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Abstract

There exist several algorithms to compute the Delaunay triangulation of a point
set in a Euclidean space. In the literature the incremental algorithm has been ex-
tended to Euclidean orbifolds and hyperbolic surfaces, but it is only guaranteed
to work in a finitely sheeted covering space. Bounds for the minimum number of
sheets that are needed are only known for the Bolza surface. In this thesis we will
first prove that the lower bound for the number of sheets is Ω(g) in general and
Ω(g3) if the surface can be represented by a fundamental region with 4g concircular
vertices, where g is the genus of the surface. Then we will prove that there does
not exist an upper bound for the number of sheets necessary for surfaces of genus
2.
The systole of a surface plays an important role in determining the complexity of
triangulating the corresponding surface. We will state a conjecture for the systole
of hyperbolic surfaces of genus g represented by regular 4g-gons.
Finally, to avoid many sheeted covering spaces a different method uses a well cho-
sen set of points, which guarantees that the output is simplicial. We will show a
lower bound for the number of points of such a point set, which is of order Ω(

√
g)

in general and of order Ω(g) if the systole of a family of surfaces is bounded.

Keywords: hyperbolic geometry, Delaunay triangulation, hyperbolic surface, Fuch-
sian group, Teichmüller space, systole
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1 Introduction

1.1 Context and state of the art

In computational geometry, geometric objects are often described or approximated by
using discrete methods. For example, representing surfaces in a computer can be done
by computing a triangulation of a point set on the surface. To avoid long and skinny
triangles, a Delaunay triangulation is used, since among all triangulations it maximizes
the minimum angle between adjacent edges. In a Delaunay triangulation the interior
of the circumscribed circle of each triangle does not contain any points from the point
set. It is closely related to the Voronoi diagram of the point set. The Voronoi diagram
partitions the ambient space into Voronoi regions, each of which contains all points closer
to some given point from the point set than the other points. As cell complexes, the
Delaunay triangulation and the Voronoi diagram are dual. This means that faces in one
graph correspond to vertices in the other and two faces share an edge if and only if the
corresponding vertices in the dual graph are joined by an edge.

There are several algorithms to compute Delaunay triangulations in n-dimensional Eu-
clidean space (see, e.g., [11, 20]). The incremental algorithm, first described in [13, 49],
inserts the points one at a time, deletes the simplices containing the added point and re-
triangulates this region. In the PhD thesis of Manuel Caroli [16] and the following paper
[17], this algorithm was extended to closed Euclidean orbifolds, the sphere and spherical
orbit spaces. In the PhD thesis of Mikhail Bogdanov [9] and following articles [10, 8],
the algorithm was extended to n-dimensional hyperbolic space and closed hyperbolic sur-
faces. For Euclidean orbifolds and hyperbolic surfaces the algorithm is only guaranteed
to work in a finite-sheeted covering space of the original space, but the minimum number
of sheets that are needed is not known. Namely, the output of the algorithm could fail
to be a triangulation due to loops or double edges in the graph. In [8] it is shown that
for the Bolza surface, arguably the simplest hyperbolic surface of genus 2 to consider, the
number of sheets is between 33 and 128.

In this thesis we will look at Delaunay triangulations of closed hyperbolic surfaces. Be-
cause hyperbolic surfaces are locally isometric to open subsets of the hyperbolic plane,
they come equipped with a Riemannian metric of constant Gaussian curvature -1. The
hyperbolic structure of a hyperbolic surface induces a conformal structure, i.e., the struc-
ture of a Riemann surface. We will turn to this again in Section 2 and explain the
terminology in detail in Section 4.8.

As mentioned before, the minimum number of sheets of a suitable covering space of a
given hyperbolic surface is not known, even in simple cases such as the Bolza surface.
This thesis focuses on finding bounds for the number of sheets for other hyperbolic sur-
faces, for example with higher genus and different conformal structures. Because the
number of sheets is probably too large to be of practical use, a second method uses
dummy point sets to avoid many sheeted covering spaces. Here the algorithm is started
with a well chosen set of points, which guarantees that the output is simplicial. Then the
points from the point set are added. In most cases, the points from the dummy point set
can be removed afterwards. Both problems use the notion of systole, i.e., the length of
the shortest homotopically non-trivial closed geodesic, so a third problem is working on
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bounds for systoles of classes of surfaces.

1.2 Applications

Even though our primary focus is mathematical, there are several applications for De-
launay triangulations on hyperbolic surfaces, usually for fields which use periodic objects
or objects with periodic boundary conditions. For example, some cosmological models
use that the structure of the universe is considered to be periodic on a sufficiently large
scale to be able to replicate a sample of the structure periodically [31]; here the Bolza
surface is studied as a cosmological model with non-trivial topology [4]. Furthermore, the
periodic orbits of the Bolza surface are studied as a model for quantum chaos [3, 5, 41].
In molecular dynamics, the Bolza surface is used to model periodic boundary conditions
to study the fragility of a glassforming liquid [39, 40]. In mathematical neuroscience,
patterns on hyperbolic surfaces are used as models for the neural organization of the
brain, in particular visual texture perception [18, 21]. Of course, Delaunay triangulations
in Euclidean space are used in geometric modelling as well, for example to approximate
surfaces [38].

1.3 Structure

This thesis is structured in the following way. In Section 2 we will give a more precise
statement of the problem, followed by a summary of our results in Section 3. In Sections
4 and 5 we will introduce the necessary background on hyperbolic geometry and triangu-
lations, respectively. In Sections 6 to 9 we will look at the results in turn: Section 6 will
give a lower bound for the number of sheets of order Ω(g) in general and of order Ω(g3)
if the surface can be represented by a fundamental region with 4g concircular vertices,
where g is the genus of the surface; Section 7 will show that there does not exist an
upper bound for the number of sheets necessary for surfaces of genus 2, i.e. even when
we restrict ourselves to surfaces of genus 2, the minimum number of sheets can be made
arbitrarily large; Section 8 will give a conjecture on the systole of surfaces obtained from
regular polygons, in particular that this is bounded with respect to g; finally, Section 9
will give a lower bound for the size of a dummy point set, which is of order Ω(

√
g) in

general and of order Ω(g) for families of surfaces with bounded systole. Section 10 will
conclude with suggestions for future work.
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2 Statement of the problem

A triangulation is a subdivision of a topological space into subsets, each of which is
homeomorphic to a Euclidean triangle, where the intersection of two of these subsets is
homeomorphic to the empty set or a vertex or edge or face of a triangle. In Euclidean,
spherical or hyperbolic space we can speak of a Delaunay triangulation: a triangulation
is Delaunay if the circumscribed disk of every triangle does not contain any vertex of the
triangulation in its interior. For every point set in such spaces there exists a Delaunay
triangulation with this point set as vertices and if there are no subsets of at least four
concircular vertices, then this Delaunay triangulation is unique. Among all triangulations,
the Delaunay triangulation stands out, since it maximizes the minimum angle between
adjacent edges among all triangulations. Hence, long and skinny triangles, which might
cause problems in applications, are avoided as far as possible.

In this thesis we consider only triangulations of closed hyperbolic surfaces. Let D2 be the
Poincaré disk model of the hyperbolic plane [6]. A hyperbolic surface is a connected 2-
dimensional manifold, which is locally isometric to an open subset of D2. Every hyperbolic
surface M can be written as a quotient space M = D2/Γ, where Γ is a Fuchsian group,
i.e., a discrete group consisting of isometries of the hyperbolic plane. It has been shown
that the set of hyperbolic surfaces can be parametrized in a so called Teichmüller space
[14]. To find the Delaunay triangulation of a finite set of points S on a hyperbolic surface
M , one can instead compute the periodic Delaunay triangulation of ΓS, i.e., the images
of S under Γ, in D2. If we project this triangulation using the projection π : D2 → M ,
then we obtain the “Delaunay triangulation” of S in M . However, the resulting object is
not always a triangulation as defined above: it can happen that different vertices of one
triangle project to the same point, leading to loops or double edges in the graph.

To avoid this problem, we can instead project to a covering space M ′ of M with universal
covering projection π′ : D2 → M ′. It has been shown that there exists a finite-sheeted
covering space M ′ of M such that the projection of the Delaunay triangulation of ΓS in
D2 under π′ is indeed a triangulation. Such a covering space must satisfy the inequality
syst(M ′) > 2δS: here syst(M ′) denotes the systole of M ′, which is the length of the
shortest, homotopically non-trivial, closed geodesic of the surface; δS denotes the diameter
of the largest disk in D2 not containing any points of ΓS in its interior. It follows that
we can speak of the minimum number of sheets necessary for such a covering space. In
[9] it was shown that the minimum number of sheets for the Bolza surface is between 33
and 128. As far as we know, there are no results for other surfaces, either with higher
genus or with different conformal structures.

As we will see in Section 6, the minimum number of sheets of a suitable covering space
is of order Ω(g) in general and of order Ω(g3) in a special case (see the next section for
the notation). For applications this would not be efficient. Therefore, we also investigate
the second approach mentioned in [8]. Here we initialize the triangulation with a well
chosen fixed point set P on the surface M for which syst(M) > 2δP . This inequality will
continue to hold for larger point sets, so we can then use the incremental algorithm to
add the given point set. In most cases, the dummy points can be removed afterwards.
Of course, we want our dummy point set to have the smallest possible cardinality, as
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each point adds to the complexity of the algorithm. For the Bolza surface a point set
consisting of 14 points is given in [8].
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3 Summary of results

As our results make use of notation regarding computational complexity, we will briefly
explain this notation. Let f : N → R be a function. We say that h : N → R is of order
Ω(f(g)) if there exists a constant c ∈ R and g0 ∈ N such that h(g) ≥ cf(g) for all g ≥ g0.
Intuitively, this means that asymptotically and up to constants, h grows at least as fast
as f . Secondly, we say that h ∼ f if h(g)/f(g)→ 1 as g →∞. Usually we will use g as
variable, since this variable denotes the genus of a given surface.

Now we will state our results. As mentioned in the previous section, the incremental
algorithm can be used to compute Delaunay triangulations of point sets on hyperbolic
surfaces, but it is only guaranteed to work in a finitely sheeted covering space. We will
show in Section 6 that the number of sheets necessary for such a covering space is of order
Ω(g) in general and of order Ω(g3) if the surface can be represented by a fundamental
region with 4g concircular vertices. This result improves and generalizes the currently
known lower bound for the number of sheets.

Theorem 3.1. Let M be any hyperbolic surface of genus g ≥ 2. Let M ′ be a k-sheeted
covering space of M such that syst(M ′) > 2δM . Then

k >
π

9
·

cot2( π
12g−6

)− 3

g − 1
∼ 16

π
· g

Furthermore, if M can be represented by a fundamental region with 4g concircular ver-
tices, then we have the higher upper bound

k >
π

3
·

cot4 π
4g
− 1

g − 1
∼ 256

3π3
· g3.

In Section 7 we will prove that there does not exist an upper bound for the number of
sheets necessary for surfaces of genus 2.

Theorem 3.2. For all B ∈ R there exists a hyperbolic surface M of genus 2 such that if
M ′ is a k-sheeted covering space of M such that syst(M ′) > δM , then k > B.

Here, ‘all hyperbolic surfaces’ refers to all elements of the Teichmüller space of hyperbolic
surfaces of genus 2.

The systole of a surface is an important concept to determine the complexity of comput-
ing a Delaunay triangulation. In Section 8 we state the following conjecture about the
systole of hyperbolic surfaces Mg of genus g ≥ 2 corresponding to regular 4g-gons. In
particular, the systole of this family of surfaces is bounded, by which we mean that the
set {syst(Mg) | g ∈ N, g ≥ 2} is bounded as a subset of R.

Conjecture 3.3. The systole of the surface Mg corresponding to the regular 4g-gon sat-
isfies

cosh

(
syst(Mg)

2

)
= 1 + 2 cos( π

2g
).

As a partial result we prove the following theorem.

9



Theorem 3.4. The systole of the surface Mg corresponding to the regular 4g-gon satisfies

cosh

(
syst(Mg)

2

)
≤ 1 + 2 cos( π

2g
),

with equality for g = 2, 3.

The inequality for arbitrary genus is new. The systole for M2 was already known in the
literature, but the method developed in Section 8 leads to a new proof, as well as to a
proof for g = 3.

For applications the number of sheets necessary is usually too large. A second method
initializes the triangulation with a well chosen point set, so that the output is guaranteed
to be simplicial. In Section 9 we will prove the following proposition. We will also show
that this implies that the number of points of such a dummy point set is of order Ω(

√
g)

in general and of order Ω(g) if the systole of a family of surfaces is bounded.

Proposition 3.5. Let M be a hyperbolic surface of genus g ≥ 2. Let P be a set of points
in M such that syst(M) > 2δP . Then

|P | >
(

π

π − 6 arccot(
√

3 cosh(1
4

syst(M)))
− 1

)
· 2(g − 1).
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4 Hyperbolic geometry

4.1 History

Around 300 B.C. Euclid wrote in the first book of his Elements1:

1. Let it be postulated that from every point to every point we can draw a
straight line,

2. and that from a bounded straight line we can produce an unbounded
straight line,

3. and that for every center and distance we can draw a circle,

4. and that all right angles are identical to each other,

5. and that, if a straight line intersecting two other straight lines makes
the interior angles on one side less than two right angles, then the two
straight lines, extended to infinity, intersect on the side where the angles
are less than two right angles.

Given the first four postulates, the fifth postulate can be shown to be equivalent with
the parallel postulate: given a line and a point not on this line, there exists precisely one
line through the point parallel to the given line. The first four of Euclid’s postulates are
intuitively clear, but the fifth has been cause for much debate. It has been regarded as
not self-evident enough to be assumed without proof, but for over two thousand years it
could not be proved from the other postulates.

In the first half of the nineteenth century2, the construction of so called non-Euclidean
geometry by Lobachevsky and Bolyai (independently) proved that the attempts would
be fruitless from the start. In both Euclidean and non-Euclidean geometry the first four
of Euclid’s postulates hold, but in the latter the fifth postulate does not hold. This early
non-Euclidean geometry is usually called Bolyai-Lobachevsky geometry and formed the
basis of hyperbolic geometry. It should be noted that several years before Lobachevsky
and Bolyai published their findings Gauss described similar ideas in a letter, but he never
published his construction.

Initially, the study of non-Euclidean geometry existed separately from the rest of mathe-
matics. However, in 1868 Beltrami showed that two-dimensional non-Euclidean geometry
coincides with the study of suitable surfaces of constant negative curvature, in this way
connecting non-Euclidean and Riemannian geometry. His idea can be illustrated as fol-
lows. Consider all points inside the unit disk in R2. Identify each (x, y) in the unit
disk with the point (x, y,

√
1− x2 − y2) on the unit hemisphere in R3 equipped with the

Riemannian metric

ds2 =
dx2 + dy2 + dz2

z2
.

If we project orthogonally onto the xy-plane, then geodesics in the hemisphere project
onto straight line segments in the unit disk in the xy-plane. It can be shown that the

1The translation is mine. For a translation of the complete work, see [25].
2The following discussion is primarily based on [34], but we refer to [12] for a more detailed treatise.

For an extensive bibliography on the history of non-Euclidean geometry, see [36, 33ff.].
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fifth postulate does not hold in this situation. This construction is called the Beltrami-
Klein model of the hyperbolic plane. We will not discuss this model further. However, in
Section 4.2 we will discuss two other models of hyperbolic geometry: the upper half-plane
model and the Poincaré disk model. The former can be obtained from the hemisphere in
the above construction by stereographic projection from (0, 0,−1) onto the plane z = 0;
the latter by stereographic projection from (0, 0,−1) onto the plane z = 1.

The study of the geometry arising from the models mentioned above is usually called
hyperbolic geometry to distinguish it from spherical geometry, another form of non-
Euclidean geometry. Where hyperbolic geometry violates the parallel postulate by having
multiple lines through a point parallel to a given line, spherical geometry violates the
parallel postulate by having no parallel lines at all.

The embedding of hyperbolic geometry in Riemannian geometry by using these models
enabled the development of a theory of hyperbolic geometry. In 1882, Poincaré described
the isometries of the hyperbolic plane by using the upper half-plane model. Furthermore,
he stressed the importance of discrete subgroups of isometries, leading to the theory
of Fuchsian groups. In the beginning of the twentieth century the notion of a smooth
manifold was rigorously defined and this led to the definition of hyperbolic manifolds. In
the following subsections we will treat each of these topics in more detail.

4.2 Models of hyperbolic geometry

To prove that the parallel postulate is independent of the other postulates several models
of hyperbolic geometry have been constructed. In this subsection we will discuss the upper
half-plane model H2 and the Poincaré disk model D2, primarily using [6, 14]. For other
models, such as the Beltrami-Klein disk model or the hyperboloid model, see [19, 37, 45].
For more details on the classification of Möbius transformations, see [6, 48].

4.2.1 Upper half-plane model

The upper half-plane is given by H2 = {z ∈ C | Im(z) > 0}. The points on the Euclidean
boundary {z ∈ C | Im(z) = 0} together with a point ‘∞’ are usually called points at
infinity and denoted by ∂H2. Topologically these points at infinity form a circle, as we
will see later as well in the Poincaré disk model. Equipped with the Riemannian metric

ds =
|dz|

Im(z)

the upper-half plane becomes a model for hyperbolic geometry. The lines in this model
are the geodesics for this metric, namely open rays and open semicircles emanating from
and orthogonal to the real axis (see Figure 1). The hyperbolic distance d(z, w) between
points z, w ∈ H2 is given by

d(z, w) = log
|z − w̄|+ |z − w|
|z − w̄| − |z − w|

.

12



Figure 1: Geodesics in H2

The group of orientation preserving isometries of H2 is denoted by Isom+(H2) and each
ϕ ∈ Isom+(H2) is of the form

ϕ(z) =
az + b

cz + d

for a, b, c, d ∈ R with ad − bc > 0. Reversely, every map of this form is an orientation
preserving isometry of H2.

4.2.2 Poincaré disk model

If we equip the unit disk D2 = {z ∈ C | |z| < 1} with the Riemannian metric

ds∗ =
2|dz|

1− |z|2

we obtain the Poincaré disk model of hyperbolic geometry. In this case the points at
infinity are given by the Euclidean boundary ∂D2 = {z ∈ C | |z| = 1}. The lines in this
model are given by the geodesics for this metric, namely the diameters of D2 and the arcs
of (Euclidean) circles orthogonal to ∂D2 (see Figure 2). The hyperbolic distance d∗(z, w)
between points z, w ∈ D2 is given by

d∗(z, w) = log
|1− zw̄|+ |z − w|
|1− zw̄| − |z − w|

.

The group of orientation preserving isometries of D2 is denoted by Isom+(D2) and each
ϕ ∈ Isom+(D2) is of the form

ϕ(z) =
az + b

b̄z + ā

for a, b ∈ C with |a|2 − |b|2 = 1. Conversely, every map of this form is an orientation
preserving isometry of D2.
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Figure 2: Geodesics in D2

4.2.3 Relation

The upper half-plane model and the Poincaré disk model are both conformal models of
hyperbolic geometry, meaning that they preserve angles. They are even more intimately
related: the map f : H2 → D2 given by

f(z) =
z − i
iz − 1

maps bijectively H2 to D2 and ∂H2 to ∂D2. Furthermore, it is an isometry between
(H2, d) and (D2, d∗). From now on we will use ds for both ds, ds∗ and d for both d, d∗,
since usually the context will make clear which is meant.

4.3 Classification of Möbius transformations

We start with a note regarding terminology. Isometries of the hyperbolic plane, as in-
troduced in the previous subsection, are examples of Möbius transformations. Möbius
transformations are defined in [27] as linear fractional transformations on the extended
complex plane, i.e., maps of the form

z 7→ az + b

cz + d
,

where a, b, c, d ∈ C with ad − bc 6= 0. Observe that in this case the coefficients a, b, c, d
can take any complex value instead of only real values as for isometries of the upper half-
plane. In [6], Möbius transformations are defined as compositions of inversions in spheres
or half-planes, which is equivalent with the definition in [27]. On the other hand, the
definition of Möbius transformations in [48] coincides with our definition of orientation
preserving isometries of H2. We will follow the definitions of [6, 27]. In that case, Möbius
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transformations are usually classified into four types: elliptic, parabolic, hyperbolic and
loxodromic transformations, where hyperbolic transformations are a special case of loxo-
dromic transformations. We are only interested in the first three types, so we will explain
these in further detail below.

Every orientation preserving isometry of the hyperbolic plane is either elliptic, parabolic
or hyperbolic. We can distinguish between these three by the number and the location
of their fixed points. Since H2 and D2 are isometric, it suffices to only look at transfor-
mations in Isom+(D2). If γ ∈ Isom+(D2) has

• one fixed point in D2, then it is called elliptic (or a rotation);

• one fixed point in ∂D2, then it is called parabolic (or a dilation);

• two fixed points in ∂D2, then it is called hyperbolic (or a translation).

In the last case, the geodesic connecting the two fixed points is called the axis Xγ of
γ. We have that d(x, γ(x)) is constant for all x ∈ Xγ and this constant is called the
translation length of γ, denoted by l(γ).
To a transformation

γ(z) =
az + b

b̄z + ā

we can associate an equivalence class of matrices[
a b
b̄ ā

]
,

where A is equivalent to B if and only if A = ±B. Working with equivalence classes is
necessary here, since we could write γ(z) = (−az− b)/(−b̄z− ā) as well. We will use the
same notation for the transformation itself and the corresponding matrix. Composition in
the group Isom+(D2) is then given by matrix multiplication. Furthermore, it can be seen
that the classification of elements of Isom+(D2) into elliptic, parabolic and hyperbolic
transformations corresponds to | tr(γ)| < 2, | tr(γ)| = 2 and | tr(γ)| > 2 respectively. Here
| tr(γ)| denotes the absolute value of the trace of (a matrix corresponding to) γ, which
is well defined, because γ determines its corresponding matrix up to sign. An explicit
formula for the translation length is given by

cosh

(
l(γ)

2

)
= 1

2
| tr(γ)|.

4.4 Trigonometry

In this subsection we will briefly state some results about hyperbolic trigonometry, using
primarily [6, 29]. These trigonometric formulas hold in both H2 and D2, so we will refer
to either model by the hyperbolic plane.

Since in both models the first four postulates of Euclid hold, in particular there exists
for distinct z, w in the hyperbolic plane a unique geodesic segment [z, w] joining z to w.
For distinct, non-collinear z1, z2, z3 in the hyperbolic plane, the hyperbolic triangle with
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vertices z1, z2, z3 is [z1, z2, z3] = [z1, z2]∪ [z2, z3]∪ [z3, z1]. More generally, [z1, z2, . . . , zn] =
[z1, z2]∪ . . .∪ [zn−1, zn]∪ [zn, z1] denotes the hyperbolic n-gon with vertices z1, . . . , zn. Let
[A,B,C] be a hyperbolic triangle with angles α, β, γ at A,B,C respectively and let a, b, c
be the length of the opposite edges (Figure 3). First assume that γ = π

2
. In this case the

hypotenuse c is given by
cosh c = cosh a cosh b,

which is called the hyperbolic Pythagorean Theorem. Equations for the angles in terms

Figure 3: Hyperbolic triangle

of two of the sides are given by

sinα =
sinh a

sinh c
,

cosα =
tanh b

tanh c
,

tanα =
tanh a

sinh b
.

Now, let γ ∈ [0, π) be arbitrary. The hyperbolic sine rule is given by

sinh a

sinα
=

sinh b

sin β
=

sinh c

sin γ

and it is the analogue of the Euclidean sine rule. The first hyperbolic cosine rule is given
by

cosh c = cosh a cosh b− sinh a sinh b cos γ

and given the form of the hyperbolic Pythagorean Theorem, it is the analogue of the
Euclidean cosine rule. The second hyperbolic cosine rule is given by

cosh c =
cosα cos β − cos γ

sinα sin β

and it has no analogue in Euclidean geometry. It implies that hyperbolic triangles with
identical angles are isometric, which is not true in Euclidean geometry due to scaling.
The hyperbolic area of T = T (A,B,C) is given by

area(T ) = π − α− β − γ.
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In particular, area(T ) ≤ π with identity if and only if T is an ideal triangle, i.e. A,B,C
are points at infinity. Similarly, if an n-gon P has interior angles α1, . . . , αn, then its area
is given by

area(P ) = (n− 2)π −
n∑
i=1

αi.

4.5 Trigonometric optimization problems

In our results we will use several isoperimetric-like inequalities. The following inequality
gives a lower bound for the radius of the circumscribed circle of a polygon with a given
area.

Lemma 4.1. Let P be a convex hyperbolic n-gon with area A. If P has a circumscribed
circle C with radius R and center O ∈ P \ ∂P , then R ≥ R(A), where

coshR(A) = cot

(
π

n

)
cot

(
(n− 2)π − A

2n

)
,

with equality if and only if P is regular.

A proof is given in [35]. As a direct consequence we find a lower bound for the furthest
vertex in terms of the area of the polygon.

Corollary 4.2. Let P be a convex hyperbolic n-gon with area A containing O. The
distance R between O and the vertex of P furthest from O is at least R(A).

Proof. Construct P ′ ⊇ P such that the vertices of P ′ lie on the circle C with center O
and radius R, for example by letting the vertices of P ′ be the intersection points of the
rays from O to the vertices of P with C (see Figure 4). Since area(P ′) ≥ A, we have by
Lemma 4.1 that R ≥ R(area(P ′)) ≥ R(A).

The next inequality gives an upper bound for the area of a polygon given the radius of
the circumscribed circle, so in a sense it is the dual of the first statement.

Lemma 4.3. Let P be a convex n-gon for n ≥ 3 with all vertices on a circle with radius
R. Then the area of P attains its maximal value A(R) if and only if P is regular and in
this case

coshR = cot

(
π

n

)
cot

(
(n− 2)π − A(R)

2n

)
.

Proof. For the proof we use the same approach as [35] does for Lemma 4.1.
Consider n = 3. Divide P into three pairs of right-angled triangles with angles θi at the
center of the circumscribed circle, angles αi at the vertices and right angles at the edges
of P (see Figure 5). By the second hyperbolic cosine rule

coshR = cot θi cotαi

for i = 1, 2, 3. Furthermore,
∑3

i=1 θi = π and A = π − 2
∑3

i=1 αi. Therefore, maximizing
A reduces to minimizing

f(θ1, θ2, θ3) =
3∑
i=1

arccot(coshR tan θi) (1)
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Figure 4: Construction of P ′ from P

subject to the constraint
∑3

i=1 θi = π, 0 ≤ θi < π, i.e., minimizing (1) over the triangle
in R3 with vertices (π, 0, 0), (0, π, 0), (0, 0, π). Parametrize this triangle as follows

θ1 = s+ t, θ2 = s− t, θ3 = π − 2s

for 0 < s < π/2 and |t| ≤ s. By (1), we can view f as a function of s and t. First we fix
s and minimize over t. We have

∂

∂t
f(θ1(s, t), θ2(s, t), θ3(s, t)) =

3∑
i=1

− sec2 θi

1 + cosh2R tan2 θi

∂θi
∂t
,

=
sec2 θ2

1 + cosh2R tan2 θ2

− sec2 θ1

1 + cosh2R tan θ1

,

=
1

1 + (cosh2R− 1) sin2 θ2

− 1

1 + (cosh2R− 1) sin2 θ1

.

Therefore, a minimum is obtained if and only if θ1 = θ2, i.e., if and only if t = 0. In a
similar way we minimize over s.

∂

∂s
f(θ1(s, t), θ2(s, t), θ3(s, t)) =

3∑
i=1

− sec2 θi

1 + cosh2R tan2 θi

∂θi
∂s
,

=
2

1 + (cosh2R− 1) sin2 θ3

− 2

1 + (cosh2R− 1) sin2 θ1

,
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Figure 5: Division of P into three pairs of right-angled triangles

and it follows that a minimum is obtained for θ1 = θ3. Therefore, the area of P obtains
its maximal value A(R) if and only if θ1 = θ2 = θ3 = π/3, i.e., if and only if P is a regular
triangle. In this case,

α1 = α2 = α3 =
π − A(R)

6
,

so

cosh(R) = cot θi cotαi = cot

(
π

3

)
cot

(
π − A(R)

6

)
.

For arbitrary n ≥ 3, the proof that maximal area is obtained for a regular polygon is the
same but with more parameters. In this case θi = π/n and

A(R) = (n− 2)π − 2nαi,

so the area A(R) of the regular polygon is given by

cosh(R) = cot θi cotαi = cot

(
π

n

)
cot

(
(n− 2)π − A(R)

2n

)
.

We can use this lemma to prove an upper bound for the area of a triangle in terms of the
radius of its circumscribed circle.
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Corollary 4.4. Let T be a hyperbolic triangle with a circumscribed disk of radius r. Then

area(T ) ≤ π − 6 arccot(
√

3 cosh(r)).

Proof. By Lemma 4.3, we have that area(T ) ≤ A(r) for A(r) satisfying

cosh r = cot

(
π

3

)
cot

(
π − A(r)

6

)
.

Then
A(r) = π − 6 arccot(

√
3 cosh(r)),

which finishes the proof.

4.6 Circle packings

In this section we will discuss the packing density of circle packings in the hyperbolic
plane. This section will only be used to improve the lower bound for the number of
sheets in Section 6. To illustrate packing density we will first consider circle packings
in the Euclidean plane. For an introduction to circle packings, see [43]. We base the
discussion of circle packings in the hyperbolic plane on [46].

A circle packing is a set of disks with mutually disjoint interiors. We will only consider
circle packings where the disk are all congruent. The packing density of a circle packing
in the Euclidean plane can be defined in the following way. Let P be a circle packing in
the Euclidean plane. Fix a point O in the plane and consider a circle C(R) with center O
and radius R. Let areaP (C(R)) be the sum of the areas of all circles of the circle packing
which lie entirely in C(R). Let area(C(R)) be the area of C(R). Then the packing density
D(P ) of the circle packing P is defined as

D(P ) = lim
R→∞

areaP (C(R))

area(C(R))
.

It makes no difference if we take area(P ∩ C(R)) instead of areaP (C(R)), i.e., if we also
consider circles of P that lie partially in C(R). Namely, if the circles of P have radius r,
then all circles partially in C(R) lie in the strip C(R+ 2r) \C(R− 2r). Therefore, their
area is at most the area of this strip, which is

area(C(R + 2r))− area(C(R− 2r)) = π(R + 2r)2 − π(R− 2r)2 = 8πrR.

It follows that

0 ≤ lim
R→∞

area(P ∩ C(R))− areaP (C(R))

area(C(R))
≤ lim

R→∞

8πrR

πR2
= 0,

so the contribution of these circles to the density is negligible in the limit.
It is well known that the hexagonal packing H (see Figure 6) is the circle packing with
congruent circles in the Euclidean plane with the maximum packing density, namely

D(H) =
π

2
√

3
.
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Figure 6: Hexagonal packing in the Euclidean plane

In the hyperbolic plane we cannot use this definition of packing density, as the contribu-
tion from circles partially in C(R) is not negligible anymore. Instead, packing density of
a circle packing in the hyperbolic plane is defined in [46] by triangulating the hyperbolic
plane and taking the mean density over all triangles. Then the density within each tri-
angle is computed using the area of all (partial) circles within the triangle. In this way,
the maximum packing density for a circle packing with circles of radius r is given by

D(a) =
3 csc π

a
− 6

a− 6
,

where a is defined by
csc π

a
= 2 cosh r.

Note that the maximum packing density increases monotonically as a function of r. For
r → ∞ we have a → ∞ and D(a) → 3

π
, which is the maximum packing density for a

circle packing in the hyperbolic plane independent of the radius of the circles.
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4.7 Fuchsian groups

In this section we will first define Fuchsian groups and then look at fundamental domains.
Proofs of propositions will be omitted. For more details we refer to [6, 29, 48].

Recall that a subset of a topological space is called discrete if the subspace topology
on this set is the discrete topology, i.e., the topology where every subset is open and
closed. The identification of elements of Isom+(D2) with matrices induces the structure
of a topological space on Isom+(D2). We can now give the definition of a Fuchsian group.

Definition 4.5. A discrete subgroup of Isom+(D2) is called a Fuchsian group.

Again, since H2 and D2 are isometric, we will only consider subgroups of Isom+(D2). For
a Fuchsian group Γ and a point x ∈ D2, the orbit of x under Γ is defined as Γ(x) =
{γ(x) | γ ∈ Γ} ⊂ D2.

Proposition 4.6. Let Γ be a subgroup of Isom+(D2). The following statements are
equivalent:

1. Γ is a Fuchsian group,

2. For all x ∈ D2, Γ(x) is a discrete subset of D2.

3. For all x ∈ D2, there exists a neighbourhood N , such that γ(N) ∩ N 6= ∅ for only
finitely many γ ∈ Γ.

If Γ satisfies the third statement, we usually say that Γ acts properly discontinuously on
D2, even though definitions of properly discontinuous may vary in the literature. Denote
the interior of a subset F of a topological space by F̊ . We can then define a fundamental
region for the action of a Fuchsian group Γ on D2.

Definition 4.7. Given a Fuchsian group Γ, a fundamental domain F for Γ is a closed
subset of D2 such that

1.
⋃
γ∈Γ γ(F ) = D2,

2. For all γ1, γ2 ∈ Γ we have: if γ1 6= γ2, then γ1(F̊ ) ∩ γ2(F̊ ) = ∅.

A priori, we do not know that there actually exists a fundamental region for a given
Fuchsian group Γ, but later on we will explicitly construct a fundamental region called
the Dirichlet region. Different fundamental domains can look very different, but the
following proposition states that their area is always the same.

Proposition 4.8. Let Γ be a Fuchsian group with fundamental domains F, F ′ such that
area(∂F ) = area(∂F ′) = 0 and area(F ) <∞. Then

area(F ) = area(F ′).

Naturally, a subgroup of a Fuchsian group is a Fuchsian group as well.
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Proposition 4.9. Let Γ be a Fuchsian group with fundamental domains F such that
area(∂F ) = 0 and let Γ′ < Γ be a subgroup of Γ of index k with fundamental domain F ′.
Then

area(F ′) = k area(F ).

It can be shown that for every Fuchsian group Γ there exists a point p ∈ D2 such that
γ(p) 6= p for all γ ∈ Γ \ {Id}, i.e. there exists a point that is not fixed by any non-trivial
element of Γ. We can now define the Dirichlet region.

Definition 4.10. Let Γ be a Fuchsian group and let p be a point that is not fixed by any
non-trivial element of Γ. Define the Dirichlet region Dp(Γ) of p with respect to Γ as

Dp(Γ) = {x ∈ D2 | d(x, p) ≤ d(x, γ(p)) for all γ ∈ Γ}.

Intuitively, Dp(Γ) can be seen as the collection of points that are closer to p than to the
other elements of Γ(p). Indeed, Dp(Γ) is a fundamental domain.

Proposition 4.11. Let Γ be a Fuchsian group and let p be a point that is not fixed by
any non-trivial element of Γ. The Dirichlet region Dp(Γ) is a fundamental domain for Γ.
If area(Dp(Γ)) <∞, then Dp(Γ) is a convex hyperbolic polygon with finitely many sides.

Suppose that in the situation above there exists a side s of Dp(Γ) and γ ∈ Γ, such that
γ(s) is also a side of Dp(Γ). Then we call such a γ a side pairing transformation. Indeed,
sides are paired, since γ−1 maps the side γ(s) back to the side s. In fact, for a Dirichlet
region Dp(Γ) we can find such a side pairing transformation for every side s of Dp(Γ).
Namely, every side is a piece of the perpendicular bisector of the segment [p, γ(p)] for
some γ ∈ Γ \ {Id} and it can be shown that γ−1 maps s to another side of Dp(Γ). Hence,
to any Dirichlet region we can associate a set of side pairing transformations.

4.8 Hyperbolic surfaces

A Fuchsian group Γ naturally acts on D2, so we can form the quotient space D2/Γ. We
saw in the previous section that with the Dirichlet region of Γ we can associate a set of
side pairing transformations. These side pairing transformations can be seen as ‘glueing’
the Dirichlet region along paired sides. In this way we can see D2/Γ as a surface which
locally looks like a part of the hyperbolic plane. Such a surface will be called a hyperbolic
surface. In this section we will see that the converse holds as well: a given hyperbolic
surface is isometric to a quotient D2/Γ for some Fuchsian group Γ. Another reverse
construction is provided by Poincaré’s Theorem: in this case from a polygon and a set of
side pairing transformations the corresponding Fuchsian group is constructed, provided
some conditions are satisfied. We will not discuss this in detail, see instead [29, 48].

First we give the definition of hyperbolic surface.

Definition 4.12. A hyperbolic surface is a connected 2-dimensional manifold that is
locally isometric to an open subset of D2.

Again, we will only consider D2, since H2 and D2 are isometric. Because hyperbolic
surfaces are defined to be locally isometric to open subsets of the hyperbolic plane, they
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have an induced Riemannian metric of constant Gaussian curvature -1. As such, they
cannot be embedded in R3; for the first proof of this, see [26]. However, for visualization
we will still draw hyperbolic surfaces as if they were surfaces in R3. Furthermore, we will
always assume that the surface is orientable. Hyperbolic surfaces can be obtained as a
quotient space under the action of a Fuchsian group.

Proposition 4.13. For every hyperbolic surface M there exists a Fuchsian group Γ acting
on D2 without fixed points, such that M is isometric to D2/Γ.

Since elliptic Möbius transformations have a fixed point in D2, a Fuchsian group as in
the proposition does not contain any elliptic elements.

A compact hyperbolic surface is called closed. A Fuchsian group is called cocompact, if
D2/Γ is compact. It can be shown that a cocompact Fuchsian group cannot contain any
parabolic elements; see, e.g., [29].

Corollary 4.14. For every closed hyperbolic surface M there exists a Fuchsian group Γ
of which all non-trivial elements are hyperbolic, such that M is isometric to D2/Γ.

A note on the literature: this section is mostly based on [44], since the main statement of
this section is stated there explicitly. Works on Teichmüller spaces, such as [27, 42], often
focus more on the classification of Riemann surfaces. For Riemann surfaces a conformal
structure is a maximal atlas such that all transition maps are holomorphic. Buser [14]
gives a proof that the classifications of conformal structures on Riemann surfaces of genus
g ≥ 2 and atlases for hyperbolic surfaces coincide. Namely, since the transition maps of a
hyperbolic atlas are restrictions of Möbius transformations, a hyperbolic atlas naturally
induces a conformal structure. Reversely, given a Riemann surface M of genus g ≥ 2
there exists by the Uniformization Theorem a universal covering map π : D2 → M . The
covering transformations are conformal self-mappings of D2, so the local inverses of π can
be used as parametrizations for a hyperbolic surface. Beardon [6] evades this distinction:
initially he considers Riemann surfaces, but then he introduces ‘Riemann surfaces of
hyperbolic type’, which are defined to be of the form D2/Γ.

4.9 Closed geodesics on a hyperbolic surface

In the criterium for well-behaved triangulations of hyperbolic surfaces that we will discuss
in Section 5, a central role is played by the systole of a surface. Therefore we will look
in this section at closed geodesics, the systole and the length spectrum of hyperbolic
surfaces, following primarily [36, 44]. The relevant homotopy theory can be found in an
introduction on algebraic topology; see, e.g., [23].

Let M = D2/Γ be a closed hyperbolic surface. By using the metric on D2 and the fact
that Γ consists of isometries, we obtain a metric on M , so we can speak of geodesics on
M . Define the circle S1 = R/∼, where x ∼ x + 1 for all x ∈ R. A closed curve on M is
a continuous map c : S1 → M . We will always assume differentiability, except maybe at
a point: a curve c : [0, 1] → M such that c(0) = c(1) which is differentiable at (0, 1) is
called a loop. Closed curves c0, c1 : S1 → M are called freely homotopic if there exists a
continuous map H : S1 × [0, 1]→M such that

H(x, 0) = c0(x), H(x, 1) = c1(x)
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for all x ∈ S1. Curves which are homotopic to a point are called homotopically trivial.
We will always consider a closed geodesic together with a parametrization; in this way
we can distinguish between a closed geodesic c and the closed geodesic c2 obtained by
traversing c twice. We now define the systole.

Definition 4.15. The length of the shortest homotopically non-trivial closed curve on a
closed hyperbolic surface M is called the systole of M and denoted by syst(M).

The systole of a surface is attained as the length of some curve. Clearly, the shortest
closed curves on M are simple, i.e. they have no self-intersections except at the endpoints.
By the following proposition it is sufficient to consider only (simple) closed geodesics.

Proposition 4.16. Every homotopically non-trivial (simple) closed curve on a closed
hyperbolic surface is freely homotopic to a unique (simple) closed geodesic, which is the
shortest curve in the corresponding free homotopy class.

A proof can be found in [36, Thm. 9.6.4 & 9.6.5]. Closed geodesics are closely related to
the structure of the corresponding Fuchsian group.

Proposition 4.17. Closed geodesics of a closed hyperbolic surface M = D2/Γ are in
one-to-one correspondence with conjugacy classes of elements of Γ.

For a proof, see [36, Thm. 9.6.2]. In the above correspondence, the axis Xγ of γ ∈ Γ in D2

projects onto its corresponding closed geodesic c under the projection map D2 → D2/Γ.
It follows that the length of c is given by the distance d(x, γ(x)) for x ∈ Xγ, as this is
the distance that γ moves x ∈ Xγ along Xγ until it reaches the next point in the orbit.
Therefore, the length of c is equal to the translation length l(γ). Then finding the systole
reduces to the following optimization problem:

cosh

(
syst(D2/Γ)

2

)
= min

γ∈Γ
γ 6=Id

1
2
| tr(γ)|.

The following proposition gives an upper bound for the systole; the proof is from [14].

Proposition 4.18. Let M be a closed hyperbolic surface of genus g ≥ 2. Then

syst(M) ≤ 2 log(4g − 2).

Proof. Let c be the shortest homotopically non-trivial closed curve on M and fix p ∈ c.
We have that Dr = {q ∈ M | d((p, q) < r)} is a hyperbolic disk of radius r as long as
r < syst(M)/2. Then

4π(g − 1) = area(M) > area(Dr) = 2π(cosh(r)− 1).

Taking the limit r → syst(M)/2 we obtain

cosh(syst(M)/2) ≤ 2g − 1.

Since 1
2

exp(syst(M)/2) < cosh(syst(M)/2), we have

exp(syst(M)/2) < 4g − 2,

which proves the result.
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The above upper bound is up to a constant the best possible. Namely, in [15] a family
of hyperbolic surfaces {M(g)} is constructed with genus g →∞ and

syst(M(g)) ≥ 4
3

log g − c

for some constant c. The same bound is found in [30] for a different family of surfaces.
In both cases the families of surfaces are constructed by considering principal congruence
subgroups of arithmetic Fuchsian groups. We will not discuss arithmeticity here, but
refer to [29]. In [33] it is shown that the coefficient 4

3
is the best possible for surfaces

obtained in this way. Whether there are families of surfaces that yield larger coefficients,
is currently not known. A universal nonzero lower bound for the systole of hyperbolic
surfaces does not exist: in [7] it is shown3 that for any ε > 0 there exists a hyperbolic
surface M with syst(M) < ε.

As a final remark, the systole is the first element of a certain sequence called the length
spectrum.

Definition 4.19. The length spectrum L(M) of a closed hyperbolic surface M is the
ascendingly ordered sequence of lengths of closed geodesics on M .

In light of the discussion before, the length spectrum of a hyperbolic surface M = D2/Γ
is equal to the ordered sequence of translation lengths of conjugacy classes of Γ. Since
isometries preserve the length of every geodesic on the surface, isometric surfaces have
the same length spectrum. However, the converse is not true: there exist non-isometric
surfaces which are isospectral, i.e., they have the same length spectrum. In [47], upper
bounds are given for the number of non-isometric, isospectral surfaces in terms of genus
and systole.

4.10 Teichmüller space

Classifying the isomorphism classes of Riemann surfaces is known as the moduli problem.
By the remark in Section 4.8, this is equivalent to the description of all isometry classes of
hyperbolic surfaces. This problem is currently unsolved, even though there are solutions
for low genera. In Section 4.10.6, we will see an example of such a solution for surfaces
of signature (0, 3), i.e., of genus 0 with 3 punctures.

First we will discuss pairs of pants and cubic graphs, the building blocks and skeletons,
respectively, of hyperbolic surfaces. Then we will discuss the twist parameters, extra
degrees of freedom that arise when we glue pairs of pants together. These ingredients
will be combined to define the Fenchel-Nielsen coordinates, a natural model for the Te-
ichmüller space, which consists of equivalence classes of marked hyperbolic surfaces. We
will see that isometry classes of hyperbolic surfaces have multiple representatives in the
Teichmüller space and this multiplicity is described in the mapping class group. Finally
we will introduce the Zieschang-Vogt-Coldewey coordinates, another useful parametriza-
tion of the Teichmüller space. We will follow [14] closely, but see also [27, 36, 42].

3In fact, they show the corresponding statement for hyperbolic n-dimensional manifolds. We will see
in the definition of the Fenchel-Nielsen coordinates that the statement for hyperbolic surfaces is trivial.
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4.10.1 Pairs of pants

Let H be a right-angled hyperbolic hexagon with consecutive sides b1, s1, b2, s2, b3, s3 (see
Figure 7).

Figure 7: Right-angled hyperbolic hexagon

Let H ′ be a copy of H with sides b′i, s
′
i. We will glue H and H ′ together along the seams

s1, s2, s3 and s′1, s
′
2, s
′
3 (see Figure 8). Parametrize the sides with constant speed to obtain

Figure 8: Construction of pair of pants

t 7→ si(t), t 7→ s′i(t), t ∈ [0, 1]. Let Y = H t H ′/ ∼ be the disjoint union of H and H ′

modulo the glueing condition ∼, where p ∼ q for p ∈ H and q ∈ H ′ if and only if there
exists i ∈ {1, 2, 3} and t ∈ [0, 1] such that p = si(t) and q = s′i(t). The resulting Y will
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be called a pair of pants. It is a hyperbolic surface with boundary4 homeomorphic to
a thrice-punctured sphere. There are three boundary curves, namely bi ∪ b′i, i = 1, 2, 3.
These boundary curves are closed geodesics, since all angles in the hexagons are right
angles.

Now, let Y be a pair of pants. For every pair of boundary geodesics of Y there exists a
unique simple common perpendicular. These perpendiculars, i.e., the seams, are mutually
disjoint and divide the boundary geodesics in two arcs of the same length. Therefore, by
cutting Y open along the seams we obtain two isometric right-angled hexagons.

By the construction above, we see that for any triple l1, l2, l3 of positive real numbers, there
exists a pair of pants with boundary geodesics of lengths l1, l2, l3. By the decomposition
of a pair of pants into hexagons and the fact that the lengths of b1, b2, b3 determine the
hexagon up to isometry, we see that such a pair of pants is unique up to isometry.

4.10.2 Cubic graphs

Recall that a graph G = (V,E) consists of a set of vertices V = V (G) and edges E =
E(G). Denote the number of vertices and edges of G by v(G), e(G) respectively. We will
assume that the graph is undirected and loops and double edges are allowed. A graph
is connected if for all v, w ∈ G, there exists a sequence v = v1, v2, . . . , vk = w such that
(vi, vi+1) ∈ E for all i = 1, . . . , k − 1.

For our purpose it is useful to interpret each edge as two half-edges. A cubic graph is
a graph where every vertex has three emanating half-edges. Therefore, a cubic graph G
contains 3v(G) half-edges, so 3v(G) = 2e(G). This means that the number of vertices of
a cubic graph is always even, say v(G) = 2g−2. Denote the vertices of G by v1, . . . , v2g−2

and its edges by e1, . . . , e3g−3. Denote the half-edges emanating from vi by eiα, α = 1, 2, 3.
Each edge ek = (vi, vj) is interpreted as the union of two half-edges ek = eiα ∪ ejβ for
some α, β ∈ {1, 2, 3}. Then the list

ek = eiα ∪ ejβ, k = 1, . . . , 3g − 3

completely describes the graph G.

Example 4.20. In Figure 9 we see an example of a cubic graph. It is completely described
by the following list:

e1 = e11 ∪ e21,

e2 = e12 ∪ e22,

e3 = e13 ∪ e31,

e4 = e23 ∪ e32,

e5 = e33 ∪ e41,

e6 = e42 ∪ e43.

4Technically, we did not define hyperbolic surfaces with boundary, but the definition is similar to
manifolds with boundary.
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Figure 9: Example of a cubic graph

4.10.3 Twist parameters

Let Y, Y ′ be pairs of pants with boundary geodesics bi : S1 → Y, b′i : S1 → Y ′ parametrized
with constant speed. Assume that `(b1) = `(b′1), where `(b1) denotes the length of b1.
We will glue Y and Y ′ together along the boundaries b1 and b′1 (see Figure 10). For
any a ∈ R, let Xa = Y t Y ′/ a∼ be the disjoint union of Y and Y ′ modulo the glueing
condition

a∼, where p
a∼ q for p ∈ Y and q ∈ Y ′ if and only if there exists t ∈ S1 such

that p = b1(t) and q = b′1(a − t). Observe that we took S1 to be a quotient space with
base space R, so the expression a− t makes sense. Furthermore, we use b′1(a− t) instead
of b′1(a + t) to preserve the orientation. The resulting Xa is a hyperbolic surface with
boundary homeomorphic to a sphere with four punctures. Of course we can continue this
glueing procedure with Xa and another pair of pants and we will do so in the next part.
The parameter a is called a twist parameter and can be seen as the amount of twisting
used in the glueing of Y and Y ′.

Figure 10: Glueing of pairs of pants with twist parameter 1
4
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4.10.4 Fenchel-Nielsen coordinates

Now we have all the ingredients to construct hyperbolic surfaces. Intuitively, the con-
struction is as follows: suppose we are given a connected cubic graph. Each vertex
corresponds to a pair of pants. Two pairs of pants are glued together along a pair of their
boundary geodesics if and only if there is an edge between the corresponding vertices. A
loop in the graph means that two boundary geodesics of one and the same pair of pants
are glued together. The isometry class of the resulting surface will depend on the lengths
of the boundary geodesics and the twist parameters.

Example 4.21. In Figure 11 we see an example of the construction of a hyperbolic
surface, where the underlying structure is given by the cubic graph of Figure 9. In this
case vertex vi corresponds to pair of pants Yi. Indeed, Y1 and Y2 are glued together along
two of their boundary geodesics as there is a double edge between them in the cubic
graph. In the same way the other edges are represented by glueing.

Figure 11: Construction of hyperbolic surfaces

Now we will formally describe this procedure. Let g ≥ 2 be an integer. Let G be a
connected cubic graph with v(G) = 2g − 2, which can be completely described by

ek = eiα ∪ ejβ, k = 1, . . . , 3g − 3.

Choose l1, . . . , l3g−3 ∈ R+ and a1, . . . , a3g−3 ∈ R. Associate to each vertex vi with half-
edges eiα, α = 1, 2, 3 a pair of pants Yi with boundary geodesics biα, α = 1, 2, 3 such that
for the pairs in the list above

lk = `(biα) = `(bjβ), k = 1, . . . , 3g − 3.

Let

M =

3g−3⊔
k=1

Yk

/ 3g−3⊔
k=1

ak∼

be the disjoint union of the Yk modulo all the glueing conditions
ak∼, where each

ak∼ is under-
stood to apply to the corresponding Yi and Yj from the list above. In this way we obtain
a hyperbolic surface M of genus g. We call the sequence (l1, . . . , l3g−3, a1, . . . , a3g−3) the
Fenchel-Nielsen coordinates of the closed hyperbolic surface M . The following theorem
shows the usefulness of the above construction.
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Theorem 4.22. Let G be a fixed connected cubic graph with v(G) = 2g − 2. Then
every closed hyperbolic surface of genus g can be obtained by the construction above with
underlying graph G.

We immediately see that closed hyperbolic surfaces can be constructed in multiple ways
using the procedure above, for example by constructing one hyperbolic surface from
different graphs. In Section 4.10.6 we will discuss this further.

4.10.5 Teichmüller space

The Fenchel-Nielsen coordinates provide a natural model for the Teichmüller space Tg,n.
To formally define the Teichmüller space we need to introduce marked hyperbolic surfaces.
For each signature (g, n), where g is the genus and n the number of punctures, define a
fixed closed hyperbolic surface Bg,n of genus g with n punctures such that its boundary
components are smooth closed curves.

Definition 4.23. A marked hyperbolic surface (M,ϕ) of signature (g, n) consists of a
closed hyperbolic surface M of signature (g, n) and a homeomorphism ϕ : Bg,n → M ,
which is called the marking homeomorphism.

Marked hyperbolic surfaces are considered to be ‘the same’ if they are marking equivalent.

Definition 4.24. Two marked hyperbolic surfaces (M,ϕ), (M ′, ϕ′) are called marking
equivalent if there exists an isometry f : M →M ′ such that ϕ′ and f ◦ ϕ are isotopic.

Recall that homeomorphisms f0, f1 : X → Y of topological spaces are isotopic if there
exists a continuous map J : [0, 1]×X → Y such that

J(0, x) = f0(x), J(1, x) = f1(x)

for all x ∈ X and J(t, · ) : X → Y is a homeomorphism for all t ∈ [0, 1].

Definition 4.25. The Teichmüller space Tg,n of signature (g, n) is the set of all marking
equivalence classes of marked hyperbolic surfaces. We write Tg instead of Tg,0.

To see that the Fenchel-Nielsen coordinates are a model of the Teichmüller space, for a
given connected cubic graph G, set BG equal to the hyperbolic surface with underlying
graph G and Fenchel-Nielsen coordinates lk = 1, ak = 0 for k = 1, . . . , 3g − 3. Then
we can construct the marking homeomorphism from BG to the hyperbolic surface with
arbitrary Fenchel-Nielsen coordinates, which consists of stretching (to make the lk larger)
and twisting (to make the ak larger). We will not elaborate on this; see [14] for more
details. The set of marked hyperbolic surface with such a marking homeomorphism, with
base surface BG and with underlying graph G, is called TG.

Theorem 4.26. Let G be a fixed connected cubic graph with v(G) = 2g − 2. Then for
every marked hyperbolic surface (M,ϕ) there exists a unique (M ′, ϕ′) ∈ TG, which is
marking equivalent to (M,ϕ).

It follows that we indeed have a bijection between Tg and the Fenchel-Nielsen coordinates
for a fixed connected cubic graph G.
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4.10.6 Mapping class group

The Teichmüller space does not solve the moduli problem. Indeed, an isometry class of
hyperbolic surfaces of signature (g, n) has multiple representatives in Tg,n.

For example, consider the Teichmüller space of signature (0, 3), i.e. pairs of pants. Two
marked pairs of pants (Y, ϕ), (Y ′, ϕ′) are marking equivalent if and only if ϕ◦ϕ′ fixes each
of the boundary components. Therefore, a pair of pants with boundary lengths (1, 2, 3)
for the labeled boundary geodesics b1, b2, b3 is not marking equivalent to a pair of pants
with boundary lengths (2, 1, 3), even though they are isometric. It is clear that in this
case the moduli space of isometry classes of hyperbolic surfaces is given by T0,3/S3, where
S3 is the permutation group permuting the labels of the boundary geodesics.

More generally, consider the mapping class group.

Definition 4.27. For a fixed signature (g, n) and base surface Bg,n the mapping class
group Mg,n is the group of all isotopy classes of homeomorphisms Bg,n → Bg,n.

Each such homeomorphism f induces an action m(f) : Tg,n → Tg,n on marked hyperbolic
surfaces by the following rule:

m(f)(M,ϕ) = (M,ϕ ◦ f).

Definition 4.28. The Teichmüller modular group Mg,n is the group of transformations

Mg,n = {m(f) | f ∈Mg,n}.

Then we can see that the Teichmüller modular group plays the role that S3 plays in the
case of pairs of pants.

Proposition 4.29. Marked hyperbolic surfaces (M,ϕ), (M ′, ϕ′) ∈ Tg,n are isometric if
and only if there exists µ ∈Mg,n such that µ(M,ϕ) = (M ′, ϕ′).

It follows that the moduli spaceRg,n of isometry classes of hyperbolic surfaces of signature
(g, n) is

Rg,n = Tg,n/Mg,n,

so describing Rg,n is equivalent to finding a fundamental domain for the action of Mg,n

on Tg,n. For some signatures this has succeeded, but in general this problem is unsolved.

4.10.7 Zieschang-Vogt-Coldewey coordinates

There are several other systems of coordinates for Tg besides Fenchel-Nielsen coordinates,
which use the relation between closed hyperbolic surfaces and Fuchsian groups (Bers’
coordinates) or hyperbolic polygons (Zieschang-Vogt-Coldewey coordinates). We will
discuss the latter in more detail.

Fix g ≥ 2. Consider a convex geodesic hyperbolic 4g-gon with consecutive side lengths
b1, b2, b

′
1, b
′
2, . . . , b2g, b

′
2g and consecutive interior angles ζ1, ζ2, ζ

′
1, ζ
′
2, . . . , ζ2g, ζ

′
2g, where ζi is

the angle following bi and ζ ′i the angle following b′i. See Figure 12 for an example with
g = 3.
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Figure 12: Geodesic polygon for g = 3

Definition 4.30. A polygon P as above is called a canonical polygon if

• bi = b′i for all i = 1, . . . , 2g,

• ζ1 + . . .+ ζ2g + ζ ′1 + . . .+ ζ ′2g = 2π.

If in addition

• ζ1 + ζ2 = ζ ′1 + ζ2 = π,

then P is called a normal canonical polygon.

We can form the set of equivalence classes of normal canonical polygons.

Definition 4.31. Two normal canonical polygons P, P̃ with sides b1, . . . , b
′
2g and b̃1, . . . , b̃

′
2g

are called equivalent if there exists an isometry f : P → P̃ sending b1 to b̃1 and b2 to b̃2.
The set of all equivalence classes of normal canonical 4g-gons is denoted by Pg.
A canonical polygon P as above can be made into a hyperbolic surface by glueing bi to
b′i for i = 1, . . . , 2g. The vertices of P are all glued together to form a base point p. The
first condition makes sure that all sides can be glued and the second condition that all
angles at the base point add up to 2π. Following this procedure for an arbitrary normal
canonical 4g-gon we obtain a base surface Bg for the Teichmüller space Tg.

Now, let (M,ϕ) be a marked closed hyperbolic surface of genus g. Since each pair bi, b
′
i

used in the construction of Bg corresponds to a loop βi on Bg with base point p, we have
that each ϕ ◦ βi is a loop on M with base point ϕ(p).
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Theorem 4.32. For a marked closed hyperbolic surface (M,ϕ) of genus g with loops
ϕ ◦ βi, i = 1, . . . , 2g there exist a homeomorphism h : M →M and loops α1, . . . , α2g such
that

• h is isotopic to the identity map,

• h ◦ βi = αi for i = 1, . . . , 2g,

• α1 and α2 are closed geodesics with intersection point q,

• α3, . . . , α2g are geodesic loops with base point q.

Such loops αi are called a normal canonical dissection of M .

By cutting M open along a normal canonical dissection we obtain a normal canonical
4g-gon.

Theorem 4.33. The map Tg → Pg which cuts open a marked closed hyperbolic surface
of genus g along a normal canonical dissection to obtain a normal canonical polygon, is
a bijection.

For P ∈ Pg we call the sequence (b3, . . . , b2g, ζ3, . . . , ζ2g, ζ
′
3, . . . , ζ

′
2g) the Zieschang-Vogt-

Coldewey coordinates of P . Note that b1, b2, ζ1, ζ2, ζ
′
1, ζ
′
2 are not included. By looking at

equivalence classes, there is no dependence on these parameters any more. Moreover, we
see that we have 6g − 6 parameters left, which is no surprise, since there are also 6g − 6
Fenchel-Nielsen parameters.
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5 Triangulations

In this section we will discuss triangulations, the Delaunay property and triangulations
in quotient spaces and covering spaces. For more details on triangulations in general we
refer to [24, 32]. The remainder of this section is based on [9, 10, 17], where proofs of the
propositions can be found as well.

Since we only consider two-dimensional surfaces, we do not have to introduce simplicial
complexes to define triangulations. Let ∆ = {(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x + y ≤ 1} be a
triangle in R2. In a natural way we can speak of the vertices and edges of ∆.

Definition 5.1. Let M be a two-dimensional topological manifold. A triangulation T =
{(Mi, ϕi)}i∈I of M consists of subsets Mi ⊂ M and homeomorphisms ϕi : Mi → ∆ such
that

•
⋃
i∈IMi = M ,

• for all i, j ∈ I with i 6= j, ϕi(Mi) ∩ ϕj(Mj) is either the empty set or a vertex or
an edge of ∆.

The vertices, edges and faces of T are the images of the vertices of ∆, edges of ∆ and
entire domain under ϕ−1

i , i ∈ I. The sets of vertices, edges and faces of T are denoted
by V (T ), E(T ) and F (T ) respectively.

Given a point set S on a two-dimensional manifold M , a triangulation of S in M is a
triangulation T of M such that V (T ) = S. If M is also a metric space and S is a bounded
set, then for every triangulation {(Mi, ϕi)}i∈I of S in M we have that ∪i∈IMi is compact.
Therefore, strictly speaking there do not exist triangulations of bounded point sets in D2

(or other non-compact metric spaces). By abuse of terminology, we define a triangulation
of a bounded point set S in D2 to be a triangulation of S in the hyperbolic convex hull
of S in D2. Here we recall that the hyperbolic convex hull conv(S) of a set S is the
(inclusion-wise) smallest convex set containing S, i.e., the smallest set containing S such
that [x, y] ∈ conv(S) for all x, y ∈ conv(S). Furthermore, we will always assume that the
edges of a triangulation in D2 are geodesic segments.

Definition 5.2. A triangulation T of a point set S in D2 is called a Delaunay tri-
angulation if each face of T has a hyperbolic circumscribed circle in D2 such that the
corresponding disk does not contain any points of S in its interior.

For every point set S in D2 there exists a Delaunay triangulation, but in general it is not
unique. Namely, if S contains a subset S ′ of at least 4 concircular points such that the
corresponding disk does not contain any points of S, then each triangulation of S ′ in D2

yields a Delaunay triangulation. We will denote any Delaunay triangulation of S in D2

by DTD(S).

Now, let M = D2/Γ be a closed hyperbolic surface and let S be a finite point set on M .
To be able to compute a Delaunay triangulation of S in M , we can instead compute the
Delaunay triangulation DTD(ΓS) of ΓS in the universal covering space D2. Intuitively,
we then want to use the universal covering map π : D2 → M to define the Delaunay
triangulation DTM(S) of S in M , i.e. “ DTM(S) := π(DTD(ΓS))”. However, this is not
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always a triangulation in the sense of Definition 5.1. For example, it could happen that
two vertices of one face of DTD(ΓS) project to the same point under π, with the result
that the face after projection is not homeomorphic to ∆ any more. This leads to the
following definition.

Definition 5.3. Let M = D2/Γ be a closed hyperbolic surface with universal covering
map π : D2 →M and let S be a finite point set on M . If π(DTD(ΓS)) is a triangulation
of M , then it is called the Delaunay triangulation of S in M and denoted by DTM(S).

As mentioned above, π(DTD(ΓS)) can fail to be a triangulation if vertices of one face
project to the same point. More generally, if we look at the graph consisting of the vertices
and edges of π(DTD(ΓS)), then we have the following characterization of π(DTD(ΓS))
being a triangulation.

Proposition 5.4. If the graph of π(DTD(ΓS)) does not contain cycles of length at most
2, then π(DTD(ΓS)) is a triangulation of M .

Even though the proof given in [17] is for closed Euclidean surfaces, it is purely combina-
torial, so it generalizes immediately to closed hyperbolic surfaces. Cycles of length 1 are
loops in the graph and cycles of length 2 are occurences of multiple edges in the graph.
Both correspond to closed curves in M which are freely homotopic to a closed geodesic.

We want to find a geometric criterion equivalent to Proposition 5.4 involving only the
surface M (and possibly its corresponding Fuchsian group Γ) and the point set S. Given
a point set S ⊂M = D2/Γ we can define δS to be the diameter of the largest disk in D2

that does not contain any point of ΓS in its interior. Instead of δ{p} for p ∈ M we write
δp. For p ∈ M largest empty disks are centered at the furthest vertex of Dp(Γ). Define
δM = sup{δp | p ∈ DO(Γ)}, where O denotes the origin.

Proposition 5.5. Let M = D2/Γ be a closed hyperbolic surface and S a finite point set
on M . If syst(M) > δS, then the graph of π(DTD(ΓS)) does not contain a cycle of length
1. If syst(M) > 2δS, then π(DTD(ΓS)) does not contain a cycle of length 2.

Note that if syst(M) > 2δM , then the graph π(DTD(ΓS)) does not contain cycles of
length 1 or 2 for any finite point set S on M , since δS ≤ δp ≤ δM for every p ∈ S.
Unfortunately, this is not always true. Therefore, we will look at covering spaces of M .

Let Γ′ < Γ be a subgroup of Γ. We have seen before that Γ′ is a Fuchsian group as well,
so M ′ = D2/Γ′ is a closed hyperbolic surface with universal covering map π′ : D2 → M ′.
It can be seen that M ′ is a covering space of M . Instead of projecting DTD(S) onto M ,
we can project DTD(S) onto M ′. In this case we have a similar proposition.

Proposition 5.6. Let the notation be as above. If syst(M ′) > δM , then the graph of
π′(DTD(ΓS)) does not contain a cycle of length 1 for any finite point set S on M . If
syst(M ′) > 2δM , then π′(DTD(ΓS)) does not contain a cycle of length 2 for any finite
point set S on M .

In principle, we can work with any covering space of M . For example, if we take Γ′ = {Id},
then M ′ = D2, so π′(DTD(ΓS)) = DTD(ΓS) certainly is a triangulation. However, this is
not useful for practical applications. In this case we want to restrict to covering spaces
M ′ of M with finitely many sheets.
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Proposition 5.7. There exists a finite-sheeted covering space M ′ of M such that syst(M ′) >
2δM . There exists a finite-sheeted covering space M ′′ of M , such that syst(M ′′) > 2δM .

The conclusion is then the following.

Corollary 5.8. Let M = D2/Γ be a closed hyperbolic surface with universal covering map
π : D2 → M and let S be a finite point set on M . There exists a finite-sheeted covering
space M ′ of M with universal covering map π′ : D2 → M ′ such that π′(DTD(ΓS)) is a
triangulation of M ′.

The proof uses the fact that for any B > 0 there are only finitely many closed geodesics
with length bounded by B and the existence of subgroups Γ′ of finite index which exclude
the group elements corresponding to these short geodesics. In this way, the systole of the
covering space M ′ can be made arbitrarily large.
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6 Lower bound for the number of sheets

The main result of this section is the following theorem. We emphasize that this general-
izes the result for the Bolza surface given in [8] in two ways: it gives a lower bound for all
genera; it gives a lower bound for all conformal structures, by which we mean all elements
of the corresponding Teichmüller space. Furthermore, it increases the lower bound for
the Bolza surface from 32 to 34 sheets.

Theorem 6.1. Let M be any hyperbolic surface of genus g ≥ 2. Let M ′ be a k-sheeted
covering space of M such that syst(M ′) > 2δM . Then

k >
π

9
·

cot2( π
12g−6

)− 3

g − 1
∼ 16

π
· g

Furthermore, if M can be represented by a fundamental region with 4g concircular ver-
tices, then we have the higher upper bound

k >
π

3
·

cot4 π
4g
− 1

g − 1
∼ 256

3π3
· g3.

Proof. Let M = D2/Γ. We will first give a lower bound for δO, since this will give a lower
bound for δM . As already mentioned in [8, p. 20:7], largest empty disks are centered at
the furthest vertices of the Dirichlet region DO(Γ). Let R be the distance between O and
the furthest vertex of DO(Γ). Let P be a normal canonical polygon representing M (see
Section 4.10.7). By Proposition 4.8, we have area(DO(Γ)) = area(P ) = 4π(g − 1). Then
by Corollary 4.2

coshR ≥ coshR(4π(g − 1)) = cot

(
π

n

)
cot

(
(n− 2)π − (4g − 4)π

2n

)
, (2)

where n is the number of sides of DO(Γ). It can be shown that 4g ≤ n ≤ 12g − 6; see,
e.g., [6, Thm. 10.5.1]. Then

cot

(
π

n

)
cot

(
(n− 2)π − (4g − 4)π

2n

)
≥ cot

(
π

12g − 6

)
cot

(
(12g − 6− 2)π − (4g − 4)π

2(12g − 6)

)
,

= cot

(
π

12g − 6

)
cot(π

3
),

= cot

(
π

12g − 6

)
· 1

3

√
3,

because the left-hand side is a decreasing function in n. Because δO = 2R, we have the
following bound:

δO = 2R ≥ 2 arccosh

(
cot

(
π

12g − 6

)
· 1

3

√
3

)
Therefore,

cosh δM ≥ cosh δO = cosh(2R) = 2 cosh2R− 1 ≥ 2
3

cot2( π
12g−6

)− 1.
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Let D be a maximal disk in M ′, i.e. its diameter is equal to syst(M ′). Then

area(D) = 2π(cosh
(

1
2

syst(M ′)
)
− 1) > 2π(cosh δM − 1).

Assume for a contradiction that area(M ′) < π
3

area(D). Observe that D and γD have
disjoint interiors for γ ∈ Γ \ {Id}, since D is an embedded disk. Furthermore, D and γD
are isometric, since γ is an isometry. Therefore, ΓD is a circle packing with congruent
circles in the hyperbolic plane. Because we can tile the hyperbolic plane by translates of
a fundamental region under Γ and each tile contains a single circle (possibly in pieces),
the packing density of this circle packing is equal to

area(D)

area(M ′)
>

3

π
.

This contradicts the fact that the maximum packing density in the hyperbolic plane is 3
π

(see Section 4.6). Hence, area(M ′) ≥ π
3

area(D). It follows that

k =
area(M ′)

area(M)
,

≥ π

3
· area(D)

area(M)
,

>
π

3
· 2π(cosh δM − 1)

4π(g − 1)
,

≥ π

9
·

cot2( π
12g−6

)− 3

g − 1
.

For sufficiently large g, we can use the approximations

cos( π
12g−6

) = 1− 1
2

(
π

12g−6

)2
+ h.o.t.,

sin( π
12g−6

) = π
12g−6

+ h.o.t.,

to obtain

cot( π
12g−6

) =
1− 1

2

(
π

12g−6

)2

π
12g−6

+ h.o.t. =
12g

π
+ h.o.t.,

so

π

9
·

cot2( π
12g−6

)− 3

g − 1
=

16

π
· g + h.o.t.,

where h.o.t. denotes ‘higher order terms’. Now, suppose that M can be represented by
a fundamental region F with 4g concircular vertices. Let O be the center of the circle
passing through the vertices. We have that F = DO(Γ), since each vertex of F is equidis-
tant from at least three surrounding points in the orbit of O under Γ. Namely, if vertex
v has neighbours x,w, then v is equidistant from O, gx(O), gw(O), where gx, gw denote
the side pairing transformations mapping a side of the fundamental region to [v, x], [v, w]
respectively. It follows that M has a Dirichlet region with 4g vertices. Therefore, we can
now take n = 4g in equation (2), from which we get

coshR ≥ cot

(
π

4g

)
cot

(
(4g − 2)π − (4g − 4)π

2 · 4g

)
= cot2 π

4g
.
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By using the same reasoning as before, we obtain cosh δM > 2 cot4 π
4g
− 1 and

k >
π

3
·

cot4 π
4g
− 1

g − 1
.

For sufficiently large g we get in this case that

cot π
4g

=
4g

π
+ h.o.t.,

so
π

3
·

cot4 π
4g
− 1

g − 1
=

256

3π3
· g3 + h.o.t..

Remark 6.2. The lower bound for δO is sharp: namely if P is a regular 4g-gon, then by
the reasoning above P = DO(Γ). Therefore, the distance between O and the furthest
vertex of DO(Γ) is the distance between O and any vertex of P . The origin together
with two vertices of P forms an isosceles triangle with angles π

2g
, π

4g
, π

4g
(see Figure 13).

Adding a perpendicular from O onto the opposite side yields a right-angled triangle with
angles π

4g
, π

4g
. Its hypotenuse c is the distance between O and a vertex of P and we have

cosh c = cot2( π
4g

).

Figure 13: Distance to a vertex in a regular 4g-gon

Remark 6.3. Theorem 6.1 gives the following lower bounds for hyperbolic surfaces repre-
sented by fundamental regions with 4g concircular vertices for 2 ≤ g ≤ 10:

g 2 3 4 5 6 7 8 9 10
k > 34 101 222 415 696 1082 1589 2234 3032
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7 Upper bound for the number of sheets

In this section we will show that there exists no upper bound for the minimum number
of sheets needed for a suitable covering space for hyperbolic surfaces of genus 2.

Theorem 7.1. For all B ∈ R there exists a hyperbolic surface M of genus 2 such that if
M ′ is a k-sheeted covering space of M such that syst(M ′) > δM , then k > B.

We will use [1] to explicitly construct surfaces with vertices far from the center. In this
article, closed hyperbolic surfaces of genus 2 are identified with octagons of a certain
form. Namely, first choose z1, z2, z3 ∈ D2 with

0 < arg(z1) < arg(z2) < arg(z3) < π.

It is shown that if

Im((1− z̄1)(1− z1z̄2)(1− z2z̄3)(1 + z3)) < 0, (3)

then there exists a unique z0 ∈ (0, 1) ⊂ D2 such that [z0, z1, z2, z3, z4, z5, z6, z7] (with
zi = −zi−4, i = 4, 5, 6, 7) forms a hyperbolic octagon with area 4π. If an octagon of the
form above satisfies (3), it is called an admissible octagon. By symmetry in the origin
we naturally obtain a set of side pairing transformations: the transformation mapping
the side between zi+3 and zi+4 to the side between zi and zi−1 will be denoted by gi
for i = 1, 2, 3, 4 (note: z8 = z0). See Figure 14. As we have seen before, from this we
can obtain the corresponding Fuchsian group and Dirichlet region. This yields a bijection
between triples z1, z2, z3 satisfying the condition and the Teichmüller space for hyperbolic
surfaces of genus 2.
In general, the octagons constructed in this way are not equal to the corresponding
Dirichlet region DO(Γ). In the proof we will solve this issue by showing that the distance
between O and the furthest vertex of DO(Γ) is at least half the distance between O and
the furthest vertex of the octagon we started with.

Proof. (of Theorem 7.1) We will first prove that there exist admissible octagons where
the furthest vertex is arbitrarily far away. Let zj = (1 − ε)eπij/4 for 0 < ε < 1 and
j = 1, 2, 3. We will show that if ε is sufficiently small, then equation (3) holds. We
compute

1− z̄1 = 1− (1− ε)e−πi/4,
= 1− e−πi/4 + o(ε),

1− z1z̄2 = 1− (1− ε)eπi/4 · (1− ε)e−2πi/4,

= 1− e−πi/4 + o(ε),

1− z2z̄3 = 1− (1− ε)e2πi/4 · (1− ε)e−3πi/4,

= 1− e−πi/4 + o(ε),

1 + z3 = 1 + (1− ε)e3πi/4,

= 1 + e3πi/4 + o(ε),
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Figure 14: Admissible octagon

so

(1− z̄1)(1− z1z̄2)(1− z2z̄3)(1 + z3) = (1− e−πi/4)4 + o(ε),

= (4
√

2− 6)i+ o(ε).

Therefore Im((1 − z̄1)(1 − z1z̄2)(1 − z2z̄3)(1 + z3)) < 0 for sufficiently small ε. Observe
that d(O, z2)→∞ when ε→ 0, so this distance can be made arbitrarily large.
We will show that it follows that the distance δO between O and the furthest vertex of
DO(Γ) can be made arbitrarily large as well. To do this, set r = 1

2
(1 − ε) and let M be

the midpoint of O and z2. We will show that M ∈ DO(Γ), which implies that δO ≥ r.
We have to show that d(M,O) < d(M,γO) for all γ ∈ Γ \ {Id}, where Γ is the Fuchsian
group generated by the before mentioned side pairing transformations g1, . . . , g4. It is
sufficient to consider only the translates g1M, . . . , g4M, g−1

1 M, . . . , g−1
4 M , since these are

the closest to O. By symmetry in the origin it is sufficient to look only at the upper half
and by symmetry across the imaginary axis it is sufficient to look only at the upper left
quadrant (see Figure 15). We will first show that d(M,O) < d(M, g3O). Let A = g3O.
Since

[A, z2] = [g3O, g3z7] = g3([O, z7]),

we know d(A, z2) = d(O, z7) = 1 − ε = 2r. Therefore, [O, z2, A] is an isosceles triangle.
Use the following notation:

∠AOM = τ, d(A,M) = t, ∠OAM = ρ.
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Figure 15: Upper left quadrant

Since [O, z2, A] is isosceles, we have ρ < τ . Then by the sine rule we have

sinh r =
sin ρ

sin τ
· sinh t < sinh t,

which means d(M,O) < d(M, g3O).
We will now show d(M,O) < d(M, g4O). Let B = g4O. Let C be the midpoint of O
and B. Since g4 maps the midpoint of [z7, z0] to the midpoint of [z3, z4], we find that C
is the midpoint of [z3, z4] with d(C, z3) = d(C, z4) =: b. As ε → ∞, the interior angles
of the octagon at all vertices except z0, z4 approach zero, so the interior angles at z0, z4

approach π. Since ∠z4Oz3 = π
4

is fixed, this means that ∠z3z4O > ∠z4Oz3 for sufficiently
small ε. By the same reasoning as above, but in this case with the sine rule in triangle
[O, z3, z4], this implies b < r for sufficiently small ε. Let d(O,C) = x and ∠Cz3O = ξ.
By applying the first hyperbolic cosine rule to triangle [O,C, z3] we see

coshx = cosh 2r cosh b− sinh 2r sinh b cos ξ,

≥ cosh 2r cosh b− sinh 2r sinh b,

= cosh(2r − b).

We have shown above that b < r for sufficiently small ε, so in that case

coshx ≥ cosh(2r − b) > cosh r.
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Hence, x > r for sufficiently small ε. By the triangle inequality,

d(M,B) ≥ d(O,B)− d(O,M) = 2x− r > r = d(M,O),

from which we conclude d(M, g4O) > d(M,O). It follows that M ∈ DO(Γ), so δO ≥
1
2
(1− ε), which can be made arbitrarily large.

Let B ∈ R be arbitrary. By the argument above, for all B′ ∈ R there exists a hyperbolic
surface M of genus 2 such that δM ≥ δO ≥ B′. Choose B′ = arccosh(2B + 1). Now, we
can use a similar argument as for the lower bound. Let M ′ be a k-sheeted covering space
of M such that syst(M ′) > 2δM . Let D be a maximal disk in M ′, i.e. its diameter is
equal to syst(M ′). Then

area(M ′) > area(D) = 2π(cosh(1
2

syst(M ′)− 1)) > 2π(cosh δM − 1).

We conclude that

k =
area(M ′)

area(M)
>

2π(cosh δM − 1)

4π
>

coshB′ − 1

2
= B.

Remark 7.2. In the proof of Theorem 7.1 we used angles πj/4 for convenience. However,
the proof can be directly generalized to zj = (1− ε)eθji, j = 1, 2, 3 if θ3 >

π
2
> θ1. Again,

first we show that for sufficiently small ε, this triple is admissible. We have

1− z̄1 = 1− e−θ1i + o(ε),

1− z1z̄2 = 1− e(θ1−θ2)i + o(ε),

1− z2z̄3 = 1− e(θ2−θ3)i + o(ε),

1 + z3 = 1 + eθ3i + o(ε).

After a straightforward computation we obtain

Im((1− z̄1)(1− z1z̄2)(1− z2z̄3)(1 + z3))

2
=

sin θ1 − sin θ2 + sin θ3 + sin(θ2 − θ1) + sin(θ3 − θ2) + sin(θ1 − θ3) + sin(θ2 − θ1 − θ3) + o(ε) =

−8 sin

(
θ1

2

)
cos

(
θ3

2

)
sin

(
θ1 − θ2

2

)
sin

(
θ2 − θ3

2

)
+ o(ε).

The right-hand side can be seen to be negative for sufficiently small ε, which yields an
admissible octagon.
To show that the furthest vertex of DO(Γ) has arbitrarily large distance to O, we still
consider only the upper left quadrant: in this case the octagon is not necessarily sym-
metric in the imaginary axis, but the argument is exactly the same for both sides. The
proof that d(M,O) < d(M, g3O) is exactly the same as above, since we only used that
[O, z3, g3O] is an isosceles triangle. For the proof that d(M,O) < d(M, g4O), recall that
the only thing we used here is that b < r for sufficiently small ε. We assumed that θ3 >

π
2

so ∠z4Oz3 <
π
2

and as ε → 0 we have ∠z3z4O → π
2
, so indeed ∠z3z4O > ∠z4Oz3 for

sufficiently small ε. Hence, b < r for sufficiently small ε. This finishes the proof.

44



8 Systole of surfaces corresponding to regular poly-

gons

In this section we will discuss the following conjecture.

Conjecture 8.1. The systole of the surface Mg corresponding to the regular 4g-gon sat-
isfies

cosh

(
syst(Mg)

2

)
= 1 + 2 cos( π

2g
).

As a partial result we have

Theorem 8.2. The systole of the surface Mg corresponding to the regular 4g-gon satisfies

cosh

(
syst(Mg)

2

)
≤ 1 + 2 cos( π

2g
),

with equality for g = 2, 3.

The inequality for arbitrary genus is new and we will prove it in Section 8.2. The re-
mainder of the section will describe our progress in obtaining a complete proof of the
conjecture. At the end we will look at three examples, namely g = 2, 3, 6. The systole of
M2 was already known in the literature, but the method developed in this section leads
to a new proof, as well as to a proof of the case g = 3. The case g = 6 is included to
show the difficulties in this approach.

8.1 From systole to optimization problem

According to Section 4.9 the systole of Mg satisfies

cosh

(
syst(Mg)

2

)
= min

γ∈Γg

γ 6=Id

1
2
| tr(γ)|,

where Γg denotes the Fuchsian group corresponding to the surface Mg. The group Γg is
generated by the side pairing transformations which pair opposite sides, which can be
represented by the matrices

Ak =

[
cosh( l0

2
) sinh( l0

2
) exp( ikπ

2g
)

sinh( l0
2

) exp(− ikπ
2g

) cosh( l0
2

)

]

for k = 0, 1, . . . , 2g − 1. Here l0 is a constant satisfying

cosh( l0
2

) = cot( π
4g

).

The inverses of Ak, k = 0, 1, . . . , 2g − 1 are Ak, k = 2g, . . . , 4g − 1, respectively. Every
M ∈ Γg can be written as a composition

M = B1B2 · · ·Bn,
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where Bi ∈ {A0, . . . , A4g−1}. Therefore the minimization problem

min 1
2
| tr(γ)|,

subject to γ ∈ Γg \ {Id}
is equivalent to the minimization problem

min 1
2
| tr(M)|,

subject to M ∈M(2,C),

M = B1B2 · · ·Bn for Bi ∈ {A0, . . . , A4g−1}.

8.2 Upper bound for the systole

To prove an upper bound for the optimal value of a minimization problem, it is sufficient
to find a feasible point which attains this upper bound. By the discussion above, it is
sufficient to find M = B1B2 · · ·Bn with Bi ∈ {A0, . . . , A4g−1} such that 1

2
| tr(M)| =

1 + 2 cos( π
2g

) to prove that

cosh

(
syst(Mg)

2

)
≤ 1 + 2 cos( π

2g
).

Consider the upper left entry of AkAk+2g−1, which is given by[
cot( π

4g
) exp( ikπ

2g
)
√

cot2( π
4g

)− 1
] [ cot( π

4g
)

exp(− i(k+2g−1)π
2g

)
√

cot2( π
4g

)− 1

]
=

cot2( π
4g

) + (cot2( π
4g

)− 1) exp(− (2g−1)π
2g

).

Recall from Section 4.2.2 that every orientation preserving isometry ϕ of D2 is of the form

ϕ(z) =
az + b

b̄z + ā

for a, b ∈ C with |a|2 − |b|2 = 1. Therefore,

| tr(ϕ)| = 2 Re(a).

In our case

1
2
| tr(AkAk+2g−1)| = cot2( π

4g
) + (cot2( π

4g
)− 1) cos(− (2g−1)π

2g
).

By using half-angle formulas we can rewrite this in the following way:

cot2( π
4g

) + (cot2( π
4g

)− 1) cos(− (2g−1)π
2g

) =

1 + cos( π
2g

)

1− cos( π
2g

)
−
(

1 + cos( π
2g

)

1− cos( π
2g

)
− 1

)
cos( π

2g
) =

1 + cos( π
2g

)

1− cos( π
2g

)
−

1 + cos( π
2g

)− 1 + cos( π
2g

)

1− cos( π
2g

)
cos( π

2g
) =

−2 cos2( π
2g

) + cos( π
2g

) + 1

1− cos( π
2g

)
=

−2(cos( π
2g

)− 1)(cos( π
2g

) + 1
2
)

1− cos( π
2g

)
= 1 + 2 cos( π

2g
).
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This proves the desired inequality for the systole. Intuitively, that AkAk+2g−1 give the
shortest curves would not be surprising: these transformations consist of a translation in
a certain fixed direction (dependent on k), followed by the translation that is almost the
inverse of Ak. Namely, Ak has inverse Ak+2g and Ak+2g−1 is the translation of which the
axis intersects the axis of the inverse with the smallest angle.

8.3 Towards a complete proof

We will show our progress in obtaining a complete proof of the conjecture in a series of
lemmas. For a short introduction to the algebra we use, we refer to the Appendix. Recall
that Q(ζ4g) denotes the 4g-th cyclotomic field and denote K = Q(ζ4g). We will always
take ζ4g = exp(πi

2g
) as primitive 4g-th root of unity. First we will show that cot( π

4g
) ∈ K.

By a half-angle formula, we can write

cot( π
4g

) =
1 + cos( π

2g
)

sin( π
2g

)
.

We know

cos( π
2g

) =
exp(πi

2g
) + exp(−πi

2g
)

2
∈ K,

sin( π
2g

) =
exp(πi

2g
)− exp(−πi

2g
)

2 exp(gπi
2g

)
∈ K,

so cot( π
4g

) ∈ K. To prove that cot( π
4g

) is an algebraic integer, we will in fact prove the

stronger claim that cot( π
2g

) ∈ OK . The proof is based on a comment in [50, p. 107].

Lemma 8.3. For all g ∈ N, cot( π
2g

) ∈ OK.

Proof. We immediately see that cot( π
2g

) ∈ K, since cos( π
2g

), sin( π
2g

) ∈ K, as we have seen
before. By definition,

cot( π
2g

) =
cos( π

2g
)

sin( π
2g

)
,

= i ·
exp(πi

2g
) + exp(−πi

2g
)

exp(πi
2g

)− exp(−πi
2g

)
,

= i ·
exp(πi

g
) + 1

exp(πi
g

)− 1
.

Denote λ = exp(πi
g

). Since i ∈ OK , we only have to show that λ+1
λ−1
∈ OK . Observe that(

λ+ 1

λ− 1
+ 1

)g
+

(
λ+ 1

λ− 1
− 1

)g
=

(
λ+ 1 + λ− 1

λ− 1

)g
+

(
λ+ 1− λ+ 1

λ− 1

)g
,

=
2g(λg + 1)

(λ− 1)g
,

= 0,
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so λ+1
λ−1

is a root of f := (X + 1)g + (X − 1)g. This polynomial is not monic, but has
leading coefficient 2. However, it is easily seen that every other coefficient is divisible by
2, which means that 1

2
f is a monic polynomial with integer coefficients, of which λ+1

λ−1
is

a root. Therefore, λ+1
λ−1

is an algebraic integer and we conclude that cot( π
2g

) ∈ OK .

To be able to describe the elements of the Fuchsian group more precisely, we also need
the following result.

Lemma 8.4. For all g ∈ N, cot2( π
4g

)− 1 ∈ 2OK.

Proof. By a double-angle formula

cot( π
2g

) =
cot2( π

4g
)− 1

2 cot( π
4g

)
,

so
cot2( π

4g
)− 1 = 2 cot( π

2g
) cot( π

4g
).

By Lemma 8.3, we know that cot( π
2g

), cot( π
4g

) ∈ OK . It follows that cot2( π
4g

) − 1 ∈
2OK .

We can now give a description of the elements of the Fuchsian group.

Proposition 8.5. Every element of the Fuchsian group Γg can be written as α β
√

cot2( π
4g

)− 1

β̄
√

cot2( π
4g

)− 1 ᾱ

 ,
where α, β ∈ OK for K = Q(ζ4g) such that α − 1 ∈ 2OK for all products of an even
number of generators of Γg and α− cot( π

4g
) ∈ 2OK for all products of an odd number of

generators of Γg.

Remark 8.6. We emphasize that we do not claim that all matrices of the given form
correspond to an element of the Fuchsian group. On the contrary, we will show in
Example 8.7 that this is not the case.

Proof. We will first prove that all element of Γg are of the given form with α, β ∈ OK .
Recall that the generators of Γg are given by[

cosh( l0
2

) sinh( l0
2

) exp( ikπ
2g

)

sinh( l0
2

) exp(− ikπ
2g

) cosh( l0
2

)

]
=

 cot( π
4g

) exp( jiπ
2g

)
√

cot2( π
4g

)− 1

exp(− jiπ
2g

)
√

cot2( π
4g

)− 1 cot( π
4g

)

 .
In this case, we have α = cot( π

4g
) ∈ OK and β = exp( jiπ

2g
) ∈ OK . Let M,M ′ be matrices

of the given form with α, β ∈ OK and α′, β′ ∈ OK respectively. Then

MM ′ =

 α β
√

cot2( π
4g

)− 1

β̄
√

cot2( π
4g

)− 1 ᾱ

 α′ β′
√

cot2( π
4g

)− 1

β̄′
√

cot2( π
4g

)− 1 ᾱ′

 ,
=

 αα′ + ββ̄′(cot2( π
4g

)− 1) (αβ′ + ᾱ′β)
√

cot2( π
4g

)− 1

(α′β̄ + ᾱβ̄′)
√

cot2( π
4g

)− 1 ᾱᾱ′ + β̄β′(cot2( π
4g

)− 1)

 .
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Since α, β, α′, β′, cot( π
4g

) ∈ OK , we also have αα′ + ββ̄′(cot2( π
4g

) − 1), αβ′ + ᾱ′β ∈ OK .
Therefore, we have shown that set of matrices of the given form with α, β ∈ OK is closed
under multiplication. Since all generators of Γg are of this form, we deduce that all
elements of Γg have the given form with α, β ∈ OK .
Note that the upper left entry of the product of two generators can be given by

α = cot2( π
4g

) + exp( (j−k)iπ
2g

)(cot2( π
4g

)− 1)

for some 1 ≤ j, k ≤ 4g − 1. Therefore, in this case we have

α− 1 = (cot2( π
4g

)− 1)(1 + exp( (j−k)iπ
2g

)).

Since cot2( π
4g

) − 1 ∈ 2OK by Lemma 8.4 and since 1 + exp( (j−k)iπ
2g

) ∈ OK , we have
α − 1 ∈ 2OK . Let M,M ′ be matrices of the given form with α, β ∈ OK such that
α− 1, α′ − 1 ∈ 2OK . As we have seen before, the upper left entry of MM ′ is given by

γ := αα′ + ββ̄′(cot2( π
4g

)− 1).

Then
γ − 1 = α(α′ − 1) + (α− 1) + ββ̄′(cot2( π

4g
)− 1).

Because α−1, α′−1, cot2( π
4g

)−1 ∈ 2OK and the remaining terms are in OK , we see that
γ − 1 ∈ 2OK . Therefore, multiplication preserves the property that α− 1 ∈ 2OK . Since
all products of two generators satisfy this property, we see that all products of an even
number of generators satisfy α− 1 ∈ 2OK .
Finally, to show the statement for products of an odd number of generators, we know that
every product of an odd number of generators is either a generator itself or the product
of a generator with a product of an even number of generators. For all generators, we
have α = cot( π

4g
), so clearly α− cot( π

4g
) ∈ 2OK in this case. If M is a generator and M ′ a

product of an even number of generators with α′, β′ ∈ OK such that α′ − 1 ∈ 2OK , then
the upper left entry of MM ′ is given by

γ := cot( π
4g

)α′ + β̄′ exp( jiπ
2g

)(cot2( π
4g

)− 1)

for some 1 ≤ j ≤ 4g − 1. Then

γ − cot( π
4g

) = cot( π
4g

)(α′ − 1) + β̄′ exp( jiπ
2g

)(cot2( π
4g

)− 1).

Because α′ − 1, cot2( π
4g

) − 1 ∈ 2OK and the remaining terms are in OK , we see that

γ − cot( π
4g

) ∈ 2OK . This finishes the proof.

Proposition 8.5 shows that all elements of the Fuchsian group Γg have a certain structure.
However, not all matrices having this structure are elements of the Fuchsian group. We
will illustrate this with an example.

Example 8.7. Assume that g ≥ 3. Consider αn = 1 + (4 − 2ζ4g − 2ζ−1
4g )n. First of all,

we have 4 − 2ζ4g − 2ζ−1
4g = 2(2 − ζ4g − ζ−1

4g ) ∈ 2OK . This means that αn − 1 ∈ 2OK .

Furthermore, ζ4g + ζ−1
4g = 2 cos( π

2g
), so αn ∈ R and αn > 1 for all n ∈ N. However,

cos( π
2g

) ≥ cos(π
6
) = 1

2

√
3 > 3

4
, so 4− 2ζ4g − 2ζ−1

4g = 4(1− cos( π
2g

)) < 1, which means that
αn → 1 as n → ∞. If all αn correspond to an element of the Fuchsian group, then Γg
would contain hyperbolic elements with trace arbitrarily close to 2, which is not possible
by discreteness of Γg.
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From the previous example it is clear that we need an extra restriction on α, β. Such a
restriction is given by the following lemma. For an illustration of the idea behind this
lemma and its usefulness we refer to the examples in Section 8.5.

Lemma 8.8. Let

M =

 α β
√

cot2( π
4g

)− 1

β̄
√

cot2( π
4g

)− 1 ᾱ


be an element of the Fuchsian group Γg. Let ψk ∈ Gal(K : Q) be the automorphism
sending exp( π

2g
) to exp(kπ

2g
), in particular we have gcd(k, 4g) = 1. If g < k < 3g, then

|ψk(α)| < 1, |ψk(β)| < (cot2(kπ
4g

)− 1)−1.

Proof. Since detM = 1, we have

|α|2 + |β|2(1− cot2( π
4g

)) = 1.

This is a formula for elements of K, so it still holds if we apply an automorphism to it:

|ψk(α)|2 + |ψk(β)|2(1− cot2(kπ
4g

)) = 1. (4)

Note that indeed ψk(cot( π
4g

)) = cot(kπ
4g

). For g < k < 3g we have π
4
< kπ

4g
< 3π

4
, so

−1 < cot(kπ
4g

) < 1. Then all terms in (4) are positive, so each of the summands must be
smaller than 1, from which we conclude that

|ψk(α)| < 1, |ψk(β)| < (1− cot2(kπ
4g

))−1.

To find the systole we are primarily interested in the values Re(α) can take for elements
of the Fuchsian group. In Proposition 8.5 we have seen that either α − 1 ∈ 2OK or
α − cot( π

4g
) ∈ 2OK . To reduce these two cases to one, we first give an expression for a

sum of cosines.

Lemma 8.9. For all x ∈ R and n ∈ N,

n∑
j=0

cos(jx) = 1
2

+ 1
2
·

sin((n+ 1
2
)x)

sin(1
2
x)

.

Proof. For fixed 0 ≤ j ≤ n we have

sin((j + 1
2
)x)− sin((j − 1

2
)x) = 2 sin(1

2
x) cos(jx).

Consider the telescoping sum

n∑
j=0

2 sin(1
2
x) cos(jx) =

n∑
j=0

(
sin((j + 1

2
)x)− sin((j − 1

2
)x)

)
,

= − sin((0− 1
2
)x) + sin((n+ 1

2
)x),

= sin(1
2
x) + sin((n+ 1

2
)x).

The result is obtained by dividing both sides by 2 sin(1
2
x).
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By using this expression we can rewrite cot( π
4g

) in the following way.

Lemma 8.10. For all g ∈ N,

cot( π
4g

) = 1 + 2

g−1∑
j=1

cos( jπ
2g

).

Proof. By Lemma 8.9 with x = π
2g

and n = g − 1 we have

g−1∑
j=0

cos( jπ
2g

) = 1
2

+ 1
2
·

sin((g − 1 + 1
2
) π

2g
)

sin(1
2
· π

2g
)

.

Observe that
sin((g − 1 + 1

2
) π

2g
) = sin(π

2
− π

4g
) = cos π

4g
,

from which we see that

g−1∑
j=0

cos( jπ
2g

) = 1
2

+ 1
2
·

cos( π
4g

)

sin( π
4g

)
= 1

2
+ 1

2
cot( π

4g
).

Then

cot( π
4g

) = −1 + 2

g−1∑
j=0

cos( jπ
2g

) = 1 + 2

g−1∑
j=1

cos( jπ
2g

).

We find the following characterization of α.

Lemma 8.11. Let α ∈ OK be such that α − 1 ∈ 2OK or α − cot( π
4g

) ∈ 2OK. Then we
can write

Re(α) = 1 + 2

g−1∑
j=0

aj cos( jπ
2g

)

for aj ∈ Z.

Proof. Recall that OK = Z[ζ4g]. If α− 1 ∈ 2OK , we can write

α = 1 + 2

4g−1∑
j=0

bjζ
j
4g

for bj ∈ Z. Then

Re(α) = 1 + 2

4g−1∑
j=0

bj cos( jπ
2g

).

Because

cos( (2g−j)π
2g

) = − cos( jπ
2g

),

cos( (2g+j)π
2g

) = − cos( jπ
2g

),

cos( (4g−j)π
2g

) = cos( jπ
2g

),
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we can rewrite this as

Re(α) = 1 + 2b0 − 2b2g + 2

g∑
j=1

(bj − b2g−j − b2g+j + b4g−j) cos( jπ
2g

).

The indices require a word of caution: by choosing 1 ≤ j ≤ g, we can combine coefficients
in groups of four. However, this leads to missing out on the terms with coefficients b0, b2g,
which we added again, and the terms with coefficients bg, b3g, which do not matter, since
cos(gπ

2g
) = cos(3gπ

2g
) = 0. It is clear that we obtain an expression of the form

Re(α) = 1 + 2

g−1∑
j=0

aj cos( jπ
2g

).

If α− cot( π
4g

) ∈ 2OK , then we can write

α = cot( π
4g

) + 2

4g−1∑
j=0

bjζ
j
4g

for bj ∈ Z. By Lemma 8.10 this is equal to

α = 1 + 2

g−1∑
j=1

cos( jπ
2g

) + 2

4g−1∑
j=0

bjζ
j
4g.

Then

α = 1 + 2

g−1∑
j=1

cos( jπ
2g

) + 2

4g−1∑
j=0

bj cos( jπ
2g

).

The result is obtained by rewriting the second sum in the same way as before.

8.4 Summary and speculations

In Proposition 8.5 we have given a characterization of the elements of Γg. In Lemma
8.8 we have given a number of restrictions on these elements. We did not show5 that all
matrices of the form of Proposition 8.5 satisfying the restrictions of Lemma 8.8 correspond
to an element of Γg. However, we have shown that the set consisting of these matrices
includes the set of feasible matrices for the optimization problem for finding the systole
(see Section 8.1). We conjecture that the minimum of 1

2
| tr(M)| over this larger set of

matrices is equal to the proposed value of the systole. If that is the case, it follows that
the solution to the optimization problem in Section 8.1 is also equal to this value, because
it is attained in the feasible set. Hence, this would complete the proof of our conjecture.

So far, we could not find the minimum of 1
2
| tr(M)| over this larger set of matrices.

The main difficulty is working with the restrictions of Lemma 8.8, because it is not

5In fact, in its current form this statement is already not true for g = 2. Namely, in [2] it is shown
that extra conditions are necessary to ensure that every matrix of this form belongs to Γ2. It is not
known if the statement is true for other genera, but it seems probable that this is not the case.
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immmediately apparent what the set of matrices satisfying these restrictions looks like.

In the last part of the previous section we have looked at Re(α) instead. We can apply
Lemma 8.8 to the case where we only look at Re(α). Namely, because |ψk(α)| < 1 for all
ψk ∈ Gal(K : Q) with g < k < 3g, we also have

|ψk(Re(α))| = |Re(ψk(α))| < 1.

If we would have that the optimal value of the optimization problem

min 1 + 2

g−1∑
j=0

aj cos( jπ
2g

),

subject to aj ∈ Z,

1 + 2

g−1∑
j=0

aj cos( jπ
2g

) > 1,

∣∣∣∣1 + 2

g−1∑
j=0

aj cos(kjπ
2g

)

∣∣∣∣ < 1 for g < k < 3g, gcd(k, 4g) = 1,

is equal to our proposed value of the systole, then we could use the same reasoning as
before to conclude that the conjecture is true. In the next section we will see examples
where this is indeed the case (g = 2, 3) and an example where this is not the case (g = 6).
Therefore, we cannot use this simplification in general. However, in numerical simulations
it seems to be the case that all aj have the same sign, which suggests that we maybe
need to introduce some extra restrictions.

8.5 Examples

In [2] the systole of M2 was computed using modular arithmetic. By using the method
from this section we obtain a new proof.

Example 8.12. Consider g = 2. In [2] and [3] it is shown using modular arithmetic that
if M is a product of elements of Γ2, then 1

2
| tr(M)| has the form |m(n) + n

√
2| where

given n ∈ Z, m(n) is the unique odd integer minimizing |m− n
√

2|. From this it follows
that cosh(syst(M2)/2) = 1+

√
2. We will show that our method yields the same solution.

By Lemma 8.11 we can write

1
2
| tr(M)| = |Re(α)| = |1 + 2a0 + 2a1 cos(π

4
)| = |1 + 2a0 + a1

√
2|

for a0, a1 ∈ Z, where α is the upper left entry of an arbitrary element of Γ2. By Lemma
8.8 we have |ψk(α)| < 1 for k = 3 and k = 5. For k = 3 we have ζ8 7→ ζ3

8 , so exp(πi
4

) 7→
exp(3πi

4
), so cos(π

4
) 7→ cos(3π

4
), so

√
2 7→ −

√
2. Then the condition |ψ3(Re(α))| < 1 can

be rewritten as
|1 + 2a0 − a1

√
2| < 1.

The case k = 5 yields the same constraint if we only look at the real part of α. If we
identify m(n) = 1+2a0 and n = a1 we immediately see that this yields the same solution
as was given in the literature.
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Now, we show that we can use the same method to obtain the systole of M3. As far as
we know, this result was not yet known.

Example 8.13. Consider g = 3. By Lemma 8.11 we can write

1
2
| tr(M)| = |Re(α)| = |1 + 2a0 + 2a1 cos(π

6
) + 2a2 cos(π

3
)|,

= |1 + 2a0 + a1

√
3 + a2|.

By Lemma 8.8 we have |ψk(α)| < 1 for k = 5 and k = 7. Again, when we only look at the
real part of α, these constraints are identical. We have ψ5 : ζ12 7→ ζ5

12, so cos(π
6
) 7→ cos(5π

6
),

so
√

3 7→ −
√

3. Then the condition |ψ5(Re(α))| < 1 can be rewritten as

|1 + 2a0 − a1

√
3 + a2| < 1.

To satisfy this constraint, 1 + 2a0 + a2 and a1

√
3 should have the same sign. The case

|Re(α)| = 0 is not interesting, so without loss of generality 1 + 2a0 + a2 > 0 and a1 > 0.
The minimum is obtained for 1+2a0+a2 = a1 = 1. Therefore, cosh(syst(M3)/2) = 1+

√
3.

The last example is meant to show that in general it is not sufficient to look only at the
real part of α.

Example 8.14. Consider g = 6. By Lemma 8.11 we can write

1
2
| tr(M)| = |Re(α)|,

= |1 + 2a0 + 2a1 cos( π
12

) + 2a2 cos(π
6
) + 2a3 cos(π

4
) + 2a4 cos(π

3
) + 2a5 cos(5π

12
)|,

= |1 + 2a0 + 1
2
a1(
√

6 +
√

2) + a2

√
3 + a3

√
2 + a4 + 1

2
a5(
√

6−
√

2)|.

By Lemma 8.8 we have |ψk(α)| < 1 for k = 7, 11, 13, 17. When we only look at the real
part of α, we only have to consider k = 7, 11. We have ψ7 : ζ24 7→ ζ7

24, so cos( π
12

) 7→
cos(7π

12
), so 1

4
(
√

6 +
√

2) 7→ 1
4
(−
√

6 +
√

2), which corresponds to the automorphism
√

3 7→
−
√

3. In a similar way, ψ11 corresponds to
√

2 7→ −
√

2.
Consider Re(α) = 1 + 1

2
(
√

6 +
√

2)−
√

2. Clearly, 1 < Re(α) < 1 + 2 cos( π
12

) and

|ψ7(Re(α))| = |1 + 1
2
(−
√

6 +
√

2)−
√

2| < 1,

|ψ11(Re(α))| = |1 + 1
2
(
√

6−
√

2) +
√

2| < 1.

Hence, we have a solution with |Re(α)| smaller than our proposed value of the systole.
This does not show that our conjecture is false; it shows that it is not sufficient to only
look at the real value of α.
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9 Lower bound for the number of points in a Delau-

nay triangulation

The main result of this section is the following proposition.

Proposition 9.1. Let M be a hyperbolic surface of genus g ≥ 2. Let P be a set of points
in M such that syst(M) > 2δP . Then

|P | >
(

π

π − 6 arccot(
√

3 cosh(1
4

syst(M)))
− 1

)
· 2(g − 1).

Proof. Let |P | = v. Compute a Delaunay triangulation of P in M with e edges and f
faces. We know that 3f = 2e, since every triangle consists of three edges and every edge
belongs to two triangles. By Euler’s formula,

v − e+ f = 2− 2g,

so
f = 4g − 4 + 2v.

Denote the triangles in the Delaunay triangulation by Fi, their circumscribed disks by Ci
and the diameters of these disks by di. By Corollary 4.4 we have

area(Fi) ≤ π − 6 arccot(
√

3 cosh(1
2
di)).

Since all Ci do not have any points of P in their interior due to the triangulation being
Delaunay, we have di < δP <

1
2

syst(M). It follows that

area(M) =

f∑
i=1

area(Fi),

=

f∑
i=1

π − 6 arccot(
√

3 cosh(1
2
di)),

<

f∑
i=1

π − 6 arccot(
√

3 cosh(1
4

syst(M))),

= f(π − 6 arccot(
√

3 cosh(1
4

syst(M)))),

= (4g − 4 + 2v)(π − 6 arccot(
√

3 cosh(1
4

syst(M)))).

Observe that area(M) = 4π(g − 1), so

v >
2π(g − 1)

π − 6 arccot(
√

3 cosh(1
4

syst(M)))
− 2g + 2,

=

(
π

π − 6 arccot(
√

3 cosh(1
4

syst(M)))
− 1

)
· 2(g − 1).
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Remark 9.2. Proposition 9.1 gives the following lower bounds for the surfaces Mg, 2 ≤
g ≤ 10 corresponding to a regular 4g-gon:

g 2 3 4 5 6 7 8 9 10
|P | > 7 12 18 23 29 34 40 46 51

Here we used the upper bound for the systole of these surfaces shown in the previous
section.

Remark 9.3. In the previous remark, the lower bound grows approximately linearly as a
function of g. More generally, since arccot(

√
3 cosh(1

4
syst(M))) is a decreasing function

of syst(M) which tends to zero as syst(M)→∞, we see that the coefficient

π

π − 6 arccot(
√

3 cosh(1
4

syst(M)))
− 1

is a decreasing function of syst(M) as well, which also tends to zero as syst(M) → ∞.
For sequences of surfaces with bounded systole, this coefficient is bounded away from
zero, so in this case |P | = Ω(g), where we recall that the systole of a family of surfaces
{M(g) : g ∈ N, g ≥ 2} is bounded if the set {syst(M(g)) : g ∈ N, g ≥ 2} is bounded.
For families of surfaces where the systole is not necessarily bounded, we only have the
bound syst(M(g)) ≤ 2 log(4g − 2) (see Section 4.9). To see the behaviour of the above
coefficient, define

f(x) = arccot(
√

3 cosh(1
4
· 2 log(4x− 2))).

Then
cot f(x) =

√
3 cosh(1

2
log(4x− 2)).

For x sufficiently large, cosh(x) ≈ 1
2
ex, so cot f(x) ≈ 1

2

√
12x− 6. On the other hand, for

x sufficiently large f(x) ≈ 0, so

cot f(x) =
cos f(x)

sin f(x)
≈ 1

f(x)
.

It follows that for sufficiently large x,

f(x) ≈ 2√
12x− 6

.

This means that

π

π − 6 arccot(
√

3 cosh(1
4

syst(M(g))))
− 1 ≥ π

π − 6 arccot(
√

3 cosh(1
2

log(4g − 2)))
− 1,

=
π

π − 6f(g)
− 1,

≈ π
√

12g − 6

π
√

12g − 6− 12
− π
√

12g − 6− 12

π
√

12g − 6− 12
,

=
12

π
√

12g − 6− 12
,
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with equality in the limit g → ∞. We conclude that in general the number of points is
of order Ω(

√
g).

In [28] the bound

|P | ≥ 7 +
√

1 + 48g

2

is given, based on a purely combinatorial argument. This bound is in practice better, but
asymtotically of the same order. However, our new bound is not redundant. Indeed, we
have already argued that it is of order Ω(g) for families of surfaces with bounded systole.
Secondly, to arrive at a complexity of Ω(

√
g) we used the upper bound syst(M(g)) ≤

2 log(4g− 2). Currently there are no families of surfaces known which attain this bound,
even asymptotically. As stated in Section 4.9, the current maximum of the systole of a
family of surfaces is (up to constants) 4

3
log g. Therefore, it makes sense to compute the

order of the number of points with 4
3

log x instead of 2 log(4x − 2) in the definition of f

above. Asymptotically we get in this case that cot f(x) ≈ 1
2

√
3x1/3, so f(x) ≈ 2

3

√
3x−1/3.

Then the number of points is of order Ω(g2/3), which is sharper than the bound given in
[28].

57



10 Future work

Future work could follow several paths. First of all, a sharper lower bound for the
minimum number of sheets for the hyperbolic surface M = D2/Γ can be obtained by
obtaining a sharper lower bound for δO, the diameter of the largest empty disk in D2

that does not contain any point of ΓO in its interior. In this way the lower bound for the
asymptotic complexity of the general case may be increased.

Secondly, there are currently no upper bounds known for the number of sheets, with the
exception of 128 for the Bolza surface, where the proof makes use of a computer. It
would be interesting to find a simpler proof of an upper bound for the Bolza surface in
particular and an upper bound for hyperbolic surfaces with different genera and conformal
structures in general.

Thirdly, our conjecture on the systole of hyperbolic surfaces represented by regular 4g-
gons remains to be proven.

Finally, to obtain an upper bound for the number of points of a dummy point set, one
could explicitly construct a suitable point set. So far, this has only been done for the
Bolza surface with a point set of cardinality 14.
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A Algebra

In our proofs regarding the systole of surfaces corresponding to regular 4g-gons, we make
use of some concepts from algebraic number theory. In this section we will give a brief
introduction. For more details we refer to [22].

We start with the definition of a number field.

Definition A.1. A number field is a finite degree field extension of Q.

We are primarily interested in cyclotomic fields.

Definition A.2. The n-th cyclotomic field is the number field obtained by adjoining a
primitive n-th root of unity to Q.

We denote the n-th cyclotomic field by Q(ζn), where ζn = exp(2πi
n

) is the primitive n-th
root of unity with the smallest positive argument.

Algebraic integers generalize the idea of integers.

Definition A.3. Let α ∈ C. Then α is called an algebraic integer if there exists a monic
polynomial f ∈ Z[X] such that f(α) = 0.

Note that Z[X] is the ring of polynomials in the indeterminate X with coefficients in Z
and f ∈ Z[X] is called monic if its leading coefficient is 1. We immediately see that all
integers are algebraic integers, since for n ∈ Z we have f(n) = 0 for f = X − n. The set
of all algebraic integers is denoted by O. Given a number field K, the set of algebraic
integers contained in K is denoted by OK , i.e. OK = O ∩K. This set is called the ring
of integers of K. That this name makes sense follows from the following proposition.

Proposition A.4. The set OK = O∩K of algebraic integers contained in a number field
K forms a ring. In particular, if α, β ∈ OK, then α + β, αβ ∈ OK.

For a proof, see [22, I.2.4d].

Consider the cyclotomic field K = Q(ζn). Since f(ζn) = 0 for f = Xn − 1, we have
ζn ∈ OK . By the proposition above, this means that Z[ζn] ⊆ OK . In fact, we have
equality.

Proposition A.5. The ring of integers OK of K = Q(ζn) is given by Z[ζn].

For a proof, we refer to [22, VI.1.Thm.46].
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