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On light by light interactions in QED
Theoretical descriptions and experimental observations

Abstract

In classical electrodynamics photons do not interact. However, in QED this
becomes possible. The low energy effective field theory of Euler and Heisenberg is
used to describe these interactions, which lead to non-linear corrections to the
classical Maxwell equations in vacuum. The influence of effective QED
light-by-light scattering on the polarization angle of light is discussed. Axions
inducing a birefringence of the vacuum is mentioned. Recent experimental
observations of the Very Large Telescope on the polarization angle and
polarization degree of optical light from isolated neutron star RX J1856.5-3754 are
compared to predictions of the Euler-Heisenberg Lagrangian in the weak field
limit. A non-perturbative calculation could potentially yield better predictions.
The measured values are too low to provide evidence for QED vacuum
birefringence. Reduction of the experimental error in the future could lead to
strong evidence for QED vacuum birefringence. In addition, possible observations
on light-by-light scattering of the ATLAS collaboration at CERN are discussed. A
non-zero virtuality and a diphoton invariant mass greater than 6 GeV exclude
detection of real QED light-by-light scattering. ATLAS detects quasi-real QCD
LbyL scattering. Better statistical information concerning the diphoton invariant
mass spectrum around 10 GeV is necessary to conclude whether quasi-real QCD
light-by-light scattering is detected at this point. At the moment, a diphoton
detection from x;o and 32 diphoton decays cannot be excluded.
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Chapter 1

Aim, structure and conventions

1.1 Aim and structure of this thesis

This work has two main aims. The first one is to give a theoretical description of in-
teractions between photons within low energy effective field theory. The other one is
to discuss claimed evidence of these interactions in recent experimental observations.

This work is roughly ordered as follows. First the reader is introduced to the
concepts. Then it is explained how these concepts are theoretically formulated.
The gained conceptual and theoretical knowledge are then applied to experimental
observations.

1.2 Conventions

Most of the time units are used in which ¢y = py = h = ¢ = 1, which are natural
Heaviside-Lorentz units, although we switch a few times to SI units for physical
purposes. The conversion to SI units is described in appendix A. Values of the
fundamental constants in SI units are also included in Appendix A. As usual, Greek
indices denote spacetime coordinates where the zeroth component is the temporal
coordinate. Roman indices denote spatial coordinates.



Chapter 2

Non-linear QED effects

This chapter can be considered as an elaborate introduction to the topic of in-
teractions between photons. It is centered around the question "how do photonic
interactions become possible in quantum electrodynamics (QED)”? The answer to
this question is found in the (quantum) nature of the vacuum. Meanwhile, impor-
tant equations, expressions and concepts are defined. The structure is as follows.
We start with a brief review of classical electrodynamics. We compare the classical
vacuum with the Dirac vacuum and the QED vacuum. We do this in chronological
order, following historical developments. Then we discuss examples of non-linear
QED effects conceptually, with emphasis on the effects claimed to have been ob-
served.

2.1 Interpretations of the vacuum

2.1.1 Classical theory of light

The majority of this review on classical electrodynamics is based on [1, 2]. The
mathematical formulation of classical electromagnetism was due to James Clerk
Maxwell. Maxwell published in 1861 and 1862 a set of linear partial differential field
equations that relate the electric and magnetic fields to charges and currents. These
equations describe light as a wave phenomenom. Before discussing the classical
Maxwell equations describing light we define some quantities which will reappear
throughout this thesis.

We define the following two antisymmetric, second-rank tensors

P = grA” — 9" A* (2.1)
- 1
= §ewaﬂFaﬁ (2.2)

where F* is the field strength tensor, F* the dual tensor, e#**? the four dimensional
Levi-Civita symbol and A* the four-vector electromagnetic potential. We made use
of the Einstein summation convention i.e. a summation is implied over repeated
indices. The field strength tensor is in itself not a fundamental field. It is constructed
from derivatives of the gauge field A*. The fact that A* is a gauge field means we
can add first order derivatives of any real-valued function to A* while still describing
the same physics. The field tensors contain 6 independent components due to their
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antisymmetry, which are the spatial components of the electric and magnetic field.
Two of the Maxwell equations in vacuum can be derived from a Lagrangian. The
Lagrangian is composed of the product of the electromagnetic field tensor

1
EMaa:well = _ZF“VF#V (23)

The Euler-Lagrange (EL) equation of motion for fields, which follows from Hamiltons
principle of least action, takes the following form

oL or
O g,y oA, " (24)

Calculating the corresponding equation of motion yields
O F" =0 (2.5)
The other two Maxwell equations can be obtained through the Bianchi identity
O Fl + 0, Fyy + 0, Fy, = 0,6 Fop = 0,F" =0 (2.6)

So in relativistic covariant notation the Maxwell equations in vacuum reduce to two

equations
" =0

9" — 0

These two equations encapsulate the more familiar Maxwell equations in differential
form. These are

(2.7)

V-E=0 ,VXEZ%—E
b (2.8)

. _ 0B

V- B=0 ,VxE=——

ot

The first two equations are called Gauss’s law and Ampere’s law from left to right.
The bottom right equation is called Faraday’s law and the other one has no name.
For completeness we state how A" is related to the electric and magnetic field

E=-Vé¢——— ,B=VxA (2.9)

where ¢, the scalar potential, denotes the temporal component of A#. Equations
2.8 describe the propagation of light in the vacuum. The linearity of the classical
Maxwell equations has the important mathematical consequence that the superposi-
tion principle holds, i.e. any linear combination of solutions is also a solution to the
equations. This implies that two photons cannot interact with each other. This is a
somewhat strange statement since the concept of light as photons does not exist in
classical electrodynamics. Instead, light is an electromagnetic wave. It is therefore
better to say that when light is considered in a quantum mechanical framework, i.e.
considering light as photons, then according to the classical Maxwell equations these
particles cannot interact electromagnetically since they carry no electric charge.

The Maxwell equations lose their linearity in the fields, which means the superposi-
tion principle breaks down, when interactions between photons via virtual charged

Chapter 2 6
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fermion pairs are included. Interactions between photons are therefore called non-
linear. We will get to this.

From equations 2.8 the classical wave equations can be derived for the electric and
magnetic field. In SI units these read

*FE 0’°B
V’E = €0k ,V?B = €0ko 75
o (2.10)
A=

€olbo

where €¢; and p are the electric permittivity and magnetic permeability of the vac-
uum and ¢ the speed of light in vacuum. From the wave equations we observe that
in the vacuum electromagnetic radiation always travels at the speed of light and
that the electric permittivity and magnetic susceptibility are equal ¢y and pg. As
a consequence of non-linear QED contributions to the Maxwell equations, the re-
sulting wave equations will also be different. Summarizing, the classical vacuum
is empty concerning (charged) matter, which is the physical reason why photons
do not interact. Mathematically, this is manifested in the linearity of the Maxwell
equations.

2.1.2 Dirac’s vacuum

This section and the next one uses historical facts from [1, 15]. Paul Dirac was the
first physicist to give a quantum mechanical description of the vacuum. In 1928,
Dirac published his relativistic theory of the electron. The equation he proposed
was

(iv*0, —m)yp =0 (2.11)

This equation is known as the Dirac equation. Here i denotes the complex number
and m the mass of the particle. +* denote the Dirac gamma matrices. In this
notation it is a four-vector of four 4x4 matrices. These objects are defined through
the Clifford algebra. The mathematical structure of the gamma matrices is not
important for this discussion. What is important is the interpretation of . To
begin with, Dirac published the equation in a different form

i%—fz—m-w+m5¢=ﬁ¢

0_25_70’7 76:70

(2.12)

Note that Dirac wrote down his equation in the same form as the non-relativistic
Schrodinger equation. He did this because he interpreted his equation as the rel-
ativistic version of the Schrodinger equation. This meant that @ had to be the
wavefunction for a single particle with spin. Then, when solving his equation, pos-
itive and negative energy solutions are obtained. But how can a free particle have
a negative energy? Many physicists of Dirac’s time thought the negative energy
solutions were not physical. This seems rather obvious since if the negative energy
solutions were physical a free electron could not be stable. An electron could always
drop down to a more negative energy level. Thus, the energy spectrum is unbounded
from below. To solve this unbounded negative energy problem Dirac proposed the

Chapter 2 7
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idea of what is called the "hole’ picture of the vacuum. According to Dirac, in the
vacuum all the negative energy states are filled with electrons, so that only the levels
with positive energies are accessible. These filled negative energy states are called
the Dirac sea.

2.1.3 Consequences of the Dirac picture

This theory has remarkable consequences. A negative energy state could be excited
to a positive energy state, leaving behind a hole. These holes could be associated
with the anti-particles of electrons, which nowadays are called positrons. This pro-
cess is called vacuum pair production and in those days it was also referred to as
vacuum polarization!. The process can be thought of as creating matter by exciting
the vacuum. It is analogous to the ionization of an atom. This was basically the
birth of QED.

However, pair creation from the vacuum is only possible if the light has an enor-
mous intensity. Consequently, this process of vacuum pair production, in which the
pairs are real particles, requires extremely large electric field strengths. In 1931, it
was Fritz Sauter who calculated this electric field strength at which electrons would
tunnel out from the Dirac sea, producing pairs from the vacuum. It is this field
strength that is defined as the critical field strength

2.3 E
Eo=" x13x10%V/m B, = - ~ 4.4 x 10°T (2.13)
eh c
where e is the elementary charge, h = % the reduced Plank constant and m, the

electron mass. Today, for the electric field strength, it is called the Schwinger limit.
At field strenghts above the Schwinger critical field strength it is expected that vac-
uum pair production effects become important.

Very soon after this, Werner Heisenberg started investigating this new theory of
Dirac. In 1927, Heisenberg had introduced his uncertainty principle. For energy
and time it takes this form

AEAt > g (2.14)

He realized that his uncertainty principle shows that in order to produce pairs from
the vacuum, it is sufficient to use electromagnetic field strenghts below the Schwinger
limit, due to the virtual possibility of creating matter. This refers to the produc-
tion of wvirtual particles. Due to their limited existence in time governed by the
uncertainty in energy, these particles are called virtual. He developed in two papers
this formalism of what he called quantum fluctuations from the Dirac sea. Two
Phd-students of Heisenberg, Hans Euler and Bernhard Kockel computed the lead-
ing corrections to the Maxwell theory. These leading corrections corresponded to
interactions between photons via virtual charged pairs, leading to new quantum
phenomena. This will be the main topic in this thesis. They suggested in that
paper that the vacuum could be interpreted as a medium and that it thus can be

'Nowadays vacuum polarization is a concept within quantum electrodynamics. It is still asso-
ciated with pair-production, but not of real pairs but virtual pairs. We will discuss this concept
in section 2.2.
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polarized. In 1936 Heisenberg and Euler obtained a closed-form integral expression
of the non-linear corrections to the Maxwell Lagrangian [20]. This correction is to-
day known as the Euler-Heisenberg (EH) Lagrangian, which will be the topic of the
next chapter. Nowadays, we would call this method of Heisenberg and Euler a low
energy effective field theory, since they restricted their calculations to a particular
energy scale. With this result, Heisenberg and Euler were able to predict the insta-
bility of the QED vacuum in the presence of a background field. They made it clear
that background electric fields give rise to different physical effects compared to a
magnetic field background. Critical electric fields could produce real pairs from the
vacuum and magnetic fields could lead to dispersive effects such as birefringence and
dichroism. Note that for these dispersive QED effects critical magnetic fields are
not necesarry. For a detailed discussion on the effects caused by critical magnetic
fields the reader is referred to [16].

Today we know that 1 cannot be a single-particle wavefunction since particle num-
ber is not conserved in nature and the notion of a single particle does not make sense,
especially not at length scales shorter than the Compton wavelength for electrons

e = ~ 2.4 x 107 %m (2.15)

MeC
where the probability of electron-positron pair production from the vacuum is high.
Consequently, also the interpretation regarding the nature of the vacuum cannot be
true. Although the Dirac equation was interpreted in the wrong way in those days,
it led to the right predictions. A few manifestations of light-by-light interactions
have been indirectly observed as QED contributions [5, 22, 33]. It is therefore safe
to say that Heisenberg and Euler where far ahead of their time. 80 years later, new
evidence is claimed for some of the phenomena predicted by Euler and Heisenberg
in the 30s, which is the topic of chapter 4.

But since this interpretation of i is wrong, what does ¢ then represent? And
what are the consequences for the interpretation of the vacuum? This brings us to
quantum field theory.

2.1.4 The vacuum as a quantum state

One of the main motivations to construct quantum field theory (QFT) was to recon-
cile the principles of special relativity with those of quantum mechanics. The merge
of the mass-energy equivalence principle of Einstein and the uncertainty principle
of Heisenberg is that particle number is not conserved, as we mentioned above. To
get to the interpretation of ¢ in QFT we first need to define what a (real) particle
actually is. In QFT real particles are no longer fundamental, they are excitations
of the underlying corresponding quantum fields. For example, the quantization of
a real scalar field gives rise to spin-0 particles, which are bosons. Quantization of
spinor/Dirac fields gives rise to spin-1/2 particles, which are fermions. Thus, 1 is a
classical field that has to be quantized. But what about the vacuum? In QFT the
vacuum is a quantum state denoted by |0) in the case for a free field>. When the
quantum field is in its vacuum state it contains no real particles. The field is in its

2This means we do not consider interactions between particles.

Chapter 2 9
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lowest energy configuration. We could also define the vacuum state as the ground
state of the field.

It should be said that this is quite a remarkable state. It contains an infinite amount
of positive or negative energy depending on the field which is quantized. This is a
direct consequence of the zero-point energy of a quantum harmonic oscillator. In
QFT every spacetime point is considered a quantum harmonic oscillator. The total
energy is an infinite sum of zero-point energies yielding an infinite energy for the
vacuum state. This vacuum energy is neglected in QFT by subtraction from the
Hamiltonian since it is impossible to measure the energy of the vacuum state di-
rectly. However, as a consequence of the Heisenberg uncertainty relation for energy
and time, fluctuations in the vacuum energy, by which we mean virtual particles,
could in principle be detected. The Casimir effect is usually given as evidence for
the presence of vacuum energy fluctuations. However, this is a matter of inter-
pretation®. In this thesis we discuss photon-photon interactions which couple via
virtual charged pairs and therefore a detection of such a process would be direct
evidence for the presence of vacuum fluctuations. This picture of the vacuum where
fluctuations in the vacuum energy take place is called the quantum vacuum. In
the case of considering leptonic electrically charged fluctuations (electron-positron
pairs) the quantum vacuum is called the QED vacuum. The appearance of these
virtual particles seems to be a violation of conservation of energy but according
to the Heisenberg uncertainty relation for energy and time, energy conservation is
allowed to be violated constraint by the uncertainty in time. Then, according to the
equivalence between mass and energy this means that particles can be produced.
This production of virtual pairs is sometimes explained as if energy is ”borrowed”
from the vacuum energy. The probability of producing virtual electron-positron
pairs starts to become high at length scales of the order of the electron Compton
wavelength, the typical scale of relativistic quantum mechanics.

The difference between the QED vacuum and the Dirac vacuum is that in the QED
vacuum the infinite amount of negative charge has been removed and that positrons
are real particles, instead of holes. Actually, the physical picture of vacuum fluctu-
ations in the context of the Dirac vacuum seems not extremely different from the
QED picture. In fact, considering the vacuum from a QED perspective, when the
vacuum is subject to a constant* external field, the situation is the same in both
physical pictures. The true physical nature of the vacuum remains an open question
in modern physics. Now that we have discussed the appearance of virtual particles
we can discuss vacuum polarization in a QFT framework.

3The Casimir effect is often used in textbooks as the example of evidence for the existence of
vacuum fluctuations. However, this is a matter of interpretation since there is another explanation
possible which does not make use of vacuum fluctations.

4 Actually, slowly varying fields are allowed. Later on, we will specify what is meant by ”slowly”.

Chapter 2 10
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2.2 Vacuum polarization and the mass-shell

In the previous section vacuum polarization referred to pair production from the
vacuum. It still does, but now in a field theoretic framework. Vacuum polarization
refers to the pair production of virtual pairs from photons. Vacuum polarization is
one aspect of the self-energy of the photon. It refers to the loop arising in the photon
propagator (see figure 2.1). The fermion anti-fermion loop can be formed by any

Figure 2.1: Diagram of vacuum polarization (7 — 7). A photon becomes a fermion
anti-fermion pair which subsequently annihilates to a photon.

charged fermion pair. After the constraint time due to the uncertainty principle,
the virtual particles annihilate each other to form again a photon. All non-linear
QED phenomena originate from vacuum polarization. Two photons can couple via
this charged virtual particle loop. This is the reason why one also speaks of wvac-
uum polarization effects, when discussing interactions between photons. The term
polarization might give the idea that the vacuum is a polarizable medium. Indeed,
due to the presence of virtual particles and an external magnetic field the QED
vacuum possesses properties of ordinary media, like birefringence and dichroism. It
is important to emphasize that the QED vacuum is different from ordinary classical
dielectric media. Its "medium” properties arise through non-linear QED effects.
We will see that the resulting modified Maxwell equations remind of the Maxwell
equations in matter.

Vacuum polarization gives rise to charge renormalization. Since particle number
is not conserved a real particle is always surrounded by virtual (electrically) charged
pairs. These virtual particles are referred to as "screening” particles. The electric
charge of a particle increases as one approaches the particle. The electric charge
becomes distance (or energy) dependent. The electromagnetic coupling strength
between electrically charged particles and the electromagnetic field is character-
ized by the fine-structure ”constant” «. However, since the electric charge of a
particle depends on distance, this also implies a distance dependent fine-structure
constant «(r). At distances large compared to the electron Compton wavelength
(or energies far below the electron mass) « has the familiar value of approximately

2

a = 4:60% R~ % and it can be considered constant. However, at smaller Compton

wavelengths (higher energies), the value of « increases. We will be interested in
energies far below the electron mass of 0.5 MeV.

Chapter 2 11
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A note on virtual particles

Until now, we have spoken a bit losely about the nature of a virtual particle, though
we mentioned its lifetime is determined by an energy uncertainty. Let’s look a little
closer at what a virtual particle actually is. These virtual particles can be regarded
as quantum vacuum fluctuations as mentioned before. At any spacetime point there
is a non-vanishing probability amplitude for a photon to fluctuate into a pair. In
this interpretation energy and momentum are ”conserved” in some sense as we have
seen but Einstein’s energy-momentum relation is not obeyed, that is

E? =p*+m® (2.16)

where p denotes the spatial momentum and m the invariant mass. These particles
are called off-shell while particles that do obey this relation are called on-shell.
Obeying this equation means we call a particle on-shell when its invariant mass is
greater than zero. Photons are of course on-shell when their invariant mass equals
zero. When a particle is on-shell it is a real particle. When it is off-shell it is
called a virtual particle. Let’s explain this terminology. When plotting equation
2.16 you get either a parabolic surface for massive particles or a cone for massless
particles. This is the mass-shell. Real particles have their momentum vectors lying
on the surface of the shell. When considering a collision between two particles,
conservation of momentum requires that the vectorial sum of the initial situation
equals the vectorial sum of the final situation. Consequently, the sum of the two
vectors does not lie along the shell’s surface, but it lies inside the surface. The
presence of virtual particles solves this problem. They can be used to keep track
of the total momentum in the system. Off-shell particles usually correspond to the
internal lines in Feynman diagrams but this is not necessarily true in interactions
between photons as we will see. External photon lines can correspond to virtual
photons. When we come to light-by-light interactions it is actually crucial whether
the photons participating in the interaction are on-shell or off-shell. Actually, it
will become clear that it is experimentally impossible to create perfectly on-shell
photons. Experimentally, the best thing (yet) to do is to minimize the virtuality of
the photons. Therefore, we make a distinction between virtual photons and quasi-
real photons. Whether a photon is called quasi-real or virtual depends on whether
the virtuality is small compared to the energy in the center of mass system. This is
discussed in more detail in section 4.2.2.

Chapter 2 12



On light by light interactions in QED

2.3 Examples of QED effects

Now that we have discussed the nature of the quantum vacuum and concepts like
vacuum polarization and virtual particles, we have set the stage for quantum effects.
Here we discuss examples of such non-linear effects conceptually. We separated the
light-by-light QED effects from the Schwinger effect because the Schwinger effect
is a non-perturbative QED effect while the other discussed effects are perturbative.
We will elaborate on vacuum birefringence in a separate section since this requires
some background knowledge from classical optics.

2.3.1 Light-by-Light interactions

Light-by-light (LbyL) interactions appear in various forms. In general, it refers to
the reaction vy — ~7. Photons can scatter off each other or they can scatter in the
electric field of a nucleus (Delbriick scattering). A photon can also interact with a
magnetic field (vacuum birefringence) or a single photon can split into two photons
in a magnetic field (photon-splitting). Photons can interact via quark-antiquark
(qq) loops, form an intermediate particle and subsequently decay into two photons
(hadronic resonances). These are all examples of LbyL interactions. There are
several experiments to study these photonic interactions. What is crucial is if the
photons participating in the interaction are on-shell or off-shell and if the photons
interact with a magnetic field or an electric field. This in essence determines which
LbyL interaction takes place. We are going to discuss all the above mentioned LbyL
interactions, though not all in full detail.

General remarks on one-loop diagrams and terminology

LbyL interactions can be written down in a first order approximation as one-loop
Feynman diagrams (see figure 2.2 and figure 2.3) as a consequence of vacuum po-
larization. A photon interacts with another photon via the vacuum polarization of
the other. One sees that the presence of virtual particles can be probed by coupling
them to additional photons.

We want to make some important remarks on these one-loop Feynman diagrams, i.e.
on the external photon lines and the internal lines constituting the loop. This will
prevent confusion since very different physical effects are represented by very similar
diagrams. We take for this example the box-diagram in figure 2.2, which is proba-
bly the best known to the reader. This diagram depicts photon-photon scattering
via virtual charged (whether electrically or color and electrically charged) particles.
Concerning the photon lines there are two remarks. The first one is that the photons
can be either virtual, quasi real (both off-shell) or real (on-shell). Thus, it is for in-
stance possible to scatter virtual photons with real photons. The second one is that
it is important to see whether a photon originates from an external electric field or
a magnetic field. For example, when one of the incoming photons originates from a
magnetic field, it is really a different physical LbyL interaction than photon-photon
scattering. We will discuss this in more detail in the next section. Which virtual
charged particles form the loop depends on the energies of the photons involved.

Chapter 2 13
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Figure 2.2: Photon-photon scattering.

In this thesis we are interested in interactions between low energy photons with
respect to (w.r.t.) the electron mass of 0.5 MeV. At low initial photon energies
a LbyL interaction is mediated by electron-positron (eTe™) pairs. When the loop
consists of ete™ pairs in a photon-photon scattering process we define this process
as QFED LbyL scattering. This is the process predicted by Euler and Heisenberg. For
photon energies far below the electron mass, the photon-photon scattering process
can be described by the Euler-Heisenberg Lagrangian, which is a low energy effective
field theory. We discuss this in chapter 3, in section 3.1. At photon Center of Mass
(CoM) energies approaching the electron mass and higher this process has to be
treated within a complete QED framework. Meanwhile, at increasing photon ener-
gies, light ¢g loops such as u@ and dd loops start to dominate over ete™ loops. When
the loop consists of qg pairs we refer to this LbyL scattering process as QCD LbyL
scattering, where QCD stands for Quantum ChromoDynamics. In the literature, for
example in [11, 7], the definition of QED LbyL scattering is not restricted to e*e”
loops but it refers to any charged fermion or boson loop (W*W ™ loops). We make
this distiction between QED and QCD LbyL scattering since quarks carry besides
electric charge also color charge and therefore in addition to the electromagnetic
interaction they also interact via the strong interaction. The strong interaction is
described by QCD, hence the name QCD LbyL scattering. We are only interested
in low photon energy QED effects. Other charged lepton loops, i.e. utpu~ and 7777,
are suppressed in the Euler-Heisenberg Lagrangian since this Lagrangian can be ex-
panded in powers of % Since % > % > 7% these loops are suppressed. Here E.,
denotes the center of mass energy the puhotons. For the same reason all ¢¢ loops are
suppressed. Thus, we restrict ourselves to low photon energies and therefore only
to eTe™ loops.

Thus, the prefix QED or QCD refers to the charged particle pairs constituting the
loop which couples the four photons. Although we mentioned to be only interested
in ete” loops, we included this discussion on ¢g loops in anticipation of the AT-
LAS experiment discussed in chapter 4, which involves photon CoM energies that
exceed the electron mass by several orders of magnitude. At these energies gg loops
dominate over ete™ loops.
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Scattering, splitting and vacuum birefringence

Figure 2.3 shows the one-loop diagrams of various LbyL interaction processes. The
left diagram illustrates Delbriick scattering. Delbriick scattering is the deflection of
on-shell photons in the electric field of nuclei®. Delbriick scattering can be consid-
ered a first approximation to photon-photon scattering (figure 2.2, right diagram in
figure 2.3), as one ingoing and one outgoing photon are replaced by photons from
the electric field of a nucleus [22]. This one-loop diagram is known to contribute
as a QED correction [22]. The same Feynman box diagram also depicts vacuum
birefringence. But in the case of vacuum birefringence the crosses denote an ex-
ternal magnetic field instead of an electric field of a nucleus. This illustrates the
importance of keeping track of the physics behind the diagram. Why this effect is
called ”vacuum birefringence” is the topic of the next section.

An effect closely related to vacuum birefringence, in that an on-shell photon in-
teracts with an external magnetic field, is photon splitting. In an external magnetic
field a photon can split into two photons (v — 7). It is depicted in the diagram in
the middle of the figure below. This box diagram has also been observed as a QED
contribution in [22].
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Figure 2.3: The left diagram illustrates Delbriick scattering or vacuum birefringence
depending on whether the crosses denote an electric field of a nucleus or an exter-
nal magnetic field respectively. The right diagram illustrates elastic photon-photon
scattering. The middle one is a diagram of photon splitting (the cross here denotes a
magnetic field). These are one-loop diagrams. The diagrams correspond to the lead-
ing order correction in the perturbative expansion of the Euler-Heisenberg effective
Lagrangian. This image is taken from [11].

In the case of on-shell elastic QED photon-photon scattering there is no notion
of virtual photons. This process is depicted in the right diagram of figure 2.3. All
these photons are real/on-shell. It is important to emphasize under which physical
conditions this process takes place. This is a regime of low photon energy w.r.t.
electron mass. In particle accelerators, such as the Large Hadron Collider (LHC),
the high energy (and high intensity) QED regime can be probed. However, to test
real QED LbyL scattering this is not desired. Another problem that arises in parti-
cle collision experiments (and any other experimental setup which studies real LbyL
scattering) is that it is not known how to create perfectly on-shell photons. Colliding

5The photons originating from the electric field of nuclei are highly off-shell, unless it is an ion.

Chapter 2 15



On light by light interactions in QED

laser beam experiments can probe the optical energy regime such that the photons
can be considered more on-shell. However, here the cross section forms a problem.
In chapter 3 we will see that real QED LbyL scattering has an extremely small
cross-section. Real QED LbyL scattering is still an unobserved process, just as real
QCD LbyL scattering. QED LbyL scattering has been measured indirectly as one of
the contributions to the anomalous magnetic moment® of the muon and the electron
[5]. But this contribution was not fully real QED LbyL scattering. This is indirect
evidence for the existence of the ete™ loop. In [27] experimental suggestions are
given to create almost real QED LbyL scattering events using lasers, each with its
benefits and disadvantages. In the previous section we mentioned that photons can
also be considered quasi-real. In this case, we do not necessarily have to perform
extremely low energy experiments, since whether a photon is considered quasi-real
does not imply its energy is low. Consequently, the low value of the cross section is
no longer a problem.

The ATLAS collaboration at CERN claims to have observed evidence for LbyL
scattering directly [11]. Note that they do not claim to have seen real LbyL scatter-
ing. It is thus also possible to scatter two off-shell photons with each other, which
can be virtual or quasi-real. It is illustrated by the same box-diagram. Therefore,
we make this distinction between off-shell (virtual or quasi-real) and on-shell (real)
LbyL scattering. In this thesis we are interested in whether real QED LbyL scat-
tering is detected. This is of more interest than real QCD LbyL scattering for two
reasons. Quark loops have already been observed, though also indirectly, in a wide
variety of processes, for example in 7% decay (see figure 2.4). But what is probably
more important is that the detection of real QED LbyL scattering would prove a
fundamental difference between QED and Maxwells electromagnetism. It is this pro-
cess that has to be compared to the classical theory since classical electromagnetism
predicts that real LbyL scattering is impossible. In addition, it would be evidence
for the existence of the eTe™ loop, i.e. evidence for fluctuations in the vacuum en-
ergy, though this could also be proven in off-shell QED LbyL scattering. Whether
real QED LbyL scattering is detected by ATLAS will be discussed in chapter 4.

Figure 2.4: Neutral pion decay via a quark loop.

6The QED deviation from the value of 2 predicted by Dirac.
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Hadronic resonances and axions

In anticipation of discussions in chapter 4 we include here a short discussion on
hadronic resonances and axion-photon coupling. When the initial photons have
sufficient energies they can also interact with each other via the production of an
intermediate particle, which subsequently decays into two real photons. This inter-
mediate state is referred to as a hadronic resonance. It is a bounded state with a
finite lifetime. Two off-shell photons interact via a ¢ loop and form a hadronic reso-
nance. It is also referred to as a photon-fusion process. It is not necessarily the case
that a hadronic resonance decays into two photons. The Landau- Yang theorem states
that a spin-1 resonance state cannot decay into two on-shell photons. However, in
chapter 4 we will be interested in hadronic resonances that are able to decay into
two photons. One could ask what kind of particle a hadronic resonance is. Which
particle is produced depends on the energies of the photons. These particles include
mesons, which are hadrons composed of ¢ pairs. Only mesons composed of a quark
and its antiquark can be produced. A familiar example is the already mentioned
neutral pion (7°), composed of a linear combination of an up anti-up (u#) pair and
a down-antidown (dd) pair. The u, d and strange (s) quarks are much lighter than
the charm (c), bottom (b) and top (¢) quarks. Therefore, the 7¥ exists in a quantum
mechanical superposition of u@ and dd pairs. Hadronic resonances can also be com-

Figure 2.5: Creation of a hadronic resonance, denoted by 'R’, via a ¢q loop in the
collision of two particles. Two particles emit off-shell photons which fuse to form
an intermediate quarkonium state which then decays into two on-shell photons if it
has a spin different from 1.

posed of pairs of the heavier quarks, like ¢é and bb. These particles are composed
of one ¢q flavor. The tt (toponium) state is not observable since it decays too fast
into other mesons. We also refer to these heavier hadronic resonances as quarkonia.
Quarkonia come about in different (excited) states. This means that there exists a
whole collection of, say cc resonances with different term symbols, referring to differ-
ent cc bound states. This is similar to the term symbols associated to atomic energy
levels. These term symbols depend on the quantum numbers n, L, S and J, with
J=L+S. These denote the principal, orbital angular momentum, spin angular mo-
mentum and total angular momentum quantum number respectively. For instance,
the ground state of the J/W-meson, denoted by J/¥(1S), is a particular state of
charmonium (c¢) with S=J=1 and n=L=0. Since J/¥ has S=1, diphoton decay is
forbidden according to the Landau-Yang theorem. Several experiments in the past
have observed hadronic resonances in ete™ collision experiments, for instance [4, 33].
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To conclude this section on LbyL interactions we end with another unobserved
process involving a new hypothetical particle, which is called the axion. An axion
is either a pseudoscalar or scalar” spin-zero boson, proposed to solve the so called
strong CP-problem® in the standard model [12]. In the laboratory there is a par-
ticular elegant experimental setup, which makes use of a photon-axion oscillation
process in the presence of a strong magnetic field. These are the so called light shin-
ing through a wall (LSW) experiments [30]. The interested reader is referred to [30]
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Figure 2.6: Light shining through a wall experiment. A photon interacts with a
magnetic field to form an axion (¢), which is a spin-zero boson. The axion moves
through a wall and then decays again into two photons in a magnetic field.

for a detailed discussion on axion searches. The coupling strength between axions
and photons is characterized by an axion-photon coupling constant |G|, which is
currently less than 107!° GeV~! based on astrophysical considerations [19]. Until
now, axions remain unobserved. We will meet axions later on again in the context
of vacuum birefringence, which we are going to discuss now in more detail.

2.3.2 Vacuum birefringence

We already mentioned that photons interacting with external magnetic fields and
photon-axion coupling induce a new quantum phenomenon called vacuum birefrin-
gence. As the name suggests, it refers to the vacuum having two indices of refraction
corresponding to two orthogonal polarization modes, just as classical optics predicts
that assymmetric dielectric media can be birefringent. We start this discussion on
vacuum birefringence with the relevant classical concepts like ordinary birefringence
and polarization. Information about classical optics can be found in any optics
textbook, for example in [3].

Stokes parameters

In anticipation of the analysis in section 3.5.1 we discuss the Stokes parameters.
Light can be in different states of polarizations (SOP). There are three distinct po-
larizations possible; linear, circular and elliptical polarization. Polarization refers
by convention to the direction of the electric field vector. In the case of linear po-
larization the electric field vector is restricted to lie in a plane called the plane of
vibration or polarization plane. The orientation of the electric field vector can thus
be considered constant and its magnitude is allowed to vary with time. Consider
two linearly polarized harmonic waves with their electric fields perpendicular to each

"If the axion is a scalar particle, it would not solve the strong CP-problem.
8The question why the QCD Lagrangian conserves CP-symmetry.
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other. When superimposing these harmonic waves, the SOP of the resulting wave
is then determined by the phase difference between the initial waves. Linear and
circular polarized light are special cases of elliptical polarized light. This means
that in general the electric field vector will not lie in a plane and change its mag-
nitude, tracing out an ellipse during an oscillation, in a fixed space perpendicular
to the direction of propagation. A polarization state can then be described by the
geometrical parameters of an ellipse and the direction of oscillation which is called
the handedness. Describing a SOP using the geometry of the polarization ellipse

y

Figure 2.7: The polarization ellipse. 1 denotes the polarization position an-
gle/orientation angle and x the ellipticity angle. The Cartesian coordinates = and
y denote the orthogonal linear polarization modes in these directions.

leads us to the definition of the Stokes parameters. Formally, the Stokes parameters
are defined as intensities, i.e. they are time averages of electric fields. Consider a
wave propagating in the Z-direction. This means that the electric and magnetic field
oscillate in the x — y plane.

E = (Egp€'® & + By ei®vj)e ! (2.17)

Here denote Ejy, and Ej, the amplitude in the x and y direction and ¢, and ¢, are
the initial phases. The Stokes parameters are then defined as follows

I =(E3) +(E})

Q = (E}) — (E})
U = (2E,E, cos(¢, — ¢y))
V = (2E,E,sin(¢, — ¢y))

where U and () characterize the linear polarization, I the total intensity of the
radiation and V' measures the elliptical polarization. Using the angles defined in
figure 2.7 the Stokes parameters are defined as follows:

I =1
Q = Iycos 2y cos 2y
U = I cos 2y sin 2¢
V = Ipsin 2y

(2.18)
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The parameters I and V are independent of the coordinate system used since they
are not functions of ¢ while ) and U are dependent on the orientation of the x
and y axes. Thus, the Stokes parameters describe a SOP in terms of intensities and
two angles of the polarization ellipse. The Stokes parameters can be considered as
forming a Cartesian coordinate system and I, 2¢ and 2y a spherical coordinate
system (where 21) is the polar angle and 2x the azimuthal angle respectively). This
means a SOP can be visualized as a vector in Poincaré space, i.e. a vector inside
a sphere which is called the Poincaré sphere. The factors of two before the angles

Figure 2.8: The Poincaré sphere. 57,53 and S3 denote (,U and V respectively. I,
is the degree of polarization, which is called I in our notation. It is the length of
the Poincaré vector.

indicate that a 7 rotation gives the same ellipse and that we can swap the semi-
major and minor axes and rotate by 7 to get the same ellipse. Transforming back
to a basis of 1) and y we get the polarization angle and ellipticity angle as functions
of the Stokes parameters:

1 (U
vt (Q) (2.19)

1 tan-! V2
X = — tan —
2 V@2 +U?
1) indicates the orientation of the polarization plane. In the experiment we are going

to discuss on vacuum birefringence in chapter 4, a rotation of the polarization plane
(A1) is one of the measured quantities. The other is the linear polarization degree

defined by
PL=+/Q*+ U2 (2.20)

It is the magnitude of the linear polarization vector, which is an invariant quantity
under the orientation of the coordinate system (it is psi independent). One can
normalize the Stokes parameters by dividing each one by the first parameter. The
normalized linear polarization vector then becomes

PL_\/{%}2+{%}25,/P5+P5 (2.21)
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Birefringence

We start with an explanation of birefringence. When light travels through an
anisotropic medium its refraction not only depends on how the light is incident on
the medium but also on how it is polarized. The part of the wave with its electric
field vector perpendicular to the optical axis?, behaves as if the medium is isotropic.
Light expands in all directions with phase velocity v,. This is called the o-wawve.
In contrast, the part of the wave with polarization orthogonal to the polarization
of the o-wave has a part in the direction of the optical axis and travels with phase
velocity vy where v, # v) . This is called the e-wave'®. So we see that a birefringent
material contains two indices of refraction, due to the polarization dependent phase
velocities. The amount of birefringence is characterized by the differences of the two
indices of refraction: An = n, — n,.

Optic axis

=]

Figure 2.9: An image of birefringence.

Vacuum birefringence

We have seen that photons can interact with an external magnetic field via vir-
tual charged particles. This effect gives the QED vacuum properties of dielectric
media. Indeed, considering this photon-magnetic field interaction via virtual ete™
loops, the QED vacuum contains two different indices of refraction corresponding
to two mutual orthogonal photon polarization modes. This is why one speaks of
(QED) vacuum birefringence, though physically it of course differs from ordinary
birefringence. While ordinary birefringence is a consequence of an anisotropic ar-
rangement of atoms, vacuum birefringence is a consequence of vacuum polarization
effects. More precisely, it is a consequence of the interaction between a photon and
a magnetic field according to the corresponding one-loop diagram. The polarization
state of a photon can be described as a superposition of mutual orthogonal linear
polarized states. The polarization mode polarized parallel to the external magnetic
field travels with a different phase velocity through the QED vacuum compared to
the polarization mode polarized orthogonal to the magnetic field. Thus, in the case
of vacuum birefringence the optical axis is the magnetic field axis. Note that this
shows that light slows down in the presence of a magnetic field, i.e. v, < c,v <c

9The optical axis or principal axis is the direction about which the atoms are arranged sym-
metrically.
104 stands for ordinary and e stands for extraordinary.
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and v, # v

We already mentioned that when looking for experimental evidence for QED vac-
uum birefringence one could look for variations in the polarization state of light,
for instance rotations of the polarization plane, i.e. A # 0, when only taking
into account LbyL interactions. This is what the PVLAS collaboration since 2000
tries to detect using lasers. They continuously observed in experiments from 2000-
2005 induced ellipticities and rotations by 5T magnetic fields on initially linearly
polarized light travelling a distance of 1m through vacuum. However, the observed
variations in the polarization state where orders of magnitude larger than predicted
by the Euler-Heisenberg Lagrangian [34]. Recently, new evidence is claimed for QED
vacuum birefringence in [29], which we are going to discuss in chapter 4.
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2.3.3 Schwinger pair-production

We have seen that fluctuations in the vacuum energy lead to the production of
virtual pairs. The Schwinger effect is an effect dealing with pair-production from
the vacuum of electrons and positrons through an external critical electric field.
An external critical electric field can accelerate the virtual pairs of electrons and
positrons and finally split them from each other. These virtual pairs of electrons
and positrons then become real pairs if they gain the energy of twice the electron
mass from the critical electric field over a Compton wavelength. You can think of this
process as an energy payback” by the external electric field for the ” borrowed”
vacuum energy due to the virtual ete™ pair. The Schwinger effect has a non-
perturbative dependence on the electric field which means it cannot be described
by pertubative methods like Feynman diagrams. The non-perturbative dependence
on the field causes difficulties for the experimentalist because of the exponential
suppressing of the probability of the Schwinger effect. The leading exponential part
of the probability of producing real pairs from the vacuum is proportional to [14]

Tm?2c ]

2.22
eE..h ( )

P x exp [—

Squaring the critical field strength gives an estimate for the critical intensity: I. o
E2. This yields an intensity of about 10331//m?. Current lasers are not able to reach
this enormous intensity. The Extreme Light Infrastructure (ELI) project has lasers
reaching intensities of about 102 /m? [14]. This is still four orders of magnitude
less than the critical intensity. It seems that for direct observation of Schwinger
pair production we have to wait until the laser can reach the critical intensity. We
are not going to discuss the Schwinger effect in more detail. For a more extended
(theoretical) discussion on the Schwinger effect the reader is referr ed to [14] and
references there in.

Figure 2.10: The Schwinger effect. An external electric field accelerates virtual ete™
pairs apart such that they become real pairs.
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Formalism

This chapter discusses the Euler-Heisenberg Lagrangian and its consequences. This
is a low energy effective field theory. We start with a motivation why an effective
field theory is used and with some general remarks on non-linear theories of electro-
dynamics (NLEDs). Then we discuss the Euler-Heisenberg Lagrangian and express
it as a power series in the field tensor and its dual tensor. We compute the modified
Maxwell equations to first order and the resulting modified wave equations. We
discuss predicted quantities of the Euler-Heisenberg Lagrangian regarding vacuum
birefringence that can be measured, such as the rotation of the polarization plane.
Also, the cross section of elastic photon-photon scattering in the CoM system is
given. We mention that axions could also induce a birefringence.

3.1 Effective field theory

In the previous section we mentioned that we are interested in LbyL interactions
mediated via ete™ pairs since this phenomenon only involves the electromagnetic
interaction. We defined this as QED LbyL scattering and we mentioned that the
relevant parameter regime is one of low photon energy w.r.t. the electron mass. At
photon energies of the order of the electron mass and higher we have to take into
account additional virtual fermion pairs, such as ¢g pairs, that can mediate photonic
interactions. At arbitrary photon CoM energies LbyL interactions are theoretically
described by QFT. However, with our purpose of describing photonic interactions
only via eTe™ pairs, it is not useful to employ a complete QED treatment. In
this chapter we discuss how photon-photon interactions are theoretically treated
at photon energies far below the electron mass, the energy regime of importance
to us. What happens at higher energies is not important for our purposes. This
is where the idea of (quantum) effective field theory comes in. A field theory is
called "effective” when it only describes the physics at a particular energy scale
while forgetting about all the other Degrees of Freedom (DoF's) at higher energies.
It is thus important to look at what the relevant energy scale (E) is of the physics
in which we are interested. We are interested in low energy photon interactions.
These energies correspond to the relevant energy scale E. Let’s denote the higher
energy scale related to the physics we want to describe by A. We want to study
interactions between photons via ete™ pairs. The ete™ pairs are the irrelevant DoFs
associated to the energy scale A since the electron mass of approximately 0.5 MeV
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Figure 3.1: LbyL-scattering in QED (left) vs. LbyL-scattering in effective Euler-
Heisenberg theory (right).

is much larger than the photon energies that we consider, at least theoretically®.
We can therefore forget about the e*e™ DoFs. This means we set A = m,. To built
a general effective field theory (EFT), an effective Lagrangian is built in terms of
an expansion in the ratio of relevant and irrelevant energy scales £, respecting the
underlying symmetries (Lorentz-symmetry and CPT-symmetry). Thls " forgetting”
of the DoFs of electrons refers to the procedure of "integrating out” the Dirac
Lagrangian from the QED Lagrangian. The one-loop vertex becomes an effective
one-loop vertex (see figure 3.1). To be clear, in this effective picture the electrons
and positrons did not disappear but they appear suppressed by terms proportional
to Z=. All other charged virtual fermion and boson loops are even more suppressed
due to their (much) higher mass. This low energy effective Lagrangian is what
is called the Euler-Heisenberg (EH) Lagrangian. For E, < m, its treatment of
LbyL interactions is equivalent to a complete QED treatment. For photon energies
approaching the electron mass and higher, a full QED treatment is necessary to
describe LbyL scattering.

3.2 General remarks on NLEDs

Since the EH Lagrangian is a NLED we include some general remarks on this class
of theories. The electromagnetic field equations for the vacuum, in any NLED, have
the familiar form of the Maxwell equations in matter

vXﬁ:a—D, V-D=0
ot
(3.1)
Vxﬁz—a—B, V-B=0
ot

but with the difference that H and D are of course non-linear in E and B. These
fields are respectively called the electric displacement field and the auxiliary field?.
In different theories these fields depend differently on the electric and magnetic field,

'In chapter 4 the photons in the ATLAS experiment have CoM energies E > 6 GeV.
2It is confusing to call H the magnetic field. We follow the naming of David Griffiths in his
textbook on classical electrodynamics [2].
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since they are defined by the Lagrangian through the constitutive relations [§]
oL

D="2= 3.2
PY: (3.2)

i=_2 (3.3)
OB

We should also mention that any NLED can be written in terms of the Lorentz-
invariants of classical electrodynamics. Recall the electromagnetic field tensor and
its dual tensor from the beginning of chapter 2. In matrix representation, they are
4x4 antisymmetric matrices

v — —E; 0 B. B,
-E, -B. 0 B,
-E. B, —-B, 0
and its dual tensor
0 B, B, B,
Fvuu — _B:E _Ez Ey

0
-B, E. 0 —E,
-B. -E, E, 0

The dual tensor can be directly obtained from the field tensor by substitution of
E — Band B — —E. This is a symmetry, or more precisely, a duality of the
Maxwell equations in vacuum. Consequently, we can define the following Lorentz-
invariants?

F=F,F" =-2(E* - B? (3.4)

and ) o
G=F,F"=—-4FE-B) (3.5)

where 3.4 is a scalar while 3.5 is a pseudoscalar. This distinction will be important
in the following analysis.

3.3 The Euler-Heisenberg Lagrangian

The QED Lagrangian reduces to the EH Lagrangian for low energy photons com-
pared to the electron mass (E, < m,). It describes all orders of one-loop photon-
photon interaction processes mentioned in the previous chapter and vacuum pair-
production effects. Hans Euler and Werner Heisenberg published the effective La-
grangian in the abstract of their paper from 1936 in a closed-form integral represen-
tation [20].

2 oo L [cos(—"— E? — B2+ 2(E - B)) + c.c.} 3
L= Z— d—Ze—"{m2(E.B) E\/ +Ef+%(BQ—E2)}
cJo {COS(EAC\/W ~ B2+ 2i(F - B)) - e

(3.6)

3Any NLED is formulated in terms of these Lorentz invariants. These are actually the only
Lorentz invariant objects in classical electrodynamics.
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Here E. denotes the critical field strength. C.c. stands for the complex conjugate.
This expression holds for energies far below the electron mass and field strengths up
to the order of the critical field strenghts. Then, the integral no longer converges.
The real part of this Lagrangian corresponds to all orders of photon-photon scatter-
ing in the one-loop approximation. The imaginary part is associated to the vacuum
pair production probability. The derivation of this expression not discussed in this
thesis. Within QED, this expression is derived from the one-loop effective action
[13]. This expression can be simplified if we assume weak electric fields, i.e. far
below the critical Schwinger field strength £ < E. and then expand 3.6 in a power
series in terms of the Lorentz-invariants 3.4 and 3.5. Note that this requirement on
the electric field strength also implies that we require weak magnetic field strengths
(B < Beit) since the amplitudes of E and B are related via the speed of light. In
the following analysis we restore the summation sign for clarity. A general effective
Lagrangian has this structure

£eff = Loz + LyL = Z Zci,jﬁgj (37)

i=0 j=0

where the term with indices i=j=0 is defined to be zero. This result can be simplified
further using another assumption about the vacuum. We postulate that the vacuum
is CPT invariant, i.e. it is invariant under parity, charge conjugation and time
reversal transformations. The result is that all terms with an odd index j vanish.
To see why this is the case we take a closer look at the first few terms of the infinite
sum

SN i TG =016 + cinFG + croF + o0 FE + copGt + ot (3.8)

i=0 j=0

The first and the second term are pseudoscalars while the other two are scalars.
Pseudoscalars violate parity conservation since they pick up a minus sign under
reflections. We can generalize this further to all odd j. The result (with the appro-
priate values of the constants) is called the EH Lagrangian.

Lpy = Z Z Ci,zj./rig% (3.9)

i=0 j=0

For our purposes in this thesis, at least concerning the aim of formulating non-linear
QED phenomena theoretically, the first non-linear correction will be good enough
to do our calculations. In chapter 4 we will run into problems because we will
meet magnetic fields strengths of the order of the critical magnetic field strength.
Here the perturbative method breaks down. The non-linear contributions to the
Lagrangian arise first at O(m_?) as we will see. To this order there are only two
terms allowed by all symmetry considerations. This non-linear term corresponds to
LbyL-scattering. Let us write down this first order correction:

1 ~
Lpn =" Fu+ Coo(F*™ F)? + can(F™E,,)? (3.10)

1 uv o’ uv 2 7 72 nERY -8
= = P F + an{(F Fu)? + $(F*Ep) } +O(m:®) (3.11)
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e2 ~ 1

The first term is the familiar Maxwell Lagrangian. o = = ~ = (in ST units) is
the fine-structure constant, which is actually not a real constant as we have seen but
depends on the energy scale considered, although for £, < m, considered here it is
constant. The prefactor m_* appears on dimensional grounds and o appears since
this term couples four photons. The constants ¢; and ¢y (note that the notation of
the constants slightly changed) have values ¢; = and ¢, = ==. These are the

1
90 360 "

dimensionless low energy constants and can be computed in QED. In the literature,
the constants ¢; and ¢ are usually defined in natural, Heaviside-Lorentz (HL) units.

202 1402
Bmi T 15mi

e

¢ = (3.12)

Here are the constant factors resulting from the tensor products (see 3.4 and 3.5)
between the brackets absorbed into the constants. We can redefine these constants
in ST units (see appendix A)

202h3e}
45micd’

Cy = 761 (313)

1

We converted these constants to SI units in anticipation of calculations in section
3.5.1. The factor of seven between the two constants characterizes the EH La-
grangian. We arrive at the final form of the EH Lagrangian, expanded to quartic
order in the electron mass, by rewriting the tensor products using the identities 3.4
and 3.5.

1 202 1402 - =
= _—(E? - B? E? — B?)? E-B)?
Lon 2( )+ 45m3( ) 45m§( ) (3.14)
1 202 S o '
= (B2 = B + = {(B* - B! + 7(E - B)?
Or in ST units (see appendix A)
202h3e? L
Low = %O(E2 — 3B+ ﬁ{(ﬁ — B 1 TA(E - B)Q} (3.15)

Expression 3.14 is the most important expression in this thesis and needs to be well
understood. This non-linear term originates from the coupling of four photons with
energies E, < m, via virtual ete™ pairs. Expression 3.14 holds for weak fields,
ie. F < E,and B < B,.. Strictly speaking these terms only appear when the
background field is uniform and constant with respect to the appropriate length
and time scale. To a good approximation constant and uniform mean that the field
strength does not vary over a Compton wavelength (A, &~ 3.9 x 107 !tem)t. We
will proceed with calculating the modified Maxwell equations and modified wave
equations in the vacuum.

4This value corresponds to the reduced Compton wavelength, i.e. the Compton wavelength in
terms of A.
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3.4 Weak field corrections

All calculations in this section can be found in Appendix B. To compute the first
order corrections to the Maxwell equations we need the EL equations for fields. The
EH Lagrangian depends on the field A" so we have

o, OCon__ OLon _, OLon

20,4,) 04,  "OF,

=0 (3.16)

This can be easily done using two derivative identities related to the Lorentz invari-
ants 3.4 and 3.5 9F 90
= 2F"

OF., ’

Using the EL equation we obtain the following equations of motion

= 2FH (3.17)

nv

40? IR
9, F™ = 450‘ 48M{4(FQ5F°‘B)FW + 28(Fa5F°‘5)FW} (3.18)
me

When neglecting the non-linear contribution (o & 0), the RHS vanishes and we
obtain the classical Maxwell equations. Note that only the law of Gauss and the
law of Ampere have changed. Lets look how these equations have changed. Using
the constitutive relations 3.2 we obtain, up to first order

L L 992 . Lo
D=E+-2 {4(E2 ~ B)E + 14(E - B)B}

45m?

o (3.19)
=5+ 450‘ . {4(E2 ~ BB — 14(E - é)ﬁ}

e

We observe that the corrections are cubic in the fields. Taking the divergence of the
first equation and the curl of the second we get

- 202

.D=V-(E+P)=V-(E
\Y, V(+)V<+45mg
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H= B-—M)= B-
V x V x ( )=V x( m?

(4(E?* — B)E) 4+ 14(E - B)B)

(3.20)
(4(E* — B)B — 14(E - B)E)

Following Euler and Kockel, we can identify a polarization and a magnetization of

the vacuum )
- 2x

Foae = 45m?

- 202

vac = Fmg

Reformulating these equations in terms of the vacuum polarization and magnetiza-
tion we get

(4(E* — B)E) + 14(E - B)B)
(3.21)
(4(E® — B))B — 14(E - B)E)

. , L 9E 0P,
VxE=-V- Py, VxB=—+
x 8 ot | ot

+V X Myue (3.22)

These expressions make it indeed clear that the vacuum has the properties of a
medium. From the modified Maxwell equations it is possible to derive the modified
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wave equations. In terms of the vacuum polarization and magnetization these change
to

azﬁvac =
g TV Pt (3.23)

— — a —
OB =V X (V X My) + E(V X Pyac)
Here Ul = g—; — V? denotes the D’Alembertian operator. The wave equations show
that wave behaviour is modified in the quantum vacuum. There exists perturbative
solutions to these equations.

OE = —

3.5 Results from the EH-Lagrangian

In this section we discuss quantitative predictions of the EH Lagrangian: The rota-
tion of the polarization plane through effective QED LbyL scattering and the cross
section of photon-photon scattering at low and high CoM energies.

3.5.1 Vacuum birefringence

The goal of the analysis below is to express the Stokes parameters in terms of the
constants of the EH Lagrangian (¢; and ¢;). To measure variations in the polariza-
tion properties of light one has to measure the Stokes parameters, which is possible
since they are functions of intensities. We start our calculation from the values of the
indices of refraction corresponding to the two mutual orthogonal linear polarization
modes, n; and n|. For a complete derivation of n, and n| the reader is referred to
[25].

The following analysis holds for an electromagnetic plane wave travelling in the
z-direction in a constant and uniform external magnetic field. Furthermore, this
analysis uses natural-HL-units. We can define a polarization vector before entering
the magnetic field (z = 0)

é(z = 0) = Ey(cos 0 + sin 0f)e ™" (3.24)

where 6 is the angle between the polarization vector and the magnetic field, w the
angular frequency and Fy the amplitude. We can decompose € into a perpendicular
and a parallel component w.r.t. the external magnetic field.

€=éL + ¢
e, = Eysin feikrz=«1) (3.25)
i(k‘HZ—wt)

e| = Eycosfe
The corresponding indices of refraction experienced are [25]

n| = 1+ 4Clngt
n, = 1+ CQBezxt
2 a® _,

T 4 Pext
15m;

(3.26)

An=n|—n, =
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Expressions 3.26 show that different polarization modes travel with different phase
velocities showing that the vacuum is birefringent. Using bk, = n,w and k) = njw
and the two indices of refraction we define a phase as

6= (ki —ky)z = (nL —n)wz = (4¢; — c)wB2,,2 (3.27)

Recall the polarization ellipse of figure 2.7. The ellipticity angle x and orientation
angle ¢ can be expressed in terms of the amplitudes of the two polarization modes
and the phase §. We get [3]

2Fy,. E
tan 2¢) = % cos &
in 2 2EOmE0y 5 '
Sin2y = ————2sin
TR B,

These polarization ellipse parameters can be completely written in trigonometric

terms since tanf = g—g” Then the expressions in 3.28 become [9]
Yy

tan 2¢) = tan 260 cos o

3.29
sin 2y = sin 26 sin o (3:29)
To proceed we assume that § and y are small, i.e. § < 1 — B2,z < m for
fixed w and x < 1 such that we obtain
sin 2y & 2y & 0 sin 20
XX (3.30)

tan 2¢ ~ tan 20

From the second equation we observe that i) ~ 6. Recall the definition of the Stokes
parameters (expression 2.18). Using that x is small, ¥ ~ 6 and using the definition
of 4, the Stokes parameters become

I =1
Q = Iycos2x cos 2y ~ Iy cos 20
U = Iycos 2y sin 2y ~ [ sin 20
V = Iysin 2y ~ Iy(4c; — co)wB2,,zsin 20

(3.31)

Consequently, the rotation of the polarization plane due to effective LbyL scattering
is

Aporp = (4¢; — co)wB2,, L (3.32)

ext

where L is the distance travelled perpendicular to the magnetic field direction. Note

that this expression requires B?L to be much smaller than (46;. In chapter 4
1—C2)w

we determine the values for B for fixed w and L.
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3.5.2 Cross section of photon-photon scattering

From the EH-Lagrangian it is possible to compute the differential and total cross
section for (real) elastic QED photon-photon scattering. In the low energy limit the
differential cross section in the CoM frame is equal to [24]

do 139 a4{i}6(3—1—00326’)2
40~ 472(90)? z

w <K me (3.33)
me

Me
here w denotes the CoM energy of the initial photons and m,. the mass of the electron
(positron) mediating the interaction. The total cross section in the CoM system is
given by

973 ot {w
101257rm2

We do not perform the calculation here since it is beyond the scope of this thesis. The
calculation is rather long and involves QFT methods. A complete QED derivation
for expression 3.34 can be found in [6]. The cross section increases very rapidly
when increasing the photon energy. It is important to keep in mind that for LbyL
scattering via ete™ loops, we have to require that w < m,, since this is required
for the EH Lagrangian to be a valid theory. This means the cross section for thls
process is terribly small. The cross section is in this case suppressed by a factor —¢
To get a flavour of the magnitude of the cross section, for visible light the energy
is approximately 1 eV, which can be considered small compared to m.. Before we
can plug the numbers in, the total cross section has to be expressed in SI units (see
Appendix A). The result is

e a4{ i }6{ hc}z hw < mec? (3.35)

~ 101257 Umo2S Um,

6
} ;WL me (3.34)
Me

This corresponds to a cross section of ¢ = 7 x 107™m? = 7 x 107*?b. For high
photon energies the cross section drops with increasing CoM energy

2
o= 4.7a4{%} LW > M, (3.36)

All these results hold for unpolarized photons and fixed scattering angles. The
energy spectrum of the cross section has a peak around threshold of e~ production
[24]. Karplus and Neumann estimated the peak of the cross section at w ~ 3m, ~ 1.5
MeV [23]. Here the cross section equals about 1.6 x 107%b. From figure 3.2 it can be
seen that the cross section spans a huge range of orders of magnitude. To be clear,
this cross section maximum does not correspond to the maximum cross section of
QED LbyL scattering. While increasing the CoM energy, q¢ loops start dominating
over the ete™ loops. For QED LbyL scattering we have to keep the CoM energy far
below 0.5 MeV. This means that the cross section for QED LbyL scattering remains
very small.
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Figure 3.2: Energy spectrum of the total cross section of photon-photon scattering.
w* denotes the center of mass energy. Note the peak at = ~ 1. This plot is taken
from [6].

3.6 Axions and vacuum birefringence

We have seen that the axion is a hypothetical particle proposed to solve the so called
strong CP-problem in QCD. In the presence of a strong magnetic field it is possible
that a photon becomes an axion according to figure 3.3. The resulting axion can
also induce a birefringence and dichroism of the vacuum. The axion can be a scalar
or pseudoscalar particle. To account for contributions to the index of refraction of

o Garyy a

—

B

Figure 3.3: Illustration of axion-photon coupling. A photon interacting with a strong
external magnetic field produces an axion, which can be a scalar or pseudoscalar
particle. This figure is taken from [10].

the vacuum due to axions we have to add terms to the EH-Lagrangian. We get

202
45m?

Lo (B B L= 3 7(E - B} + (0,0 — mie?)

. (3.37)
—Z¢{5a7s(E2 — B +6,,(E - B)} a=s,p

The third term between brackets is the familiar Klein-Gordon Lagrangian for the
axion, which consist of a kinetic term and a mass term where m, denotes the mass
of the axion. The last term accounts for the coupling between axions and photons,
where we have taken into account that an axion can be a scalar or a pseudoscalar
particle. The ¢ symbol is the Kronecker delta. The label a is either equal to s (the
axion is a scalar particle) or p (the axion is a pseudoscalar particle). —G— is a
coupling constant. This time we obtain two equations of motion (one for the field
F,,, and one for the axion field ¢). To derive the equation of motion w.r.t. F,, is
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most easily done if the Lagrangian is rewritten in terms of the field tensor and then
using the identities 3.17. The result are the previous equations of motion with an
extra contribution of the axion-photon coupling:
N {4(F FOB) P 4 28(F, Faﬁ)Flw}
H 45m3 H ap af
G
2

(3.38)
{5a,sFW + 5&,,15“”}8“(;5

The equation of motion derived for ¢ is an inhomogeneous Klein-Gordon equation:

G -
O + m2¢ = —Z{(SMFWFW + 5a,pFWFW} (3.39)

In appendix B a derivation is given of these equations of motion. Note that the
existence of axions leads to a fifth Maxwell equation. For linear polarized light this
gives contributions to the indices of refraction mentioned in section 3.5 in equation
3.26, depending on whether the axion is a scalar or pseudoscalar particle. Only one
polarization mode will be modified. The contributions to the indices of refraction
are

GQI()TTL?L GQIomz
n, =

TLH = -9 (3.40)

“*16w2wd — mi’ P 16ww? — md
where the quantities with subscript 0 refer to background field properties and those
without subscripts to the properties of the axion. In [32] a derivation is given of

these indices of refraction.
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Chapter 4

Measurements of non-linear QED
effects?

We discuss recent measurements from [11, 29] which are claimed to be evidence
for QED effects. We make comparisons with the theory to draw conclusions of the
claims made in [11, 29].

4.1 Evidence for QED vacuum birefringence?

In this section we discuss optical polarimetric observations from the Very Large
Telescope (VLT) at the ESO Cerro Paranal Observatory in Chile on the brightest
member of the Magnificent Seven (MT7) [29]. The observations are made by a collab-
oration of various astrophysical teams. The M7 are a group of radio-quiet isolated
neutron stars (ISNs). The name of the brightest (and youngest) member of the
M7 is RX J1856.5-3754. This collaboration studied the polarization properties of
optical photons coming from the surface of this neutron star (NS). More specifically,
they looked at the linear polarization degree (PD) and linear polarization position
angle (PA) of the optical light. These observations are optical since they looked at
wavelengths of A = 555.0 nm, A\ = 61.6 nm, which corresponds to energies of 2-2.5
eV. This corresponds to visible light.

The values they measured are: P.D. = 16.43% £+ 5.26% and P.A. = 145.39° 4= 9.44°.
They claim that the measured PD and PA provide evidence for the presence of vac-
uum polarization effects causing the vacuum to be birefringent, i.e. they claim that
the observations are evidence for the box diagram of figure 4.1. Since the incoming
photons have E, < m,, they claim that these measurements are evidence for an in-
teraction between a photon and a magnetic field via virtual e*e™ pairs. This means
it is claimed that evidence is observed for the LbyL interaction process predicted by
Euler and Heisenberg, i.e. QED vacuum birefringence. If this is the case it would
be the first observational evidence of QED effects in the strong field regime since
the magnetic field of a NS is of the order 10® — 10'°T, which is of the order of the
critical magnetic field strength.

We will discuss if these particular values for the PD and PA are indeed evidence for
QED vacuum birefringence.
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Figure 4.1: Illustration of the LbyL interaction responsible for vacuum birefringence.
A photon interacts with an external magnetic field. At optical energies this loop
consists of eTe™ pairs.

4.1.1 Neutron stars and vacuum birefringence

Before going into the experiment and the discussion of the results we discuss the
physical picture of the problem developed by Heyl and Shaviv [21]. Tt is known for
some 30 years now that light emitted from surfaces of (neutron) stars with large
magnetic fields (also known as magnetars) should be intrinsically polarized (orthog-
onal) to the magnetic field [28]. Magnetic fields of NSs vary from point to point
on its surface. On each point the light is expected to be polarized orthogonal to
the magnetic field direction. An observer on a distance will see effectively no net
polarization in most cases due to the superposition of all the randomly oriented po-
larization vectors. In short, without considering vacuum polarization effects and any
other effects that could influence the polarization, light would show no net (linear)
polarization.

The orientation of the magnetic field changes slowly with increasing distance from
the NS. When light travels away from the surface of the NS, the birefringence of the
vacuum causes that the two polarization modes remain decoupled and orthogonal
to the magnetic field direction. The polarization modes follow the direction of the
magnetic field. It has to be said that this is only true if the magnetic field changes
sufficiently slow. This is called the adiabatic approzimation'. The further the light
propagates away from the star, the more parallel the magnetic field orientations
from the initial points on the surface become to each other. Since the polarization
modes follow the magnetic field directions, they also become more and more par-
allel, until a region is reached where the magnetic field strength is well below the
critical field strength and vacuum polarization effects are negligible. Consequently,
the two polarization modes couple again. The value of the PD and PA depend on
how long the polarization modes remain decoupled. This depends on the energy
of the photons. This physical picture does not predict any specific values for the
PA and PD. In principle, if every point of the NS surface is polarized orthogonal to
the magnetic field, a value of 100% for the PD could be measured due to vacuum
birefringence if the two polarization modes remain decoupled for the time necessary
to reach this value. We see that QED effects could be a possibility to explain the
non-zero measured values for the PD and PA.

IFor a quantitative description for the conditions of the adiabatic approximation the reader is
referred to [21].
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Figure 4.2: Illustration of the adiabatic approximation. The horizontal vectors are
the photon polarizations which are orthogonal to the meradians (magnetic field
lines). Since the magnetic field lines become more parallel, the polarization vectors
also become more parallel since they adiabatically follow the changing magnetic field
directions. This picture is taken from [26].

However, in the absence of QED effects and polarization contamination effects and
when assuming that every surface point emits perfectly polarized light, a net po-
larization could be measured depending on the geometrical configuration of the
magnetic field axis and the line connecting the point of emission on the surface of
the star and the observer, i.e. the observation line. This configuration sets an upper
bound on the measured PD which is approximated to be 40% according to [26], if
the magnetic field lines are along the meradians as in figure 4.2. In the case of a
dipole magnetic field geometry the geometric upper bound is about 20% according
to [26]. These geometrical configurations require that the magnetic field axis and
the observation line are orthogonal, which generally they aren’t.

4.1.2 The experiment
The PA and PD are related to the (normalized) Stokes paratemers U and Q via

relations 2.19 and 2.21: . b
P.A = —tan™! (—U)
2 g (4.1)

P.D.=,/P3+ P2

To determine the Stokes parameters you have to measure intensities (photon fluxes),
as we have mentioned before. Indeed, this is what they have done. Photon fluxes
of the ordinary and extraordinary beams are measured at four different half-wave
retarder plate angles a. The PA and PD of the optical light are calculated using
various surface models as functions of two angles y and £. £ is called the inclination
angle. It is the angle between the magnetic field axis and the axis of rotation. y is the
angle of the inclination of the line of sight w.r.t. to the magnetic field axis. In these
various surface models? they compared calculations including vacuum polarization
effects with those not containing vacuum polarization effects. The observed value

2Various surface emission models are used since the surface emission mechanism also influences
the linear polarization.
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of the PD was never reproduced in the models not containing vacuum polarization
effects. Only values below the measured value were calculated.

4.1.3 Perturbative QED predictions

In the previous chapter we have calculated an expression for the angle of rotation of
the polarization plane (expression 3.32) using the perturbative EH Lagrangian, i.e.
we assumed that B < B.;;. In SI units (see appendix A) this expression becomes

Ba2hte2

2
45micie? wBL 42)

Agep =
where w is the angular frequency of the light, B the amplitude of the magnetic field
of the NS and L the distance in which vacuum polarization effects can be considered
relevant, i.e. the distance in which the magnetic field strength is of the order of the
critical field strength. Regarding the use of the perturbative EH Lagrangian, in the
optical regime the low energy condition £, < m, is satisfied. However, magnetic
fields around NSs are of the order of the critical field strength. The weak field condi-
tion B < B, is therefore not satisfied. This implies that difficulties will arise with
perturbative methods in this regime. The perturbative expression for the rotation of
the polarization plane above will therefore give not a clear prediction. To calculate
Atorp non-perturbative methods are necessary. This means we have to take into
account all higher order processes in «, i.e. o™ with n > 2.

¢

|
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7,

Figure 4.3: A o3 process.

This yields a non-perturbative expression for Avygrp. This is beyond the scope of
this thesis.

To proceed, we can look at the results of perturbative calculations. If we naively
assume that the magnetic field is constant we get answers that do not make sense.
For L = 10Km (the typical radius of a NS), B = 1087 and w = 3.1 x 10'rad/s we
get AYorp =~ 10°rad. To produce something more useful we could take a closer look
at the geometry of the magnetic field. It is known that the magnetic field strength
drops very quickly with increasing distance from the center of the NS. According to
[31], for a rotating NS, the amplitude B o ]:—zv where Ry is the radius of the NS
and 7 the distance from the center of the star. Since Avggp is proportional to B?

we see that it drops as %6, which is very fast.

Chapter 4 38



On light by light interactions in QED

To calculate AYgrp we have to integrate along the path of the photon. We as-
sume the photons travel in the radial direction.

> 1
w|B\2R?V/ —di’ =
Ry T

Ga2hte2

45mic3e?

6a’h'e w|B]*Ry
45micde? 5

Apgrp = (4.3)
This only yields an additional factor 0.2 and therefore the answer remains unsat-
isfying. With perturbative expression 4.2 we could produce any answer between 0
and 27 by varying B2L. One could determine the perturbative regime by setting a
bound on B?L for fixed w by requiring the a? term in the perturbative expansion
to be < 1

6h'e?
45mic3e?
B’L < 2% 10°Tm

677,4 2
2 ‘0 wB?L < 1rad

Atorp =1+a*{ O
VYorp =1+ “ Lmice? (4.4)

wB2L} ¥

For L=10*m we must require B< 10°T.

We have also discussed axions in the context of vacuum birefringence. According
to [26] axion-photon coupling could cause a transition between the two orthogonal
polarization modes. The orthogonal polarization mode can switch to the parallel
mode and vice versa. This effect becomes important at low photon energies (on the
order of 0.1 eV). However, the NS cannot be observed at this energy because it is
too faint [26]. In the optical regime no significant change of the linear polarization is
expected. In addition, for this jump between polarization modes, the axion-photon
coupling strength must be of the order |G| ~ 107"GeV ~1[26], which has already
been excluded [19].

4.1.4 Concluding remarks

Pertubative EH theory does not make specific predictions for Ayggrp since the weak
field condition is not satisfied. Any PA, and therefore any PD, can be found by vary-
ing B2L. We have seen that it is believed that the polarization vectors follow the
magnetic field direction in the region where vacuum birefringence effects are signif-
icant, which in principle could yield a PD of 100%. The fact that a non-zero A
is measured could be interpreted as a confirmation of the theory. However, there
are statistical and geometrical objections to this claim [26]. Even in the absence of
QED vacuum birefringence, in the most favourable geometric configuration for the
magnetic field, i.e. y = 7w and £ = 0, a value around 16% could possibly be obtained.
The error in the PA is more than 5 standard deviations away from zero, which seems
strong evidence. But the PD is only 3 standard deviations away from zero, which is
less convincing. A 3o effect is far from strong evidence for the existence of vacuum
birefringence.

A more elaborate statistical analysis can be found in [26]. They have studied how
likely it is that non-zero values for the PD are obtained in models with and without
vacuum birefringence. This is done by calculating the Bayes factor or likelihood L.
This Bayes factor appears to be greater than 1 when using the data mentioned at
the beginning of this chapter, which means the measured data favors the absence
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of vacuum birefringence. Consequently, a lower bound on the PD of approximately
22% is found3. It follows that PD values larger than approximately 30% would be
strong evidence for vacuum birefringence effects* with the present statistics.

It could be that the physical picture is wrong. This would imply that light from a
NS is not at every point intrinsically polarized. Then, a measurement of 16% could
be a maximum PD due to QED effects. However, non-perturbative calculations
have to be made to make sure which PD values are characteristic of vacuum QED
effects. Furthermore, this would contradict 30 years of astrophysical literature on
this subject.

To summarize, non-perturbative calculations, which means taking into account all
higher order processes in «, have to be made to specify which PA and PD are re-
ally characteristic for vacuum polarization effects in the optical regime at critical
magnetic fiels. The measured values of the PA and PD seem too low to be evidence
for vacuum birefringence. A reduction of the error in the PD reduces the value for
the PD necessary for a Bayes factor of 0.01, i.e. better statistics lead to stronger
evidence for QED vacuum birefringence.

3This corresponds to a Bayes factor of 1.
4This corresponds to a Bayes factor of 0.01.
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4.2 Real QED Light-by-light scattering at the LHC?

The ATLAS collaboration at CERN claimes that evidence for LbyL scattering is
observed at the LHC [11]. We discuss whether this is the case and if so, which type
of LbyL scattering is observed. This means we will look at which fermions could
possibly form the loop and if the photons involved in the interaction are on-shell or
not. Furthermore, we will discuss the physical principles of the experiment. We will
not go into the complete experimental setup, background effects and details of the
event selection procedure.

4.2.1 The experiment

The ATLAS collaboration studied LbyL-scattering using ultra-relativistic heavy-ion
collisions. Heavy ions consist of a lot of quarks, which interact via the strong in-
teraction. At distances of the order of 1 fm, the strong force dominates over the
other fundamental forces. Studying LbyL scattering involves the electromagnetic
interaction. What ATLAS did is that these collisions are ultra-peripheral, meaning
that the perpendicular distance from the path of an object to the center of potential
created by an approaching object is larger than the diameter of the object. This
perpendicular distance is called the impact parameter, denoted by b. ATLAS used
lead nuclei (Pb), which have atomic number A = 208 and a diameter of approxi-
mately 6 fm. This means the impact parameter b > 12 fm. In this case the strong
interaction can be neglected in favour of the electromagnetic interaction. A more
precise value of b is not mentioned in [11].

The electromagnetic field strength of relativistic charged particles scales with the
atomic number. In the case of a Pb nucleus, the electric field generated is much
stronger than the critical Schwinger field strength (about 7 orders of magnitude, the
electric field generated is of the order 10% V/m). Ultra-relativistic charged parti-
cles can be described by the equivalent photon approximation (EPA) [18]. Figure
4.4 gives an illustration of this approximation. The electromagnetic fields of the
nuclei can be treated as photon-beams in this approximation. The electromagnetic
interaction between the lead nuclei can then be described as the exchange of two
quasi-real photons. These photons could scatter off each other according to the
one-loop diagram. Whether this happens via one loop depends on the CoM energy.
The crucial measurement is then the detection of two photons °. Pb-nuclei are used
because the photon flux scales as Z2, so that a large cross section can be obtained.
The Pb nuclei leave via the LHC beam-pipe, so that the expected signature is only
two photons. The Pb nuclei remain intact after the interaction so this means that
this collision is elastic.

5The complete reaction is Pb + Pby*y* — Pb* 4+ Pb*~v~.
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Figure 4.4: Ilustration of the EPA. This figure is taken from [11].

Claimed results

The fact that the initial photons are ”quasi-real” does not mean that detection of
real LbyL scattering is completely excluded. It is possible that there is a small contri-
bution of the real photon-photon scattering process. The virtuality or ’off-shellness’
Q? of the initial photons is less than the inverse square of the radius of the charge
distribution. For this experiment Pb-nuclei are used, which have a charge radius of
approximately 6 fm. This gives a virtuality of Q? < 1073GeV?2. But ATLAS also
did not claim to have seen real LbyL scattering. The process that ATLAS claimes to
have seen is LbyL scattering of two quasi-real photons via a fermion loop, resulting
in two real photons. In the next section we will mention the requirement for calling
a photon ’quasi-real’. ATLAS found the diphoton invariant mass spectrum of figure
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Figure 4.5: Two quasi-real photons, denoted by a ”*”, scatter with each other via a
fermion loop, yielding two on-shell photons.

4.6. The red histogram shows the Monte-Carlo (MC) simulation of the vy — vy
process. It tells us the number of LbyL scattering events within a specific dipho-
ton invariant mass interval. The MC simulation generates events by taking into
account charged lepton loops and quark loops. The blue and grey histograms show
the MC simulations of background effects which we are not going to discuss. The
points show the obtained data. The vertical bars are the statistical uncertainties
in the amount of detected events. The spectrum shows that the data agrees with
the MC simulation for LbyL scattering. This would mean that ATLAS detects a
continuum of quasi-real LbyL scattering processes. However, we observe that the
data point around 10 GeV is above the MC simulation. We will come back to this,
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since this opens the possibility of an interruption of the continuum by the creation
of a hadronic resonance state. The question we try to answer is whether it is really
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Figure 4.6: Diphoton invariant mass spectrum measured by ATLAS. The number
of events per 3 GeV versus diphoton invariant mass in GeV. As can be seen from

the horizontal axis, they detected events in an energy range of 6 GeV < m., < 30
GeV.

the process of figure 4.5 that is detected and if so, what type of LbyL scattering this
is. This requires some relativistic kinematics, which we are going to discuss now.

4.2.2 Relativistic kinematics

In special relativity the CoM energy is measured by the quantity s which is called a
Mandelstam variable. Using relativistic kinematics (conservation of four-momentum),
with ¢; (i=1,2) the four-momentum of the initial photons and assuming the photons
are on-shell (¢ = m? = 0), we see that

s=(q+ C]2)2 =2q1q2 = 2(Ey By — Py - D) = 2(E1Ey — |p1||p2| cos ) (4.5)

where 6 is the scattering angle between the photons. It is important to note that
the initial photons can have invariant masses equal to zero (they are on-shell), while
still creating high energy /heavy particles/pairs. When the photons interact at 0 = 7
(they collide head-on), which is actually a valid approximation at velocities near the
speed of light of the Pb nuclei, the final invariant mass is maximum and becomes

s =4E\E, (4.6)

where we used that E; = |p;| for on-shell photons. The CoM energy is therefore
equal to
\/g =My = 2/ E\Ey > 6GeV (47)

where m.,, denotes the diphoton invariant mass. Recall that QED LbyL scattering
requires CoM energies far below the electron mass, i.e. /s < 0.5 MeV. It is obvious
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that detection of this process is excluded in this experiment. At the energies of
ATLAS, virtual ¢ pairs dominate over virtual eTe~ pairs. This implies that if
ATLAS really detected the loop diagram in figure 4.5, then its loop consists of ¢q
pairs, which means they detected quasi-real QCD LbyL scattering. We can exclude
virtual bosonic loops consisting of W-bosons since these become only important
at diphoton invariant masses greater than twice the invariant mass of a W-boson,
which is way beyond the energy range where ATLAS is interested in (see figure 4.6).
For quasi-real LbyL scattering we have to require that

%2 <1 (4.8)

For s > 36GeV? and Q* < 1073GeV? this is the case. We get, in this 'worst case
scenario’ (largest Q* and lowest s):

Q2 N 103
s 36

~3x107° <1 (4.9)

For clarity we include here an overview of the requirements on () and s when to call
a photon virtual, quasi-real or real.

Q*=0 — real =on — shell

2
% <1 — quasi—real =of f — shell (4.10)
QQ
~ >1 — wvirtual = of f — shell

Note that low energy experiments are not necessarily a better approach to real
LbyL scattering. The smaller the ratio of 4.8, the better the approximation of real
LbyL scattering. What we have seen up to now is that we have excluded real and
virtual QED LbyL scattering, leaving quasi-real QCD LbyL scattering as the claimed
detected process by ATLAS.

4.2.3 Diphoton measurements

Since the requirement of %2 < 1 is satisfied and the detected signal agrees with
the MC simulation for LbyL scattering, it seems that ATLAS detects a continuum
of quasi-real QCD LbyL scattering. We already mentioned the possibility of the
creation of a hadronic resonance state around 10 GeV. We want to discuss this now
in more detail. In this context we also want to discuss the Crystall Ball (CB) ex-
periment.

Despite the low values of the four-momenta (q; and ¢2) of the photons, /s can
be very large, which in fact is the case (see equation 4.7). Recall the process of the
production of hadronic resonances from chapter 2. Two photons produce an inter-
mediate bound quarkonium state (if /s is large enough) which could decay into two
photons if its spin is not equal to 1 according to the Landau-Yang theorem. Conse-
quently, in the diphoton invariant mass spectrum there is a peak at a certain value,
corresponding to the invariant mass of the intermediate resonance state. Hence the
name "hadronic resonance”. Below 4 GeV, diphoton decay could originate from
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uii, dd , s5 and c€ resonance states with spin not equal to one. However, since
ATLAS starts detecting photons from diphoton invariant masses of 6 GeV, dipho-
ton detection of diphoton decay of the above mentioned resonance states is highly
suppressed. Diphoton invariant masses of 6 GeV < m., < 30 GeV, which is the
invariant mass interval of ATLAS, still allow for particular production of hadronic
resonances. In this energy range bottomonium (bb) resonance states are produced.
We have to consider the bb resonances with spin equal to zero and two. These are the
Xbo and Xpo (they have J=0,2 respectively) bb resonance states. They are allowed
to decay into two photons. They have masses of 9.86 GeV and 9.91 GeV respectively.

Coming back to the earlier mentioned data point around 10 GeV in figure 4.6,
this data point could be due to the diphoton decay of x;0 and x;2. This data point
lies above the MC simulation and therefore it is possible to explain this measure-
ment at this particular diphoton invariant mass by x30 and X2 diphoton decay.
Better statistics around the invariant masses of x;0 and X2 are needed to really
draw conclusions about this data point. Diphoton decay of hadronic resonances,
such as the 1,  and 7°, have been observed many times earlier in ete™ collision
experiments, for instance in the CB experiment [33]. In 1988 the CB collaboration
did an experiment in which they tested the reaction ete™ (y*v*) — ete (7). The
purpose of the CB experiment was to study simultaneous pseudoscalar (7%,  and
n') formation in the energy range 100-3000 MeV. In the context of the creation
qq resonances in particle collisions, the possible production of x 2 resonances by
ATLAS is new since these are bb states. The physical process of the production of
bb resonances is not new, it is a higher energy version of the CB experiment and
the eTe™ pairs are replaced by Pb-nuclei. To conclude whether ATLAS or CB did
a better job concerning quasi-real (QCD) LbyL scattering, we have to look which
ratio of %2 is the smallest. In the CB experiment the initial photons have virtuality
Q? ~ 107°GeV? = 10MeV?2. This is two orders of magnitude below the virtuality
of the photons of ATLAS. However, in this case we have in the worst case scenerio:

Q? N 107° N 107°

~ ~ ~5x 107 4.11
s mZ, 014z TP (4-11)

This value is one order of magnitude larger than the value which ATLAS reaches.
Therefore, regarding the purposes of quasi-real (QCD) LbyL scattering, ATLAS did
a better job.
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4.2.4 Concluding remarks

The experiment done by ATLAS provides evidence for quasi-real QCD LbyL scat-
tering with the possibility of the creation of x40 2 resonance states. It is certainly
not evidence for real QED LbyL scattering since /s > m, and Q% # 0. As we
already mentioned, better statistics are needed in the region of 10 GeV to make
sure whether the detected photons are coming from a direct scattering process be-
tween two incoming quasi-real photons. With the current statistical data, it cannot
be excluded that the diphoton detection originates from xuo 2 decay. The ATLAS
experiment was not designed to look for (real) QED LbyL scattering, they where
looking for quasi-real QCD LbyL scattering. We want to conclude with remarks on
particle collision experiments.

Remarks on particle collision experiments

We mentioned earlier that particle accelerators have studied the high energy regime
extensively but not the low energy regime. This can also be seen in following figure.
At CoM energies below a few 100 MeV in ete™ collisions there is not yet data known.
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Figure 4.7: A plot of the cross section o in mb (= 1073b) versus CoM energy (1/5)
in GeV in ete™ collisions.

It could be that new resonances can be found at low CoM energies via photon
fusion processes. Also, around photon CoM energies of E, ~ 3m. ~ 1.5 MeV,
the cross section for photon-photon scattering attains a maximum of 1.6 x 10~%b
(see figure 3.2). It seems that low energy eTe™ collision experiments may reveal
new particles and it increases the cross-section for direct detection of off-shell QCD
LbyL scattering. In this case /s is small but %2 can still be large. Hence, we refer
here to "off-shell” QCD LbyL scattering, since the photons can be either virtual
or quasi-real. Colliding laser beams, with typical energies of several eV, could be
an option to create even more on-shell QED LbyL scattering events compared to
particle collision experiments. The price to pay is that in this case the cross section is
so terribly small compared to the maximum of 1.6 x 10~%b in figure 3.2. In addition,
at low energies the photons remain off-shell. To approach real LbyL scattering, the
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virtuality has to be minimized compared to the energy in the CoM system. This
means we do not necessarily have to perform low energy experiments to test (almost
real) LbyL scattering and the low value of the cross section is no longer a problem.
However, the unfortunate conclusion is that it seems impossible to create perfectly
real photons. Detection of real LbyL scattering is beyond the current experimental
capabilities.

A consolation

Despite not observing real QED/QCD LbyL scattering directly, there is no reason to
have doubts about whether the one-loop process where either e*e™, ¢g or W-boson
pairs mediate the photon interaction occurs. As already briefly mentioned in chapter
2, measurements of the anomalous magnetic moment of the muon and the electron
prove the correctness of the eTe™ loop contribution. Also, the contribution of the
box diagram is observed in Delbriick scattering and photon splitting experiments.
But unfortunately, this is all indirect evidence for LbyL interactions and therefore
for fluctuations in the vacuum energy. The detection of quasi-real (%2 < 1) QCD
LbyL scattering at /s > m, by ATLAS is direct evidence for LbyL scattering and
therefore for vacuum fluctuations. Furthermore, there is no reason to doubt that in
the limit Q% — 0 and for /s < m, photons also scatter. Nevertheless, it is impor-
tant that experimental physics strives to observe real QED LbyL scattering directly,
since its this process that has to be compared to classical electrodynamics. This
would prove a fundamental difference between QED and classical electrodynamics.
In addition, it would be direct evidence of fluctuations in the zero-point-energy.
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Conclusions

We have seen that the low energy effective field theory of Euler and Heisenberg con-
tains a lot of physics. Its prediction on the possibility of photon-photon interactions
has been proven right in many experiments. Still, the fundamental QED process
of real LbyL scattering via ete™ loops predicted by Euler and Heisenberg remains
unobserved and one could ask the question if this is even possible to detect, though
there is no reason to have doubts whether it occurs. There is indirect evidence for
QED LbyL scattering and there are no physical reasons that in the limit Q% — 0
the scattering process would not occur. The diphoton measurements of ATLAS
are direct evidence for quasi-real QCD LbyL scattering. The statistics in the in-
terval of 10 GeV in the diphoton invariant mass spectrum have to be improved in
order to draw conclusions on the possibility of x50 and ;2 diphoton decay. For
off-shell QCD LbyL scattering (via ui or dd), low energies on the MeV-scale are
required to optimize the cross section according to figure 3.2. In addition, according
to figure 4.7, new particles could be found in this energy regime. Experimentally,
it seems not possible to create real LbyL scattering events since it is not known
how to create the initial photons perfectly on-shell. The best approach to real QCD
LbyL scattering events is to minimize the virtuality with respect to the CoM energy.

The non-zero measurements on the PA and PD of optical light from the ISN RX
J1856.5-3754 could be explained through QED effects. However, the PD and PA
seem too low to be evidence for QED vacuum birefringence. Based on statistical
analyses using the current statistical data from [29], a PD of 30% would be strong
evidence for vacuum birefringence. We could not verify the measured values in
perturbation theory because of the extremely large field strengths around NSs. In
perturbation theory, any value for the PA between 0 and 27 can be obtained by
variation of B2L. To make better quantitative predictions of values of the PA and
PD in the optical regime, we have to take into account all higher order processes
in a. This yields a non-perturbative expression for At. This could be a topic for
further research. A reduction of the experimental error would be of great interest.
Consequently, this could potentially be the first solid evidence for direct detection
of a QED LbyL interaction via eTe™ loops and provide evidence for fluctuations in
the vacuum energy.

For now, we are left with the conclusion that both observations discussed in this
thesis are not evidence for non-linear QED effects.
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Appendix A

Dimensional analysis

We have converted a couple of times Heaviside-Lorentz (HL) (¢ = po = 1) units
together with natural units (A = ¢ = 1) to SI units. We have done this in the case of
the constants in the EH Lagrangian, the photon-photon scattering cross section (o)
and the angle of rotation of the polarization plane (/). All ST units can be expressed
in mass (kg), length (m), time (s) and charge (C) dimensions. This means that units
like Joules, Volts and Teslas are all derived from these dimensions. Let’s define all
these derived units in basic SI. We will also define the fundamental constants in SI
units. We will need this in the following calculations.

kg kgm? kgm? C
1r=1-— ,1J]=1 1V]=1——— ,1[4]=1—
T =155 A =10 =1 A =1
2 2 4 (A.1)
W= )= 2 = =" =c
— s ) [€0] = k:gm3 y [Ho| = 52 A2 y [C] = s y €] =
In these units the fundamental constants have the following values
kgm? A%t k
h=1.05x 10749 885 x 107122 ) = 4m x 1077
s kgm3 52 A2 (A.2)

c=30x102 ¢=1.60x107°C
S

EH Lagrangian

Let’s start with the constants in the EH Lagrangian. In HL and » = ¢ = 1 units
the EH constants equal

20/ 1402
C1 = ,Co =

45m? A45m?

B (A.3)
T
The EH Lagrangian density in natural-HL units is
1 20/ 1402 - =

=_(E*-B? E? — B?)? E-B)? A4

To begin with, we have to derive the units of the Lagrangian density. This can be
derived from the definition of the action.

5] = / dtdSaL] = [h) = Js
= =4

m3  s2m

(A.5)

49



On light by light interactions in QED

In HL and A = ¢ = 1 units the EH constants have units

1

i (A.6)

[c1] = [co] =

To match with the Lagrangian density in SI units we have to equate the following

terms
1£] = M[ea][BY]
kg 1 kg* 1 (A.7)
am ~ pgrans = Mg

Which means that the dimensions of v equal

_ kgA's®
om

el (A.8)

v is a quantity composed of powers of the fundamental constants €y, po, A and c.
It is important to realize that any combination of kilograms, seconds, meters and
amperes can be uniquely expressed in terms of the these fundamental constants. In
general, v has the following structure

v = e§ugh™c” (A.9)

where o, §, m and n € Z. Substituting the dimensions of these constants in this
expression we can derive the general dimensional structure of
¥

b= (B A H s (10

Regarding equation A.8, we can derive a system of four linear equations in «, 5, m
and n. These are

b—a+m=1
2m+n+pf—a= -1
mtn+f-ao (A.11)
20— 23 = 4
dao—n—m—23 =6
A solution is @ = 2, § = 0, m=3 and n=-1. This means that
h3 2
_ % (A.12)
c

This means that yc,B* has the same dimensions as the Lagrangian density in SI
units. We can perform the same analysis for the term

[£] = Mei] (Y] (A.13)

Substituting the SI units for each term gives

kg m*
om ~ 0lgim
kst At (A.14)
==
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This gives four linear equations
f—a+m=1
2m+n+ [ —3a = —5
200 — 20 =4
da—n—m—28=10

(A.15)

ﬁseg
5. The last term we

A solution is a = 2,38 =0, m = 3 and n = —5. Thus, v =
have to fix is

1£] = [y][ca][E*][B?] (A.16)
This gives
kgA*s®
] = 2= (A.17)
m
We get again four linear equations. The solutionisa =2, =0,m =3 and n = —3,
h36(2)

giving v = —3%. Actually, we should also convert the Maxwell Lagrangian to SI units
(the first term of the EH Lagrangian).

L] = l[E%] and (L] = [7][B7]

) (A.18)
Y1 =€ 72 = €C
This allows to define the EH Lagrangian in SI units. We get
€0, 1o 99 204271363 9 9 99 140427136(2) S =
L=—(F—cB ——(F*—¢*B —~(F-B

2 ( ¢B)+ 45m§c5( CB)+ 45mie3 ( ) (A.19)
_ €012 2 12 2042h3€(2) 2 2 212 20 13\2 .
_§(E —¢*B%) + 45m§c5((E — ¢*B*)* +7c¢*(E - B)?)

which is the desired result. Consequently, we can define ¢; and ¢y in SI units as

follows
202K

 4bmicd

,Cy = 701 (AQO)

C1

Cross section

The cross section of photon-photon scattering in SI units is easier to derive since
this expression does not contain charge dimensions. In SI units the cross section has
units of m?

o] = bH
bl = kg

~ plays the same role as before. This can be solved by using the appropriate powers
of A and c. v has now the following dimensional structure

m2m+n

8m+n

[v] = [A"][c"] = kg™ (A.22)

We can immediately see that m=8 and consequently, n=-14. Therefore v = Chl—i
The cross section in SI units is then
973 hw Y61 h )2
SE= R (A.23)

7= 101257 Ume2 S Uine
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Rotation of the polarization plane

To derive the expression for the rotation of the polarization plane in SI units we
start with determining the units of the EH constants. Substituting all the SI units
into expression A.20 we get

A4 510 04 86

[c1] = [ea] = P = g (A.24)

We have expressed the results now in Coulombs instead of Amperes. The polariza-
tion angle in natural HL units is

60

_ 2 1 _ 2
AYgpp = (4¢1 — o) B*wL = _45m§B wL (A.25)
Such that )
[AYqep] = Rad = [y][e:][B7][w][L]
kgm* (A.26)
b= g
Where v now has the form
= hmcnek
2m-+n (A.27)
] = kg
Sm n

here e denotes the elementary charge of 1.602 x 107°C'. We can see immediately
2

that m = 1 and k& = —2 such that n = —2. Therefore v = h@% In ST units the

rotation of the polarization plane equals

Atbopp = ———0 2,1, (A.28)
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Derivations of equations

Modified Maxwell equations
We start by proving the derivative identities 3.17.

F=F,F"
3]—" oF), oOFH OF,
VF,uV F " — 5>\50F;w F " poe, V3 065 )
Fo  0F MR, Okt Wl eE (B.1)
— F/\U + Fuvnuanuﬁégéﬂ — F)\J + nu)\nuUFuV — 2F/\U
The proof of the other identity is almost the same.
G =F,F"
0G  OF,, - oFm OF.s
F* 4+ F,, = 0,07 " + Fy L guvas
0Fy  0Fy M aFy RS T
F/\o 1 ,uzzaﬁ OF, YLap F}\O’ 1 ,Lwaﬁ(s/\(scr (Bz)
- 29 9FR, T %l

~ 1 ~ ~ ~
— F)\U + 56;111)\0};1#” — F)\a + F)\O' — QF)\U

Here we used the definition of the dual tensor. The EH Lagrangian is a function
of the field tensor only. The field tensor only depends on derivatives of A*, which
means the EH Lagrangian depends on derivatives of A* only. Therefore, the EL
equations of motion for fields reduce to

or  or or or
YAy aa, ~ %a@ay Y, =0 (B-3)

We write the EH Lagrangian in terms of F and G in natural HL units.

1 202 1402
Lpy=—-F F?
B =T Tt T 5w

Using the identities proven above, the modified equations of motion are

G? (B.4)

2
au—aﬁiH — &A—%FW + 4250‘ PAFF 4 i;f; HAGF")
P 2;"23 (A(FogFP)FH 4 28(Fog FP)FH) = 0 (B.5)
2 H 45m§ 2] af afB
40 . -
0, FH = Ou(A(F g FOPYFH 4 28(F g P M)

45m4

e
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Equations of motions including axions

In the case of axions the Lagrangian becomes

L= Lon+ %{(3@)2 —m??} - %¢{5a78(E2 — B +buy(B- B} a=sp
(0.0)* = 0,00"¢
(B.6)
In this case we have two fields (¢ and A*), yielding two equations of motion. Starting
with ¢ we get from the EL equations of motion

oL oL 18(8@) 1 d(0(89) ) G ) o
73(8T¢) — a—¢ = 87{2—8(87¢)8“¢+ 28u¢ 8—(37¢) }—l—m o+ 1 {5a’sF“ Fw/ +6a,pF'LL FW}

1 1 . G , .
_ 67{5%0% + iauqﬁn‘“(x} +m2p + Z{&LSF“ P + 00y P Fr |

1.1 G ) _
= {507+ 50700} + 20+ T { Bus P Fr 4+ 00 Fr |

G ~
= 0.0+ m) + T{ 8us P Fpy + 80y PP Fp | = 0

G 3
O¢ + m2p = —Z{éavsF“”FW + 5a,pFWFW}
(B.7)

which is an inhomogeneous Klein-Gordon equation. The equation of motion for A*
is the equation of motion derived above plus an axion contribution.

oL 0Lgn G -
_ Y~FEH - F[,LV Fuu —
aﬂ 3FW 8M aF/u/ + 2 aﬂ¢{5a78 + 5a,p } 0
% 4a? afy v By [y v [y
O™ — 45m§3u(4(Fa5F VM 4 28(Fop FO7) F1) + Gausb{éa,sF +0apl” } =0
w 402 aBy N % f
9, F" = 45m48u(4(FaﬁF VFH 4 28(F, g F*P)FM) — G@ugb{éa,sF + 0qp ' }

e

(B.8)

Classical and modified wave equations

The classical wave equations follow almost directly from the classical Maxwell equa-
tions. Applying the curl to Faraday’s gives

= 0B
Vx(VxE)——VxE
V(V-E)—-V?’E = —%v x B (B.9)
0*E
V’E = 60#0@

In the second line the first term vanishes due to Gauss’s law. The derivation for
the wave equation of the magnetic field is almost the same. Applying the curl to
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Ampere’s gives
= oF
V X (V X B) =V X (60#05)

0B

o

The derivation of the wave equations including non-linear QED corrections uses the
same tricks. Let’s start with the wave equation for the electric field. Gauss’s law
now takes the form

V= €olto

V-D=V-E+V-P,.=0
V-E=-V. P,

The expression for the polarization of the vacuum is found through the constitutive
relation for the electric displacement. We have calculated this in chapter 3. Applying
again the curl to Faraday’s law gives

(B.11)

, OB
Vx(VxE)——VxE
V(V-E)—V2E:—%Vx§
. 9 L
V(=V - Ppe) = VE = —E(V X (H + Myac)) (B.12)
- d ,0D .
f— . f— 2 = — [ —
V( v Pvac) v E at( 8t +v X MUGC)
a o OF 0P, .
_ . _ 2 R S vac
V(-V-P,.)—V’E at(at + +V X M)

Rearranging the terms to get the structure of a wave equation for the electric field
we get
O*FE

) ;
S~ VE=D0E=V(V: Fu) -

0?Pyoe 0 -
Ploe _0guit,) (B3

Starting point for the modified wave equation for the magnetic field is again Ampere’s
law.

. , . E 0P,
VxH:VxB—Vxch:a—+a o

ot ot
- OF 0P, -
VXB—E‘F ot ‘|‘V><Muac

V x (VXB):@(VXE)—{—E(VXPWC)—FVX (V X Myae) (B.14)
- ?B 0 - -
B J— 2 [ — JE—
V(V-B)-VB 5 + 8t(v X Puae) + V X (V X Myqe)

0 . B
&(V X Pvac) + V X (v X Mvac)

UB =

which is the modified wave equation for the magnetic field.
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