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Abstract

The AdS/CFT correspondence offers a new way of studying gravity. In this correspondence
it is not clear how the gravitational bulk physics emerges from the boundary CFT physics.
Recently it was proposed that tensor networks could give more insight into this problem.
A specific tensor network called a MERA resembles a discrete version of a spatial slice in
the AdS/CFT correspondence. From a critical state it creates an extra spatial dimension
resembling a spatial AdS slice. In this thesis this resemblance is further studied. Then
two tensor network methods, TRG and TNR, are used to study thermal states. These
states are of interest because a thermal CFT state has a black hole as its gravitational
dual. It will turn out that TRG will break down at a certain scale for critical states while
TNR is better able to study these systems, as expected.
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Chapter 1

Introduction

Since the inception of quantum mechanics and general relativity at the start of last cen-
tury, theoretical physics has struggled to understand gravity in a quantum mechanical
framework. The Anti-de-Sitter/Conformal Field Theory correspondence offers a new way
of studying this problem. It is a statement about the equivalence of two seemingly un-
related theories, one describing gravity in Anti-de-Sitter space (AdS) and one describing
a Conformal Field Theory (CFT), without gravity. This equivalence makes it possible to
understand gravity in a completely different setting namely on the CFT side of the equiv-
alence. The AdS/CFT correspondence has been a hot topic ever since its proposition and
although it is technically still a conjecture it is widely accepted and, globally at least,
fairly well understood. It is however completely not understood how the gravitational
AdS physics emerge (locally) from the CFT physics. Recently it has been proposed that
tensor networks may play a role in this emergence. In this thesis tensor networks are
examined and the similarity with AdS/CFT is studied. This research aims to answer the
question: “How is AdS/CFT realized in the MERA network?” Later more general tensor
network methods are used to calculate certain thermal properties of a CFT which are of
interest in the context of AdS/CFT because a thermal CFT is dual to a black hole.

Thinking about AdS/CFT in terms of tensor networks can help us better understand
gravity. A better understanding of gravity is of enormous academic interest. Moreover it
is necessary to understand the Big Bang or black holes, thus it is not purely an academical
question.

This thesis is structured in seven chapters. The first chapter is this introduction. In the
second chapter the motivation behind this thesis is explained in more detail. The third
chapter contains a basic introduction to CF'T’s, some specifics of the two-dimensional Ising
CFT and a short treaty of the thermofield double state. The fourth chapter introduces
tensor networks. In the fifth chapter the tensor network methods that were used during
this research are treated. In chapter six the results are given and chapter seven contains
the conclusion.

To fully understand this thesis some prior knowledge in quantum mechanics and quantum
field theory is required. Knowledge about CFT’s and AdS/CFT is desired. For the layman
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there is a summary in Dutch in Appendix D.

Enjoy!



Chapter 2

Motivation

2.1 Gravity

In 1687 Isaac Newton published his seminal Philosophiae Naturalis Principia Mathematica.
In this book he proposed the universal law of gravitation among other things. This law
states that every massive object exerts a force on every other massive object proportional
to the product of the masses divided by the distance between them squared. The motion
of planets and the falling of apples suddenly could be explained by the same principle.
Yet this law was phenomenological in nature as Newton himself pointed out:

Thus far I have explained the phenomena of the heavens and of our sea by the
force of gravity, but I have not yet assigned a cause to gravity. -Isaac Newton

1]

His law could describe a number of phenomena yet it did not become clear why the
phenomena occured in this way.

In 1915 Albert Einstein published his theory of general relativity. In this theory space
and time should be thought of as being part of spacetime. The dynamic relation between
massive objects moving in a spacetime and the spacetime itself are given by the Einstein
field equations. A laymans exlanation is often given by imagining a trampoline. If we
would roll a small marble over the trampoline it would move in a straight line. Now
suppose we put a heavy ball in the middle of the trampoline. If we now roll the marble
over the trampoline, its trajectory will be diverted since the shape of the trampoline
changed because of the heavy ball. Such an interplay also happens between heavy objects
and spacetime and an apparent attraction is in fact just the moving of objects along
geodesic lines in that spacetime.

Also in the early 1900’s quantum mechanics came into play and it became apparent that
Nature fundamentally works quantum mechanically. From then on people have tried to
understand gravity in a quantum mechanical way, however this has not been succesfully
done.
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2.2 Hints from Black Holes

By combined efforts of Bekenstein and Hawking in the 1970’s it became apparent that
black holes have entropy proportional to the area of their event horizon. This is a strange
property as can be demonstrated by thinking about a gas in some volume. The maximal
entropy is proportional to the number of degrees of freedom needed to give a complete
description of the system. The entropy is a measure of the amount of microscopic states
that correspond to the same macroscopic state. Degrees of freedom are thought to be
local and therefore it is clear then that in a larger volume the molecules have more pos-
sible configurations that correspond to the same macroscopic state. The entropy is thus
proportional to the volume, which is very typical.

Now suppose we consider a volume with so many molecules that a large black hole will
form due to gravitational collapse. Before the large black hole is formed the entropy
is proportional to the volume. The moment the large black hole is formed the entropy
suddenly becomes proportional to the area. For a large enough black hole the volume
entropy is larger than the area entropy and thus the entropy will decrease significantly.
However the second law of thermodynamics states that entropy cannot decrease.

The most natural explanation of this puzzle is that there must have been a theory the
whole time in which a full description was proportional to the area of the system. This is
known as the holographic principle. A gravitational theory, a theory that can make black
holes, should admit a description that is proportional to the area of a system. This means
that if we think of the theory in its fundamental degrees of freedom it is actually living in
a dimension lower and that these degrees of freedom are not local.

Just as a hologram is a number of carefully tuned lights in a two-dimensional array that
is observed as if being three-dimensional, the world is actually (2+1) dimensional yet we
oberserve it as being (3+1) dimensional with gravity.

2.3 AdS/CFT

The AdS/CFT is a realization of this holographic principle. Is was first proposed by
Maldacena in 1997 [2]. It is a statement about the equivalence of two theories that are
seemingly unrelated.

On the one side of the duality is a string theory that describes gravity in D41 dimensional
anti-de-Sitter space. This is a maximally symmetric Lorentzian manifold with negative
scalar curvature.

On the other side of the duality is a D dimensional conformal field theory which is a
quantum field theory with an additional symmetry. For instance a certain type of Yang-
Mills theory that describes strongly coupled elementary particles.

The duality makes it possible to study previously not understood phenomena by translat-
ing them to the other side of the duality and studying them there. One example of this is
the calculation of the viscosity of quark-gluon plasma by translating this problem to the
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gravitational side and solving it there [3]. It can also help to better understand gravity as
it allows the translation of gravity to the CFT side, where it can be studied.

The duality is mostly pictured as a boundary that represents the D dimensional CFT and
a bulk that represents the D+1 dimensional gravitational side.

4-dimensional
Minkowski
spacetime

conformal | gravitational theory
field theory (string theory)

(CFT)

Figure 2.1: Depiction of the AdS/CFT conjecture with a CFT on the boundary and a
gravitational theory in the bulk. Figure taken from [35].

This duality has given us a new way to study gravity and is still a very hot topic although
it is not yet fully understood. One thing that is completely not understood is the way
the gravitational physics in the bulk emerges from the CF'T physics in the boundary. It is
believed that the scale of phenomena in the boundary is related to depth of phenomena
in the bulk. Meaning that things happening on a small scale in the boundary are dual to
phenomena happening close to the boundary and phenomena happening at large scales in
the boundary are dual to phenomena happening deep in the bulk, as shown in Figure 2.2.

Figure 2.2: Depiction of the idea that scale is related to depth in the bulk. Figure taken
from [36].

The original AdS/CFT article and some other relevant articles can be found here [2],[4],[5],[6].

2.3.1 Ryu-Takayanagi Proposal

Another insight into the workings of AdS/CFT is given by the recent Ryu-Takayanagi
proposal [7]. This proposal states that the entanglement entropy of a subsystem in the
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boundary with the rest of the boundary system, is proportional to the minimal area given
by “dipping” into the bulk.

In classical physics the only reason to describe a system by a density matrix is lack
of information. In quantum physics there is an additional reason. Suppose a system
defined on area A and B is in a pure state with wavefunction ¢ («a, ) where a and g are
complete sets of commutating observables in subsystem « and [ respectively. The state
on subsystem A can be described by the reduced density matrix on A

pa=y v (a,B)p(a’, B)
B

For a factorizable state ¢ (a, ) = ¢(a)x(B) it is possible that the state on A is also pure.
Thus for an entangled state there is a certain “entropy” due to the entanglement between
subsystems.

S = —Tr[palog(pa)l,
this value is the same for pp as long as the complete state is pure.

The Ryu-Takayanagi proposal states that the entanglement entropy of a certain subsystem
in the boundary is given as

Sa = Area/AGN (2.1)

where Gy is Newtons gravitational constant and the area is given by the minimal area that
can enclose subsystem A. For a graphical depiction see Figure 2.3. The area has a certain
extension in the bulk because the bulk is hyperbolic and thus it can be area-efficient to
extend into the bulk.

,
£/

Emergent holographic direction

Figure 2.3: The entanglement entropy of the region in the boundary is given by the
minimal area dipping into the bulk.



2.4. MERA AS DISCRETE ADS/CFT 11

The Ryu-Takanayagi proposal is well established and tells us that entanglement plays an
important role in going from the boundary to the bulk.

2.4 MERA as discrete AdS/CFT

In a paper from 2009, Swingle made a connection between tensor network methods, as
were being used in condensed matter physics, and holography [8]. In particular he noticed
that methods that used a real-space renormalization group flow could be thought of as
representing a generalized notion of holography as it exists in efforts to describe quantum

gravity. In other words he noticed a similarity between these tensor network methods and
AdS/CFT.

Figure 2.4: A MERA tensor network representing a quantum mechanical state defined on
a circle. Figure taken from [34].

These methods can describe a quantum mechanical state by reorganizing it according
to scale, the structure in which this information is reorganized can be thought of as
representing a discrete extra spatial dimension. Representations of states with a finite
correlation length give rise to a simple geometry. Representations of states with infinite
correlation length give rise to an extra hyperbolic spatial dimension resembling empty
Anti-de-Sitter space. An example of such a representation is given in Figure 2.4 where the
similarity with a spatial AdS slice is apparent. States with an infinite correlation length
are critical states which are the discrete equivalent of conformal field theories. Thus this
particular procedure creates a discrete space resembling Anti-de-Sitter space starting from
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a critical state, which is the discrete equivalent of a CFT.

These tensor network methods could explain how the Anti-de-Sitter physics in the bulk
emerge from the CF'T physics in the boundary. Or at least these methods can be studied
as a toy model to increase our understanding of this emergence.

2.5 Entanglement growth due to time evolution of black
hole interior

In a paper from 2013 Maldacena and Hartman [9] consider a thermofield double state
which represents two spaces connected by a black hole. They then cut the complete
system in two (through the black hole) and compute the entanglement entropy between
the two cuts of the complete system. Then time evolution is turned on and the minimal
surface going through the black hole keeps growing in size with time. For the calculation
or further details see Appendix A or the original paper [9].

In the paper the authors propose that this growth can be understood from a tensor network
point of view. If we represent the thermofield double state in tensor network form and
then turn on time evolution such a growth is exactly what one would expect.

Tensor network methods are being used to study the inside of black holes and to better
understand the emergence of spacetime in AdS/CFT. Hence they are interesting to study
in the context of quantum gravity.



Chapter 3

Conformal Field Theories

3.1 Basics

A conformal field theory is a quantum field theory that is invariant under a conformal
transformation. If g, is the space-time metric then a conformal transformation is an
invertible mapping x — x’ that leaves the metric invariant up to a scale,

G (@) = M) gy (). (3.1)
These transformations form a group which has the Poincaré group as a subgroup, as these
correspond to the special case A(x) = 1. These transformations are called conformal

because they leave angles invariant, hence preserving ‘form’. Apart from the regular
translations and rotations, conformal transformations contain dilations and the special
conformal transformation, respectively given as
xH — bra?
o H w__ - "
T — o’ =ax T =" = . 3.2
’ 1 — 2bx + b2x? (3:2)
The extra conditions due to the conformal symmetry constrain the theory more than
a regular QFT. For instance, under a conformal transformation, a spinless field ¢(x)
transforms like

6(2) = $(a') = 120 |2 g(a), 33)

where d is the space-time dimension and A is the conformal dimension of the field. This is
an eigenvalue of the dilation operator working on the field, thus a scalar that corresponds
to a field. P, and K, are the generators of the translations and of the special conformal
transformations, these act as ladder operators for the eigenvalues of the dilation operator
D,,, on the irreducible representations of the transformations, the fields. Thus there are
fields that are annihilated by the lowering ladder operator, these fields are called primary
fields. From these primary fields other fields can be obtained by acting on the primary
with the raising operator, these field are thus related to the primary fields and are known
as descendant fields.

13
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In two dimensions the conformal algebra can be extended to an infinite dimensional algebra
known as the Virasoro algebra:

c
[Lyn, Lin) = (n —m)Lyptm + ﬁn(n2 — 1)0n4m,0

Ly, L] =0 (3.4)
[Ly, Lin] = (0 — m) Ly + in(n2 — 1)0n4m,0

12

where L are the Virasoro generators and ¢ is a number called the central charge. The
number c¢ is the only parameter in this definition hence a certain value of ¢ uniquely defines
a conformal field theory. The central charge can be thought of as an extensive measure of
the number of degrees of freedom in a theory. A special class of two-dimensional CFT’s
is the one where c is smaller than one. The theories in this class are known as minimal
models. The special property of this class is that they have a finite number of primary
fields.

More information regarding CFT’s can be found in [10].

In the next section a minimal model will be presented known as the two-dimensional Ising

CFT.

3.2 Two-dimensional Ising CFT

The Ising model is a statistical model where a number of spins are put on a lattice, only
nearest neighbour interactions are taken into account and there possibly is an external
magnetic field.

The two-dimensional Hamiltonian without external magnetic coupling is given below,

N-1 N N-1
H=-Y % 5;Sitj—» > SijSij+1 D=2 (3.5)
i=1 j=1 i=1 j=1

For typical temperatures, two-point correlation functions decay exponentially fast with the
distance between their two points. For a special temperature, the critical temperature,
two-point correlations depend on the distance between their points like |21 — z2|~¢ which
is typical of a critical system. At criticality the Ising model is described by a CFT in
the continuum limit. By performing a Jordan-Wigner transformation the action of this
two-dimensional CFT can be written as

5= / P(pdis + Gdi), (3.6)

where 1) is a fermion. This is a minimal model with a central charge of % Since it
is a minimal model it has only finite primary fields and the primary fields of the two-
dimensional Ising CFT are I, 0, e which are classified by the conformal dimensions Aj =
0,A, = §,Ac = 1. For more details see di Francesco [10].
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3.3 Eternal black hole and Thermofield double state

An eternal black hole consists of two space-time regions that are connected via a black hole
with a future singularity and a white hole with a past singularity. It is a idealized because
an actual black hole formed by gravitational collapse only has one external space-time
region and no past singularity. The eternal black hole can be represented in a Penrose
diagram as shown in Figure 3.1 .

houndary 2 boundary |
fefi right

Figure 3.1: Penrose diagram of an eternal black hole.

In quantum mechanics a thermal state is described by the mixed state with density matrix
p=e PP A mixed state can always be thought of as being part of a larger system that
in its totality is pure. The reduced density matrix of the actual system then gives us the
original density matrix. This is known as purification. For the thermal state the whole
system is doubled. For a QFT this means that for every field there exists another field in
a different space. If the eigenstates of the Hamiltonian are |m) and |n), the states of the
doubled system are ]m) |n). Now we consider the following state of the double system

|TFD) = e PEn/2 1n1) |ng) (3.7)

also known as the thermofield double state. Here Z(f) is the partition function. It is easy

to check that the reduced density matrix on either one of the systems gives the thermal
density matrix. This is a trick to study thermal behaviour of certain systems.

In [11] Maldacena proposed that the eternal black hole is the AdS equivalent of two CFT’s
that together describe the thermofield double state. Each CFT exists on the asymptotic
boundary of a space-time region. The AdS/CFT equivalent of the special thermofield
double state of these two CFT’s is given by two AdS spaces that are connected via a black
hole.

The eternal black hole is interesting to study in the context of the ‘information paradox
of black holes’ which can be rephrased in the question of the smoothness of the horizon,
also known as the firewall paradox. The horizon of the eternal black hole is smooth, as
can be understood from for instance the calculation of Maldacena and Hartman [9] where
the black hole has an interior. The eternal black hole is a very atypical black hole as
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there is a very specific entanglement between the two sides. A more typical black hole
can be made by acting on the eternal black hole with a time evolution operator. It turns
out that it should be possible to do this in the tensor network picture. Thus in light of
the information paradox it would be interesting to look at the smoothness of a black hole
obtained from time evolving an eternal black hole, in the tensor network picture. For an
introduction on the information paradox see [12], [13].
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Tensor Networks

4.1 Variational Principle

Suppose there is a Hamiltonian with an unknown ground state. The variational principle
gives an upper bound on this ground state in the following way: An arbitrary normalized
state [1)) can be written as a linear combination of the orthonormal eigenvectors of the
Hamiltonian.

|¢> = Z Cn¥n (4.1)

neSpec{H}

Computing the expectation value of the Hamiltonian then gives

<H> = <Z mem|Hz cnwn> = Z Z c:nEncn <¢m‘wn> = ZEn’Cn‘Q (4'2)

m

The ground state is by definition the smallest eigenstate so that Fys < F),, and therefore

<H> > Egs Z |Cn|2 = Egs (4.3)

n

Normally the proposed state depends on a set of parameters {a;} and minimizing the
expectation value for the Hamiltonian with respect to these parameters gives the best
bound on the ground state.

Varying over the whole Hilbert space will yield the exact ground state. However in most
cases of interest this computation is extremely complicated. Therefore often a subspace
is varied over. The choice for a specific subspace, and thus the set of proposed states, is
called an “ansatz” which is german for ‘approach’. Some ansitze approximate the ground
state very well and the choice of ansatz is therefore very important.

A big problem in quantum many-body physics is that the Hilbert space of a system grows
exponentially in its size. For example: the dimension of the Hilbert space of a one-
dimensional chain of N spin 1/2 particles grows as 2. Exactly solving such a system

17
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quickly becomes computationally hard and calculating the behavior of a macroscopical
piece of matter with N = O(10?3) becomes virtually impossible.

It is not straightforward to find an ansatz that reduces the Hilbert space tremendously yet
gives a good approximation to the ground state. It is exactly in this context that tensor
networks arise: as a variational ansatz that reduce the computational effort tremendously
yet give a tight bound on the ground state for a certain class of physical systems.

4.2 Graphical Tensor Notation

In the context of Tensor Network States, tensors and tensor networks are often represented
in a graphical way, originally proposed by Penrosel'4. A rank (n,m) tensor is represented
by a shape with n legs going up and m legs going down, different shapes are used to
distinguish between different tensors. Indices can be contracted by joining an upgoing leg
with a downgoing leg. This graphical representation of tensors is very similar to the index
notation of tensors (Rfjbc, T,,,) for instance: an expression with no external legs, no indices,
is a number. An upgoing leg can be changed into a downgoing leg by contracting it with
the metric, just as the metric raises or lowers indices in (pseudo)Riemannian geometry.
This graphical notation is a tool to visualize multilinear mappings in an intuitive way.
Since this can best be shown graphically Figure 4.1 hopefully explains a lot.

ﬁﬂ ¢ <>

a
A TrABCD)
M s‘;‘- N be ﬂjgf N be

B 1
s .

p“ .'pu .g,ew p'u'p.u H:fbr;
g J ; i
on [ U=
)k v k
g o 5 959 ok

Figure 4.1: Some examples of the graphical tensor notation.
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4.3 Tensor Network States

Using Dirac’s ‘braket’ notation, a vector |¢) is a (1,0) tensor and a dual vector (¢| is a
(0,1) tensor. A N-particle state can then be respresented as a (N,0) vector consisting of
N single particle states in the following way:

d d d
[0) =D > Clivip iy [Wi0) [thin) -+ [hiy) (4.4)
i1=112=1 in=1

If the Hilbert space of the single particle states is d the Hilbert space of the N-particle
state has dimension d”. In order to describe the complete N-particle state, d¥ coefficients
need to be specified.

The single particle states can also be connected via a tensor or a multilinear combination,
a network, of tensors. For example in the following way:

) =T |¢1) -+ |¢n) = X" O [f1) -+ ) - (4.5)

The structure of the tensor network then describes the inner workings of the N-particle
state. If a typical tensor in this network has p indices that can take x values, O(NxP)
coefficients need to be specified in order to describe the complete state. Letting x be
exponential in N the whole Hilbert space of the state in equation (4.4) is covered. This
would however give an equally complicated computation since again O(e) coefficients
need to be specified. The power of tensor network states is that for some physical systems,
a finite value of y, (5-10) together with a certain network structure is enough to give a
good approximation of a N-particle state.

Note that x = 1 corresponds to a N-particle state which is completely factorizable in
terms of single particle states and thus corresponds to a state without entanglement. x
then can be thought of as the amount of entanglement that is permitted in the system.

A tensor network is useful if it can represent a N-particle wavefunction efficiently and if it
is possible to efficiently extract information from it. This puts certain limitations on the
possible network structures that can be formed.

The left tensor network in Figure 4.3 is exactly the state described in equation (4.4). Since
dV coefficients need to be specified, a computation of the N-particle state |¢)) scales as
dV, exponential in the scale of the system. The tensor network in the middle of Figure
4.3 consists of N x N tensors. The computation of the wavefunction then scales with the
size N as O(N?). The tensor network representation of the N-particle state on the right
of Figure 4.3 consists of N tensors. The computation of this wavefunction scales with N

as O(N).

In quantum mechanics physical quantities are calculated by expectation values of observ-
ables (Hermitian operators). A tensor network is useful if these expectation values are
easily evaluated. This is not the case for the left state as given in Figure 4.3. This state
is not efficiently described and this does not change when a (bra| tensor network state is
added. Expectation values for this state are therefore not efficiently evaluated. In Figure
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i\ YA

e

ipdy --- iy

iy .oy pdg e iy

dV O(N?) O(N)

Figure 4.2: Three tensor networks representing a N-particle wavefunction [¢) from N
single site wavefunctions ¢;, and associated computation cost of the wavefunction.

4.3 expectation values are shown for some local operator O at location z; for the other two
example states. To get the expectation value all tensors need to be contracted. For the

; 960

Ofx) _
(610(w:)|)
(W]0(:))

Figure 4.3: A local operator and its expectation value for two different states.

N x N state there is no efficient way to do this. For instance, naively starting to contract
the tensors in the upper left corner, the number of legs of the upper left tensor quickly
grow. It can be shown that the computation of this expectation value is exponential in
the system size N and thus this tensor network state is not useful. The expectation value
of the right tensor network state in Figure 4.3 can however be evaluated polynomial in N.
With N contractions the upper tensors can be contracted with the lower tensors and then
in again N-1 contractions all tensors can be contracted to a number. The computation is
proportional to N2 and thus is polynomial in N. Such a state can be efficiently evaluated
and expectation values can be efficiently calculated using this state. It is thus a useful
tensor network. This state, also shown in the right of Figure 4.3, with periodic boundary
conditions can be written as:

MlilblM;;bz .. Mgblzvbzv |wa1> W)@> . thv) (4.6)

since this is just a product of matrices this state is known as the Matrix Product State
which will be discussed in the next section.
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We have seen that not all possible tensor network states are useful. In the following
sections we will treat two useful tensor network states.

4.4 Matrix Product State

LA A

Figure 4.4: A Matrix Product State in graphical tensor notation.

The Matrix Product State or MPS ansatz has a long and rich history. In retrospect it
was first used in 1975 by Kenneth Wilson in his Numerical Renormalization Group!'®
which is a technique to deal with quantum many body systems where impurities play
a role. Wilson used this to solve the Kondo problem. It can be shown that the NRG
procedure actually leads to a Matrix Product State.!'6l In 1992 Steven White invented the
Density Matrix Renormalization Group that also uses Matrix Product States!'7l. This is
a variational technique to estimate the low energy behavior of some quantum many body
systems. For one-dimensional systems it is still the most efficient method ('8,

In the previous section it was shown that the MPS is a useful tensor network. This
is however no statement about its physical relevance. Since the MPS state lives in a
drastically smaller Hilbert space then the actual state one might expect the MPS state
to be oversimplified and thus to not be physically relevant. It turns out that this is not
the case and that there are certain classes of systems that can be accurately described by
a MPS state. There is no theorema that states which kind of systems can be accurately
described by MPS states!!8 but several years of numerical evidence lead to the class of one-
dimensional gapped local Hamiltonians. This correspondence will be made more plausible
by looking at two features of this class of Hamiltonians that the MPS states also turn out
to possess. A gapped Hamiltonian is one that has an energy gap, 1 — Eg > 0. A typical
correlator of a gapped Hamiltonian decreases exponentially with distance as

(Y| A(21) B(x2) [Yp) = Clzy, x0) = e 1717221/ (4.7)

where £ is the correlation length.

Another feature of one-dimensional gapped Hamiltonians is that the entropy as a function
of the length gets saturated. This saturation happens from the correlation length and up.

S(L) < constant. (4.8)

Correlations in Matrix Product States also depend exponentially on the distance between
the operators. This can be understood by the following qualitative argument that is also
shown in Figure 4.4. If operator A acts on z; and operator B on x5 all tensors to the left
of and including x; can be contracted into a dual vectorlike object (L|. This can also be
done for the tensor at x2 and all tensors to its right to form |R). In between these vectors
we have |z1 — x2| copies of M. The correlator can thus be thought of as the expectation
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value of MI*1=22l which will be proportional to A\#1=22 where X is some eigenvalue of M
that is smaller than 1 due to normalization. The correlator thus decreases exponentially
with the distance between the two sites.
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Figure 4.5: Consecutive contractions of a correlator.

If a Matrix Product State is arbitrarely divided in two parts, A and B, the state of only B
is described by a density matrix where A is traced out, p4. The bond index between parts
A and B can take x different values. The density matrix p4 can have at most rank y since
there are y ways the bond can be contracted, all ‘internal’ states of A are traced out. If this
density matrix is maximally mixed the entanglement entropy is log(x). The entanglement
entropy is thus at most log(). Just as a one-dimensional gapped Hamiltonians, Matrix
Product States have exponentially decreasing correlators and a maximal entropy, which
leads us to believe that this class of Hamiltonians can be described by Matrix Product
States.

In the past two decades Matrix Product States have been extensively used as a variational
ansatz in condensed matter physics.

Matrix Product States can be generalized to two dimensions, these are known as Projected
Entangled Pair States.!!Y)

Caas)

A B

Figure 4.6: Division of a matrix product state.

4.5 MERA

The Multiscale Entanglement Renormalization Ansatz was proposed in 2006 by Guifre
Vidal% as a class of quantum many-body states that can be efficiently simulated. The
MERA is a tensor network that has a distinct causal structure and allows for efficient
and exact computation of expectation values of local operators. The MERA represents a
quantum many-body state on a D-dimensional lattice as a network of isometric tensors in
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D+1 dimensions. This extra dimension can be thought of in two ways, as the time, where
the tensor network represents a certain quantum circuit doing a computation or as a label
representing scale in a coarse-graining procedure known as entanglement renormalization.

Entanglement Renormalization

Real-space renormalization methods, as originally proposed by Wilson!!®)| truncate Hilbert
spaces of a neighbouring block of sites in a system with the aim of reducing its total Hilbert
space. The total Hilbert space of a system on a lattice £ in D spatial dimensions is given
by

He = Q) H. (4.9)

seL

were s is a lattice site and H, the Hilbert space of a lattice site with finite dimension. A
block of neighbouring sites B in £ has Hilbert space

Hi = Q) He. (4.10)

seB

A renormalization step coarse-grains the lattice £ to a new lattice £'. Each lattice site
s’ is obtained from a block in £. Since the aim of this procedure is to reduce the total
Hilbert space, the Hilbert space of the new site s’ should be smaller than the Hilbert space
of the whole block. So a coarse-graining step is used where only a subspace of the block
Sp is mapped to the new site s'.

Hy = Sp C Hp (4.11)
This coarse-graining is characterized by an isometric tensor w,
w':Hpg — Hy, whw=1. (4.12)

Since information is lost while coarse-graining, generally ww! # I. The selection of a
subspace Sp is important, a large subspace will make computations hard yet for a subspace
that is too small the coarse-graining will lead to a loss of important features of the original
state. The optimal choice for this subspace was found by White as part of his DMRG
algorithm['”). This optimal choice of subspace is spanned by the largest m eigenvectors
of the reduced density matrix on block B (where £ — B is traced out), where m depends
on some prescribed truncation error € > 1 — "™, p; where p; are the eigenvalues of the
reduced density matrix. m may be thought of as a measure of entanglement between B
and £ — B as it is approximately the rank of the Schmidt decomposition of the state

) = > Vilp) @loi),  loi) € Hep. (4.13)
=1

This means that for systems with a certain entanglement the effective Hilbert space per
site grows with each coarse-graining. This makes the computation unfeasible after a
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number of iterations of this coarse-graining procedure. It is also unsatisfactory from a
conceptual point of view: a real-space renormalization procedure can be thought of as
succesive rescalings and this procedure thus should have scale invariant systems as fixed
points.

The MERA attacks this accumulation of entanglement by introducing ‘disentanglers’. The
aim of these disentanglers is to deform the boundaries of the block B using a unitary trans-
formation so that the short range entanglement, the entanglement between the boundary
sites of a block and their neighbours outside the block, is decreased. These disentanglers,
u;, are mappings of the following form:

u:Hs, @ Hgy = Hsy @ Hs, wu=wu =1 (4.14)

Here the u’s need to be chosen in such a way that they decrease the entanglement of the
neighbouring pairs over the boundary of the block B, where B is the block to be coarse-
grained. In this way the effective rank of the density matrix of B will be lowered. For the
one-dimensional case u needs to be chosen such that:

rank(tr | (u1 @ u2)p®(ur @ ug)'|) < rank(tr, g [pB} ). (4.15)

Succesive applications of disentanglers u’s and coarse-graining isometries w’s is known as
Entanglement Renormalization. The tensor network obtained by performing this proce-
dure on a lattice is known as the Multiscale Entanglement Renormalization Ansatz. Part
of a MERA is shown in Figure (4.5). A distinction is made between MERA’s that have a
different number of incoming legs in the isometry tensors, giving rise to a binary MERA,
a ternary MERA and so on.

Figure 4.7: Graphical representation of a binary MERA. The triangles are isometries and
the squares are disentanglers.

For a finite lattice after a finite amount of renormalization steps there are no tensors left
to coarse-grain, the last tensors are then contracted with one last tensor. This tensor is
called the top-tensor and can be thought of as a quantum state in the basis of the effective
block sites, and thus is normalized: T %2 (T}, ;,)* = 1.

In [20] Vidal does computations involving the reduced density matrix for a lattice of 16,384
spins with a truncation error € below 5 x 1077 with an effective Hilbert space of dimension
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8, thus keeping 8 singular values. Vidal then estimates that an equivalent computation
without disentanglers would easily need a 500-1000 dimensional effective Hilbert space.

There is another point of view on MERA’s. Here the tensor network is seen as a quantum
circuit that transforms a product state on N sites into some entangled state on N sites.
The MERA should then be considered in the opposite direction of the renormalization
and the isometric tensors should be changed so that

w':Hp — Hy ® Hioys whw = 1. (4.16)

where |0) is one of the factorizable initial states going into the quantum circuit. Note that
the only difference with the isometry of equation (4.12) is the |0). In this point of view
the MERA takes some unentangled initial state on N sites and each level of tensors adds
entanglement (on a certain scale) producing an entangled N site state.

Features of the MERA

One nice feature of the MERA is that it has some implicit notion of causality and that
the causal cone of a site always has some bounded width. This causal cone of lattice
site x; is formed by all sites that can be influenced by site x; through the engtanglement
renormalization procedure as shown in Figure 4.8. The width of the causal cone is always

Figure 4.8: Causal cone of lattice site x;.

smaller than some number independent of the number of lattice sites. For a lattice in D
spatial dimensions the number of outgoing legs of a causal cone is at most 3”~1 x 4. In the
point of view of the quantum circuit that entangles an unentangled state the causal cone
consists of all legs and tensors that can influence the outcoming state on site x;. Because
of this the reduced density matrix on site x; only depends on the legs and tensors in the
causal cone, making the computation of a few reduced density matrices computationally
affordable.

In section 4.3 two criteria were given for a tensor network state to be useful. It must be
able to efficiently represent the wavefunction and it must be able to efficiently compute
expectation values. The MERA is not able to efficiently represent wavefunctions. Lots
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of contractions need to be done in order to evaluate the wavefunction and there is no
algorithm to do this in a efficient way.

When computing expectation values with the MERA something nice happens. The tensors
in the MERA satisfy

wu=w'=1, ww=I. (4.17)

I
wh w
+ =
w wt

Figure 4.9: Properties of u and w in graphical notation.

These properties make sure that when we evaluate an operator acting on some sites, only
the causal cone of these sites need to be calculated. The parts outside of the causal cone
cancel each other out, as is illustrated in Figure 4.10.

Figure 4.10: Illustration of cancellations happening when calculating an expectation value
with a MERA.

Because of this property expectation values of MERA states can be calculated efficiently.
This is normally done by introducing an ascending superoperator that raises the operator
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to a new level of renormalization as illustrated in Figure 4.11. Then the operator is raised
until the top tensor is reached and an expectation value is obtained.

Figure 4.11: The ascending superoperator raises the local operator one level.

On top of the regular gapped Hamiltonians the MERA can also accurately describe gapless
Hamiltonians. These systems do not have a gap between the ground state and the first
excited state and often describe critical systems. Just as in the MPS case the correspon-
dence between the MERA and the gapless Hamiltonians will be made more plausible by
considering correlations and the behavior of entanglement entropy. Typically in systems
with a gapless Hamiltonian, correlators depend on the distance between two sites as

(| A(z1)B(x2) [v) = Cla1, w2) = |o1 — 2| ™° (4.18)

for some constant c. In one dimension the entanglement entropy of a block of L sites scales
21]
as

S(L) x log(L). (4.19)

The ‘height’ of a MERA with N sites is of the order of log(N). For a finite binary MERA
it takes o log N steps to be left with one tensor. A correlator on two sites x1 and zo will
depend on the distance |z1 — x2| as |x1 — x2| ¢ for some constant c. After O(log|z1 — x2|)
renormalization steps the sites x1 and xo are mapped into one. After this, calculating the
correlator is just a calculation of an expectation value, and thus not dependent on the
distance |x1 — x3|. Just as in the MPS case we can argue that the correlator depends on
the distance as some eigenvalue exponential in the distance. Because z/°9®%) = ¢19(2) the
correlator can be written as

C(:L‘l,:L'Q) = )\log|ac1—:c2| = |."L‘1 — l‘2|l09(>\) = |:E1 — {L‘2|_C (4.20)

which is the same form as in equation 4.18 for the gapless Hamiltonian.

Gapped Hamiltonians typically have a finite correlation length. This can be represented
by a MERA of a finite ‘height’.

The entanglement entropy of a block of L sites scales with L as log(L). It takes O(log(L))
renormalization steps to map all L sites into one. After this the reduced density matrix
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does not depend on L. The number of states that need to be traced out depends on the
number of legs that need to be (minimally) cut in the graphical notation as seen in Figure
4.12. This scales with the number of sites as log(L) and thus agrees with the result from
the gapless Hamiltonian in equation 4.19.

—

O(log(L))

L

Figure 4.12: The number of bonds that need to be cut to get the reduced density matrix
on L depend logarithmically on L.

When interpreting the MERA as a spatial AdS slice the behaviour of the entanglement
entropy means that the MERA construction satisfies the Ryu-Takayanagi proposal.

4.6 Continuous MERA

As the MERA can be thought of as a real-space renormalization procedure it should be
possible to define a similar procedure for continuous quantum states. Currently efforts are
being made to make a continuous MERA or cMERA. For more information about this see
[22],[23].
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Tensor Network Methods

5.1 MERA optimization

Earlier it was argued that a MERA can represent the lowest lying energy state of a given
Hamiltonian with nearest neighbour interactions. In this section it will be explained how
to obtain a MERA state representation, following [24].

5.1.1 Algorithm

The algorithm starts with a MERA state that consists of random unitary and isometric
tensors. The lowest lying energy state is the state that minimizes the expectation value
of the Hamiltonian, so the lowest lying energy state is the state that minimizes the tensor
network representation of the expectation value of the Hamiltonian.

The algorithm optimizes tensors one by one. First the two-site Hamiltonians, h,,41 are
shifted by a constant value so all eigenvalues are negative. This can be done by redefining
;'f’,, 1 = hrri1 — AmaeI. Suppose tensor w is optimized first. The expectation value of

the Hamiltonian depends on w and w',
E(w) = tTr[AwBuw'] + ¢,

Here ¢, is the contribution coming from the part of the MERA that is outside of the
causal cone of w and tTr stands for tensortrace which means we have to contract the
‘external’ legs in the appropriate way. At this moment there is no known way of solving
this equation, with the extra isometric constraint on w[?4. This is overcome by considering
w and w' to be independent. The tensor network representing the expectation value is
divided in w and I'y,, the environment of w.

E(w) = tTr{wly] + cp,

where ¢,, is irrelevant in optimizing w. The environment I'y, is decomposed in singular
value decomposition I'y, = USVT. The w that minimizes this is given by —VUT,

min E(w) = min tTr[wly] = tTr[-VUTUSVT] = tTr[-S] = =S\

29
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That this gives the minimal value might be intuitively clear and is proved in the appendix.
After calculating the new w, it is updated giving rise to a new w', a new environment is
calculated T',(w') and this is repeated a number of times. Because an isometry tensor
lies in the causal cone of six two-site Hamiltonians the environment is made up of six
contributions. A unitary tensor lies in the causal cone of three two-site Hamiltonians and
therefore the environment is made up of three contributions.

Figure 5.1: left Contributions to the environment of isometric tensor w. top right Defi-

nition of two-site Hamiltonian and density tensor for site {r,r + 1} and layer 7. middle
right Contributions to the environment of unitary tensor w.

}’1 ol l:::l /):~T+1 - |:|

The environment of tensors at a certain layer can always be composed into unitaries and
isometries from that layer, a specific density matrix for that site and layer p,,11 and
a two-site Hamiltonian, h, ;1. pr,41 consists of all tensors in the causal cone in the
layers above and h,,11 consists of all tensors in the layers below the one being currently
optimized.

The algorithm sequentially optimizes all tensors in the MERA. The whole MERA is swept
over a couple of times until the algorithm converges. This can be done from the top down
or from the bottom up. An example of an algorithm to optimize a complete MERA state
is

Step 1: Calculate all density matrices for all sites and all levels.

Step 2: Starting from the lowest layer, optimize all isometric tensors w and all unitary tensors
u of a certain layer 7.

Step 3: Compute the two-site Hamiltonians for layer 7.
Step 4: Repeat steps 2-3 for all layers.

Step 5: Update the top tensor.
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Extra constraints can be added when dealing with a translationally invariant system or
a scale invariant system. For a translationally invariant system all unitary tensors on a
layer are the same and all isometries on a layer are the same. For a scale invariant system
all isometries are the same and all unitaries are the same regardless of the layer.

5.1.2 Tensor network quotient takes vacuum to thermal state

In the paper by Czech, Evenbly, Vidal et all26l it is shown that certain properties of
Euclidean path integrals also hold in the MERA picture. More specifically the Euclidean
path integral of a (14+1)D CFT on the upper half plane prepares the ground state on an
infinite line. The conformal mapping z — w = (f/m)Log(z) maps the whole upper plane
to an infinite strip of width §. This prepares the thermal state with temperature T'= 1/
on an infinite line. Identifying w with w 4 27w L gives a thermal state on a ring of length
L. In the z plane this mean identifying two semi-concentric circles of which the radii
relatively differ e2m*L/B The thermal state on a ring is of interest to us because it makes
it possible to study the thermal behaviour of the CFT, and in the AdS/CFT picture a
finite temperature CFT is dual to a black hole.

In the paper it is shown this conformal mapping and this identification can also be done
in the MERA picture.
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Figure 5.2: top Mapping z — w = Loga(z) = Log(z)/Log(2). bottom Mapping z — W =
Log 1 = 4Log(z)/Log(2)

We start of with a MERA state covering the whole upper plane. This represents the ground
state of the (14+1)D CFT on the infinite line just as the Euclidean path integral on the
upper half plane. A discrete version of a logarithmic mapping can be made by considering
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points that are exponentially discretized instead of uniformly, as seen in Figure 5.2. These
new points represent the infinite line in the w-plane on which the thermal state is prepared.
The form of the new line depends on the prefactor of the logarithm and in each case the
best discretized mapping is chosen. Because of the discrete nature of the MERA there
are not enough possible points near the origin to accurately represent the state there,
effectively disconnecting the right and left part of the infinite line.

The identification of w and w + 2w L is then done by contracting the appropriate legs as
shown in Figure 5.3.

Figure 5.3: (top) Smallest possible identification of two constant values of w.(bottom)
Because the MERA has an inherent causal structure it is possible to classify an interval
between two tensors as spacelike, lightlike or timelike. With regard to this causal structure
the blue part is connected in a timelike manner, the pink is connected in a lightlike manner
and the red part is connected in a spacelike manner. The diagram is thus naturally divided
in three sections.

In the article it is shown that this construction matches the theoretical predictions for the
thermal spectrum of a CFT as /L — 0.

With some imagination this construction of the thermal state on a ring for a certain g
already resembles the eternal black hole. The red parts in Figure 5.3 resemble a MERA,
representing an AdS space, connected by the pink and blue part in the middle, representing
the Einstein-Rosen bridge.
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5.1.3 Complexity issues

The relative difference between the radii that are identified is e2™ /8. Because of the
discrete nature of the MERA only certain identifications are possible. The possible iden-
tifications are an integer times the smallest possible identification. To do an identification
a MERA is needed that is large enough. The depth of a MERA depends logarithmically
on the number of base legs. Increasing the range of the identification then exponentially
increases the number of base legs of the MERA that is needed to make the thermal state.
To get to a realistic value of /L a MERA is needed with O(1024) legs.

As was mentioned earlier evaluating expectation values with a MERA can be done effi-
ciently because only the tensors in the causal cone come into play and the complexity scales
polynomial in L. This is also important for optimizing a MERA since then we repeatedly
compute the expectation value of the energy of two-site Hamiltonians. So although the
complexity of optimization scales polynomial in L and not exponentially, as with random
networks, it still scales. The optimization of a MERA depends on the size of the MERA
so at some point the optimization will become computationally inaffordable. This bound
depends somewhat on the computer used and the extent to which the code is optimized
but certain MERA sizes are just out of reach of even the best supercomputers.

Saas)

A B

Figure 5.4: Division of tensor in two parts.

Decreasing complexity?

One might think that this complexity issue can be overcome by cutting the large tensor
contractions into smaller parts. Consider the tensor given in Figure 5.4. If all legs have
dimension Yy, contracting the whole tensor in one time has a complexity of order O(x?).
This because the final object has five external legs so x° components where each compo-
nents consists of four sums over x values hence each component has x* terms. The total
complexity is then of order O(x”). Now suppose A and B are first contracted separately
and then the results are contracted. Contracting A has complexity O(x*) and contracting
B has complexity O(x®), contracting the two obtained tensors has complexity O(x”). So
the total complexity of this procedure is O(x* + x® + x7) which is (for x > 1) less than
O(x”) so in this case it is better to first do two separate contractions and then contract
the results.

More generally consider a tensor network with a external legs and b internal legs. Con-
tracting it in one time has a complexity of O(x%*?). Now a cut is made through c legs
dividing the network in two parts where the one system lies completely in the other. This
system has d internal legs. Now evaluating the two networks separately has complexity
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O(x2tb=4 4 xc+94-2%¢), In the limit where there are a lot more internal legs than external
and cut legs it is easily seen that the most optimal division in two parts is in parts with
equal internal legs. Dividing the network in three parts leads to an optimal division in
three equal parts, as long as d > 1. The optimal reduction of complexity that can thus be
achieved is by cutting the network in equal blocks that have minimally one internal leg.
This way the computational complexity can be reduced tremendously however there is one
downside. Each block and each combination of blocks takes up memory, in the extreme
case rendering a computer useless. Because of this the complexity problem cannot be
reduced and it remains a limiting factor!2%).

The sizes of the MERA states needed to build something that accurately represents the
eternal black hole are simply too large to compute with the resources available. Therefore
a different approach needs to be used, preferably one that does not depend on the system
size but one that acts locally.

For an extensive treaty of the optimization of tensor contractions see [25].

5.2 Tensor network representations

5.2.1 Two-dimensional classical partition functions

Suppose we are interested in the thermal behaviour of a discrete classical system at some
temperature T' = 1/ where the microscopic degrees of freedom are distributed according
to the canonical ensemble. All information regarding such a system can be obtained from
the partition function. The partition function sums over all possible configurations

Z(/B) = Z e_E({Ui7aj"'})B,
{os,05+}

where F; is the energy of a certain configuration. For concreteness we will consider the
two-dimensional Ising model with periodic boundary conditions with Hamiltonian

H({si,s;---}) ==Y _ sis5,
{i.j}

where s; = {41, —1} and the sum only takes place over nearest neighbours(in two dimen-
sions). The partition function can then be written as

Z(,B) — Z H 676(81'8]‘+Sjsk+8ksl+slsi)/2’
(51,87} Digh

here the sum is again over all possible spin configurations, the product is over each spin,
the factor of two is due to the double counting of the bonds. A change can be made to
bond variables ;; = s;s; so that

1 T
Z(ﬁ) — Z H + Uzgjako-l 6—B(Uioj+0'jak+okal+o’loi)/2’
{o4,05-+ } Digkl
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where the factor in front of the exponential is introduced to get rid of configurations that
are not physical. 0;;0;,0k101; = 5i5j5;SKSk51515; = +1 so all values that give 00,0101 =
—1 are dismissed. Now if we define a tensor

Ty = 1 + UiO'jO'kO'l 75(0‘1’0’]‘+O‘j0'k+0‘k0'l+o‘l(7i)/2
igkl fe

the partition function is given by the contraction of a tensor network obtained by con-
necting all neighbouring sites, see Figure 5.5.
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Figure 5.5: Tensor network representation of a 2d spin lattice.

Z(,B) = Z T%jle‘imnoijqr = tTT(®NT),
ivjvkv'“

5.2.2 Omne-dimensional quantum Euclidean time evolution operator
In quantum mechanics the partition function is given by
Z(8) = Trle~).

It turns out that for a Hamiltonian with only nearest neighbour interactions the Euclidean
time evolution operator e # can be represented in terms of tensor networks. For con-
creteness let us use the one-dimensional Ising model with an external magnetic field and

H:Zafof+1+)\20f,
i i

where the ¢’s are the Pauli matrices and A is the coupling with the magnetic field.

a periodic boundary

For reasons that will become apparent later we introduce the integer é so that the Eu-

8 —TH

clidean time operator can be written as = succesive operations of the operator e

e*ﬁH — (ef‘rH)ﬁ/T'

The Hamiltonian can be split in terms that work on the even and on the odd numbered
sites. The complete operator can be approximated as the succesive operation of the
operator on the even sites and then of the operator on the odd sites

—7H . —THeyen

e ~e —THodq

e
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this is not an equality because of the Baker-Campbell-Hausdorff formula.
BCOH : A8 = ¢AeBezlABl ...

The error introduced in this approximation is of order e and thus the error introduced
in the full Euclidean time evolution operator is O(e’7), the size of this error can thus
be made arbitrarily small by tuning 7. This is the reason this representation of the
Fuclidean time evolution operator is called a semi-exact representation. Since the terms
in the Hamiltonian acting on the even (and also on the odd) sites do not have any overlap

they commute and
e_THeven — H e_Thi,i+1

1=even
_THodd — H e_Th1 H—l
i=odd

The Euclidean time evolution operator can thus be represented as a tensor network in the
following way:

—-r/ odd

[
> I

Figure 5.6: (left) Tensor network representation of a nearest neighbour Euclidean time
evolution operator. (right) Reshaping the network into standard form.

For a typical 8 and system size both representations of the one- and two-dimensional
partition functions are hard to compute. To use these representations of the partition
function certain algorithms are used that will be discussed in the following sections. Both
algorithms coarse grain the tensor network lattices in a certain way. In order for these
algorithms to work on both representations of the one- and two-dimensional partition
functions we will reshape the former so that both representations have the same form.

First the tensors are decomposed in a certain way. Suppose tensor Tj;x; will be decom-
posed. We group together indices 4, j and k,[ and reshape the resulting tensor in the form
of a matrix. The dimension of every index was y and so the resulting matrix indices will
have dimension y2. This matrix is decomposed in singular value decomposition

M=UxVT,
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here U,V are unitary matrices and ¥ is a diagonal matrix with the singular values as
it entries, selected in decreasing order. The matrix can thus be decomposed in UvZ
and VXV both with dimensions (x2,x?). This matrices are reshaped into tensors of
dimension (x, x, x?) or (x2, x, x) respectively. For a pair of indices 4, j this gives

__rrm N kil
Thijwy = Uffy Em Vil ™.

In the representation of the one-dimensional partition function the two-site Hamiltonians
are decomposed in this way, for each row alternating between a decomposition over a
horizontal pair of indices and between a decomposition over a verical pair of indices.
Then a combination of four different resulting tensors is combined into one single tensor
with four indices to get a uniform tensor array. For a graphical representation see Figure
5.6.

5.3 Tensor Renormalization Group

The arrays created in the last section have a form comparable to Figure 4.2 (middle)
and thus are computationally costly or even unaffordable. To overcome this difficulty a
renormalization scheme is used based on local approximations. The first renormalization
scherr[le ]We will inspect is the Tensor Renormalization Group (TRG) devised by Levin and
Nahel?7],

The tensors in the array are alternatingly labelled A or B. The upper and left leg (index)
of tensor A are grouped and Ap,(,q) is decomposed according to the singular value decom-
position mentioned earlier. The coarse graining happens because of the singular values in
> only a limited number x.,q is kept. This is a good approximation because typically a
lot of information is carried by only a few singular values. Keeping the largest singular
values then still gives you the coarse behaviour of the system. Keeping the largest singular
values is realized by introducing a matrix d with dimensions (Yend, X?) and ones on the
diagonal. The decomposed tensors are then

S1 = UpyVEd, S3=dVEV],.

In the tensors B the indices are grouped as [ur][ld] and a similar decomposition is done in
S2 and S4.

The four new tensors are combined in a single tensor as shown in Figure 5.7 and the total
number of tensors is halved. This proces is continued until the number of tensors in the
array is of order O(1). Now the partition function can be calculated by contracting the
indices in the right way or a transfer matrix can be made. The largest eigenvalues of the
transfer matrix are related to the energies of the system.

It is interesting to think about the physics behind the validity of this approximation and
to consider when this approximation scheme is expected to fail. Suppose we start of with
a large lattice of sites and after some big number of coarse graining iterations we have
one tensor W,;.q representing a lot of other tensors. This new tensor should be thought
of as a wavefunction of a one-dimensional system living on the boundary of the coarse
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Figure 5.7: (top left) Tensor decomposition in S1 and S3 or S2 and S4. (top right) Starting
array. (bottom right) Decomposing tensors alternating between S1,S3 and S2,54. (bottom
left) New tensor array with half the number of tensors.

grained square. This point of view is possible because of the deep similarity between a
two-dimensional classical system and a quantum system with one spatial and one time
dimension. The two-dimensional classical system is constructed by radially time-evolving
the one-dimensionsal system outward with a one-dimensional quantum Hamiltonian. Be-
cause we are considering the system after a large number of coarse graining iterations this
is equivalent to considering the system after a long evolution in Euclidean time hence ¥
can be thought of as the ground state. Now suppose we start of with a non-critical Ising
model on the lattice. This means the ground state is gapped and typical correlators vanish
exponentially fast with distance. This means that it is expected that the spins on each
side of the square are minimally correlated and we can factorize the total wavefunction in
wavefunctions that only depend on the particular spin states on each side

X
\Ijulrd: Z Culrdq]u(au)\pl(Jl)\yr(ar)\lld(ad)'
ulrd=1

This justifies the fact that we do not take into account any entanglement between spins
on different sides when coarse graining.

If we start of with a critical Ising model on the lattice the ground state is gapless and
spins are entangled over long distances. This makes the factorization of the wavefunction
impossible, or a bad approximation. This is why Levin and Nahel2”l anticipated this coarse
graining procedure to fail for critical systems.
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5.4 Tensor Network Renormalization

Tensor Network Renormalization (TNR) is a coarsegraining procedure devised by Evenbly
and Vidall?®! that aims to tackle the problem encountered in the last section. It aims to
take into account entanglement properly and thus be able to coarsegrain critical systems.
The procedure is based on removing entanglement as was done in the MERA approach.
TNR again uses local replacements to replace blocks of tensors with a single tensor.

When naively repacing a block of tensors, the block of tensors should be replaced in such
a way that it has a minimal effect on the values of quantities of our interest. This can be
quantified by saying that the tensor norm should change as little as possible. The tensor
norm is defined as

|A]|? = tTr(A® AT)

or in graphical notation as shown in Figure 5.8 (top left). If a block of tensors A will be
replaced with a single tensor A the replacement error should be minimized

e =||A—A|> = ||A|? —tTr(Ae AT —tTr(A o AT + ||A]|.

or in graphical notation as shown in Figure 5.8 (middle row).

" 2: 2: @u FAFN
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Figure 5.8: (top left) Definition of tensor norm. (top right) Local replacement of block
of four tensors. (middle row) Error in replacing block of four tensors with new tensor.
(bottom row) One coarse graining iteration.

Optimizing this highly nonlinear equation is hard and therefore the TNR procedure uses
a slightly different replacement technique called a projective truncation.
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5.4.1 Projective truncations

In a projective truncation the tensor A that will replace the block of tensors A has the
specific form

A= AP = Aww',

where P is a projector. Because of this restricion on the form of A the error can be
simplified. P is a projector and thus is idempotent, PPT = P. This means

|A||? = tTr(A® AY) = tTr(A ® AT)
the expression for the error can therefore be simplified to
e = || A = [|A|* = ||Al]* = [|AP|]> = ||A|* - || Aw]|?,

see Figure 5.9 for a graphical representation.

A= P=x pPpt=p

I$E-3he - Q)@@E%
- @ @fD alPe</Rbeds

Figure 5.9: A projective truncation leads to a simpler expression for the replacement error.

Since ||Aw]||? < ||A]|?, this last expression is minimized for the maximal value of || Aw]||2.
The problem is then to find a w that maximizes this expression. This again gives a
nonlinear equation which is not easily solvable. The strategy to find this w is similar
to the method used in the MERA optimization. First the expression is linearized, i.e.
consider w and w' as two separate objects. The complete expression ||Aw||? is then
separated in w and its environment T, so that ||Aw||?> = tTr(w ® I'y,). The environment
is decomposed in singular value decomposition and the w that maximizes the expression
is w = vu', which is proven in the appendix. Then w' is updated and the whole proces is
repeated until w converges.

5.4.2 Replacement steps

The TNR algorithm uses a number of projective truncations that combined lead to the
coarsegrained tensor.
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The TNR algorithm starts with a lattice of tensors with four indices A;ji; which can
represent a partition function of a classical two-dimensional system or it can represent the
partition function of a one-dimensional quantum system. TNR starts with a large array
of tensors and coarsegrains blocks of four tensors into one. In this way the one TNR step
halves the linear size in the horizontal direction and é in the vertical direction. After the
array is reduced to O(1) tensors the partition function is evaluated or the eigenvalues of
the transfer matrix are extracted.

A block of four tensors has eight legs, two pointing towards each side. First a ‘gauge’
change is applied to every second row. That this can be done is shown in the appendix.
This change effectively flips every row and conjugates the values in these tensors. This
way a projective truncation can be done on the top two tensors of the block of four and
the resulting projector will also be a projector for the bottom two conjugated tensors.

1= p- -

nwn

=M=~ P

i o fh

Figure 5.10: (top left) First projective truncation, defining w;, v and w,. (top right)
Definition of tensor B. (middle left) Second projective truncation, defining y; and y,.
(middle right) Definition of tensor D. (bottom left) Third projective truncation. (bottom
right) Definition of new tensor A’.

The first step is to find a projector P for the top, right and left legs of a combination of two
tensors. Because P is a projector the expression that needs to be maximized is relatively
easy, as shown in the projective truncations section. The w is demanded to consist of
two different isometries and one unitary. To optimize this combination of tensors first
the environment of the left isometry w; is computed, its singular value decomposition
leads to a new w; and w;r, which are updated. Then the environment for the unitary
w is computed, its singular value decomposition lead to a new u and u', and then a
new w, is computed. These steps are repeated until the complete projector converges.
Because of the particular shape of this projector the optimization can take some time.
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The dimension onto which the isometries w;, w, project can be chosen. It should be large
enough to keep the interesting physical features of the system but for too large values
the optimization becomes computationally inaffordable. The key difference between TRG
and similar methods compared to TNR is this unitary tensor uw. Just as in the MERA
its goal is to act as a basis transformation that minimizes the entanglement between the
two sides of the system. After this transformation it is justified to coarse grain the two
sides without regarding the entanglement with the other side, since this entanglement is
minimized by the unitary.

The second step starts of with a block of four tensors, two normal tensors at the top that
are acted upon by the half projector w made in step one, two flipped and conjugated
tensors on the bottom acted upon by a flipped and conjugated half-projector w’. In
this step two new projectors are made and optimized, P, consisting of y; and le and P,
consisting of y, and y;. For a graphical depiction see Figure 5.10.

Figure 5.11: One TNR coarsegraining step.

In step three the lattice with the new tensors made in step one and two is reorganized
into a lattice of tensors with two legs going up, one leg to each side and two legs going
down. One last projective truncation is done on the top legs, the resulting tensor is used
as a projector for the two top and two bottom legs resulting in a new tensor A’ with four
legs, as shown in Figure 5.11.

One iteration of TNR thus acts locally on four tensors and replaces them through a
series of intricate replacements by one new tensor. Multiple coarse grainings define a
renormalization group flow in the space of tensors

A% Al 5 A% A
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5.4.3 TNR yields MERA etc

In the previous section tensor network methods were used to calculate partition functions.
They can however also be used to calculate some other objects of our interest as was shown
by Evenbly and Vidall30.

- o oW w
P WS

Figure 5.12: Applying TNR on an infinite lattice restricted to the upper half plane with
a row of open indices at the bottom. The result is a MERA state.

If we consider the one-dimensional quantum partition function but do not perform the
trace we are left with the Euclidean time evolution operator e #. This operator takes a
state and evolves it in Euclidean time. In the limit where 8 becomes large this operator
suppresses all energy eigenstates except for the ground state. This means that acting with
this operator on a state and evolving it for a large 5 gives you the ground state. Suppose
we do this for the tensor network representing the Euclidean time evolution operator. We
would get a network that has open legs at the bottom for some linear size and that is
large vertically since 8 and thus g is large. This network represents the ground state of
the Hamiltonian H. Normally when applying the TNR coarsegraining procedure certain
tensors are formed and are immediately cancelled against their conjugated versions acting
on a different block. In this particular case this will not happen near the open legs, since
there nothing is coarse grained. This means that at the open legs a certain structure
will start to form composed of tensors that would have normally cancelled. It turns out
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that this structure is exactly the MERA state as can be seen from Figure 5.12. This is
a nice consistency check because the MERA was build by trying to represent the ground
state and taking care of the entanglement in a certain way. Now that we take care of

entanglement in the same way in a different setting the ground state is still represented
by a MERA.

Figure 5.13: Applying TNR on a system on infinite sites for a finite 5. The result resembles
a thermofield double state.

When we consider a tensor network representation for a strip of finite 5 we get a state that
is proportional to the thermal state e7## /Z. When coarsegraining this network the result
is a network that has two MERA’s connected by an intermediate row of tensors. This
is exactly the state that B. Swingle expected to represent the thermofield double state.
The two MERA’s represent two spaces that are connected via a Einstein-Rosen bridge or
eternal black hole represented by the intermediate row of tensors.

Another construction that can be made is considering the Euclidean time evolution oper-
ator for large 8 on a periodic chain consisting of L sites. After O(Log(L)) coarsegraining
steps the result is a small MERA with a semi-infinite tower of tensors on top of it. This
semi-infinite tower can be thought of as the infinite product of a transfer matrix. The
largest eigenvalue of such a matrix leads to the ground state, offering a possibility to study
finite size systems.

Figure 5.14: Applying TNR on a system on a finite system gives rise to a tower of transfer
matrices.
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Results

6.1 Dimensions of two-dimensional Ising CFT

A tensor network representation of a classical two-dimensional partition function of the
Ising model was made and coarse-grained using the Tensor Renormalization Group method.
Coarsegraining iterations are performed until only one tensor is left. The horizontal legs
of the tensor are connected to give a transfer matrix. The eigenvalues of the transfer ma-
trix are exponentially proportional to their conformal dimensions. The ratios between the
conformal dimension of our interest and the first conformal dimension are then extracted.

Figure 6.1 is a plot of the first conformal dimension as a function of the linear size. At
criticality and in the continuum limit the two-dimensional Ising model is expected to
behave like the two-dimensional Ising CFT. The value of the first conformal dimensions
is 1/8 and Figure 6.1 clearly shows that for larger sizes the value of the first conformal
dimension approaches the theoretical value.

The different lines are different values of x which is the amount of singular values that are
kept in a coarse graining iteration. Larger values of x agree better with the theoretical
result. From the considerations of the the original authors of the TRG method it became
clear that this method is expected to fail after a certain size for critical systems. For
the x = 8 case it is clear that the agreement with the theoretical result quickly drops as
larger systems are examined. A similar effect is seen in the y = 16 line. Unfortunately it
becomes hard to examine larger system sizes. This is because the largest component in
one tensor is e*. As larger systems are examined the largest components grow fast and
for a system of 2'0 = 1024 spins the values are larger than Mathematica can accurately
handle. This means that the largest examined system is of linear size 2 = 512 spins.
When we realize that the Hilbert space dimensions of this system is of order O(e®?) it is
already impressive to be able to describe this system to some extent.

As the complexity of the algorithm is of order O(x*) larger values for x are also hard to
compute.

In Figure 6.2 the first 19 conformal dimensions of the y = 48 case are given. The y-axis
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Figure 6.2: First 19 conformal dimensions for xy = 48. Colors represent theoretical values.
Crosses are values obtained by the TRG method.

represents the value of the conformal dimension and the x-axis represents the momentum
of the conformal dimension. The three primary fields in the two-dimensional Ising CFT
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I,0,¢ have conformal dimensions 0,1/8,1 respectively. The structure of all conformal
dimensions is then given by the primary fields and then the infinite towers corresponding
to their descendant fields. In the plot the different colors represent the different towers.
There are dashed lines at all theoretical values. Black x’s are the values obtained from
the TRG method. The first nine conformal dimensions closely agree with the theoretical
value. The consecutive three dimensions deviate somewhat but after these the values are
completely off.

This is not strange since it was expected that this method is not able to describe critical
systems correctly. When keeping a large number of singular values (large x) this method
is able to describe the most important features (lowest lying conformal dimensions) of the
system yet it quickly breaks down.

6.2 RG flow structure

TNR takes entanglement into account in the same way that the MERA takes entanglement
into account. This leads to the expectation that TNR will be able to coarsegrain critical
systems. Because critical systems are desribed by conformal field theories in the continuum
limit, and these are scale invariant, the tensor should flow to a fixed point tensor after
enough coarse grainings

In Figure 6.3 four graphical representations are shown of the transfer matrix at different
points in the renormalization group flow. Also a diagram of the renormalization group
flow is shown. The top matrix is a transfer matrix of a 8x8 grid of spins. Different colors
represent different nonzero values and thus possible states. The top matrix thus has a lot
of possible states. For different values of the coupling A this matrix is nearly the same.

Now eight coursegrainings are performed, thus in a sense the continuum and low tempera-
ture limit are taken. For all three different ranges of the coupling A a different fixed point
tensor is obtained. In the range A < 1 a trivial fixed point is obtained with two significant
dots in the graphical representation representing two possible states, namely the state
where all spins are aligned with the external magnetic field and one state where all spins
are anti-aligned with the external magnetic field. In the range A > 1 another trivial fixed
point tensor is obtained with only one dot in the graphical notation representing only
one state, namely the state where all spins are aligned with the external magnetic field.
For the case where the coupling is exactly equal to its critical value A\ = 1 a non-trivial
fixed point tensor is obtained. This object has multiple possible states hence it has some
structure and thus is non-trivial. The system reached a conformal point, since it does not
change any more even after more coarse-grainings.
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Figure 6.3: Graphical representation of transfer matrix showing structure of renormaliza-
tion group flow.



Chapter 7

Conclusion

How is AdS/CFT realized in the MERA? The MERA captures some key features of the
AdS/CFT correspondence. It naturally produces an extra hyperbolic spatial dimension
starting from a critical state. Interpreted as a spatial AdS slice the MERA satisfies the
Ryu-Takayangi proposal. Downsides of the MERA are that it is discrete, that it is not
clear how excited states can be constructed. Efforts are made to make a continuous
equivalent of the MERA, called CMERA[2223] - Although there are no pure excited states
it is possible to construct thermal states.

More recently it has become possible to study thermal behaviour by tensor networks. The
TRG method is able to do this but fails for critical systems. The TNR is expected to
be better at coarsegraining critical systems and this has been confirmed by reproducing
the renormalization group flow structure of the two-dimensional Ising CFT. Moreover the
TNR connects the ground state obtained from the Euclidean path integral to the original
MERA ground state, giving a consistency check of sorts.

Because of these considerations tensor networks offer an interesting new way to study
quantum gravity.

In the future it would be interesting to look at time dependence. The time evolution
operator can be represented in a similar way as the Euclidean time evolution operator and
thus it should be possible to study time dependence. This would be especially interesting
for the thermofield double state since this would make it possible to study the typicallity
of the eternal black hole in the tensor network picture.

It might also be interesting to put orthogonaliy constraints on the MERA so that it is
able to represent the first excited state.
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Appendix A

Calculation by Maldacena and
Hartman

In the article by Maldacena and Hartman [9] the authors consider a thermofield double
state. This is a state where two CFT states are entangled in the following way:

() =S [Eny) [ Eny) e 750 (A1)

The gravitational dual of this state is the eternal black hole. They consider the situation
where the two CFT’s are simultaniously split in half at some time ¢, and then look at the
entanglement entropy of this half with the rest of the system. This entanglement entropy
can be calculated via Conformal field theory but also via the gravitational side. This
gravitational calculation is repeated here.

The metric of a planar black brane is considered:

ds* = —g*(p)dt* + h*(p)dx_, + dp® (A.2)
h = (g)dcosh(%)z/d, g=nh tanh(%). (A.3)

The interior region corresponds to p = ik and t = t; —im/2 so that pe!(the ingoing Kruskal
Szekeres coordinate) is finite as we cross the horizon and ¢ is real.

According to the Ryu-Takayanagi proposal the entanglement entropy in the boundary
theory can be given by a minimal surface dipping into the gravitational bulk. The grav-
itational calculation of the entanglement entropy thus reduces to finding the minimal
codimension two surface that connects the two entanglement boundaries in the CFT’s. It
reduces to finding a function p(t) or t(p) that minimizes the surface:

A=V, / ()2~ g2 (p)dE2 + dp?. (A4)

Because of symmetry considerations we expect % = 0 at t; = 0. The expression for the

surface can be written as

d
A= Vd_g/dpf(t, d;;p)' (A.5)
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Since this has the form of an action and the surface is minimized the equations of motion
can be used, giving:

g2hd72
= constant = —igghd 2 (A.6)
_92 + (CTI;)Q

where gg, hg are just g, h evaluated at t; = 0, pg = ixg. This last equation can be recast
to

t(p) (A7)

. P dp’
= —Z7T/2 + / g2h2d*4
ko gy /1 — gZhza—1
and the formula for the surface can be rewritten as

d > hi-2q
A=Viy [ 102 [ (B —avis [ (A.8)
iro g2h24—4
1 0°"0

- thQd—4

where the 2 comes from the symmetry in the system. It is useful to think about these
integrals in terms of a = —igh? 2 because then

tl—/ , A=2V4 2/ e 2dp

Generally a = 0 at the boundary p = 0 and then grows until it attains its maximum a,,
and then decreases again. The contribution to the area from the interior can be rewritten
using integration by parts as

(A.9)

a0 pd=2qdq

da /2 5

jd—2 Ko (d—2)hd-tdh -2 (A.10)
- et - [T - B - - atyda
dk 0 dk dk

here it becomes apparant that the integral is wellbehaved everywhere in the interval as
long as ag # a;,. For large t, ag — a,, and the surface lies along k ~ k,, for a long
time (this can be seen by noting that the largest contribution to the time integral comes
from the a’s near ap) and then goes to the boundary. This contribution to the area is
approximately A = a,t (% = 0) indicating a linear growth of the entanglement entropy
due to the interior of a black hole.



Appendix B

Proof for maximal trace

In the space of all m x n matrices with complex entries an inner product can be defined
as

Tr(ABY) = (A, B) (B.1)
since this satisfies the three conditions for an inner product:
1. Positive definiteness
2. Linearity

3. Conjugate symmetry

1.
(A, A) = Tr(AA") = zn: AATY i Zn:AijA}i = Zm: Zn: A2 >0 (B.2)
i=1 j=1i=1 j=1i=1
2.
(M + B,C) = Tr(MCT+BC") = ATr(ACT) + Tr(BCT) = A (A, C)+(B,C) (B.3)
3.

(A, B) = Tr(AB") = Tr((ABNT) = Tr(B*AT) = (B*, A*) (B.4)
The Cauchy-Schwarz inequality states that an inner product satisfies
| (A, B) | < [|Al]| Bl (B.5)

Suppose we define the matrix d = /¥, where ¥ is the diagonal matrix from the singular
value decomposition M = UXVT. The w that maximizes Tr(wI") is then given by w = VUT
as shown below.

Tr(wl) = Tr(wUEVT) = Tr(wUdd V1) = (wUd, Vd) < |[wUd||||Vd] = |d)? = Te(Z).
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(B.6)

In the second to last step the isometric and unitary properties of w, U,V are used. The
equality is satisfied for Tr(wI') = Tr(X) hence for w = VUT.



Appendix C

Gauge change in tensor network

When applying the TNR procedure on a one-dimensional Euclidean time evolution opera-
tor the Hermitian property of the Hamiltonian is used to perform a certain ‘gauge’ change
on every second row, this reduces the complexity of the algorithm.

Figure C.1: (a) Hermitian property. (b) Conjugation and permutation of horizontal indices
is equivalent to acting with unitary matrix x. (¢) Gauge change as used in TNR.[29]

The unitary matrices x are defined as
AT = (Au)* = (@ Aijair) (C.1)
j7l
because the Euclidean path integral is taken for a system defined on a ring all 2’s cancel

and the associated change from A to A can be performed without introducing extra
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tensors.

Because of this replacement the projectors created in the first TNR step for the two normal
tensors, the four upper legs, can also be used on the conjugated tensors, the four lower
legs. This reduces the algorithms’ complexity.

In the case of a two-dimensional partition function such a symmetry can exist due to
spatial symmetries present in the underlying lattice.



Appendix D

Nederlandse Samenvatting (Dutch
Summary)

In 1628 publiceerde Isaac Newton de wet van de zwaartekracht. Deze wet stelt dat alle
objecten met massa een kracht op elkaar uitoefenen. Hiermee kan de beweging van de
planeten maar ook het vallen van een appel met dezelfde wet beschreven worden. Het
probleem van deze wet is dat zij enkel beschrijft wat er gebeurd en niet zegt waarom
een planeet en een appel een kracht op elkaar uitoefenen. In het begin van de twintigste
eeuw kwamen er twee grote nieuwe theorien uit de natuurkunde voort. De algemene
relativiteitstheorie en de kwantummechanica. De algemene relativiteitstheorie vertelt ons
dat ruimte en tijd eigenlijk deel zijn van een groter geheel genaamd ruimte-tijd en dat
zware objecten deze ruimte-tijd verstoren. Door deze verstoring bewegen objecten zich
anders door de ruimte-tijd en lijkt het net alsof objecten met massa elkaar aantrekken. De
andere grote nieuwe theorie genaamd kwantummechanica beschrijft hoe de natuur werkt
op de allerkleinste schalen. Het probleem van deze twee theorien is dat ze niet consistent
met elkaar zijn, specifieker: we weten niet hoe we algemene relativiteitstheorie moeten
interpreteren in het raamwerk van de kwantummechanica. Dit wordt al sinds het begin
van de twintigste eeuw geprobeerd en is nog steeds niet gelukt.

Sinds 1997 is er een nieuwe manier gevonden om dit probleem aan te vallen genaamd
de Anti-de-Sitter/ Conformele Velden Theorie dualiteit. Dit is een dualiteit tussen twee
theorien die in eerste instantie niets met elkaar te maken lijken te hebben. Aan de ene kant
van de dualiteit staat een theorie die zwaartekracht beschrijft in een speciale Anti-de-Sitter
ruimte op een manier die consistent is met kwantummechanica en aan de andere kant van
de dualiteit staat een theorie (CFT) die deeltjes beschrijft die een sterke wisselwerking met
elkaar hebben en waar geen zwaartekracht is. Door de dualiteit kan het probleem van de
zwaartekracht ‘vertaald’” worden naar de andere kant van de dualiteit en daar bestudeerd
worden. Hoewel de dualiteit in grote lijnen goed word begrepen is het nog helemaal
niet duidelijk hoe de zwaartekrachtstheorie in de AdS ruimte uit de CFT voortkomt.
Recentelijk is er een voorstel gedaan om dit te bestuderen met tensor netwerken. Dit zijn
wiskundige objecten die gebruikt worden om grote hoeveelheden deeltjes te beschrijven.
In deze scriptie heb ik onderzocht in hoeverre deze tensor netwerken kunnen verklaren
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hoe de AdS zwaartekrachtstheorie voortkomt uit de CFT. Ook heb ik gekeken naar tensor
netwerken die gebruikt worden om CFT staten met een eindige temperatuur te beschrijven
want dit zou iets kunnen zeggen over zwarte gaten.



