that will be used during this thesis. Then in chapter 4 the original
Bayesian Poisson changepoint model is defined and explained and the improve-
ments that might be made are discussed as well. Those improvements will form
the next directions of this thesis. Chapter 5 will provide all the derivations
that were necessary. In chapter 6 the first improvement to the model will be
tested and chapter 7 the search for more improvements will continue. Chapter
8 will explain the concept of information exchange on global and sequential
level and eventually simulations will be performed and the results are sketched
in chapter 9. Then the model is applied to the real-world taxi pick-up counts
and the results are analysed. Eventually the thesis will and with a conclu-
sion where the most important findings during this thesis are summarized and
suggestions for further research will be made in the discussion.

2 Short introduction in Bayesian statistics

Bayesian statistics is a mathematical procedure that applies probabilities to
statistical problems. Probabilities are interpreted as subjective degrees of
belief and the goal is to state and analyse beliefs. The most important and
basic concepts of Bayesian statistics which will be used through this thesis will
be outlined in this section.

In general the concept of Bayesian inference is quite simple. A certain event
can occur and a mathematical model can be used as mathematical formulation
of the observed events. A belief is constructed in the realization of such an
event. The belief is updated after observing the data and the updated belief
is implemented into the model.

The models that will be used to represent the observed events are probability
density functions (pdf). The pdfs represent the likeliness of the data given a
certain parameter, i.e. P (X|θ), which is referred to as the likelihood. Given a
parameter θ, a belief is constructed and the prior is the strength of this belief
in the parameter, also denoted as P (θ).

The marginal likelihood (mll) can be derived with help of the likelihood and
the prior. The mll represents the likeliness of the observed data:
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P (X) =

∫
θ
P (X, θ) dθ

=

∫
θ
P (X|θ)P (θ) dθ.

The mll represents the likeliness of the data in general in contrast to the likeli-
hood function, which shows the likeliness of the data given a fixed parameter.

For example, suppose a coin is flipped n times and the outcomes are denoted
X = (x1, x2, ..., xn). Where xi is equal to 0 (heads) or 1 (tails). The parameter
θ represents the fairness of the coin. If θ = 0.5 the coin is completely fair. The
prior, P (θ), represents the belief in the fairness of the coin. If P (θ) is equal
to 1 for θ = 0.5 and 0 for all other θ, we have absolute belief that the coin is
fair. Usually, in Bayesian statistics, P (θ) is nonzero for multiple values of θ.
Instead of focusing on one optimal value of the parameter given the data, the
distribution of the data is estimated using every value of the parameter and
its belief.

In general, the Bayesian inference procedure is as follows:

1. A prior distribution P (θ) is chosen, expressing the beliefs about the
parameter θ.

2. A pdf P (X|θ) that reflects the likeliness of the data is chosen.

3. After observing the data X, the posterior distribution P (θ|X) is deter-
mined and update our beliefs.

The posterior belief P (θ|X) can be used to update the prior and is proportional
to the likelihood times the prior:

P (θ|X) ∝ P (X|θ) · P (θ).

If the prior and the posterior belief are from the same distribution family
the prior is called conjugate. The posterior belief gives a distribution of the
parameter given the data. The posterior can be used to update the prior, by
using the parameters of the posterior as parameters for the prior. The updated
prior gives a better fitting density for a new data set. This density is called
posterior predictive distribution. The likeliness of a new data set Xnew, based
on an old data set Xold and can be obtained in the following way:
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P (Xnew|Xold) =

∫ ∞
0

P (Xnew|θ,Xold)P (θ|Xold) dθ

=

∫ ∞
0

P (Xnew|θ)P (θ|Xold) dθ.

This distribution will be used to check whether adjustments to the model
lead to the optimization aimed for. A higher value of the posterior predictive
distribution when filling in the data is evidence for a better fit of the model.
So changes to the model will be considered improvements only if the value of
the posterior predictive is higher than before the adjustments to the model.

The mll can also be used to evaluate changes in the model. For every change
made, a higher value of the mll indicates a better fit to the data.

Now that the basic notions in Bayesian inference have been explained, the
specific models used in this thesis will be elaborated on in the next section.

3 Mathematical models

Mathematical models are used to make a mathematical formulation of the
observed events. In this thesis, three mathematical models are used and for
all three of them a brief explanation will be given.

3.1 Models for homogeneous data sets

The main goal of this thesis is to analyse the real-world taxi pick-up counts.
Hence, the model should be able to deal with count data, i.e. integer-valued
samples. If such a data set does not depend on time it is called homogeneous
and one of the most popular statistical standard tools to deal with such a data
set is the Poisson distribution with parameter λ. For one single observation x
the Poisson distribution is

P (x|λ) =
λxe−λ

x!
.

The parameter λ is a positive integer and a natural prior for λ is the Gamma
distribution with parameters a and b:

9



P (λ|a, b) =
ba

Γ(a)
λa−1e−bλ.

This model is called the Poisson-Gamma model.

Another useful Bayesian model that could be used to analyse homogeneous
data sets is the Negative-Binomial-Beta model (Neg-Bin-Beta). For this model
the pdf of a Negative-Binomial is used to describe the data. There are several
interpretations of a Negative-Binomial distribution, so to avoid any confusion
this distribution will be defined and its expectation and variance are mentioned
as well.

The Neg-Bin distribution counts the number x of failures before reaching the
rth success. Parameter θ is the probability of having a success.

P (x|r, θ) =
(r + x− 1)!

x!(r − 1)!
θr(1− θ)x

For the expectation we have:

E(x) =

n∑
x=0

x · (r + x− 1)!

x!(r − 1)!
pr(1− p)x

=
n∑
x=1

(r + x− 1)!

(x− 1)!(r − 1)!
pr(1− p)x

=

n∑
x=1

r(1− p)
p

(r + x− 1)!

(x− 1)!(r − 1)!
pr+1(1− p)x−1

=
r(1− p)

p

n∑
z=0

(r + 1 + z − 1)!

z!r!
pr+1(1− p)z

=
r(1− p)

p
.

In a similar way we can obtain:

Var(x) =
r(1− p)
p2

.

The parameter θ is assumed to be a Beta distributed prior in this model and
the Beta distribution has parameters a and b and is defined as:

P (θ|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1.
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The Poisson-Gamma model and the Neg-Bin-Beta model are the two standard
Bayesian models that will be used in this thesis.

3.2 Models for non-homogeneous data

The models discussed so far can deal with homogeneous data sets. However,
in the case of the real-world taxi data, the rate at which events occur might
change somewhere over the time range. The frequency of occurring events may
increase or decrease at certain moments in the time range. These moments
will be referred to as changepoints. Since the number of events that occur
differ over time, we are dealing with non-homogeneous count data. A real life
interpretation of such a shift in rate could be rush hour where obviously higher
counts can be expected.

If the existence of such changepoints is already suspected, intuitively it does
not make sense to analyse such a data set with the same belief in all param-
eters for the whole time range. In those cases the model can be improved
by embedding it in a Changepoint model architecture. In the next chapter,
the concept of a Changepoint model is explained and an elaboration on the
application of the model on the Poisson-Gamma model is given.

4 The Bayesian Poisson Changepoint model

Before starting off with the characteristics and details of this model, first the
general concept of the Changepoint model will be discussed. Afterwards a
detailed explanation of the application of the model will follow.

4.1 The concept of the changepoint model

Consider the Poisson-Gamma model from the previous chapter. This model
can be extended in such a way that it can also be used to analyse non-
homogeneous data sets. This can be done by embedding it in a Changepoint
model architecture. This architecture will make sure that the optimal number
of changepoints and their related locations in the time series are determined
such that the model becomes the best possible fit to the given data set. The
Poisson-Gamma model has turned into a Bayesian Poisson Changepoint model
(CPS).

The Metropolis-Hastings Markov Chain Monte Carlo sampling scheme is used
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to determine the changepoints as well as their exact locations. Eventually, the
Bayesian CPS algorithm will show several vectors which give the changepoints
that make sure the model is the best fit to the given data. Based on these
vectors, for each time point a probability of having a changepoint there can
be calculated. So, important to realise is that not all possible changepoints
are implemented in the model, only those that make the model a good fit for
the data set.

4.2 A detailed outline of the Bayesian CPS

There are various ways to implement a Bayesian changepoint model and Grze-
gorczyk and Kamalabad used the classical one from Green (1995). [2] Since
we are looking for an optimization of their Bayesian CPS, this implementation
of the Bayesian changepoint model to the Poisson-Gamma model will be used.

Grzegorczyk and Kamalabad have written an algorithm where a data set is
given as input to the Bayesian CPS and the changepoints that make the model
the best fit to this data set are given as output. In this thesis this model and
its algorithm form the starting point. From here adjustments will be made,
which optimize the model. The codes can be reproduced if one is interested
in them.

As stated before the classical form of the Bayesian changepoint model from
Green (1995) is used. The model will be applied to various Poisson synthetic
data sets and on real-world taxi pick-up counts. The data set given as input
for the model will be divided in K components and is identified with K − 1
changepoints. Hence, after each changepoint a new component begins. K is a
truncated Poisson distribution, e.g. K must be a positive integer. Conditional
onK, the changepoints are assumed to have the even-numbered order statistics
of L := 2(K − 1) points uniformly distributed on the data set. This implies
that two changepoints can not be located at two consecutive time points.

At each iteration the MCMC randomly selects either the based on change-
point birth, death or re-allocation move and performs the chosen move (Green
(1995)). Each move has a probability of 1

3 to be selected. The three move
types can be briefly described as follows:

1. The changepoint birth move: This move randomly places one single new
changepoint at one of its possible locations. The data becomes divided
in K + 1 components instead of K.

2. The changepoint re-allocation move: This move randomly picks one of
the existing changepoints and relocate this changepoint at one of the
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possible locations between the surrounding changepoints. Suppose we
have a current state with three changepoints, c1, c2, c3 and in the next
iteration of the MCMC the re-allocation move was selected. Suppose c2

was randomly selected to be re-allocated. The new location of c2 will be
one of the possible locations of a changepoint between the changepoints
c1 and c3. The number of components stays the same.

3. The changepoint death move: This move randomly selects one of the
existing changepoints and deletes it. K becomes K − 1.

Each of these three moves are proposals and will not be performed automat-
ically. For each move the Metropolis-Hastings acceptance probability for the
candidate state is used to see whether to accept or reject the move. If the
move is accepted the move is performed and accept the new state. If the move
is rejected the state is left unchanged. The Metropolis-Hastings acceptance
probability is defined

A =
P ((x1, ..., xn)|New changepoints)

P ((x1, ..., xn)|Old changepoints)
· P (New changepoints)

P (Old changepoints)
·Q.

Q is the Hastings ratio, which can be computed straightforwardly for each of
the three move types. It usually is the ratio of the probability of going from
the new changepoints to the old ones and vice versa from the old changepoints
to the new ones.

In Grzegorczyk and Kamalabad the Bayesian CPS is explained in more rigor-
ously. However, this thesis is focused on the adjustments of this model rather
than the mathematics behind it.

4.3 Room for improvement of the Bayesian CPS

As Grzegorczyk and Kamalabad stated in their paper, the Bayesian CPS is
suboptimal for the type of data set they analysed, namely the taxi pick-up
counts. The main goal in this thesis is to improve the Bayesian CPS for this
kind of data set. A short outline of the ideas for improvements are given in
this section. The purpose of this section is to familiarise the reader with the
directions this thesis will follow.

The Poisson Changepoint model is based on a standard Bayesian model with
conjugate prior, namely the Poisson-Gamma model. One of the key features
of the Poisson distribution is that the mean equals the variance. However, this
is unrealistic when applying the model on real-world taxi pick-up counts. In
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these type of data sets, the data exhibits over-dispersion, e.g. the variance is
larger than the mean. Therefore, the Poisson distribution can not be called
optimal to deal with these kind of data sets. Grzegorczyk and Kamalabad
proposed to use a Negative Binomial distribution instead. It has a variance
larger than the mean and hence, deals with over-dispersion. Therefore the first
attempt to improve the Bayesian CPS is by replacing the Poisson distribution
with a Negative Binomial one and see if this leads to a better fitting model.

The next main idea for improvement is by information exchange among com-
ponents. Information exchange could be implemented by constructing a prior
belief that is used in an iteration of the MCMC scheme, based on data ob-
served so far. The information exchange can be implemented on two different
levels: global and sequential. Global information exchange means that at the
end of each MCMC iteration, the parameters for the prior will be updated and
used for every component of the data set. In sequential information exchange
the prior for each component is updated based on the observed data from the
previous component. Information exchange on global and sequential level will
form the second direction this thesis will follow.

5 Derivations

The concepts of mll and posterior predictive distribution have already been
discussed briefly. They will be used to check if adjustments to the model can be
seen as improvements. This section will provide all the necessary derivations
of equations that will be used in this thesis.

5.1 Poisson-Gamma model

The pdf for the Poisson distribution has already been given. However, to anal-
yse data sets with multiple data points the joint probability density function
is needed. If a serie of independent identically distributed (i.i.d.) observations
is sampled from P (x|λ), the joint pdf of x1, x2, . . . , xn is the product of the
individual pdfs:
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P (x1, . . . , xn|λ) =

n∏
i=1

P (xi|λ)

=

n∏
i=1

λxie−λ

xi!

=
λ
∑n

i=1 xie−nλ∏n
i=1 xi!

.

The marginal likelihood of this model will use the joint pdf and the Gamma
prior:

P (x1, . . . , xn) =

∫
λ
P (x1, . . . , xn, λ) dλ

=

∫
λ
P (x1, . . . , xn|λ)P (λ) dλ

=

∫ ∞
0

λ
∑n

i=1 xie−nλ∏n
i=1 xi!

· ba

Γ(a)
λa−1e−bλ dλ

=
ba

Γ(a)

1∏n
i=1 xi!

∫ ∞
0

λ
∑n

i=1 xi+a−1e−(b+n)λ dλ

=
ba

Γ(a)

1∏n
i=1 xi!

Γ(
∑n

i=1 xi + a)

(b+ n)
∑n

i=1 xi+a

∫ ∞
0

(b+ n)
∑n

i=1 xi+a

Γ(
∑n

i=1 xi + a)
λ
∑n

i=1 xi+a−1e−(b+n)λ dλ

=
ba

Γ(a)

1∏n
i=1 xi!

Γ(
∑n

i=1 xi + a)

(b+ n)
∑n

i=1 xi+a
.

Note that the integral in the second step is hard to solve analytically. However,
no additional calculus was used to solve it. Instead the term necessary to
obtain a Gamma density inside the integral were added. The inverse of these
terms is added in front of the integral for obvious reasons. The integral taken
of a density is always equal to 1. In this case a Gamma density with parameters∑n

i=1 xi + a and b+ n is obtained and therefore the integral becomes 1.

To apply Bayesian inference, the parameters of the posterior can be used as
updated prior parameters. The posterior distribution for the Poisson-Gamma
model look like this:

P (λ|x1, . . . , xn) ∝ λ
∑n

i=1 xie−nλ∏n
i=1 xi!

· ba

Γ(a)
λa−1e−bλ

∝ λ
∑n

i=1 xi+a−1e−λ(b+n).
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The posterior belief is Gamma distributed with parameters
∑n

i=1 xi + a and
b+ n. The posterior predictive displays the likeliness of having the new data
set x̃1, . . . , x̃n, given the old data set x1, ..., xn.

P (x̃1, . . . , x̃n|x1, . . . , xn) =

∫ ∞
0

P (x̃1, . . . , x̃n|λ, x1, . . . , xn)P (λ|x1, . . . , xn) dλ

=

∫ ∞
0

P (x̃1, . . . , x̃n|λ)P (λ|x1, . . . , xn) dλ

=

∫ ∞
0

λ
∑n

i=1 x̃ie−nλ∏n
i=1 x̃i!

· (b+ n)
∑n

i=1 xi+a

Γ(
∑n

i=1 xi + a)
λ
∑n

i=1 xi+a−1e−(b+n)λ dλ

=
1∏n

i=1 x̃i!

(b+ n)
∑n

i=1 xi+a

Γ(
∑n

i=1 xi + a)

∫ ∞
0

λ
∑n

i=1 x̃i+
∑n

i=1 xi+a−1e−(b+2n)λ dλ

=
1∏n

i=1 x̃i!

(b+ n)
∑n

i=1 xi+a

Γ(
∑n

i=1 xi + a)

Γ(a+
∑n

i=1 xi +
∑n

i=1 x̃i)

(b+ 2n)a+
∑n

i=1 x̃i+
∑n

i=1 xi
·∫ ∞

0

(b+ 2n)a+
∑n

i=1 x̃i+
∑n

i=1 xi

Γ(a+
∑n

i=1 xi +
∑n

i=1 x̃i)
λ
∑n

i=1 x̃i+
∑n

i=1 xi+a−1e−(b+2n)λ dλ

=
1∏n

i=1 x̃i!

(b+ n)
∑n

i=1 xi+a

Γ(
∑n

i=1 xi + a)

Γ(a+
∑n

i=1 xi +
∑n

i=1 x̃i)

(b+ 2n)a+
∑n

i=1 x̃i+
∑n

i=1 xi
.

5.2 Negative-Binomial-Beta model

The joint pdf of x1, x2, . . . , xn where the xi are i.i.d. observations from P (x|θ)
is:

P (x1, . . . , xn|r, θ) =

n∏
i=1

P (xi|r, θ)

=
n∏
i=1

(r + xi − 1)!

xi!(r − 1)!
θr(1− θ)xi

=

∏n
i=1(r + xi − 1)!∏n
i=1 xi!((r − 1)!)n

θnr(1− θ)
∑n

i=1 xi .
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The mll is:∫ 1

0

∏n
i=1(r + xi − 1)!∏n
i=1 xi!((r − 1)!)n

θnr(1− θ)
∑n

i=1 xi · Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1 dθ

=

∏n
i=1(r + xi − 1)!∏n
i=1 xi!((r − 1)!)n

· Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0
θnr+a−1(1− θ)b+

∑n
i=1 xi−1 dθ

=

∏n
i=1(r + xi − 1)!∏n
i=1 xi!((r − 1)!)n

· Γ(a+ b)

Γ(a)Γ(b)
·

Γ(nr + a)Γ(b+
∑n

i=1 xi)

Γ(nr + a+ b+
∑n

i=1 xi)

∫ 1

0

Γ(nr + a+ b+
∑n

i=1 xi)

Γ(nr + a)Γ(b+
∑n

i=1 xi)
·

θnr+a−1(1− θ)b+
∑n

i=1 xi−1 dθ

=

∏n
i=1(r + xi − 1)!∏n
i=1 xi!((r − 1)!)n

· Γ(a+ b)

Γ(a)Γ(b)
·

Γ(nr + a)Γ(b+
∑n

i=1 xi)

Γ(nr + a+ b+
∑n

i=1 xi)
.

Note that the integral is taken of a Beta density function with parameters
nr + a and b+

∑n
i=1 xi.

The posterior belief is:

P (θ|x1, . . . , xn) ∝ P (x1, . . . , xn|r, θ) · P (θ|r)

∝
∏n
i=1(r + xi − 1)!∏n
i=1 xi!((r − 1)!)n

θnr(1− θ)
∑n

i=1 xi · Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1

∝ θnr+a−1(1− θ)b+
∑n

i=1 xi−1.

This posterior distribution is Beta distributed with parameters nr + a and
b+

∑n
i=1 xi. The posterior predictive distribution is obtained as follows:

17



P (x̃1, . . . , x̃n|x1, . . . , xn)

=

∫ 1

0
P (x̃1, . . . , x̃n|r, θ, x1, ..., xn)P (θ|r, x1, ..., xn) dθ

=

∫ 1

0
P (x̃1, . . . , x̃n|r, θ)P (θ|r, x1, ..., xn) dθ

=

∫ 1

0

∏n
i=1(r + x̃i − 1)!∏n
i=1 x̃i!((r − 1)!)n

θnr(1− θ)
∑n

i=1 x̃i ·
Γ(nr + a+ b+

∑n
i=1 xi)

Γ(nr + a)Γ(b+
∑n

i=1 xi)
θnr+a−1(1− θ)b+

∑n
i=1 xi−1 dθ

=

∏n
i=1(r + x̃i − 1)!∏n
i=1 x̃i!((r − 1)!)n

·
Γ(nr + a+ b+

∑n
i=1 xi)

Γ(nr + a)Γ(b+
∑n

i=1 xi)

∫ 1

0
θ2nr+a−1(1− θ)b+

∑n
i=1 x̃i+

∑n
i=1 xi−1 dθ

=

∏n
i=1(r + x̃i − 1)!∏n
i=1 x̃i!((r − 1)!)n

·
Γ(nr + a+ b+

∑n
i=1 xi)

Γ(nr + a)Γ(b+
∑n

i=1 xi)

Γ(2nr + a)Γ(b+
∑n

i=1 x̃i +
∑n

i=1 xi)

Γ(2nr + a+ b+
∑n

i=1 x̃i +
∑n

i=1 xi
·∫ 1

0

Γ(2nr + a+ b+
∑n

i=1 x̃i +
∑n

i=1 xi)

Γ(2nr + a)Γ(b+
∑n

i=1 x̃i +
∑n

i=1 xi)
θ2nr+a−1(1− θ)b+

∑n
i=1 x̃i+

∑n
i=1 xi−1 dθ

=

∏n
i=1(r + x̃i − 1)!∏n
i=1 x̃i!((r − 1)!)n

·
Γ(nr + a+ b+

∑n
i=1 xi)

Γ(nr + a)Γ(b+
∑n

i=1 xi)

Γ(2nr + a)Γ(b+
∑n

i=1 x̃i +
∑n

i=1 xi)

Γ(2nr + a+ b+
∑n

i=1 x̃i +
∑n

i=1 xi
.

6 Poisson-Gamma versus Neg-Bin-Beta model

The first suggestion for improvement of the Bayesian CPS is replacing the
Poisson-Gamma model with the Neg-Bin-Beta model. In this chapter it will
be explored if the Neg-Bin-Beta model can be used as a substitute for the
Poisson-Gamma model. This will be investigated by calculating the mll and
the posterior predictive distribution for both models using the same data sets.
Replacing the Poisson-Gamma model will be an improvement since the Neg-
Bin-Beta model also deals with over-dispersion, whereas he Poisson-Gamma
model does not. Hence, we would obtain a model that handles Poisson gen-
erated data as good as the original model, but can deal with data sets with
over-dispersion as well.

The upcoming plots, histograms, tables et cetera are all modeled with Matlab.
However, not all plots and histograms will be included in this thesis. The
results that are necessary to understand the conclusions are shown, but those
are not the only results that form the basis for the conclusion. A few results
are shown that present the general trend of the results.
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6.1 Data

In this chapter the data sets that are used to compare both models are syn-
thetic count data sets generated from both the Poisson and Negative Binomial
distribution. For the comparison in this chapter homogeneous data sets are
used. Hence, the data sets are generated with one value for either λ (Poisson)
or θ (Neg-Bin). This is sufficient: if the Negative-Binomial is as good as the
Poisson for homogeneous data sets, it will be as good as the Poisson for a non-
homogeneous data set, since we can divide these data sets into components
with each its own parameter. In other words, a non-homogeneous data set can
be divided in multiple homogeneous components.

6.2 The marginal likelihood

The values of the mll and posterior predictive are very small numbers, therefore
their log values are taken. Note that when taking the logarithm, negative val-
ues appear. In figure 1, histograms are shown where the Poisson log marginal
likelihood is compared to the Negative Binomial log marginal likelihood on
Poisson generated data with different sample sizes and different λ.

It is easy to see that the Poisson distribution is superior to the Negative bino-
mial distribution for all values of λ and all sample sizes. This is a surprising
result, since the Negative Binomial deals with counting data as well. To im-
prove the Bayesian CPS, ideal would be that the Negative Binomial is as least
as good as the Poisson. Therefore the next step is to find different ways to
improve the Negative Binomial as an approximation for the Poisson.

The Negative-Binomial distribution has two different parameters, r and θ,
where θ is Gamma distributed and has parameters a and b. Hence, a, b and
r are the three parameters that the Neg-Bin-Beta model depends on. So far
they have all been fixed at 1. For these values the Neg-Bin turned out not
to be an optimal approximation for the Poisson. However, for other values of
these parameters it may be.

6.3 Parameter r of the Negative-Binomial distribution

The first improvement of the Neg-Bin-Beta as an approximation of the Poi-
Gam, might lay in the parameter r. In figure 2, the log predictive distribution
are given for different values of r. The values of the posterior predictive
increase quite fast when r goes to approximately 10 and after that the changes
in r do not seem to have a large impact on the values of the posterior predictive.

19



n=5 n=10 n=20 n=40 n=80

-120

-100

-80

-60

-40

-20

0

(a) λ = 1

n=5 n=10 n=20 n=40 n=80

-200

-150

-100

-50

0

(b) λ = 3

n=5 n=10 n=20 n=40 n=80

-250

-200

-150

-100

-50

0

(c) λ = 5

n=5 n=10 n=20 n=40 n=80

-300

-250

-200

-150

-100

-50

0

(d) λ = 8

Figure 1: Comparison marginal likelihood. Histograms of the average log marginal likelihood
based on Poisson generated data with the given λ, for different sample sizes n. The blue (first)
bar represents the log mll of the Poi-Gam and the red (second) bar represents the log mll of the
Neg-Bin-Beta. The error bars represent standard deviations.

Based on these results the following hypothesis is formulated: the Neg-Bin-
Beta model approximates the Poi-Gam model better for higher values of r.
This hypothesis is tested by plotting the likelihood function of the Neg-Bin-
Beta model for different values of r and the likelihood function of the Poi-Gam
model in one figure. The results are shown in figure 3. For r = 1 the Neg-
Bin is clearly not a good approximation of the Poisson distribution. However,
for values of r = 5 or higher, the negative binomial approaches the Poisson
distribution a lot better. In this plot a sample size of 40 was used to test both
models. However, eventually the changepoint model will divide the input data
set is components and those components are likely to have smaller sample sizes.
Therefore this hypothesis is tested even further for smaller sample sizes. Again
the log mll is used to test both models. In figure 4 those results are displayed.

Figure 4 shows the log mll of the Poi-Gam in the blue (first) bars and for the
Neg-Bin-Beta with different values of r in the red (second) bars. One data
set was generated with a sample size of 3 and for different values of r the mll
was calculated. Therefore there is no change in the mll of the Poi-Gam model,
since this function does not depend on r. From the histograms it can be seen
that there is a clear improvement of the Neg-Bin-Beta model.

A similar result can be seen in figure 5 where the log posterior predictions
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Figure 2: Log posterior predictions for different r values. Histograms of the average Negative
Binomial log predictive probability based on Poisson generated data with the given λ. The value of
r increases from 1 to 20.
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Figure 3: Plot of the average likelihood for different r values. On the x-axis values for λ used to
generate the Poisson data and on the y-axis the likelihood. A sample size of n = 40 was used.

have been displayed in the histograms. Again one data set with sample size
3 was analysed for different values of r. For r = 1 the Poi-Gam model gives
higher values of the posterior predictions and the Negative-Binomial becomes
superior to the Poisson at r = 5 or higher. Note that very large differences are
not needed. Since it is not expected to see that the Neg-Bin would be superior
to the Poisson distribution on Poisson generated data sets. However, since we
are not dealing with the pure pdf but Bayesian models, this can happen. But
if the Poi-Gamma might give slightly higher values of posterior predictions
than the Neg-Bin-Beta, those would be good results. The goal is to aim for
parameters that make the Neg-Bin-Beta good approximations of the Poi-Gam,
not necessarily better.

Based on these results the conclusion can be drawn that the Negative Binomial
is as good as the Poisson for Poisson generated data sets when the parameter
r is at least 5. However, what is the optimal value of r? There are two
different options. Parameter r can be either fixed at a certain value or r is
made a free parameter. Some experiments were done to analyse the behavior
of this parameter. The plots showed that there were no signs of convergence
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of the value of r. The new values of r were uniformly distributed and the
plots showed that r would make a random walk. Hence, the value of r does
not have a significant influence on the marginal likelihood. Therefore, to avoid
making the model unnecessarily complicated, the parameter r will be fixed for
a certain value higher than five. From figures 3, 4, 5 one can conclude that for
r = 10 the Negative Binomial is as good as the Poisson for Poisson generated
data, so from now on r would be fixed at 10.

At this point it is shown that for r = 10 the Neg-Bin-Beta model is as good as
the Poisson-Gamma model on Poisson generated data, in these kind of data
sets over-dispersion does not occur. Left to show is how this change would
actually be an improvement.

Instead of analysing a data set generated from a Poisson distribution, data sets
from the Negative-Binomial distribution are gathered and again both models
were tested. In figure 6 three rows of histograms are displayed. The first row
shows the log mll values of the two models where different sample sizes were
used. In the second row the log mll is shown where different values of r are used
and in the last row the log posterior predictives were calculated, again with
different values of r. It is easy to see that the Neg-Bin-Beta model is a better
fit to these kind of data sets than the Poisson-Gamma model. This is not a
surprising results since it is general knowledge that the Poisson distribution
does not deal with over-dispersion and the Negative-Binomial does.
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Figure 4: Histograms of the average log marginal likelihood based on Poisson generated data with
the given λ. The blue (first) bars represent the log marginal likelihood of the Poisson distribution.
The red (second) bars represent the log marginal likelihood of the Negative binomial for a certain
value of r. The sample sizes of the data sets are all 3.
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Figure 5: Histograms of the average log predictive distribution based on Poisson generated data with
the given λ. The blue (first) bars represent the log predictive distribution of the Poisson distribution.
The red (second) bars represent the log predictive distribution of the Negative binomial for a certain
value of r. The sample sizes of the data sets are all 3.
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Figure 6: Histograms of the average log marginal likelihood probability based on Negative Binomial
generated data with the given θ. The blue (first) bars represent the values for the Poisson model.
The red (second) bars represent the values for the Negative binomial model. The error bars represent
the standard deviations. The whole upper row represent the log marginal likelihoods for different
increasing sample sizes and r = 1. The second row shows the log mll, where one data set generated
for the given θ was analysed for different values of r. The sample sizes were 40. The third row shows
the same as the second row, but instead the log mll, the log posterior predictions are displayed.

Therefore the adjustment of replacing the Poisson-Gamma by the Neg-Bin-
Beta model with r = 10 is an actual improvement. The Bayesian Poisson
Changepoint model changes in a Bayesian Negative-Binomial Changepoint
model and is a good fit to data sets in which over-dispersion might occur.

Analysing the data sets that were generated from the Neg-Bin distribution
resulted in one other surprising result. The parameter r∗ from the Negative-
Binomial distribution that was used to generate the data turned out to have
a significant influence on the values of the mll and the posterior predictive. In
figure 6 data sets were generated with the given values of θ, sample size 40
and r∗ = 10. However, if higher values of r∗ were used to generate the data,
higher values of the mll and posterior predictive were reached.

With this new knowledge one last test was performed to decide if r could stay
fixed. Different data sets were gathered with all a different r∗ value and the mll
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was calculated multiple times, each time with a different r values. Where r∗

is the parameter that was used to generate the data and r the parameter that
belongs to the Negative-Binomial model and therefore the mll and posterior
predictive formulas. Hence, it was tested if different values of r∗ had different
values for r that lead to the optimal mll or posterior predictive. It turned out
that despite the fact higher r∗ resulted in higher mll values of the Neg-Bin-
Beta model, the parameter r in the model did not have any furhter influence
on these values. Hence, r can stay fixed.

In conclusion, the first step in the optimization of the Bayesian Poisson Change-
point model is replacing the Poisson-Gamma model with the Neg-Bin-Beta
model where r is fixed at 10.

7 Parameters a and b of the Beta prior

The Neg-Bin-Beta model has three parameters it depends on. So far it has
been established that r should be fixed at a value of 10. The other parameters
a and b are still left to examine. These parameters were until now fixed at
a value of one. However, making one or perhaps both parameters free might
result in a better fitting model to the various data sets.

Before making the parameters free, different values of a and b were tested
to see if they have any kind of influence on the marginal likelihood of the
Neg-Bin-Beta model. Figure 7 displays four grey scaled color maps. On the
x-axis the values for parameter b are given and the y-axis shows the values
of parameter a. Experiments were performed in which the number of times
a combination of a and b values, gave the maximum average log mll based
on Poisson generated data was calculated. The dark colors stand for a low
number of times. The lighter the color, the more often that combination gave
the maximum log mll. For a the displayed values start at a = 70, due to the
reason that there were no optimal combination with parameter a lower than
70.

Figure 7 clearly shows that the optimal values for a and b change for each λ. An
increase of the λ results in an increase of the b value. This intuitively makes
sense. When λ gets higher a data set with higher counts is obtained. The
higher the counts, the longer the waiting time for the rth success and hence, the
lower the probability of having a success. The probability of having a success
is denoted by θ and in the current model θ was given a Beta distribution with
parameters a and b. The expectation of parameter θ is therefore:
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E(θ) =
a

a+ b
.

In figure 7 the optimal a values stayed the same, namely all 100. However,
b increased when λ increased. The expectation shows that when a keeps the
same value but b increases the expected value of θ decreases. Hence, a higher
b value results in a lower probability of having a success. Figure 7 makes
therefore intuitively sense. The exact behaviour of a and b are however not
clear. Figures 8 and 9 show various color maps which were used to find a
pattern in the behavior of parameters a and b.
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Figure 7: Grey scaled colormaps. The colormaps represent the number of times a certain combi-
nation of values a and b gave the maximum log mll. A light color stands for a high number of times
that combination of a and b gave the maximum log mll for Poisson generated data with the given λ.

The pattern became very clear. The values of a and b that gave the maximum
mll were the values that made parameter θ close to the maximum likelihood
estimator of the Negative Binomial distribution. This maximum likelihood
estimator is obtained by solving:

d

d θ
log(

∏n
i=1(r + xi − 1)!∏n
i=1 xi!((r − 1)!)n

θnr(1− θ)
∑n

i=1 xi) = 0.

Hence,
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d

d θ
log(

n∏
i=1

(r + xi − 1)!)− (log(

n∏
i=1

xi!) + nlog((r − 1)!)) + nrlog(θ) +

n∑
i=1

xi log(1− θ) = 0

nr

θ
−

∑n
i=1 xi

1− θ
= 0

nr

θ
=

∑n
i=1 xi

1− θ

nr(1− θ) =
n∑
i=1

xi · θ

nr = θ(
n∑
i=1

xi + nr)

θ =
nr∑n

i=1 xi + nr

θ =
r∑n

i=1 xi
n + r

θ ≈ r

λ+ r

Since θ is Beta distributed the values a and b that maximize the model there-
fore satisfy:

r

λ+ r
≈ a

a+ b
.

From the Negative-Binomail Changepoint model r = 10 and the data sets used
in figure 7 are generated from the Poisson distribution, hence

∑n
i=1 xi ≈ nλ.

It is easy to check that the values of a and b in figures 7, 8, 9 satisfy this
equation.

From figures 7, 8 and 9 it can also be concluded that the optimal value for a
is always the maximum value of a for which the equation can still be satisfied.
Hence, the optimal a is the highest value of a possible if the corresponding b
value is available as well. This will be illustrated with an example. Take a
data set that is generated with λ = 8. Parameters a and b must satisfy

10

10 + 8
=

a

a+ b

18a = 10a+ 10b

8a = 10b

b =
4

5
a.
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Figure 8: Grey scaled colormaps. The colormaps represent the number of times a certain combina-
tion of values a and b gvae the maximmum log mll. A light color stands for a high number of times.
Grids a: 70:100, b; 1:100. First row: n=3. Second row: n=10. Third row: n=100
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Figure 9: Grey scaled colormaps. The colormaps represent the number of times a certain combina-
tion of values a and b gvae the maximmum log mll. A light color stands for a high number of times.
Grids a: 1:50, b: 1:100, n=10.
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Suppose the maximum likelihood is calculated for different values of a and b
where for both parameters a grid from 1 to 100 is used. The highest a value
possible is in this case 100. This will be the optimal value of a but only if the
corresponding b value is available. The corresponding b value is 4

5 · 100 = 80.
This value of b lays in the grid and hence the optimal values are a = 100 and
b = 80.

However, if a grid for b from 1 to 70 is used. Then the corresponding b value
for a = 100 is not on the grid. In this case the highest b value is taken, so
b = 70 together with its corresponding a value, a = 5

4 ·70 = 87.5. So either the
maximum a with the corresponding b is taken, or vice versa, the maximum b
is taken with the corresponding a value. Depending on the grid.

In figure 8 the highest value of a on the grid is 100 and the corresponding
b value is 80 for λ = 8. As the sample sizes get higher and hence the mll
depends more on the data, it is easy to see that this combination of a and b is
the optimal one. In figure 9 the maximum a value is 50 and the corresponding
b value for λ = 8 is 40, which can be seen in figure 9(d). Hence, the discussed
behavior of a and b are in line with the different color maps.

Based on these observations parameters a and b are suspected to take high
values such that the expectation of θ will be close to the maximum likelihood
estimator of θ. This will result in a high value of of the mll however, a new
problem arises.

The variance of the Beta distribution is

V ar(θ) =
ab

(a+ b)2 · (a+ b+ 1)
.

The higher the parameters are, the lower the variance of the Beta distribution
gets. A low variance means that there is a strong belief in the value that
θ takes. The prior will be very concentrated on the maximum likelihood
estimator, hence:

P (θ ≈ r

r + x
) ≈ 1.

Which automatically yields that:∫
θ
P (x1, . . . , xn|θ)P (θ) dθ ≈ P (x1, . . . , xn|θ ML) · 1.

Since there were different optimal values of a and b for different kind of data
sets, these two parameters should be made free. However, in order to make
them free the problem of getting a low variance should be dealt with. To solve
this problem there are three potential solution strategies:
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1. Fix a: If a is fixed the corresponding optimal b value, as mentioned
before, will be chosen which will give the optimal mll and prevents the
prior to extremely peak.

2. Impose a restriction: A restriction such as a + b = constant where the
constant could get values as 10, 100, 200, will prevent that the variance
will tend to a very small value.

3. Penalize the sizes of a and b: Instead of choosing a uniform distribu-
tion for the hyperpriors, where each a and b value is equally likely, the
hyperpriors will be chosen such that P (a1) < P (a2) if a1 < a2.

All three strategies would solve the problem. In further research of this thesis
strategy (2) will be used when parameters a and b are made free. The behavior
of the two parameters is studied by running a program which will make a
certain number of iterations. The values of the parameters will start at a =
constant/2 and b = constant/2 and during each iteration it imposes to either
state:

anew = aold + 1 or anew = aold − 1
bnew = bold − 1 bnew = bold + 1

each with a probability of a half. The acceptance probability is the ratio
of the mll with the old parameters and the mll with the new parameters.
After running the program, the values of a and b can be analysed and a clear
convergence of both parameters is found. Both parameters converged to the
values that were seen in the beginning of the chapter. Namely, the ones making
sure that the expectation of the prior is approximately equal to the maximum
likelihood estimator of the Negative-Binomial distribution.

In conclusion, with respect to the original model it would be an improvement
to make parameters a and b free. However, the variance must not get a very
small value. Therefore some kind of restriction must be implemented if the
two parameters are set free. Since a and b have different optimal values for
each λ generated data set, it would be optimal to learn these parameters from
the data. This could be done through information exchange.

8 Information Exchange

Let X = (x1, x2, ..., xn) be a data set and suppose this data set was given three
changepoints at the time points a, b and c where 1 < a < b < c < n. Which
divide the data set into 4 segments.
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Without information exchange the likeliness of the data in each segment will be
calculated with an uninformative prior, namely θ ∼ Beta(a, b) where a = b = 1
for each segment. However, information exchange will make sure that the
informative priors will be used. This can be done on two different levels:
global and sequential.

In this section the two levels will be explained and the different strategies to
implement these kind of information exchange into the model will be discussed
as well.

8.1 Global Information Exchange

When information Exchange on global level is applied, one prior is used for
all segments of the data. This can be implemented by making parameters a
and b of the prior free. At the end of each MCMC iteration new values for
the parameters are proposed, either rejected or accepted and used in the next
iteration of the MCMC scheme. In chapter 7 it was concluded that a restriction
on a and b is necessary if they are made free. During the simulation studies in
chapter 10, this restriction on a and b will be tested for three different values
of the constant, namely 10, 100, 200.

The first iteration will use a1 = constant
2 and b1 = constant

2 . At the end of each
iteration we either consider:

ai+1 = ai + 1 or ai+1 = ai − 1
bi+1 = bi − 1 bi+1 = bi + 1,

where i represents the ith iteration of the MCMC scheme.

8.2 Sequential Information Exchange

During global information exchange the prior is updated after each MCMC
iteration and used for all the data components. However, for information
exchange on sequential level the prior must be updated per data segment.
The prior for component i is the updated version of the prior of component
i − 1 after having observed the data of this component. The parameters for
the first component will be the parametes for the uninformative prior, hence
a1 = b1 = 1. After that, updated priors will be used.

Let ai and bi be the parameters for the prior for component i of the data.
The most basic way to update the prior based on observed data is by using
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the posterior. In chapter 6 the posterior for the Neg-Bin-Beta model was
calculated and the parameters were nr + a and

∑n
i=1 xi + b. Therefore, one

way to update the priors is the following way:

a1 = 1 b1 = 1

ai+1 = a1 + ni · r bi+1 = b1 +
∑ni

k=1 x
(i)
k

However, this strategy let the parameters ai+1 and bi+1 depend on the size of
data component i. To avoid this the parameters should be normalized. This
can be done in the following way:

a1 = 1 b1 = 1

ai+1 = a1 + r bi+1 = b1 +
∑ni

k=1 x
(i)
k

ni
.

This strategy to update the priors might work however, there might be one
disadvantage of this approach. There exists a probability that the data that is
observed in component i is not of any relevance for component i+ 1. In those
cases the uninformative prior must be used instead of the informative prior.
This can be done by introducing a coupling parameter c. This parameter
will make sure that if the observed data is not informative for the new data
component, we go back to the uninformative prior a = 1 and b = 1 for all
components i = 1, ..., k. Hence,

a1 = 1 b1 = 1

ai+1 = a1 + r · c bi+1 = b1 +
∑ni

k=1 x
(i)
k

ni
· c.

A low value for c will make sure that the prior parameters take the value
of the uninformative prior. The higher c gets, the stronger the belief in the
parameters and the lower the variance is. The start value of c will be 1
and at the end of each iteration a new value for c will be proposed. Either
cnew = cold + µ or cnew = cold − µ is proposed and rejected or accepted. Here
µ will be uniformly distributed on the interval [0, 0.1].

9 Simulation Studies

In this chapter various simulations will be discussed. These simulations are
performed to see how the different levels of information exchange influences
the model and if it benefits from it. In other words, the simulations that
are performed serve as a check if the information exchange on global level,
sequential level or both levels are an improvement on the current Negative-
Binomial Changepoint model or not.
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The simulations work the following way. First two data sets will be gen-
erated. Both X(1) and X(2) are generated from the same distribution with
equal parameters. Then the model that must be tested will be used to find
the changepoints for X(1), those changepoints will be placed at the exact same
time points inX(2). Then the mll will be calculated of the second data set. The
marginal likelihood of the whole data set equals the product of the marginal
likelihood of all components separately and if the log values are taken the mll
is equal to:

mll(X(2)) =
∑k

i=1mll(X
(2)
i ).

Hence, by observing one data set the mll of the second data set is obtained.
Since the goal is to make improvements on the model, the aim is to retrieve
higher values of the mll. First both levels of information exchange will be
compared to the Negative-Binomial changepoint model. After that a general
comparison will be made between the global, sequential and regular Neg-Bin
changepoint model.

During the simulations the maximal number of components is set to KMAX =
10 for all types of models. For all the models with the Neg-Bin-Beta model
r is fixed at 10. Grzegorczyk and Kamalabad have performed a pre-study to
determine the required number of MCMC iterations. This pre-study indicated
that the following MCMC setting is sufficient for the simulations that are per-
formed in this chapter: The burn-in phase is set to 25.000 MCMC iterations,
before R = 250 equidistant samples are taken from the subsequent 25.000
MCMC iterations. Hence, 250 steps are taken in the MCMC simulation with
each 100 iteration steps.

9.1 Synthetic data

To perform the simulations various data sets must be generated. Let sm denote
a row vector of length m, whose elements are all equal to s ∈ N, sm = (s, ..., s).
Here s stands for the specific Poisson parameter which was used to generate
the data with. Hence, a data set where each element xλ=k is generated with
a Poisson parameter λ = k, can be compactly defined as:

X = (xλ=2, ..., xλ=2︸ ︷︷ ︸
m-times

, xλ=4, ..., xλ=4︸ ︷︷ ︸
k-times

, xλ=6, ..., xλ=6︸ ︷︷ ︸
l-times

) =: (2m,4k,6l).

With regard to the real-world Taxi data, described in section 11.1, where each
data matrix D is built with T = 96 columns (time points) and n ∈ 1, 2, 4, 8, 16
rows (independent samples per time point). The simulations on synthetic
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gathered data sets use data matrices that are also built with a varying number
of rows n ∈ 1, 2, 4, 8, 16 and T = 96 columns. For each model the procedure
of making these data sets is repeated 5 times. In total this sums op to an
amount of 5 · 5 = 25 data matrices per model.

9.2 Global information exchange

Before testing this type of information exchange on data sets as described in
the previous section, first a check is performed to see if this strategy of infor-
mation exchange actually works. This is done by creating two different data
sets. X(1) = (10, 10, 10, 10, 1, 1, 1, 1) and X(2) = (10, 10, 10, 10, 10, 10, 10, 10).
In both data sets a changpeoint was set in the middle, hence after the fourth
element and divides the data set into two components. In data set 1 the first
component of the data set is very informative for the second component of the
data set. For data set 2 this is not the case. To check if the global information
exchange forms an improvement on the model as suspected, the mll of both
data sets is calculated with both the original Neg-Bin changepoint model and
the Neg-Bin changepoint model with global information exchange. The mll
was calculated multiple times where each time it took other values for param-
eters a and b in the global information exchange. There were three different
values of the constant that is used in the restriction on the two parameters.
The results are given in figure 10.
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Figure 10: Results for various synthetic data sets. The histograms show the average mll (averaged
across 25 data sets; i.e. 5 randomly sampled data instantiations for each sample size n = 1, 2, 4, 8, 16)
for different kind of values for the constant, a+ b = constant. The first (blue) bars represent the mll
for the origanl Neg-Bin-Beta changepoint model. The second (red) bars represent the mll for the
Neg-Bin-Beta with global information exchange. The error bars represent the standard deviations.
Left X(1), right X(2) .

The first (left) histogram in figure 10 shows the results for data set X(1). The
global information exchange turns out not to be an improvement on the model.
In fact, it gives worse results for the mll. This is in line with the expectations
since the two components of this data set are not informative to each other.
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The second (right) histogram shows the results for data set X(2). Here the two
data components are very informative to each other and as can be concluded
from the histogram, the global information exchange forms an improvement to
the Neg-Bin changepoint model. Hence, it can be concluded that the strategy
of global information exchange works. The next step is to apply it on synthetic
data sets described in section 9.1 and perform simulations as discussed in the
beginning of this chapter, namely: Two data sets will be taken. With the
model that must be tested the changepoints for the first data set are learned
and placed in the second data set. After placing the changepoints the mll of
this new data set will be calculated. Figure 11 shows the results.
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Figure 11: Results for various synthetic data sets. The average mll (averaged across 5 data sets)
have been plotted against the number of samples n per time point t. The five symbols on each line
correspond to the values obtained for the sample sizes n ∈ 1, 2, 4, 8, 16. X(i) = (1m,2m,4m,6m,8m)
for i = 1, 2.

In figure 11 the Neg-Bin changepoint model is tested and the global Neg-
Bin changepoint model with three different kind of values for the constant.
They were only tested on a data set in which the number of counts slowly
increases, since figure 10 showed that those are the kind of data sets the
global information exchange might be an improvement for the model. When
the constant is set at 10 it clearly is an improvement. For the other values it
is not.

So, the global information exchange can be used to improve the original Neg-
Bin changepoint model, however if data sets are analysed that are not smooth,
it might lead to worse results. Hence, applying this model requires carefulness.

9.3 Sequential information exchange

Again, this level of information exchange requires a test before the simulations
can be performed. X(1) = (10, 10, 10, 10, 1, 1, 1, 1) andX(2) = (10, 10, 10, 10, 10,
10, 10, 10) are considered again and the behaviour of the coupling parameters
is analysed. The idea behind the coupling parameters is that if the data com-
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ponents are very uninformative, the coupling parameter lets the model go back
to the Neg-Bin changepoint model without information exchange, by making
the prior parameters equal to a = b = 1 again. However, if the data com-
ponents are informative, the coupling parameters would let the parameters of
the prior increase. The results are shown in figure 12, where the behavior of
the coupling parameter is plotted.
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Figure 12: The values of the coupling parameters. The values of the coupling parameter have been
plotted agianst the number of the corresponding iteration. The blue line shows the behaviour of c
in the smooth data set. The red line shows the behaviour of c in the not so smooth data set. The
starting value of c was 1. For the given data set 20000 iterations were done. During each iteration
a new value for c was imposed and either rejected or accepted.

For data set X(1) where the first data component was uninformative for the
second one, the coupling parameter takes values around zero. Hence, for each
segment the uninformative parameters a = b = 1 are used. In this case the
model with information exchange is actually the same as the regular Neg-Bin
changepoint model. In the case of data set X(2) the coupling parameter has
higher values and therefore the prior parameters for the second component
are learned from the first component and the belief in those values is quite
high, since high parameters imply a low variance. Therefore, the strategy of
sequential information exchange works and can be applied to the synthetic
data as discussed in section 9.1.

In the first (left) plot in figure 13 a data set with smoothly increasing number
of counts has been analysed. Based on the results in figure 12 high values
of the coupling parameters are suspected and therefore information exchange
between the segments. The plot shows that the Neg-Bin changepoint model
with sequential information exchange forms a better fit to the data than the
regular Neg-Bin changepoint model. In the second (right) plot data sets were
used where the number of counts is not smoothly increasing. In this case the
coupling parameter makes sure that the uninformative priors are used. This
can be seen in the plot since the models perform almost equally well.
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Figure 13: Results for various synthetic data sets. The average mll (averaged across 5 data
sets) have been plotted against the number of samples n per time point t. The five symbols on
each line correspond to the values obtained for the sample sizes n ∈ 1, 2, 4, 8, 16. Left X(i) =
(1m,2m,4m,6m,8m), right X(i) = (1m,5m,1m,5m,1m) .

9.4 Comparison of sequential and global information exchange

From the previous two sections it can be concluded that both levels of informa-
tion exchange are improvements on the Neg-Bin changepoint model. However,
the information exchange on sequential level is saver to use, since it will not
perform any information exchange if the data component are uninformative to
each other. The global information exchange performs information exchange,
even when the data component are uninformative. Hence, this kind of infor-
mation exchange might be a disadvatage to the model. On sequential level it
only forms an improvement to the model if possible and otherwise it is not
used. Therefore the information exchange on sequential level is prefered over
the global level and this strategy will be used to analyse the real-world taxi
pick-up counts.

10 Application of the Neg-Bin changepoint model
with sequential information exchange

Several changes were suggested for the original Poisson changepoint model and
based on the results in chapter 9 the model has been optimized the best when
it is transformed in a Negative-Binomial changepoint model with sequential
information exchange. Therefore this type of model will be used in this chapter
to see how the model can be used and how it analyses the real world taxi
data. First the data is defined and after that the data set is analysed with the
model, all the probabilities of having a changepoint will be found and a real
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life interpretation of these changepoints will be given.

10.1 The New York city Taxi (NYCT) data from 2013

The University of Illinois (Donovan and Work 2015) stored and published a
data set covering information of about 700 million taxi trips in New York City
(USA) from the calendar years 2010-2013. In the NYCT database, for each
trip various details are provided. For the simulations in this thesis the pick-up
dates and daytimes of about 170 million taxi rides in the most recent year 2013
are of particular interest. Each pick-up is considered as a taxi call, so that it
can be analysed how the number of taxi calls varies over the daytime. The data
is summarised in the same way as Grzegorczyk and Kamalabad (2017) did. For
more details on this it is recommended to study their paper. Discretising the
daytimes into T = 96 equidistant time intervales, each covering 15 minutes
of the 24 hours day and binning the pick-up times of each individual day
into the t = 96 time intervals, gives a 355-by-96 matrix D, whose elements
di,t are the number of taxi calls on the ith day in time interval t, t ∈ T .
Since the seven weekdays might show different patterns, the data set matrix
D is subdivided into seven nw-by-T sub-matrices Dw(w = 1, ..., 7), where w
indicates the weekday, and nw ∈ (46, 50, 51, 52). The week starts at sunday,
i.e. w = 1 means it is sunday. nw represents the number of weekdays in the
year 2013. If n1 = 46 it means that there were 46 sundays in the year 2013.
For each weekday a random number of n rows is selected from Dw. Hence,
data sets such as Dw,n where w is the weekday and n the number of rows
randomly selected from this weekday are used.

10.2 Results for the taxi data

For each weekday the number of rows were set to 8, hence Dw,8 for w =
1, 2, 3, 4, 5, 6, 7 are analysed. Each of these data sets have been analysed by
the Neg-Bin changepoint model with sequential information exchange. Every
time a data set has been analysed by the model an output of 250 vectors is
given. Each of these vectors show the locations of the changepoints. Hence,
the probability of having a changepoint at location t can be calculated. This
is done for each weekday and the results are given in figure 14.

First of all it should be clear that if there are multiple peaks at neighbouring
time points, it is most likely that around these points there is one change-
point. This changepoint is slightly shifted each time, therefore the sum of
these separate probabilities can be taken and be placed at one corresponding
time point.
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For the workdays w = 2, 3, 4, 5, 6 general trends can be noted. There are four
changepoints that are set for each of these days. Located at (or around) 2,
12, 29 and 75. These changepoints correspond with times 00:30,03:00, 07:15
and 18:45. A logical explanation for the locations of these changepoints can
be argued. After 00:30 everyone can be at home so the taxi calls would be
lower. Then somewhere in the morning the call will slightly increase since
the workdays is starting and probably around 7:30 most people in New York
already arrived at their work and will not leave until the end of the day.
From the changepoints is might be concluded that after 18:30 everyone is
going home. However, not all at the same time. The calls have been divided
over the next few hours. Therefore a clear changepoint at the end of the
evening is not visible. From figure 14 (b) and (c) a changepoint around 92
is detected, 23:00. This could be interpreted as a time where most of the
people got home and hence, a decreasing number of taxi calls is made. Figure
14(a) and (g) correspond with the weekend days where changepoints occur
between 7:30 and 18:30 as well. In the weekend most people are free of work
and hence, more shifts in the frequency of taxi calls during the day are not
a surprising result. The clear changepoint that is located around the time
point 30 is in the weekend days a bit later. Around 35 or 40 and another
changepoint is around 45 or 50. Hence, in the weekend for most people the
day starts an hour later which results in probably a busy period between 9:00
and 11:30. The time points interval from 1 to 15 is for each day different.
There are no clear indications of changepoints, but multiple time points here
have some small probabilities. This might be the result of slow increasing
numbers. Therefore, the shift in frequency of the taxi calls is not clear and
therefore placed at different times in this interval. However, it makes sense
that from some certain moment in the morning people wake up and the number
taxi calls start to increase. It is clear where they stop on workdays, namely
at 07:15. From here the number of calls clearly decreased a lot.

11 Conclusion

In summary, based on the finding of Grzegorczyk and Kamalabad that the
Poisson changepoint model was not optimal to analyse a real world taxi data
set, this thesis was dedicated to the optimization of this model. And the
original Poisson changepoint model that was used as starting point can be
improved in multiple ways. An enumeration of all the different improvements
will follow.

1. The Negative-Binomial distribution: The biggest shortcoming of the
original Poisson changepoint model is the fact that is does not deal
with over-dispersion. This problem could be solved by replacing the
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Figure 14: Vertical bar plots. Probabilities of changepoints for each time point.
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Poisson distribution with the Neg-Bin distribution. The Neg-Bin dis-
tribution turned out to be as good as the Poisson distribution for the
same type of data sets and it performed even better when data sets
with over-dispersion had to be analysed. Hence, changing the Poisson
changepoint model into a Negative-Binomial changepoint model is an
improvement. However, one surprising result was found. In order to
let the Negative-Binomial be as good as the Poisson distribution, the
parameter r of the Neg-Bin distribution had to be fixed at a value of at
least 10. Unfortunately, a mathematical explanation of why this has to
be at least 10 is not found yet. But, the test results were clear and it
was safely concluded that the model worked when this parameter was
fixed. Hence, the first improvement to the model was made.

2. Free parameters a and b of the Beta prior : The current Negative-Binomial
changepoint model depends on three parameters, namely: r, a, and b.
Parameter r was already fixed at 10. The other two parameters were
until now fixed at a value of 1. Some experiments with different values
of a and b showed quite fast that they should be made free. For different
kind of data sets, different values of a and b turned out to be optimal.
However, experiments showed that if both parameters would be made
free they automatically will take high values. Such high values that the
variance would be too small and hence the prior would be peaked around
certain values. In order to prevent this, a restriction on the parameters
should be made if they are free. A restriction such as a+ b = constant
would be a solution to this problem. Thus, making parameters a and
b free and give them a restriction such as a + b = constant would be a
second improvement to the model.

3. Global information exchange: In the current Negative-Binomial change-
point model the goal is the find the optimal number of changepoints
and their related locations. In order to do this all components of the
data will be analysed with a Beta distribution with parameters a and
b. However, from the experiments on the parameters a and b it was
concluded that the values of those parameters could be learned from the
data. The concept of global information exchange is that at the end of
each iteration of the MCMC scheme, new values of parameters a and
b were imposed and either accepted if they were improvements on the
models fit, or rejected if not. Those new values of the prior parame-
ters are used for all the data components and hence, it is called global
information exchange. The simulations in chapter 9 showed that when
the constant was set at 10, the global information exchange formed an
improvement to the Neg-Bin changepoint model.

4. Sequential information exchange: In global information exchange during
each iteration new values for parameters a and b are imposed and used
for all the data components. However, this kind of information exchange
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can also be implemented on a sequential level. When a data component
is observed the prior parameters will be updated based on the observed
data. The updated prior will then be used for the next data component.
Hence, the information exchange is carried out on sequential level. To
update the priors based on the data of the previous component, the
posterior is used. But the prior parameters should be updated a bit
further, namely with a coupling parameter. The coupling parameter
will make sure that the information exchange will only happen if the
data components are actually informative to each other. If not, then the
coupling parameter will make sure that the basic uninformative prior
is used, the one from the original model where a and b were fixed at 1.
This resulted in the following prior parameters ai and bi for component i:

ai+1 = a1 + r · c and bi+1 = b1 +
∑ni

k=1 x
(i)
k

ni
· c. From the simulation studies

in chapter 9 it was concluded that this type of information exchange
was an improvement the model. Moreover, it is safe to implement it
in the Neg-Bin changepoint model, since it will not harm the model in
situations where the model does not benefit from information exchange,
since the prior parameters will be near 1 in that case.

Based on these four ways to improve the model it was concluded that the
Negative-Binomial changepoint model with sequential information exchange
is at this point the optimization of the Poisson changepoint model. This is
due to the fact that the global information exchange could actually make the
model a worse fit to the data than the Negative-Binomial changepoint model
would be. Since the information exchange is always executed, even if the data
components are not informative to each other. The sequential information
exchange uses the coupling parameter to control this and is therefore the best
way to improve the Poisson changepoint model.

So the most optimal model has been used to analyse the real world taxi data.
For each weekday, each time point during the day was given a probability
of having a changepoint there. For some time points there were changepoint
detected with probabilities of almost one. Some conclusions could be drawn
from the taxi calls. For example, during the workdays a clear shift in the
frequency of taxi calls was denoted at a time of 07:15. Another shift was
visible around 18:15. This clearly indicates that during the working hours of
most people the taxi calls probably had a lower frequency than before 07:15
and after 18:15. In the weekend there were more shifts in frequency of taxi
calls during the day, which makes sense since more people are free during the
weekends and therefore more movement in the city during the day.

So, the optimization of the Poisson changepoint model has lead to the Negative-
Binomial changepoint model with sequential information exchange, which can
be applied to real world data sets in which over-dispersion may occur.
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12 Discussion

The optimization of the Poisson changepoint model provided in this thesis lays
still open for more improvements. Unfortunately this thesis has a deadline and
due to the time pressure not all the scheduled experiments have been executed.
Therefore, in this section some ideas for further research are proposed.

First of all one may search for the mathematical explanation behind the need
to fix parameter r in the Neg-Bin distribution. There is a lot of literature
that mention the Neg-Bin as a good replacement for the Poisson distribution
however, nowhere is mentioned what should be done with parameter r.

Secondly, different strategies for both global and sequential information ex-
change might be investigated. For the sequential information exchange a quite
simple coupling parameter is used at this point. The coupling parameter is
given a certain value and used for all the components. Perhaps it might be
possible to make a coupling parameter for each segment separately. In the
simulations studies data sets such as X(i) = (1m,5m,1m,5m,1m) have been
analysed. However, as a whole the data components should not be seen as
informative to each other. However, the first component is informative to
the second one and the third one to the fourth. Hence, maybe some sort of
strategy can be formulated which makes sure that the coupling parameter is
determined per segment not per data set as a whole.

For global information exchange the parameters were made free and were given
some kind of restriction. At each iteration parameter a either increases with
one and b decreased with 1 or the other way around. However, perhaps the
values of these parameters could already been centered around certain values,
which will make sure that those values are found faster and used more often
during the MCMC iterations. Or maybe the posterior can be used to update
the priors. Maybe for all segments the updated priors are determined and the
average of all these priors can be taken and globally used.

In short, there are many more ways to implement sequential and global in-
formation exchange. It might be that one strategy of doing so is better than
the other. Therefore the strategies of implementing the information exchange
should be explored further before it can be concluded that this model is an
optimal version.
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