

faculty of science
and engineering

 mathematics and applied
mathematics

Methods of Optimization
for Numerical Algorithms

Bachelor’s Project Mathematics

July 2017

Student: S.J. Petersen

First supervisor: dr.ir. R. Luppes

Second assessor: dr. A.E. Sterk

Contents

1 Introduction 4

2 The Downhill Simplex Method 5

2.1 The basics of the Downhill Simplex method 5

2.2 The algorithm of the Downhill Simplex method 7

3 Applying the Downhill Simplex Method 10

3.1 Test functions . 11

3.1.1 The Rosenbrock function . 11

3.1.2 The Rastrigin function . 12

3.2 Optimizing algorithms using the Downhill Simplex method 14

3.2.1 Fixed point iteration in one dimension 14

3.2.2 Fixed point iteration in multiple dimensions 18

4 Powell’s Methods of Optimization 22

4.1 One-dimensional optimization . 22

4.1.1 Golden Section search . 23

4.2 Multidimensional optimization . 25

4.2.1 Powell’s conjugate direction method 26

5 Applying Powell’s Method 27

5.1 Test functions . 27

5.1.1 Rosenbrock function . 28

5.1.2 Rastrigin function . 29

5.2 Applying Powell’s method to algorithms 30

2

5.2.1 Algorithm 1 . 30

5.2.2 Algorithm 2 . 31

6 Combining Methods 33

6.1 Using a grid . 33

6.1.1 Choosing the grid . 34

6.1.2 Testing a basic grid . 35

7 Conclusion 37

A Matlab code 39

A.1 Rosenbrock . 39

A.2 Rastrigin . 39

A.3 Rosenbrockplot . 40

A.4 Rastplot . 41

A.5 Scriptsolve . 42

A.6 Plotje . 43

A.7 Scriptsolve2 . 44

A.8 Plotje2 . 45

A.9 Fixed Point Systems . 46

A.10 Plotje3 . 48

A.11 Minimum . 49

A.12 Minimum2 . 50

A.13 Minimum3 . 51

A.14 Powell . 52

A.15 Bracket . 57

A.16 Coggins . 59

A.17 Aurea . 63

3

Chapter 1

Introduction

Optimizing functions is one of the most common problem of mathematics and also

very often required in real world problems. While for well defined functions, this

is as easy as calculating the gradient and finding the zero, we also want to be able

to do this for functions that are not defined in a way that we can actually take

the derivative. An example of this is the optimization of the number of iterations

numerical algorithms require, depending on some tuning variables.

To do this we will analyse different methods of numerical minimization and opti-

mization. The first of which, the Downhill Simplex method, is entirely self con-

tained, whereas the second method, Powell’s method, makes use of one-dimensional

optimization methods.

Our main goal is to find a robust way of optimizing algorithms, by making use of

these optimization methods.

4

Chapter 2

The Downhill Simplex Method

The first method of numerical minimization we will consider is called the Downhill

Simplex method, also often referred to as Amoeba and the Nelder-Mead method.

It is not to be confused with the Simplex method from econometrics, as these are

entirely different.

2.1 The basics of the Downhill Simplex method

The Downhill Simplex method is an algorithm for multidimensional minimization.

It is special in that it does not use any one-dimensional minimization algorithm.

Another important aspect of this method is that it does not require the derivatives

of the functions it tries to minimize.

The Downhill Simplex method has been given its name due to its use of a simplex.

In N dimensions, a simplex is a geometrical figure consisting of N + 1 points and

connecting lines, planes. For example, in two dimensions a simplex is a triangle

and in three dimensions it is a tetrahedron. Note that the definition of a simplex

does not require the points to be evenly distributed, meaning that the triangle and

tetrahedron do not have to be the regular ones.

5

The Downhill Simplex method works as an algorithm with a starting point. The

starting point however, has to be a starting simplex. So we have to define a starting

simplex, by choosing the initial N + 1 points. It is however still possible to work

with an initial point consisting of a single point P0. We do this by then defining

the other N points as

Pi = P0 + λei i = 1, . . . , N

where ei is the unit vector it usually indicates. One can freely choose the value

of λ and even choose to use different λi’s for each vector direction. This however

defeats the purpose of using a single starting point.

Using the starting point or simplex, the Downhill Simplex method takes steps every

iteration, in order to find a (local) minimum. We can categorize the steps this

algorithm can take in four distinct actions. The algorithm chooses which action

to take according to a couple of different calculations and criteria. A detailed

description of how this works will follow in the next section. The options available

are the following.

Reflection: The algorithm can take the highest point out of the N+1 points that

defines the simplex and mirror it to the opposite side of the simplex, in a manner

that conserves its volume. This is the most common step for the simplex, as will

be made clear in the next section.

Expansion: The simplex can expand in order to move in the ’right’ direction. An

example is expanding beyond a low point, such that this low point is included in

the volume of the simplex.

Contraction: When the simplex approaches a minimum or enters a ’valley’, the

simplex will contract itself in the transposed direction of the valley. Multiple

contraction, also referred to as N-dimensional contraction, is possible when the

simplex tries to pass through something we can visualize as the eye of the needle.

In figure 2.1 on the following page, the above described steps are visualized in two

dimensions.

6

Figure 2.1: Possible movements of the simplex in the downhill simplex method,
C.C. Kankelborg [2]

2.2 The algorithm of the Downhill Simplex method

Remember that we start the algorithm with a simplex defined by N + 1 points, Pi

for i = [0, 1, . . . , N]. Now we can denote some of the Pi as P (M), P (m) and P (µ), for

which the function respectively attains its maximum value, its minimum value and

its second largest (immediately after the maximum) value. Next to these values,

we will also need the centroid of the point P (k), defined as

P (k)
c =

1

N

N∑
i=0,i 6=k

Pi

7

Now we can describe the algorithm in a number of steps.

1. Determine P (M), P (m) and P (µ)

2. Our goal is to find a minimum, from now on reffered to as the minimizer of P ,

P ∗. Using the simplex we have, we calculate as an approximation of P ∗, the point

P̄ =
1

N + 1

N∑
i=0

Pi

Now we check if P̄ is a good approximation of P ∗. For this we want the standard

deviation of the function values f (P0, . . . , PN) from

f̄ =
1

N + 1

N∑
i=0

f (Pi)

have an upper bound by some tolerance or error ε, typical values of ε and other

variables introduced in this section can be found after the steps.

1

N + 1

N∑
i=0

(
f (Pi)− f̄

)2
< ε

If this is not the case, P̄ is not a good approximation of P ∗ and we will generate

a new point for the simplex by reflecting P (M) with respect to P
(M)
c . We call this

point Pr

Pr = (1 + α)P (M)
c − αP (M)

Here α ≥ 0 is the reflection factor.

3. reflection When f
(
P (m)

)
≤ f (Pr) ≤ f

(
P (µ)

)
, P (M) is replaced with Pr and

the algorithm starts again with the new simplex. Due to the reflection always

being generated and the shape of most valleys (where going in the opposite side of

the highest value goes towards the minimum), this is the most common situation.

8

4. expansion When Pr ≤ P (m), the reflection step has produced a new minimizer,

meaning the minimizer could lie outside the simplex being considered, therefore

the simplex must be expanded after the reflection (so the reflection still happens).

We define Pe by

Pe = βPr + (1− β)P (M)
c

Here β is the expansion factor. Two possibilities arise at this point.

• f (Pe) < f
(
P (m)

)
, then P (M) is replaced by Pe.

• f (Pe) ≥ f
(
P (m)

)
, then P (M) is replaced by Pr.

5. Contraction When Pr > P (µ), then the minimizer probably lies within the

simplex and we want to apply a contraction step. There are two approaches we

can take to do this. If f (Pr) < f
(
P (M)

)
, we generate a contraction point by

Pco = γPr + (1− γ)P (M)
c

where γ ∈ (0, 1). Otherwise this contraction point is generated by

Pco = γP (M) + (1− γ)P (M)
c

Now depending on the value of f (Pco), two things can happen. If f (Pco) <

f
(
P (M)

)
and f (Pco) < f (Pr), we replace P (M) with Pco. Otherwise, N new

points will be created, by halving their distance to P (m).

As mentioned before, there are typical values for α, β and γ for the downhill

simplex algorithm. This is where it varies from the Nelder-mead method, as the

Nelder-Mead method does not have typical values for these variables. As such we

could say that the downhill simplex algorithm is part of the set of Nelder-Mead

algorithms. The typical values for the downhill simplex method are α = 1, β = 2

and γ = 1
2
.

9

Chapter 3

Applying the Downhill Simplex

Method

Now that we know how the downhill simplex algorithm works, we will apply this

method to some practical examples, to study the strong and weak points. For this

we will make use of Matlab with the built-in function fminsearch. This function

is based on the downhill simplex algorithm and knowing Matlab, it will have some

tricks to improve its robustness, allowing to study the weak points that can not

easily be solved.

The tests we will give the downhill simplex method are of several forms. First we

will try the method on functions that are well-defined and of which we know where

the global minimum is, allowing us to test the performance of the downhill simplex

method. Afterwards we will try to use this method to optimize two algorithms

that are based on fixed point iteration, in order to test the method in a ’realistic

manner’.

10

3.1 Test functions

We will apply the downhill simplex method to two testing functions. These func-

tions are the Rosenbrock function and the Rastrigin function. For both of these

functions the global minimum is known. This and other properties of these func-

tions allow us to test the behaviour of the downhill simplex method.

3.1.1 The Rosenbrock function

The Rosenbrock function is given by:

f (x, y) = (a− x)2 + b
(
y − x2

)2

Figure 3.1: The Rosenbrock function in 2 dimensions

This function has a global minimum at f (a, a2) = 0. The values that are generally

used for this function are a = 1 and b = 100. These are also the values used in

this study.

As we can see in figure 3.1, the Rosenbrock function has a wide valley, with a small

gradient. This creates a challenge for optimization algorithms.

11

When testing the fminsearch algorithm for decent initial guesses, everything

works well and the valley appears to be no challenge for this method. When

the initial guess is located far from the actual minimum, the algorithm struggles.

This can also be seen in table 3.1.

Table 3.1: Behaviour of the Downhill Simplex method when applied to the Rosen-
brock function

Initial guess (x,y) Output Downhill Simplex Time (seconds)
(2, 2) (1.0000, 1.0000) 0.008903
(10, 10) (1.0000, 1.0000) 0.002608
(-10, -10) (1.0000, 1.0000) 0.002101
(-100, -100) (1.0000, 1.0001) 0.002276
(-10000, 10000) (-68.3127, 4666.3312) 0.003979

As one can see, when we are far away from the minimum, in this case at the point

(−10000, 10000), the Downhill simplex method does not converge to the minimum,

but rather it thinks the minimum is at an entirely different place.

The time that is shown in table 3.1 will be used later, so that we can compare the

Downhill Simplex method with other methods.

3.1.2 The Rastrigin function

The Rastrigin function is given by:

f (x, y) = 20 +
(
x2 − 10 cos(2πx)

)
+
(
y2 − 10 cos(2πy)

)
The global minimum for this function is at (x, y) = (0, 0), f(0, 0) = 0.

As we can see in figure 3.2 on the following page, this function has a ton of local

minima. Therefore the optimization algorithms have a lot of trouble finding the

global minimum.

12

Figure 3.2: The Rastrigin function in 2 dimensions

When applying the Downhill Simplex method on the Rastrigin function, results

are highly dependent on the initial guess. The Downhill Simplex method can not

distinguish between a local minimum and global minimum. As such it converges to

a local minimum close to the initial guess. This behaviour can be seen in table 3.2.

Table 3.2: Behaviour of the Downhill Simplex method when applied to the Rast-
rigin function

Initial guess (x,y) Output Downhill Simplex Time (seconds)
(0, 0) (0, 0) 0.002704
(1, 1) (0.9950, 0.9950) 0.001976
(1.5, 1.5) (1.9899, 1.9899) 0.001708
(2, 2) (1.9899, 1.9899) 0.010765
(-5, -5) (-4.9747, -4.9747) 0.002198
(100, 100) (-0.9950 , -0.9950) 0.003308

As one can see in this table, the Downhill Simplex method finds a local minimum

relatively close to the initial guess, when the initial guess is close to the minimum.

When we go far away though, it seems the behaviour is better than expected.

For the initial guess of (100, 100), the methods results in an output (proposed

minimum) of (−0.9950,−0.9950). This is relatively close to the global minimum

at (0, 0).

13

An explanation for this could be that in the beginning stages, there are a lot of

expansion steps, making the simplex grow, allowing the algorithm to ’skip’ some

of the local minima close to the global minimum.

Once again the time will be used later to make a comparison to other methods.

3.2 Optimizing algorithms using the Downhill

Simplex method

Now that we know how the Downhill Simplex method performs on the Rosenbrock

and Rastrigin functions, we will try and apply this method to optimize numerical

algorithms. The algorithms we will try to optimize in this section are algorithms

that solve equations using succesive substitution, also known as fixed point itera-

tion.

3.2.1 Fixed point iteration in one dimension

In this section the Downhill Simplex method is used to optimize the variables a

and b used in the following script.

Nit = 0 ;

x = 1 ;

e r r o r = 1000 ;

whi l e e r r o r > 1 .0E−8

Nit = Nit + 1 ;

xold = x ;

x = x + a ∗ (s i n (x) + x∗x − 2) ;

x = b∗x + (1−b)∗ xold ;

e r r o r = abs (x−xold) ;

end

14

This is a script that solves the equation sin(x)+x2 = 2 using succesive substitution

under relaxation. The goal is to optimize the variables a and b to get the lowest

number of iterations Nit.

Defining this script as a function of a and b, with the number of iterations as its

output is the first step. In this way we have defined a function Nit(a, b), over

which we can try to run fminsearch. Notice that we cannot determine the partial

derivatives with respect to a and b.

Running fminsearch on Nit(a, b) gives results that raise more questions. For

some initial guesses fminsearch finds what appears to be a solution, while for most

starting guesses it just gives the initial guess as its answer. In order to know what

is going on, we have to analyse the behaviour of the function.

Figure 3.3: Behaviour of the function

In figure 3.3 a plot is shown of the function, limited to 100 iterations. The first

to be noticed is that outside of the star-like pattern, the number of iterations

gradually lowered. Unable to explain this from mathematical theory, I decided

to look at the solution for x the script got at some of these points, i.e. the x

that would solve sin(x) + x2 = 2. The value this x took outside of the star-like

formation turned out to be NaN, which means not a number. The script makes

the value of x go to infinity really quickly and when x becomes NaN, the error can

not be computed and as such the script thinks it is done.

15

In order to solve this problem, a check is added as to whether or not x is actually

a number and if x is not a number, we define the number of iterations to be NaN

as well. The result is shown in figure 3.4.

Figure 3.4: Behaviour of the function after alterations

When we turn the figure in such a way that we look from the top down as depicted

in figure 3.5, we can see a very interesting figure.

The colour-coding is in such a way that the darker the color, the lower the number

of iterations. We can see that there are two types of valleys in this figure. the

top-left and bottom-right are very similar to each other, as are the top-right and

bottom-left. A very unfortunate downside of the Downhill Simplex method is

encountered here. When the initial guess is in the top-right or bottom-left valley,

the algorithm finds a local minimum inside those valleys, making it so it will not

find the global minimum in another valley. This behaviour can be seen in table

3.3.

16

Figure 3.5: Behaviour of the function from top down

Table 3.3: Behaviour of the Downhill Simplex method when applied to successive
substitution

Initial guess (a,b) Output Downhill Simplex Time (seconds)
(0.5, 0.5) (0.5328, 0.5203) 0.062708
(-0.5, 0.5) (-0.6312, 0.6062) 0.012486
(0.5, -0.5) (0.6312, -0.6062) 0.026526
(-0.5, -0.5) (-0.5328, -0.5203) 0.005909
(100, 100) (100,100) 0.009560

The structure of the darkest parts of figure 3.5 is reminiscent of the equation

b = −1

a

However when we take that exact equation, we end up in the yellow parts rather

than the blue parts. As such, we can try plotting the results when

b = − 1

q · a

17

Plotting this results in figure 3.6.

Figure 3.6: The number of iterations for different values of q

The structure we see in figure 3.6 does not change for different values of a, as long

as a 6= 0. This means that for this specific script there is a relation between the

optimal a and b. What is also interesting to note, is that this relation still holds

when we change the equation we try to solve. However the optimal values of q do

change.

3.2.2 Fixed point iteration in multiple dimensions

In this section we will try to use the Downhill Simplex method to optimize an

algorithm for fixed point iterations in three dimensions. It is an algorithm that

solves the equations:

x = f(y, z) =
1

3
cos(yz) +

1

6

y = g(x, z) =
1

9

√
x2 + sin(z) + 1.06− 0.1

z = h(x, y) =
−1

20
e−xy − 10π − 3

60

18

Pseudo code for this algorithm is as follows:

Nit = 0 ;

x = 2 , y = 2 , z = 2 ;

e r r o r = 1000 ;

whi l e e r r o r > 1 .0E−5

Nit = Nit + 1 ;

xold = x ;

yold = y ;

zo ld = z ;

x = a ∗ f (y , z) ;

y = b ∗ g (x , z) ;

z = h(x , y) ;

e r r o r = s q r t ((x−xold)ˆ2 + (y−yold)ˆ2 + (z−zo ld) ˆ 2) ;

end

The actual code used for this system, an alteration on a script written by Alain

G. Kapitho [3], can be found in appendix A.9.

For this code we once again want to optimize the number of iterations Nit, where

a and b are the variables we want to optimize. In order to do so we define the

number of iterations Nit as a function of a and b. The reason we will not add a

third variable c for the third equation, is that by keeping the number of variables

at two allows us to make a plot that shows us exactly what is happening. This

can be found in figure 3.7 on the following page.

Once again we can take a look at this figure from top down, in order to get a

better idea of what is going on. The resulting figure is figure 3.8.

19

Figure 3.7: Behaviour of multidimensional fixed point iteration

Figure 3.8: Behaviour of multidimensional fixed point iteration, topdown

The algorithm was modified in such a way that the number of iterations is NaN

when a = 0 or b = 0. This was done because the algorithm misbehaves in this

case.

When testing the Downhill Simplex method on this function, the results are rather

disappointing. Looking at the behaviour of this function one would assume that

an optimization algorithm should have no issues finding the minimum. In reality

though, the minimum was only found when the initial guess was sufficiently close.

20

The behaviour can be seen in table 3.4

Table 3.4: The behaviour of the Downhill Simplex method when applied to mul-
tidimensional fixed point iteration

Initial guess (a,b) Output Downhill Simplex Functionvalue Time (seconds)
(0.1, 0.1) (0.1000, 0.1000) 4 0.002534
(-0.1, 0.1) (-0.1000, 0.1000) 4 0.001951
(1, 1) (1, 1) 6 0.003093
(-1, 1) (-1, 1) 6 0.001982
(5, 4) (5, 4) 13 0.003402
(4,-5) (-0.0000, -4.2500) 4 0.002884

For this table the function values are shown for the output of the Downhill Simplex

method.

Quite often the initial guess supplied to the Downhill simplex method was given as

the output as well meaning the method did not really do anything. Looking at the

theory behind the Downhill Simplex method allow us to get a better understanding

of why this is happening.

In section 2.2, we can see that the Downhill Simplex algorithm checks that it has

found minimum by checking that the standard deviation of function values of its

points is sufficiently small,

1

N + 1

N∑
i=0

(
f (Pi)− f̄

)2
< ε

When analysing figure 3.8, we can see that there are a lot of areas where the figure

is entirely flat. This results in the standard deviation being exactly zero, meaning

that the algorithm thinks it has found the solution.

Hence, the Downhill Simplex method does not perform well when applied to algo-

rithms similar to this multidimensional fixed point iteration algorithm.

21

Chapter 4

Powell’s Methods of Optimization

In this chapter we will discuss our second optimization algorithm, Powell’s method.

In contrast to the simplex method, Powell’s method does make use of algorithms

that do one-dimensional optimization/minimization. As such it is necessary for us

to first analyze one-dimensional optimization methods.

4.1 One-dimensional optimization

With the restriction of not having a gradient or in case of one dimensional opti-

mization, the (directional) derivative, there are two methods of one-dimensional

minimization we will consider. These are the Golden Section Search method and

Parabolic Interpolation.

The Golden Section search is relatively slow, but it is very robust as it does not

make any assumptions with respect to the behaviour of the function that it is

trying to optimize. Parabolic Interpolation is on the opposite side of the spectrum

in that it can be a lot faster for well behaving functions, but it is not as robust. This

is because Parabolic Interpolation assumes the function can be approximated by

a parabolic function near its minimum. This works very well for a lot of functions,

however for functions where this behaviour is not valid, Parabolic Interpolation

will simply not find a minimum.

22

As the goal is to have a robust algorithm, not necessarily an algorithm that is

as fast as possible, we will apply the Golden Section Search as our main method

for one-dimensional optimization/minimization. In the testing phase we will also

try to use Parabolic interpolation and see how it performs compared to Golden

Section Search.

4.1.1 Golden Section search

Golden section search is based on the bisection method, where we will repeatedly

bisect an interval into subintervals and determine in which subinterval there is a

minimum.

We start out by bracketing a minimum:

Definition 4.1.1. We say a minimum of function f(x) is bracketed by two points

a, b, a < b, when there is a point c, such that a < c < b with f(c) < f(a) and

f(c) < f(b).

We will not handle methods for bracketing a minimum, though the code used to

do this can be found in appendix A.15.

When we have bracketed this minimum, we can choose a new point x in the interval

(a, b). Depending on the function value f(x) at this new point x, we can choose

between two new intervals to evaluate for a minimum.

Although this theory is valid for any x we choose, for simplicity we assume x is

chosen in the interval (c, b). Then one of the following things will happen.

• If f(c) < f(x), we will look at the interval (a, x)

• If f(x) < f(c), we will look at the interval (c, b)

This behaviour is visualised in figure 4.1 on the following page, where the colored

lines are the newly choosen intervals.

23

Figure 4.1: Choosing a new interval

The algorithm simply stops when the interval becomes small enough.

This algorithm works to find a local minimum no matter how we choose the x as

long as x ∈ (a, b). However, you can end up at different local minima depending

on how x is chosen. We do however want this algorithm to always work as well

as it possibly can. This means that we want the algorithm to finish as quickly as

possible, even when we always have to go to the larger interval of our two possible

new intervals.

This means that we want the two possible new intervals to be of the same size. In

order to achieve this, we can define the distances as fractions of the total interval.

We define w to be the fraction ac of ab:

w =
c− a
b− a

In a similar way, we can define z to be the fraction cb of ab:

z =
x− c
b− a

This means that the two possible intervals can be defined in terms of w and z:

• The first interval can be defined as w + z

• The second interval can be defined as 1− w

When also taking account our wish for these intervals to be of the same size, we

arrive at the following equation:

w + z = 1− w ⇒ z = 1− 2w

24

Usually, c is the result of the previous iteration, meaning that w is already chosen

optimal. As such, x should be the same fraction from c to b as c was from a to b:

z

1− w
= w

Combining that z = 1− 2w and z
1−w = w, we get that

w2 − 3w + 1 = 0→ w =
3−
√

5

2

This means that when all points are choosen optimally, w and 1 − w are the

fractions of the Golden Ratio. This is why this method was named the Golden

Section search.

4.2 Multidimensional optimization

As mentioned before, Powell’s methods perform multidimensional optimization,

using one-dimensional optimizations. This is done by performing one-dimensional

optimization on a number of directions and continue doing so until a minimum is

found.

The way of choosing the directions can vary significantly. First we will handle the

most basic way of choosing the directions.

• Begin with the initial guess and minimize in the direction of the standard

basisvector e1.

• From the resulting point, minimize in the direction of e2.

• Continue in this way until eN .

• Keep cycling through e1, . . . , eN until there is nu longer significant change.

This method works well for a lot of functions, in that it is successful in finding

a minimum. This method is however very inefficient. An example would be a

two-dimensional function that has a narrow valley, in a direction that is not the

25

same as either e1 or e2. What this method does in such a case, is take a small in

direction e1, then take a small step in direction e2, then take a small step direction

e1 again. This goes on and on with very small steps. Eventually it will find the

minimum in the valley, but it takes a very long time.

By changing the way we choose directions, we can make this method a lot more

robust and a lot faster. From the example we can for example imagine that we

would want to search in the direction of the valley.

4.2.1 Powell’s conjugate direction method

Powell introduced a new way of choosing the directions on which to search for

a minimum. We start out the same way we did before, starting at a point x0

and minimizing in the direction of every basis-vector ei once. After these N line

searches, we have arrived at some point xN . Now the direction of the vector xN−x0
is added at the end of the cycle. The most successful basis vector, i.e. the basis

vector that contributes most to the direction of xN−x0, is removed from the cycle.

Now we start our cycle again from the point we have arrived at. These cycles

continue until the algorithm has found a minimum.

As one can see, this method of taking directions solves some of the weaknesses

from the most basic way of choosing directions that we handled before.

Taking the same example we used earlier, a two-dimensional function with a narrow

valley that is not in the direction of e1 or e2, the following would happen. First we

take small steps in directions e1 and e2 again. Then we define our new direction

x2−x0. For a straight valley, this is the direction of the valley. Optimizing in this

direction results in the minimum.

So rather than a lot of small steps, this algorithm takes two small steps and then

one big step in order to find the minimum.

26

Chapter 5

Applying Powell’s Method

Now that we have explained the theory behind Powell’s method of optimization,

we will subject this method to the same tests as the Downhill Simplex method.

This allows us to analyse the performance of Powell’s method, but it also enables

us to make a comparison between these methods.

In order to apply Powell’s method, we will be making use of a number of scripts

that have been shared on the Mathworks forum by Argimiro R. Secchi in 2001 [4].

The scripts can be found in appendix A.14, A.15, A.16, and A.17.

5.1 Test functions

Once again we will use the Rosenbrock function and the Rastrigin function as our

tests for Powell’s method. For the finer details on the Rosenbrock function, readers

can look back at section 3.1.1 and for the Rastrigin function at section 3.1.2.

27

5.1.1 Rosenbrock function

Powell’s function performs very well on the Rosenbrock function, finding the global

minimum at (x, y) = (1, 1), even when the initial guess is suboptimal.

Table 5.1: Behaviour of Powell’s method with golden section search when applied
to the Rosenbrock function

Initial guess (x,y) Output Powell Time (seconds)
(2, 2) (1.0000, 1.0000) 0.003912
(10, 10) (1.0000, 1.0000) 0.003784
(-10, -10) (1.0000, 1.0000) 0.003050
(-100, -100) (1.0000, 1.0000) 0.002306
(-10000,10000) (1.0000, 1.0000) 0.002189

Table 5.2: Behaviour of Powell’s method with parabolic interpolation when applied
to the Rosenbrock function

Initial guess (x,y) Output Powell (Coggins) Time (seconds)
(2, 2) (1.0000, 1.0001) 0.002198
(10, 10) (1.0001, 1.0001) 0.002483
(-10, -10) (1.0000, 1.0000) 0.002599
(-100, -100) (1.0000, 1.0000) 0.002445
(-10000,10000) (0.9999, 1.0000) 0.002398

In table 5.1, we see the behaviour of Powell’s method with golden section search

on the Rosenbrock function. In table 5.2, we see the behaviour of Powell’s method

with parabolic interpolation on the Rosenbrock function.

For the Rosenbrock function we see that performance for both golden section

search and parabolic interpolation is great. The weakness of the Downhill Simplex

method where it does not converge to the minimum when we go too far away from

the minimum is not present here either.

When we compare the speed to that of the Downhill Simplex method, in table 3.1

on page 12, we see that the difference in speed is almost negligible, as all these

times are inside a small margin of error.

28

5.1.2 Rastrigin function

When applying Powell’s methods to the Rastrigin function, things become very

interesting.

Table 5.3: Behaviour of Powell’s method using golden section search when applied
to the Rastrigin function

Initial guess (x,y) Output Powell Time (seconds)
(0, 0) 1e-4*(-0.2372, -0.2372) 0.434990
(1, 1) (0.9950, 0.9950) 0.001439
(1.5, 1.5) (0.9950, 0.9950) 0.000520
(2, 2) (1.9899, 1.9899) 0.003093
(-5, -5) (-4.9747, -4.9747) 0.001602
(100, 100) 1e-4*(0.1987, 0.1987) 0.433081

Table 5.4: Behaviour of Powell’s method using parabolic interpolation when ap-
plied to the Rastrigin function

Initial guess (x,y) Output Powell (coggins) Time (seconds)
(0, 0) (0, 0) 0.000484
(1, 1) (0.9950, 0.9950) 0.001647
(1.5, 1.5) (0.9950, 0.9950) 0.000725
(2, 2) (1.9899, 1.9899) 0.001446
(-5, -5) (-4.9747, -4.9747) 0.001374
(100, 100) 1e-13*(-0.0940, -0.1174) 0.001570

Looking at tables 5.3 and 5.4, one can see that the Powell method using golden

section search fails to find the minimum when it starts out at the minimum. It does

however get quite close to the minimum. Nevertheless, this behaviour is rather

unexpected.

Another thing that grabs the attention is that just like the Downhill Simplex

method, Powell’s method also works rather well when we start from a point that

is far away from the minimum. Both the golden section search, but especially

the quadratic interpolation variant get very close to the global minimum when we

start at (100, 100).

29

Comparing methods, the obvious winner is Powell’s method using quadratic inter-

polation. This method assumes that the function it is trying to minimize behaves

like a quadratic function. As the Rastrigin function is a quadratic function of

sorts, it makes sense that this method works relatively well.

After looking at the test functions, we can say performance of Powell’s methods

and the Downhill Simplex method are very similar, with some exceptions. The

fastest method seems to be Powell’s method using quadratic interpolation. Now

it is time to see how Powell’s method performs on algorithms.

5.2 Applying Powell’s method to algorithms

We use the same algorithms as we did in section 3.2. For details the reader is

recommended to look back at section 3.2.

5.2.1 Algorithm 1

The first algorithm is successive substitution under relaxation, essentially fixed

point iteration in one dimension. As expected, results here are very similar to the

results when using the Downhill Simplex method, at least when we are talking

about Powell’s method using golden section search.

Table 5.5: Behaviour of Powell’s method using golden section search when applied
to successive substitution

Initial guess (a,b) Output Powell Time (seconds)
(0.5, 0.5) (1.2391, 0.2230) 0.447472
(-0.5, 0.5) (-0.6037, 0.6372) 0.003661
(0.5,-0.5) (2.4091, -0.1585) 0.020487
(-0.5,-0.5) (-0.8961, -0.2991) 0.015762
(100,100) error

When looking at table 5.5 and keeping in mind the shape of figure 3.5 on page 17,

if we start inside of the figure, we stay in the quadrant the initial guess is in. This

30

Table 5.6: Behaviour of Powell’s method using parabolic interpolation when ap-
plied to successive substitution

Initial guess (a,b) Output Powell (coggins) Time (seconds)
(0.5, 0.5) Coggins failure
(-0.5, 0.5) Coggins failure
(0.5,-0.5) Coggins failure
(-0.5,-0.5) Coggins failure
(100,100) Coggins failure

means that the local minimum is found, but the global minimum is only found

when the initial guess is at the correct quadrant. This is the same as with the

Downhill Simplex method.

When we start outside of the star-like pattern, in this case with the initial guess

of (100, 100), Powell’s method gives an error, as it can not calculate a minimum,

here the Downhill Simplex method thought the minimum was at the initial guess.

When looking at the results of the parabolic interpolation method in table 5.6,

we see why this method is known to be less robust. Parabolic interpolation fails

to bring results, it returns a failure that has to do with exceeding the maximum

number of iterations. This suggests the parabolic interpolation algorithm gets

stuck in an infinite loop.

5.2.2 Algorithm 2

The second algorithm uses fixed point iteration in three dimensions. Performance

in this case is very interesting. Remember that the Downhill Simplex was done

very quickly for most initial guesses, giving the initial guess as the output.

Performance of Powell’s method with golden section search is similar in this case,

but it does not return the input as the output. Instead, Powell’s method seems to

try very hard to find at least something, always with the same amount of success.

Especially when starting far away from the minimum, Powell’s method seems to

struggle to find a minimum. This can all be seen in table 5.7

31

Table 5.7: Behaviour of Powell’s method with golden section search on multidi-
mensional fixed point iteration

Initial guess (a,b) Output Powell Functionvalue Time (seconds)
(0.1, 0.1) (0.5125, 0.5088) 4 0.018173
(-0.1, 0.1) (0.4930, 0.6882) 4 0.021067
(1, 1) (1.8264, 1.8180) 6 0.003093
(-1, 1) (0.0089, -0.0032) 3 0.514112
(5, 4) (5.0699, 4.0692) 13 0.006379
(4,-5) (4.0630, -4.9201) 19 0.011121

When switching to parabolic interpolation rather than golden section search, re-

sults become a lot more interesting, as is seen in tabe 5.8.

Table 5.8: Behaviour of Powell’s method with parabolic interpolation on multidi-
mensional fixed point iteration

Initial guess (a,b) Output Powell (Coggins) Functionvalue Time (seconds)
(0.1, 0.1) (0.1000, 0.1000) 4 0.003493
(-0.1, 0.1) (-0.1000, 0.1000) 4 0.000868
(1, 1) (-0.1250, 1.0000) 4 0.001627
(-1, 1) (NaN, NaN) 119.680230
(5, 4) (0.0156, 4.0000) 4 0.003194
(4,-5) (0.0003, -5.0000) 4 0.002146

Now, for most initial guesses, the output is a pretty close to the actual minimum.

There was one initial guess during the testing phase that did not work for parabolic

interpolation and that is the initial guess of −1, 1. Here the parabolic interpola-

tion algorithm exceeds the maximum number of iterations time after time and

eventually, after a large amount of time, the result is NaN for both a and b.

All in all, looking at the results tells us that it is highly dependent on the problem

which method has more success. Both the Downhill Simplex method and Powell’s

method with golden section search are robust in giving an output, but they do not

always give the best results. Powell’s method with parabolic interpolation on the

other hand has the tendency to fail completely, but it is also the fastest method

when it does work. The speed of the other two algorithms is very similar.

32

Chapter 6

Combining Methods

The goal of this chapter is to use the Downhill Simplex method and Powell’s

methods to create an algorithm that has a higher chance of finding the global

minimum rather than a local minimum. The reason for wanting to combine both

methods is that there might be cases where one method does work and the other

doesn’t. When combining these methods, we know for sure the algorithm has the

highest possible chance of success.

6.1 Using a grid

Using algorithms that are good at finding local minima in order to find a global

minimum is a challenging task. We will attempt to do this by using a grid.

By using a grid and running both algorithms with each grid point as an initial

guess, we get two local minima for each of these initial guesses, one supplied by the

Downhill simplex method, the other supplied by Powell’s methods. By selecting

the minimum of these local minima we get our best guess of the global minimum.

One can imagine that using this method for a large, dense grid can get very

computationally expensive. Another downside of using a grid, is that even if

we choose a very large and dense grid, there is still a possibility that the global

minimum lies outside our grid.

33

6.1.1 Choosing the grid

In order to make use of a grid as efficient and robust as possible, we want to

choose our grid in an efficient manner. As one can imagine there are a lot of ways

to choose a grid. One can choose a grid that is very large and where the grid points

are sparse, you can choose to have a very horizontal oriented grid, or a vertical

oriented one. Let us start out by defining a grid at all.

When using an initial guess x0, we can define our grid to go a distance p in every

direction from this x0, with a distance dp between each grid point. This results in

a grid like in figure 6.1

Figure 6.1: Basic way of choosing a grid

As we already know the behaviour of our test functions, this basic grid is sufficient

for us to test the performance and behaviour of using a grid. We will be testing the

use of a grid on the Rastrigin function and also on the algorithm with successive

substitution.

34

6.1.2 Testing a basic grid

For this section we will be running both te Downhill Simplex method and Powell’s

method with the golden section search on a grid, where we know that the minimum

is already within the grid.

Rastrigin function

When having a grid from −5 to 5 for both x and y, with grid points every 0.25, the

resulting output is, as expected, (0, 0). The interesting part is seeing how long this

takes. The answer for this grid is 8.892410 seconds. This is considerably longer

than with a single initial guess. This was expected as well.

It is also interesting to see how this function behaves when the initial guess is

not one of the grid points. To do so we adjust our grid and place it from −2 to

4 with grid points every 0.75. Now the resulting output is (−0.1426,−0.0522).

The function value at this point is 0.0005. This means that although we did not

get to our minimum, we did get very close to it. The difference between this and

the actual global minimum can be explained by tolerances in our optimization

algorithms. It took 0.750029 seconds to run the algorithm this time.

Successive substitution

Another interesting testing case for the grid is the successive substitution algo-

rithm. We take the same initial grid we did in the previous case. The result-

ing point is (1.5667,−0.2438). In fact there were two points supplied that were

both on the line where the global minimum lies, it simply chose the first one,

given by Powell’s method. The point supplied by the Downhill Simplex method is

(1.5667,−0.2438). The time it takes to make this evaluation is 4.520256 seconds.

35

As expected, when the grid is chosen efficiently, using a grid like this works very

well indeed. Where this method runs into problems is when individual iterations

of the optimization algorithms take a long time, as these algorithms are run quite

often for every grid point, resulting in running these algorithms over the grid taking

a very long time.

It is also very interesting to see that even when running over a grid, the approxi-

mation of the global minima found by both methods do vary ever so slightly. This

means that it was indeed a good idea to combine the methods, as this results in

the best approximation of the global minimum.

Now that we know that using a well chosen grid, while being computationally

expensive, does work, we want to find a way to always choose our grid decent,

without having a very large very dense grid, as this would be too computationally

expensive.

Finding the most efficient ways to choose this grid is something that can be done

with further research that will not be handled now. One can however imagine that

such a method would involve starting out with a large grid and making it smaller

until a minimum is found.

36

Chapter 7

Conclusion

In order to optimize and minimize functions that are not defined in a way that we

can take the gradient, we have analysed two numerical methods of finding minima,

namely the Downhill Simplex method and Powell’s methods.

Both methods are decently good at finding a local minimum, but finding a global

minimum can only be done with a well chosen initial guess. In order to remedy

this, we introduced a grid on which to run these algorithms. Using a well chosen

grid works as expected and finding a global minimum in this way is possible.

Downsides of using a grid is that it is computationally expensive. Choosing the

grid in an efficient manner is something for which more research can be done.

37

Bibliography

[1] A. Quarteroni, R., and Saleri, F. Numerical Mathematics. Springer,

2000.

[2] Kankelborg, C. Multidimensional minimization. Lecture Notes, 2009.

http://solar.physics.montana.edu/kankel/ph567/examples/Octave/

minimization/amoeba/NotesPh567.pdf.

[3] Kapitho, A. Fixed-point for functions of several variables. http:

//m2matlabdb.ma.tum.de/download.jsp?Search=181&SearchCategory=

AuthorWithFiles&AuthorName=Alain+Kapitho&MP_ID=412, 2006. Accessed

July 18, 2017.

[4] Tonel, G. Unconstrained optimization using powell.

https://nl.mathworks.com/matlabcentral/fileexchange/

15072-unconstrained-optimization-using-powell?focused=5091405&

tab=function. Accessed July 18, 2017.

[5] W.H. Press, S.A. Teukolsky, W. V., and FLannery, B. Numerical

Recipes in C. Press Syndicate of the University of Cambridge, 2002.

38

Appendix A

Matlab code

A.1 Rosenbrock

%This script defines the rosenbrock function globally for easy acces in

%other scripts.

function z = rosenbrock(x)

z = (1-x(1))^2+100*(x(2)-x(1)^2)^2;

end

A.2 Rastrigin

%This script defines the rastrigin function globally for easy acces in

%other scripts.

function y = rastrigin(x)

N = length(x);

A = 10;

y = A*N + x(1)^2 - A * cos(2*pi*x(1)) + x(2)^2 - A * cos (2*pi*x(2));

end

39

A.3 Rosenbrockplot

%This function makes a plot of the rosenbrock functions on the interval

%where X goes from -2 to 2 and Y goes from -1 to 3.

clear all

a=5;

X=linspace (-2,2,400*a+1);

Y=linspace (-1,3,400*a+1);

no=0;

for i = 1: length(X)

for j = 1: length(Y)

it(j,i) = rosenbrock ([X(i),Y(j)]);

no=no+1;

end

end

surf(X,Y,it,'EdgeColor ','none','LineStyle ','none','FaceLighting ','phong ');

set(gca ,'fontsize ' ,24)

xlabel('X','FontSize ',32,'FontWeight ','bold')

ylabel('Y','FontSize ',32,'FontWeight ','bold')

zlabel('f(X,Y)','FontSize ',32,'FontWeight ','bold')

40

A.4 Rastplot

%This function is made to make a plot of the Rastrigin function on the

%standard interval where x and y go from -5.12 to 5.12.

X = linspace (-5.12 ,5.12 ,1001);

Y = linspace (-5.12 ,5.12 ,1001);

for i = 1: length(X)

for j = 1: length(Y)

Z(j,i) = rastrigin ([X(i),Y(j)]);

end

end

surf(X,Y,Z,'EdgeColor ','none','LineStyle ','none','FaceLighting ','phong ');

set(gca ,'fontsize ' ,22)

xlabel('X','FontSize ',32,'FontWeight ','bold')

ylabel('Y','FontSize ',32,'FontWeight ','bold')

zlabel('Z','FontSize ',32,'FontWeight ','bold')

41

A.5 Scriptsolve

%This script is a function for solving sin(x) + x^2 = 2 using succesive

%substitution under relaxation and its output is the number of iterations

%it uses to solve this equation.

function it = scriptsolve(z)

p=100; %maximum number of iterations allowed

Nit = 0;

x = 1;

error = 1000;

while error > 1.0E-8

if Nit < p

Nit = Nit + 1;

xold = x;

x = x + z(1)*(sin(x) + x^2 -2);

x = z(2)*x + (1-z(2))*xold;

error = abs(x-xold);

else

Nit = p;

break

end

end

%After using succesive substitution , the following part is meant to

%verify that this method actually found a solution to sin(x) + x^2 = 2.

if isnan(x)==1 || abs((sin(x)+x^2-2)^2) > 1.0E-8

it = NaN(1);

else

it = Nit;

end

end

42

A.6 Plotje

%This script is created to make a plot of the behaviour of a function at

%the interval where both x and y go from -a to a.

clear all

%Begin by defining the variables and vectors that are needed.

a=5;

X=linspace(-a,a,400*a+1);

Y=linspace(-a,a,400*a+1);

no=0;

%Creating the functionvalue matrix for every value of X and Y

for i = 1: length(X)

for j = 1: length(Y)

it(j,i) = scriptsolve ([X(i),Y(j)]);

no=no+1;

if mod(no ,1000) ==0

%disp(no)

end

end

end

%plotting the functionvalue matrix against the vectors X and Y using the a

%surf plot.

surf(X,Y,it,'EdgeColor ','none','LineStyle ','none','FaceLighting ','phong ');

set(gca ,'fontsize ' ,24)

xlabel('A','FontSize ',32,'FontWeight ','bold')

ylabel('B','FontSize ',32,'FontWeight ','bold')

zlabel('Iterations ','FontSize ',32,'FontWeight ','bold')

43

A.7 Scriptsolve2

%Alteration of the scriptsolve function , b = -1/q*a

%In this script , a is set at 1, there have been versions of this script

%where a was variable , for testing purposes , it turned out that within

%normal values of a, nothing changes.

function it = scriptsolve2(Q)

p=100; %maximum number of iterations allowed

Nit = 0;

x = 1;

a=1;

b=-1/(Q*a);

error = 1000;

while error > 1.0E-8

if Nit < p

Nit = Nit + 1;

xold = x;

x = x + a*(sin(x) + x^2 -2);

x = b*x + (1-b)*xold;

error = abs(x-xold);

else

Nit = p;

break

end

end

%After using succesive substitution , the following part is meant to

%verify that this method actually found a solution to sin(x) + x^2 = 2.

if isnan(x)==1 || abs((sin(x)+x^2-2)^2) > 1.0E-8

it = NaN(1);

else

it = Nit;

end

end

44

A.8 Plotje2

%This script was made to plot the behaviour of the scriptsolve function

%when the two variables are dependent on eachother such that b = 1/(q*a)

Q=linspace (2 ,4 ,1000);

z=zeros(length(Q));

for i=1: length(Q)

z(i)=scriptsolve2(Q(i));

end

%Plotting the results

plot(Q,z);

set(gca ,'fontsize ' ,24)

xlabel('q','FontSize ',32,'FontWeight ','bold')

ylabel('Iterations ','FontSize ',32,'FontWeight ','bold')

45

A.9 Fixed Point Systems

function k = fixed_point_systems(z1)

N = 1000;

z=[1; 1; 1];

z(1) = z1(1);

z(2) = z1(2);

x0 = [2,2,2];

if z(1) ==0 || z(2) ==0

k=NaN(1);

else

%Fixed_Point_Systems(x0 , N) approximates the solution of a system of non -

%linear equations F(x) = 0 rewritten in the form x = G(x) starting with an

%initial approximation x0. The iterative technique is implemented N times

%The user has to enter the function G(x)at the bottom

%The output consists of a table of iterates whereby each column displays

%the iterates of x1, x2, ..., xn until the maximum number of iterations is

%reached or the stopping criterion is satisfied.

%Author: Alain G. Kapitho

%Date : Jan. 2006

%The script was slightly altered by introducing the vector z, dependent on

%two variables. It was made into a function , with these variables as input

%and the number of iterations as output

n = size(x0 ,1);

if n == 1

x0 = x0 ';

end

i = 1;

x(:,1) = x0;

46

tol = 1e-05;

while i <= N

x(:,i+1) = z.*G(x(:,i));

if abs(x(:,i+1)-x(:,i)) < tol %stopping criterion

k =i;

x = x';

return

end

i = i+1;

end

if abs(x(:,i)-x(:,i-1)) > tol

x = x';

k=NaN(1);

else if i > N

x = x';

k = N;

end

end

end

%this part has to be changed accordingly with the specific function G(x)

function y = G(x)

y = [(1/3)*cos(x(2)*x(3))+1/6;

(1/9)*sqrt(x(1)^2 + sin(x(3)) + 1.06) - 0.1;

(-1/20)*exp(-x(1)*x(2)) - (10*pi - 3) /60];

47

A.10 Plotje3

%This script was made to make a plot of the behaviour of the

%fixed_point_systems script. it does so by plotting The number of

%iterations over X and Y.

clear all

a=5;

X=linspace(-a,a,400*a+1);

Y=linspace(-a,a,400*a+1);

no=0;

for i = 1: length(X)

for j = 1: length(Y)

it(j,i) = fixed_point_systems ([X(i),Y(j)]);

no=no+1;

if mod(no ,1000) ==0

disp(no)

end

end

end

surf(X,Y,it,'EdgeColor ','none','LineStyle ','none','FaceLighting ','phong ');

set(gca ,'fontsize ' ,24)

xlabel('A','FontSize ',32,'FontWeight ','bold')

ylabel('B','FontSize ',32,'FontWeight ','bold')

zlabel('Iterations ','FontSize ',32,'FontWeight ','bold')

48

A.11 Minimum

function minimum = minimum(fun1 ,x0 ,p,int ,e)

%This script was made to run the powell method of optimization on a grid.

%We start out by defining the grid:

m = min(x0(1),x0(2)) - p;

M = max(x0(1),x0(2)) + p;

X=m:int:M;

Y=m:int:M;

%Starting value for our found minimum , infinity:

min2=[x0(1),x0(2),Inf(1)];

for i = 1: length(X)

for j = 1: length(Y)

value = fun1([X(i),Y(j)]);

%Setting the value to Inf if functionevaluation returns NaN.

if isnan(value)==1

N = Inf(1);

else

%Trying to use powell 's method only for decent (working)

%initial guesses.

try

min1 = powell(fun1 ,[X(i),Y(j)],0,e);

catch

warning('Problem using powell. Terminating function.');

min1 = [X(i),Y(j)];

end

N = fun1(min1);

end

%Setting a new minimum when it is smaller than the currently known

%one

if N <= min2 (3)

min2 = [min1 (1),min1 (2),N];

end

49

end

end

minimum=min2;

A.12 Minimum2

function minimum = minimum2(fun1 ,x0,p,int)

%This script was made to run fminsearch on a grid.

%We start out by defining the grid:

m = min(x0(1),x0(2)) - p;

M = max(x0(1),x0(2)) + p;

X=m:int:M;

Y=m:int:M;

%Starting value for our found minimum , infinity:

min2=[x0(1),x0(2),Inf(1)];

for i = 1: length(X)

for j = 1: length(X)

value = fun1([X(i),Y(j)]);

%Setting the value to Inf if functionevaluation returns NaN.

if isnan(value)==1

N = Inf(1);

else

%Trying to use fminsearch only for decent (working) initial

%guesses.

try

min1 = fminsearch(fun1 ,[X(i),Y(j)]);

catch

warning('Problem using function. Terminating function.');

min1 = [X(i),Y(j)];

end

N = fun1(min1);

end

50

%Setting a new minimum when it is smaller than the currently known

%one

if N < min2 (3)

min2 = [min1 (1),min1 (2),N];

end

end

end

minimum=min2;

A.13 Minimum3

function minimal = minimum3(fun1 ,x0,p,int ,m)

%This function makes use of minimum.m and minimum2.m to make the best

%approximation of a minimum within the grid size.

min1 = minimum(fun1 ,x0,p,int ,m)

min2 = minimum2(fun1 ,x0,p,int)

if min2 (3)<min1 (3)

minimal = min2;

else

minimal = min1;

end

51

A.14 Powell

function [xo,Ot,nS]= powell(S,x0 ,ip,method ,Lb,Ub,problem ,tol ,mxit)

% Unconstrained optimization using Powell.

%

% [xo,Ot,nS]= powell(S,x0,ip,method ,Lb,Ub ,problem ,tol ,mxit)

%

% S: objective function

% x0: initial point

% ip: (0): no plot (default), (>0) plot figure ip with pause , (<0) plot

figure ip

% method: (0) Coggins (default), (1): Golden Section

% Lb, Ub: lower and upper bound vectors to plot (default = x0*(1+/ -2))

% problem: (-1): minimum (default), (1): maximum

% tol: tolerance (default = 1e-4)

% mxit: maximum number of stages (default = 50*(1+4*~(ip >0)))

% xo: optimal point

% Ot: optimal value of S

% nS: number of objective function evaluations

% Copyright (c) 2001 by LASIM -DEQUI -UFRGS

% $Revision: 1.0 $ $Date: 2001/07/07 21:10:15 $

% Argimiro R. Secchi (arge@enq.ufrgs.br)

if nargin < 2,

error('powell requires two input arguments ');

end

if nargin < 3 | isempty(ip),

ip=0;

end

if nargin < 4 | isempty(method),

method =0;

end

52

if nargin < 5 | isempty(Lb),

Lb=-x0 -~x0;

end

if nargin < 6 | isempty(Ub),

Ub=2*x0+~x0;

end

if nargin < 7 | isempty(problem),

problem =-1;

end

if nargin < 8 | isempty(tol),

tol=1e-4;

end

if nargin < 9 | isempty(mxit),

mxit =1000*(1+4*~(ip >0));

end

x0=x0(:);

y0=feval(S,x0)*problem;

n=size(x0 ,1);

D=eye(n);

ips=ip;

if ip & n == 2,

figure(abs(ip));

[X1 ,X2]= meshgrid(Lb(1):(Ub(1)-Lb(1))/20:Ub(1),Lb(2):(Ub(2)-Lb(2))/20:Ub(2)

);

[n1 ,n2]=size(X1);

f=zeros(n1,n2);

for i=1:n1,

for j=1:n2,

f(i,j)=feval(S,[X1(i,j);X2(i,j)]);

end

end

53

mxf=max(max(f));

mnf=min(min(f));

df=mnf+(mxf -mnf)*(2.^(([0:10]/10) .^2) -1);

[v,h]= contour(X1 ,X2,f,df); hold on;

% clabel(v,h);

h1=plot(x0(1),x0(2),'ro');

legend(h1,'start point ');

if ip > 0,

ips=ip+1;

disp('Pause: hit any key to continue ...'); pause;

else

ips=ip -1;

end

end

xo=x0;

yo=y0;

it=0;

nS=1;

while it < mxit ,

% exploration

delta =0;

for i=1:n,

if method , % to see the linesearch plot , remove the two 0*

below

[stepsize ,x,Ot ,nS1]=aurea(S,xo,D(:,i) ,0*ips ,problem ,tol ,mxit);

Ot=Ot*problem;

else

[stepsize ,x,Ot ,nS1]= coggins(S,xo,D(:,i) ,0*ips ,problem ,tol ,mxit);

Ot=Ot*problem;

end

nS=nS+nS1;

di=Ot-yo;

54

if di > delta ,

delta=di;

k=i;

end

if ip & n == 2,

plot([x(1) xo(1)],[x(2) xo(2)],'r');

if ip > 0,

disp('Pause: hit any key to continue ...'); pause;

end

end

yo=Ot;

xo=x;

end

% progression

it=it+1;

xo=2*x-x0;

Ot=feval(S,xo)*problem;

nS=nS+1;

di=y0-Ot;

j=0;

if di >= 0 | 2*(y0 -2*yo+Ot)*((y0 -yo -delta)/di)^2 >= delta ,

if Ot >= yo ,

yo=Ot;

else

xo=x;

j=1;

end

else

if k < n,

D(:,k:n-1)=D(:,k+1:n);

end

D(:,n)=(x-x0)/norm(x-x0);

55

if method , % to see the linesearch plot , remove the two 0*

below

[stepsize ,xo ,yo ,nS1]=aurea(S,x,D(:,n) ,0*ips ,problem ,tol ,mxit);

yo=yo*problem;

else

[stepsize ,xo ,yo ,nS1]= coggins(S,x,D(:,n) ,0*ips ,problem ,tol ,mxit);

yo=yo*problem;

end

nS=nS+nS1;

end

if ip & n == 2 & ~j,

plot([x(1) xo(1)],[x(2) xo(2)],'r');

if ip > 0,

disp('Pause: hit any key to continue ...'); pause;

end

end

if norm(xo -x0) < tol *(0.1+ norm(x0)) & abs(yo -y0) < tol *(0.1+ abs(y0)),

break;

end

y0=yo;

x0=xo;

end

Ot=yo*problem;

if it == mxit ,

disp('Warning Powell: reached maximum number of stages!');

elseif ip & n == 2,

h2=plot(xo(1),xo(2),'r*');

legend ([h1,h2],'start point ','optimum ');

end

56

A.15 Bracket

function [x1,x2,nS]= bracket(S,x0 ,d,problem ,stepsize)

% Bracket the minimum (or maximum) of the objective function

% in the search direction.

%

% [x1,x2,nS]= bracket(S,x0,d,problem ,stepsize)

%

% S: objective function

% x0: initial point

% d: search direction vector

% problem: (-1): minimum (default), (1): maximum

% stepsize: initial stepsize (default = 0.01* norm(d))

% [x1,x2]: unsorted lower and upper limits

% nS: number of objective function evaluations

% Copyright (c) 2001 by LASIM -DEQUI -UFRGS

% $Revision: 1.0 $ $Date: 2001/07/04 21:45:10 $

% Argimiro R. Secchi (arge@enq.ufrgs.br)

if nargin < 3,

error('bracket requires three input arguments ');

end

if nargin < 4,

problem =-1;

end

if nargin < 5,

stepsize =0.5* norm(d);

end

d=d(:);

x0=x0(:);

j=0; nS=1;

57

y0=feval(S,x0)*problem;

while j < 2,

x=x0+stepsize*d;

y=feval(S,x)*problem;

nS=nS+1;

if y0 >= y,

stepsize=-stepsize;

j=j+1;

else

while y0 < y,

stepsize =2* stepsize;

y0=y;

x=x+stepsize*d;

y=feval(S,x)*problem;

nS=nS+1;

end

j=1;

break;

end

end

x2=x;

x1=x0+stepsize *(j-1)*d;

58

A.16 Coggins

function [stepsize ,xo ,Ot,nS]= coggins(S,x0 ,d,ip,problem ,tol ,mxit ,stp)

% Performs line search procedure for unconstrained optimization

% using quadratic interpolation.

%

% [stepsize ,xo,Ot,nS]= coggins(S,x0,d,ip,problem ,tol ,mxit)

%

% S: objective function

% x0: initial point

% d: search direction vector

% ip: (0): no plot (default), (>0) plot figure ip with pause , (<0) plot

figure ip

% problem: (-1): minimum (default), (1): maximum

% tol: tolerance (default = 1e-4)

% mxit: maximum number of iterations (default = 50*(1+4*~(ip >0)))

% stp: initial stepsize (default = 0.01* sqrt(d'*d))

% stepsize: optimal stepsize

% xo: optimal point in the search direction

% Ot: optimal value of S in the search direction

% nS: number of objective function evaluations

% Copyright (c) 2001 by LASIM -DEQUI -UFRGS

% $Revision: 1.0 $ $Date: 2001/07/04 21:20:15 $

% Argimiro R. Secchi (arge@enq.ufrgs.br)

if nargin < 3,

error('coggins requires three input arguments ');

end

if nargin < 4 | isempty(ip),

ip=0;

end

if nargin < 5 | isempty(problem),

problem =-1;

end

59

if nargin < 6 | isempty(tol),

tol=1e-4;

end

if nargin < 7 | isempty(mxit),

mxit =100*50*(1+4*~(ip >0));

end

d=d(:);

nd=d'*d;

if nargin < 8 | isempty(stp),

stepsize =0.5* sqrt(nd);

else

stepsize=abs(stp);

end

x0=x0(:);

[x1 ,x2,nS]= bracket(S,x0 ,d,problem ,stepsize);

z(1)=d'*(x1 -x0)/nd;

y(1)=feval(S,x1)*problem;

z(3)=d'*(x2 -x0)/nd;

y(3)=feval(S,x2)*problem;

z(2) =0.5*(z(3)+z(1));

x=x0+z(2)*d;

y(2)=feval(S,x)*problem;

nS=nS+3;

if ip,

figure(abs(ip)); clf;

B=sort([z(1),z(3)]);

b1 =0.05*(abs(B(1))+~B(1));

b2 =0.05*(abs(B(2))+~B(2));

X1=(B(1)-b1):(B(2)-B(1)+b1+b2)/20:(B(2)+b2);

n1=size(X1 ,2);

for i=1:n1,

f(i)=feval(S,x0+X1(i)*d);

end

60

plot(X1,f,'b',X1(1),f(1),'g'); axis(axis); hold on;

legend('S(x0+\ alpha d)','P_2(x0+\ alpha d)');

xlabel('\alpha ');

plot([B(1),B(1)],[-1/eps 1/eps],'k');

plot([B(2),B(2)],[-1/eps 1/eps],'k');

plot(z,y*problem ,'ro');

if ip > 0,

disp('Pause: hit any key to continue ...'); pause;

end

end

it=0;

while it < mxit ,

a1=z(2)-z(3); a2=z(3)-z(1); a3=z(1)-z(2);

if y(1)==y(2) & y(2)==y(3),

zo=z(2);

x=x0+zo*d;

ym=y(2);

else

zo=.5*(a1*(z(2)+z(3))*y(1)+a2*(z(3)+z(1))*y(2)+a3*(z(1)+z(2))*y(3))/ ...

(a1*y(1)+a2*y(2)+a3*y(3));

x=x0+zo*d;

ym=feval(S,x)*problem;

nS=nS+1;

end

if ip,

P2=-((X1-z(2)).*(X1-z(3))*y(1)/(a3*a2)+(X1-z(1)).*(X1 -z(3))*y(2)/(a3*a1)

+ ...

(X1 -z(1)).*(X1 -z(2))*y(3)/(a2*a1))*problem;

plot(X1,P2,'g');

if ip > 0,

disp('Pause: hit any key to continue ...'); pause;

end

plot(zo,ym*problem ,'ro');

61

end

for j=1:3,

if abs(z(j)-zo) < tol *(0.1+ abs(zo)),

stepsize=zo;

xo=x;

Ot=ym*problem;

if ip,

plot(stepsize ,Ot ,'r*');

end

return;

end

end

if (z(3)-zo)*(zo-z(2)) > 0,

j=1;

else

j=3;

end

if ym > y(2),

z(j)=z(2);

y(j)=y(2);

j=2;

end

y(4-j)=ym;

z(4-j)=zo;

it=it+1;

end

if it == mxit

disp('Warning Coggins: reached maximum number of iterations!');

end

stepsize=zo;

xo=x;

Ot=ym*problem;

62

A.17 Aurea

function [stepsize ,xo ,Ot,nS]=aurea(S,x0 ,d,ip,problem ,tol ,mxit ,stp)

% Performs line search procedure for unconstrained optimization

% using golden section.

%

% [stepsize ,xo,Ot,nS]= aurea(S,x0 ,d,ip,problem ,tol ,mxit ,stp)

%

% S: objective function

% x0: initial point

% d: search direction vector

% ip: (0): no plot (default), (>0) plot figure ip with pause , (<0) plot

figure ip

% problem: (-1): minimum (default), (1): maximum

% tol: tolerance (default = 1e-4)

% mxit: maximum number of iterations (default = 50*(1+4*~(ip >0)))

% stp: initial stepsize (default = 0.01* sqrt(d'*d))

% stepsize: optimal stepsize

% xo: optimal point in the search direction

% Ot: optimal value of S in the search direction

% nS: number of objective function evaluations

% Copyright (c) 2001 by LASIM -DEQUI -UFRGS

% $Revision: 1.0 $ $Date: 2001/07/04 22:30:45 $

% Argimiro R. Secchi (arge@enq.ufrgs.br)

if nargin < 3,

error('aurea requires three input arguments ');

end

if nargin < 4 | isempty(ip),

ip=0;

end

if nargin < 5 | isempty(problem),

63

problem =-1;

end

if nargin < 6 | isempty(tol),

tol=1e-4;

end

if nargin < 7 | isempty(mxit),

mxit =50*(1+4*~(ip >0));

end

d=d(:);

nd=d'*d;

if nargin < 8 | isempty(stp),

stepsize =0.01* sqrt(nd);

else

stepsize=abs(stp);

end

x0=x0(:);

[x1 ,x2,nS]= bracket(S,x0 ,d,problem ,stepsize);

z(1)=d'*(x1 -x0)/nd;

z(2)=d'*(x2 -x0)/nd;

fi =.618033985;

k=0;

secao=fi*(z(2)-z(1));

p(1)=z(1)+secao;

x=x0+p(1)*d;

y(1)=feval(S,x)*problem;

p(2)=z(2)-secao;

x=x0+p(2)*d;

y(2)=feval(S,x)*problem;

nS=nS+2;

64

if ip,

figure(abs(ip)); clf;

c=['m','g'];

B=sort([z(1),z(2)]);

b1 =0.05*(abs(B(1))+~B(1));

b2 =0.05*(abs(B(2))+~B(2));

X1=(B(1)-b1):(B(2)-B(1)+b1+b2)/20:(B(2)+b2);

n1=size(X1 ,2);

for i=1:n1,

f(i)=feval(S,x0+X1(i)*d);

end

plot(X1,f,'b'); axis(axis); hold on;

legend('S(x0+\ alpha d)');

xlabel('\alpha ');

plot([B(1),B(1)],[-1/eps 1/eps],'k');

plot([B(2),B(2)],[-1/eps 1/eps],'k');

plot(p,y*problem ,'ro');

if ip > 0,

disp('Pause: hit any key to continue ...'); pause;

end

end

it=0;

while abs(secao/fi) > tol & it < mxit ,

if y(2) < y(1),

j=2; k=1;

else

j=1; k=2;

end

z(k)=p(j);

p(j)=p(k);

65

y(j)=y(k);

secao=fi*(z(2)-z(1));

p(k)=z(k)+(j-k)*secao;

x=x0+p(k)*d;

y(k)=feval(S,x)*problem;

nS=nS+1;

if ip,

plot([z(k),z(k)],[-1/eps 1/eps],c(k));

plot(p(k),y(k)*problem ,'ro');

if ip > 0,

disp('Pause: hit any key to continue ...'); pause;

end

end

it=it+1;

end

stepsize=p(k);

xo=x;

Ot=y(k)*problem;

if it == mxit

disp('Warning Aurea: reached maximum number of iterations!');

elseif ip,

plot(stepsize ,Ot ,'r*');

end

66

