
UNIVERSITY OF GRONINGEN

Grounded knowledge acquisition

by argumentation
An implementation for fraud detection

by

Pieter de Rooij (s2195569)

A thesis submitted in partial fulfilment for the

degree of Master of Science in Artificial Intelligence

in the

Faculty of Science and Engineering

University of Groningen

August 23, 2017

http://www.rug.nl
P.de.Rooij@student.rug.nl
http://www.rug.nl/fse/
http://www.rug.nl

Declaration of Authorship

I, Pieter de Rooij, declare that this thesis titled, ‘Grounded knowledge acquisition by

argumentation’ and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

iii

23-08-2017

“Plans fail when there is no consultation, but there is accomplishment through many

advisers.”

Proverbs 15:22, New World Translation

UNIVERSITY OF GRONINGEN

Abstract

Faculty of Science and Engineering

University of Groningen

Master of Science in Artificial Intelligence

by Pieter de Rooij (s2195569)

Machine learning strives to make a system capable of autonomously achieving a level

of ‘understanding’ of provided information. Classification is one area in which machine

learning is involved. The basic problem of classification is how a novel observation

ought to be labelled. Despite machine learning algorithms being capable of providing

such a label, based on previous data, typical algorithms do not provide explanations

for a classification. Neither does an algorithm tell how ‘significant’ a classification is:

Should a decision maker consider this classification and act on it?

The field of argumentation can be used to yield understandable reasons for a classi-

fication. PADUA is one approach that shows how rule mining can be combined with

dialogues to reason about novel observations (Wardeh et al., 2009). Bench-Capon (2003)

proposed value-based argumentation frameworks that accommodate the notion that cer-

tain arguments are stronger than others.

The AGKA (Argumentative Grounded Knowledge Acquisition) architecture presented

in this paper uses a decision tree, a machine learning algorithm, to learn from data. The

decision tree is integrated into argumentative dialogues, similar to PADUA, to provide

reasons for a classification. To rank the provided reasons by strength, expected utility

is incorporated.

The architecture is evaluated in a fraud detection scenario. Results indicate that its

performance is comparable to other machine learning algorithms. AGKA is also effective

in finding back the rules present in the data, but only if there is a clear binary distinction

between classes. This research provides insights into the connections between machine

learning (finding patterns in data), argumentation (providing reasons for and against

hypotheses) and decision theory (finding the best course of action in a situation).

http://www.rug.nl
http://www.rug.nl/fse/
http://www.rug.nl
P.de.Rooij@student.rug.nl

Acknowledgements

Internal supervisor: Prof. Dr. Bart Verheij

(Institute of Artificial Intelligence and Cognitive Engineering (ALICE), University of

Groningen, the Netherlands)

Second assessor: Prof. Dr. Rineke Verbrugge

(Institute of Artificial Intelligence and Cognitive Engineering (ALICE), University of

Groningen, the Netherlands)

vi

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vi

List of Figures xi

List of Tables xiii

Abbreviations xv

1 Problem description 1

1.1 Example fraud scenario . 1

1.2 Research goal . 5

2 Theoretical background 7

2.1 Machine Learning . 7

2.1.1 Rule mining . 7

2.1.2 Classification . 8

2.1.2.1 Decision trees . 9

2.2 Argumentation . 10

2.2.1 Defeasible reasoning . 10

2.3 Expected utility theory . 11

2.4 Hybrid approaches . 13

2.4.1 PADUA . 14

2.4.2 PISA . 16

2.4.3 Value-based argumentation . 17

2.5 Goals revisited . 17

3 The AGKA architecture 19

3.1 Data structures in AGKA . 20

3.1.1 Construct . 20

3.1.2 Association rules . 20

3.1.3 Instances . 21

3.2 Data generation in AGKA . 22

vii

Contents viii

3.2.1 Transactions . 22

3.2.2 Data generation rules . 23

3.2.3 Generating a stream . 23

3.2.3.1 Example transaction generation 25

3.3 AGKA components . 27

3.3.1 Database . 27

3.3.2 Machine learning component . 27

3.3.2.1 Decision tree . 28

3.3.2.2 Rule extraction . 28

3.3.3 Dialogue component . 30

3.3.4 Error component . 32

3.3.5 Knowledge rules . 33

3.3.5.1 Rule utility . 33

3.3.5.2 Calculation example . 36

3.4 AGKA process . 37

4 Illustrative cases 39

4.1 Binary decision . 39

4.2 Continuous values . 42

4.3 Multiple (binary) attributes . 46

4.4 Rules with utility . 48

5 Experimental setup 51

5.1 Methods of comparison . 51

5.1.1 Integration into AGKA . 52

5.2 Measures of performance . 52

5.2.1 Accuracy . 53

5.2.2 Costs incurred . 53

5.2.3 Inferred rules . 54

5.3 Simulated data streams . 54

5.3.1 Test streams . 54

5.3.2 Shared settings . 55

5.3.3 Binary decision . 55

5.3.4 Combination of binary attributes 56

5.3.5 Continuous attribute . 56

5.3.6 Continuous attribute with overlap 56

5.3.7 Use of utility . 58

5.3.8 Repetitive streams . 58

5.4 Benefits data . 58

6 Results 61

6.1 Simulated data streams . 61

6.1.1 Binary decision . 62

6.1.2 Combination of binary attributes 62

6.1.3 Continuous attribute . 63

6.1.4 Continuous attribute with overlap 64

6.1.5 Use of utility . 65

Contents ix

6.1.6 Extracted rules . 66

6.2 Benefits data . 72

7 Discussion 75

7.1 Analysis . 75

7.1.1 Classification accuracy of AGKA 75

7.1.2 Cost efficiency of AGKA . 76

7.1.3 Extracted rules . 77

7.2 Implications . 79

7.2.1 Why use AGKA? . 79

7.2.2 Proper rationales . 80

7.2.3 Over- or under-fitting? . 80

7.2.4 Skewedness . 81

7.3 Improvements . 81

7.3.1 Optimisation . 81

7.3.2 Automatic blocking . 82

7.3.3 Concept drift . 82

7.4 Relevance . 83

7.4.1 Dialogues, decision trees, utilities? 83

7.4.2 Rule- or case-based reasoning? . 84

7.4.3 Domains of application . 85

7.4.3.1 Crime prevention . 85

7.4.3.2 Prioritising emergency services 85

8 Conclusion 87

Bibliography 89

List of Figures

1.1 Combining machine learning, argumentation and utility theory. 5

3.1 A data set representing the non-linearly separable XOR problem. 29

3.2 A potential model after fitting a decision tree to the data depicted in Fig-
ure 3.1. Every node of the tree displays the attribute and value for split,
the calculated Gini impurity as well as the number of samples remaining.
Leafs also display membership of the remaining samples to respective
classes. A knowledge rule is depicted which can be extracted by following
the left paths. 29

3.3 A visual chart of the dialogue process. 30

3.4 An example data set to calculate the utilities of association rules. 36

3.5 A visual chart of how all AGKA components are combined to provide
classifications. *“Euro Coin Transparent Background” by Eric is licensed
under CC BY 2.0 . 37

4.1 A set where legitimate and illegitimate transactions can be discerned
based on the binary attribute foreign. The drawn decision boundary
shows where the two classes are separated. 39

4.2 The first decision boundary found for the continuously valued Dif. avg. 43

4.3 The second decision boundary found after making an error based on the
first boundary. 44

4.4 The third decision boundary found after the system made another error. . 45

4.5 Example to show how multiple attributes are handled. The attributes
known and night are plotted against foreign. Note that the scattering of
transactions with the same combination of values is merely to aid visibility. 46

4.6 Data stream illustrating the effect of utility. Bigger fraud transactions
contain a higher value of the attribute amount. The scattering is merely
for the sake of visibility. 49

5.1 Distributions of values for the post-balance field in the continuous at-
tribute stream, based on class. Notice that a ‘gap’ of values exists between
both distributions, allowing the distributions to be perfectly separated. . . 57

5.2 Distributions of values for the post-balance field in the continuous at-
tribute with overlap stream, based on class. 57

xi

http://www.pngmart.com/image/29863
http://www.pngmart.com/image/author/eric
https://creativecommons.org/licenses/by/2.0/

List of Tables

2.1 Acts, states and corresponding outcomes in the sunglasses example. Since
certain outcomes are preferred over others, their utility is higher. 12

2.2 The sunglasses example continued with added probabilities and utilities. . 13

3.1 An example of an instance with five variables. 21

3.2 An example of a transaction with some fields specified. 22

3.3 Distributions and how their respective ranges may be defined in the con-
sequence of a data generation rule. 23

3.4 Ranges a value may take per variable type, based on the range parameters
defined in the consequence of a data generation rule. 24

3.5 ‘Alternative values’ per variable type defined in the consequence of a data
generation rule. 25

3.6 Possible legitimate transaction after filling in the default fields. 25

3.7 A set of data generation rules as may be defined for a stream. 25

3.8 Possible transaction after applying the data generation rules in the general
category. 26

3.9 Possible finalised legitimate transaction generated according to the stream
defined. It bears resemblance with the transaction in Table 3.2, except
that this transaction has less fields. 26

3.10 Consequences for applying a rule or not while the classification is either
correct or not. 34

3.11 Incurred costs for the outcomes of applying a rule classifying regular cases
or not. 35

3.12 Incurred costs for the outcomes of applying a rule discerning fraudulent
cases or not. 35

5.1 Confusion matrix to show the performance of an algorithm. 53

5.2 Data generation rules from the general category that are shared among
all test streams. 55

5.3 Data generation rules per category for the binary decision stream. 56

5.4 Data generation rules defined for the combination of binary attributes
stream. 56

5.5 Data generation rules per category for the continuous attribute stream.
Illegitimate transactions can be singled out based on a cut-off (-10000) in
a continuous attribute (Post-balance). 56

5.6 Data generation rules per category for the continuous attribute with over-
lap stream. 57

5.7 Data generation rules per category for the utility stream. 58

xiii

List of Tables xiv

5.8 The 11 attributes found in every observation of the housing benefits data
set. The range of (numerical) values every attribute may take are dis-
played, including their respective meaning. 59

6.1 Accuracy of all classifiers on all test streams, rounded down to two deci-
mals. The highest accuracy on every stream are displayed in bold. 61

6.2 Confusion matrices for all classifiers on the binary decision data stream. . 62

6.3 Incurred costs for the binary decision data stream. 62

6.4 Confusion matrices for all classifiers on the combination of binary at-
tributes data stream. 63

6.5 Incurred costs for the combination of binary attributes data stream. . . . 63

6.6 Confusion matrices for all classifiers on the continuous attribute data
stream. 64

6.7 Incurred costs for the continuous attribute data stream. 64

6.8 Confusion matrices for all classifiers on the continuous attribute with
overlap data stream . 65

6.9 Incurred costs for the continuous attribute with overlap data stream. . . . 65

6.10 Confusion matrices for all classifiers on the utility data stream. 66

6.11 Incurred costs for the utility data stream. 66

6.12 Knowledge rules inferred for the binary decision data stream. 67

6.13 Knowledge rules inferred for the combination of binary attributes data
stream. 68

6.14 Knowledge rules inferred for the continuous attribute data stream. 69

6.15 Knowledge rules inferred for the continuous attribute with overlap data
stream. 70

6.16 Knowledge rules inferred for the utility data stream. 71

6.17 Accuracy of every classifier on the benefits data set. The highest accuracy
is emphasised. The SVM classifier is excluded since its excessive run time
does not allow it to finish classifying the set timely. 72

6.18 Confusion matrices for all classifiers, except SVM, on the benefits data set. 72

6.19 Knowledge rules inferred from the benefits data set. 73

6.19 Knowledge rules inferred from the benefits data set. 74

7.1 Costs of outcomes for an illegitimate rule, including the block action. . . . 82

Abbreviations

AGKA Argumentative Grounded Knowledge Acquisition

AR Association Rule

PADUA Protocol for Argumentative Dialogue Using Association Rules

PISA Pooling Information from Several Agents

LHS Left Hand Side

RHS Right Hand Side

Fields

ML Machine Learning

EU Expected Utility

xv

Chapter 1

Problem description

The impact of electronic fraud is estimated to be several hundred millions for the United

Kingdom and up to tens of billions worldwide (Anderson et al., 2013). The greatest

contributors to these estimates are indirect costs resulting from loss of confidence. In

order to diminish costs of illegitimate activity, tracking and punishing electronic criminal

behaviour is required.

How can fraudulent transactions be discovered and prevented? This thesis is aimed

at providing an automated system for finding typical fraudulent transactions and warn

about those.

In this chapter first an illustrative scenario is sketched (Section 1.1) to familiarise the

reader with detecting fraudulent electronic transactions and pinpoint the problems in-

volved. Section 1.2 summarises how we believe the problems can be tackled, which is

also the aim of this research.

1.1 Example fraud scenario

To visualise what exactly is meant by a ‘fraudulent transaction’, imagine the following

situation. Assume Mr. Sir is called by a (credible) bank representative, who we will call

Mr. Banks. Mr. Sir receives the following message:

Mr. Sir, my name is Mr. Banks from your trusted banking company. We

have detected some suspicious activity on your account. Is it true that you

just transferred some money?

1

2 Chapter 1 Problem description

Before continuing the conversation, consider what procedures took place before this

statement. First of all, there is a specific transaction that was flagged as suspicious.

In order to flag a transaction as suspicious, there should be some ground for believing

the transaction to be different from all the ‘normal’ ones. In order to recognise what

is ‘normal’ and what is not, access is needed to historical data or knowledge of past

transactions. Moreover, since many millions of transactions are fulfilled every day, it

would be impractical to have every single one checked by a human. Hence, an automated

system is required for verifying new transactions. Only after all these steps are completed

a transaction may appear suspicious, prompting further investigation, possibly by a

phone call as described before.

Naturally Mr. Sir is piqued by the bank representative’s question, so it would be logical

if he answered:

Not sure, what are you talking about Mr. Banks?

Obviously, transferring an amount of money is a common practice for most people, so

Mr. Banks’ question if Mr. Sir “just transferred some money” is likely not specific enough

for Mr. Sir to readily answer to. There are two ways in which the bank representative

can reply:

1. Well Mr. Sir, we employ a highly sophisticated system that warned us of this

specific transaction with ID # 1234567890. I cannot tell you more than that.

2. It appears you fulfilled a local transfer of e1000,- a few hours ago. Do you happen

to be in Abuja, Nigeria?

Would statement 1 suffice and allow Mr. Sir to respond properly? Albeit concisely

referring to a unique transaction, Mr. Sir is likely to still not have a clue as to what

Mr. Banks is really referring to. Without further information, the conversation would

be pointless as neither of both parties becomes any wiser. Statement 2 is a lot more

appropriate, since it contains additional characteristics helping Mr. Sir to assess whether

or not he authorised the transaction.

Consider what is required to go from statement 1 to statement 2. Recall an automated

system is already in place for flagging suspicious transactions. Statement 1 requires

the system to report a handle (here ID) to any suspicious transactions. Notice that

Mr. Banks replied with ‘I cannot tell you more than that’. In the worst case, the

reply means only the handle is provided and Mr. Banks is incapable of accessing more

1.1 Example fraud scenario 3

information on that specific transaction. If that is true, even a system that is correct

every time would be impractical, because it is unknown why it is correct.

Suppose Mr. Banks is capable of accessing more information on the transaction based

on the handle. Even then, it would be hard to pinpoint relevant specifics: With thirty

or more variables for a transaction, should Mr. Banks mention ones as date and account

number of the sender? Or would the transferred amount and name of the recipient

be more insightful? Relevant variables depend on how much the variable contributed

toward the transaction being suspicious, as well as on how much it allows Mr. Sir to

relate to the transaction. Said otherwise, relevant specifics should have explanatory

value. Why statement 2 can be relevant only becomes apparent with background in-

formation: Suppose Mr. Sir seldom sends amounts greater than e100,- and resides in

Amsterdam, the Netherlands. Hence, it is likely he would remember a transaction of

e1000,-, especially since it is transferred in a country foreign to him.

Lastly, it is preferred that Mr. Banks himself can readily access relevant information

regarding a suspicious transaction. Rather than requiring a system’s expert to retrieve

specifics from a suspicious transaction, he ought to be able to access specifics by himself.

Moreover, filtering out the relevant specifics should preferably not necessitate calling in

a domain expert. Calling in experts would unnecessarily slow down the verification

process, so preferably relevant information is readily available.

In summary, a system should not only provide a handle to a transaction, like in state-

ment 1. It is preferred if it can (automatically) provide relevant information as to why

a transaction is suspicious or not, which can be translated to statement 2. As a matter

of fact, it is more likely Mr. Banks opens the conversation immediately with relevant

information:

Mr. Sir, my name is Mr. Banks from your trusted banking company. We

have detected some suspicious activity on your account. Do you happen to

have transferred e1000,- a few hours ago in Abuja, Nigeria?

Allowing Mr. Sir to immediately confirm or reject that the transaction was fulfilled with

his consent. In turn Mr. Banks can immediately act upon Mr. Sir’s answer. What if

instead Mr. Banks would open as follows:

Mr. Sir, my name is Mr. Banks from your trusted banking company. We

have detected some suspicious activity on your account. Do you happen to

have transferred e0,10 a few hours ago in Abuja, Nigeria?

4 Chapter 1 Problem description

Despite the description of the suspicious transaction being as specific as before, would

Mr. Sir really care about that amount? It probably costs more to have Mr. Banks call

Mr. Sir to verify the transaction than to consider the e0,10 as lost. The example falls

flat with regard to whether action should be undertaken, as Mr. Sir probably prefers

not losing any significant amount of money. Nevertheless, the point is that some cases

are more important than others. It might be more worthwhile to investigate suspicious

large transfers or to automatically reject small ones. Even though ordering suspicious

cases by importance is not appropriate in the setting of electronic transactions, it may

prove beneficial in other domains (explored further in the discussion, section 7).

Three problems should be apparent from the example:

Grounding in data Implementing an alert for potentially fraudulent electronic trans-

actions requires an automated system. Based on historical data, the system ought to

distinguish fraudulent transactions from non-fraudulent ones.

Explanation by reasons The system ought to report why a specific transaction is

suspicious (or not).

Ordering by values Not every transaction is equally important. Hence, there should

be a method of ordering transactions by importance.

These three themes have been studied in the research areas of machine learning, argu-

mentation and utility theory respectively.

1.2 Research goal 5

1.2 Research goal

The goal of this research is to solve the three problems described. A system is developed

capable of solving the problems in a practical setting. We believe each problem relates

to a specific research area: distinguishing fraudulent transactions can be done by ma-

chine learning, providing reasons for suspecting a transaction can be realised through

argumentation, while ordering importance can be facilitated by utility theory.

In effect, a system solving the three problems is founded on an amalgamation of these

three research fields. To successfully combine machine learning, argumentation and

utility theory, it is imperative to establish commonalities between them, as well as to

find out how one can strengthen the other.

Figure 1.1: Combining machine learning, argumentation and utility theory.

Chapter 2

Theoretical background

The background literature comprises three main fields: machine learning (Section 2.1),

argumentation (Section 2.2) and expected utility (Section 2.3). The last section mentions

several approaches exhibiting a certain combination of these three main fields (Section

2.4.

2.1 Machine Learning

Extensive literature on machine learning techniques and their applications can be found

in the literature, such as (Alpaydin, 2014) or (Michalski et al., 2013). This section

starts with a discussion of data mining (Section 2.1.1) and continues on the subject of

classification (Section 2.1.2).

2.1.1 Rule mining

Knowledge discovery in databases arose from a necessity of extracting useful information

from large databases, which were becoming commonly available (Fayyad et al., 1996).

The resulting techniques aimed at providing an understanding of patterns in the data,

as well as scalable performance.

An example of extracting rules from a large database is (Agrawal et al., 1993). Here a

large database of customer transactions is scrutinised to find rules that answer questions

such as: How can the sale of Diet Coke be boosted? What impact would a discontinued

sale of bagels have? Which combinations of products are likely to include some other

product? To find answers to these questions, (Agrawal et al., 1993) provide a formal

model for rule mining.

7

8 Chapter 2 Theoretical background

We follow the formal model as described in (Agrawal et al., 1993): T is a database of

all transactions t, where t is a binary vector. Every t[k] represents an item Ik in the

complete item set I. t[k] is true (or 1) if item Ik was bought, false (or 0) otherwise. It

is said that t satisfies an item set X if for all Ik ∈ X, t[k] = 1.

Furthermore, an association rule is considered an implication of the form X ⇒ Ij ,

where Ij is an item which is not present in X. An association rule with confidence

factor 0 ≤ c ≤ 1 is satisfied in a set of transactions T if and only if at least c% of the

transactions satisfying X also satisfy Ij . The notation X ⇒ Ij |c is specified as the rule

X ⇒ Ij has a confidence factor of c.

Rules of interest inferred from a transaction base T adhere to additional constraints,

which are of two different forms:

1. Syntactic constraints. Only a specific item (Ix) or an item set (X) is allowed to

occur in the antecedent or the consequent.

2. Support constraints. The support of an association rule is defined as the fraction of

transactions in T that satisfy the union of items in the antecedent and consequent

of that rule. Note that this definition is different from the confidence factor of a

rule.

With these definitions, rule mining can be decomposed into two sub-problems:

1. Find large item sets. Large item sets have a transaction support that is higher

than a specified threshold, called minsupport. All other sets are called small.

2. Within a large item set, generate all rules using the items in that set.

The authors state that the solution to the second sub-problem is straightforward after

having determined the large item sets. An algorithm is provided and elaborated on

that solves the first sub-problem. It is claimed that the algorithm exhibited excellent

performance on sales data obtained from a large retailing company.

2.1.2 Classification

A problem related to finding patterns in data is classification. What makes an observa-

tion a member of a certain class? Machine learning provides several techniques aimed at

tackling classification problems, such as decision trees (Safavian and Landgrebe, 1991).

2.1 Machine Learning 9

2.1.2.1 Decision trees

Decision trees are used in machine learning for classification. Decision trees can be

attractive for several reasons (Murthy, 1998):

• Circumvents the need of acquiring knowledge from a domain expert, because

knowledge can be acquired from pre-classified examples.

• Decision trees are non-parametric. This means they can model a wide range of

data distributions, since only a few assumptions are made about the distribution.

• Better use of available features and more computational efficiency through the use

of hierarchical decomposition.

• Tree classifiers can treat both uni- and multi-modal data the same way.

• Trees can be applied on both deterministic and incomplete problems with the same

ease.

• Trees are intuitively appealing, due to the classification being performed by a

sequence of simple, easy-to-understand tests.

To construct a decision tree from a given set of pre-classified training data, in general

the following steps are iterated until no more splits can be made (Murthy, 1998):

1. If all training data at the current node t belongs to class C, create a leaf node with

class C.

2. Otherwise, score all splits from the set of all possible splits S according to some

goodness measure.

3. Choose the best split s∗ as the test at the current node t.

4. Create a child node for every distinct outcome of s∗. The outcomes label the edges

between parent and child nodes. Using s∗, partition the training data for every

child node.

5. A child node is called pure if all training data in its partition belongs to the same

class (step 1). If it is impure, steps 2 - 4 are repeated.

An example of how a decision tree is constructed can be found in (Russell and Norvig,

2010, p. 697 - 707). A popular decision tree algorithm is ID3 or its successor C4.5

(Quinlan, 1993). A different decision tree algorithm is CART (Breiman et al., 1984),

which is similar to C4.5, but differs in that the output can be numerical.

10 Chapter 2 Theoretical background

2.2 Argumentation

Humans naturally engage in conversations. Depending on the purpose of a conversation,

one may resort to argumentation. When trying to convince someone else or explain a

matter, usually (sound) reasons are brought forward in an argument.

How arguments are structured and what types of reasoning are utilised are matters that

received ample scientific attention. The focus of this section is on defeasible reasoning.

2.2.1 Defeasible reasoning

An influential paper for argumentation is the one by (Pollock, 1987). In this paper,

Pollock emphasises that the philosophical notion of “defeasible reasoning” and the notion

of “non-monotonic reasoning” used in AI coincide.

Pollock starts off by stating that non-deductive (defeasible) reasoning is at least as

common as deductive reasoning. Standard classical logic is typically concerned with

deductive reasoning. From a given set of premises, like ‘Birds can fly’ and ‘Tweety is a

bird’, follow some conclusions, like ‘Tweety can fly’ in this example. This conclusion is

valid, irrespective of additional premises. Such a logic is called monotonic.

Nevertheless, it is natural to deem the conclusion invalid under certain circumstances.

An additional premise, like ‘Tweety cannot fly’, renders the conclusion invalid. This kind

of reasoning is called non-monotonic, because an additional premise no longer warrants

that the conclusion can be deduced. Non-monotonic reasoning has received interest in

Artificial Intelligence for the study of reasoning and argumentation. Reiter’s default

logic is one system of expressing non-monotonic reasoning (Reiter, 1980). An overview

of other systems is provided by (Gabbay et al., 1994).

Pollock emphasises that the concept of non-monotonic reasoning coincides with the

philosophical notion of defeasible reasoning. The aim of that paper was to investigate

the structure of defeasible reasoning: how a set of defeasible and non-defeasible reasons

should be used in drawing conclusions. Moreover, a theory of defeasible reasoning needed

be precise enough to implement in a computer program, so as to verify the theory. In

subsequent publications, Pollock actually incorporated the theory into a formal system,

which he named the OSCAR project (Pollock, 1995, 2008).

Pollock’s theory of reasoning is based on his account of human rational architecture,

which he defends in (Pollock and Cruz, 1999). According to this theory, reasoning

proceeds in terms of reasons, guided by rules. Two kinds of reasons are distinguished:

2.3 Expected utility theory 11

Non-defeasible The conclusion (Q) is logically implied by the reason (P);

Prima facie If P is a reason to believe Q, it is called prima facie if there exists a

condition R such that a combination of P and R is not a reason to believe Q. In

this case, R is called a defeater of reason P for Q.

A classical example of a prima facie reason used by Pollock is “X looks red to me”, as

support for the conclusion “X is red”. It is however conceivable that circumstances exist

in which the conclusion does not hold. X might for example be illuminated by red lights,

making it appear red.

Pollock distinguishes two kinds of defeaters:

Rebutting R is a rebutting defeater for P as a prima facie reason for Q if and only if

R is a defeater and R is a reason for believing not Q.

Undercutting R is an undercutting defeater for P as a prima facie reason for S to

believe Q if and only if R is a defeater and R is a reason for denying that P would

not be true unless Q were true.

The canonical example of a rebutting defeater is about Tweety. ‘Tweety is a bird and

Tweety cannot fly’ is a rebutting defeater to ‘all birds can fly’. Not only does Tweety

nullify the statement, it also leads to an opposite conclusion, namely ‘not all birds can

fly’. An object appearing red because it is illuminated by red lights is an example of an

undercutting defeater: Even though the conclusion that the object is red is no longer

warranted, it is not the case that an opposite conclusion is drawn, namely that the object

is not red. The object might turn out to be actually red, even outside the presence of

the red light illuminating it.

2.3 Expected utility theory

Expected utility is a way to give a value to decisions and rank those accordingly (Briggs,

2015). Expected utility theory has been used in several domains of research. For a

discussion of utility theory with respect to artificial intelligence, refer to (Russell and

Norvig, 2010, p. 610 - 636).

Consider a simple example: one has the option to take a pair of sunglasses along or

not. Taking sunglasses along or not is an act. Two things can happen, either the sun is

shining or it is not. These are states ‘the world’ can be in. Carrying sunglasses around

12 Chapter 2 Theoretical background

state
sun shining no sun

act take sunglasses no glare, extra item no glare, extra item

leave sunglasses glare, no extra item no glare, no extra item

Table 2.1: Acts, states and corresponding outcomes in the sunglasses example. Since
certain outcomes are preferred over others, their utility is higher.

results in added weight and can be inconvenient to wield or put away. If the sun is

shining though, glare can pose a problem as it reduces visibility. Sunglasses provide

protection against glare. These situations describe outcomes. An outcome is the result

of a certain act in a certain state. The acts, states and outcomes of this example are

summarised in Table 2.1.

Table 2.1 expresses the intuition that not carrying sunglasses leaves one free from wield-

ing additional accessories, at the risk of being bothered by sun glare. Taking sunglasses

along eliminates troubles from glare at the expense of being encumbered by an item.

Should one take sunglasses along or leave them in this example?

The answer to this question intuitively depends on how bothered one is by glare, as well

as carrying around an additional item. Such factors affect the desirability, or utility, of

every outcome. How often the sun is shining also matters, since that increases the risk

of glare. With the utility and probability of an outcome given, the expected utility EU

of taking a certain decision A can now be defined as (Equation 2.1)

EU(A) =
∑
o∈O

PA(o)U(o) (2.1)

Where U(o) is the utility of an outcome o and PA(o) is the probability of that outcome

given A. PA(o) can further be defined as (Equation 2.2)

PA(o) =
∑
s∈S

P (s)fA,s(o) (2.2)

Where S is the set of possible states, P (s) the prior probability of a certain state s

and fA,s(o) is a function which is 1 if outcome o results from taking action A in s or

0 otherwise. Notice that P (s) is considered to be independent from the probability of

taking a certain decision A. In other words, taking a certain action does not influence

the likelihood of the world being in a certain state. Formally P (s) = P (sA) = P (s∧A)
P (A) .

Hence, the expected utility of an act implements a weighing of its possible outcomes

according to the likelihood of every outcome multiplied by its desirability. Table 2.2

2.4 Hybrid approaches 13

continues the sunglasses example with the utilities of every outcome, as well as the

probability of a state given.

state
sun shining (P (s) = 0.3) no sun (P (s) = 0.7)

act take sunglasses U(o) = 7 U(o) = 7

leave sunglasses U(o) = 2 U(o) = 10

Table 2.2: The sunglasses example continued with added probabilities and utilities.

Using Equation 2.1, the expected utility of taking sunglasses with the valuations given

in Table 2.2 can be computed as

EU(take sunglasses) = 0.3 · 7 + 0.7 · 7

= 2.1 + 4.9

= 7

While leaving the sunglasses has an expected utility of

EU(leave sunglasses) = 0.3 · 2 + 0.7 · 10

= 0.6 + 7

= 7.6

Since EU(leave sunglasses) > EU(take sunglasses) the best decision to take here is

to leave the sunglasses behind. Nevertheless, should the sun shine more regularly

(for instance P (sun) = 0.7), or carrying an additional item would be no problem

(U(no glare, added weight) = 10, then it is preferable to take sunglasses along.

2.4 Hybrid approaches

After an introduction to the three fields machine learning, argumentation and decision

theory, focus is now shifted towards approaches that combine aspects of these fields.

PADUA (2.4.1) and its successor PISA (2.4.2) are introduced as methods combining

machine learning with argumentation. Value-based argumentation is discussed as a

combination between argumentation and decision theory.

14 Chapter 2 Theoretical background

2.4.1 PADUA

PADUA (Protocol for Argumentation Dialogue Using Association Rules) is a protocol

designed to support two agents debating a classification by offering arguments based

on association rules mined from individual data sets (Wardeh et al., 2009). The data

sets consist of claims for a hypothetical welfare benefit. Specifically a scenario is de-

vised reflecting a fictional benefit Retired Persons Housing Allowance (RPHA). Several

conditions have to be met before one is entitled to this benefit. Among other condi-

tions or requirements, for instance the following two are requirements according to the

putative legislation: the benefit is payable to a person who is of an age appropriate to

retirement and should have an established connection with the UK labour force. In this

format, it is impossible to assess whether an applicant satisfies conditions, because it

raises questions as: Which age is ‘appropriate to retirement’? How does one measure ‘an

established connection with the UK labour force’? A further interpretation or specifi-

cation is required in order to answer such questions and hence be able to assess whether

an applicant satisfies the conditions. The authors supposed the following interpretations

to be in accordance with the desires of policy makers:

1. Age condition: “An age appropriate to retirement” is interpreted as pensionable

age: 60+ for women and 65+ for men;

2. Contribution condition: “Established connection with the UK labour force” is

interpreted as having paid National Insurance contributions in 3 of the last 5

years.

Every instance or record in this data set represents an applicant who was either granted

the benefit or not. Information about every application consists of, but is not limited

to:

• The age of the applicant;

• The country of residence;

• Whether or not National Insurance contributions were paid for each year in the

past years;

• Whether a benefit has been granted.

Benefits are typically decided by a range of adjudicators working in several different

offices. Across offices, different types of cases are encountered. For example, the occu-

pation of fishermen is more common at coastal regions, but is less frequently encountered

2.4 Hybrid approaches 15

in inland areas. Nevertheless, having that occupation can affect to which benefits one is

entitled. Suppose a fisherman applies for a benefit that he is otherwise not entitled to,

but his occupation is an exception to that. An adjudicator from an inland office might

then decline his application, because the occupation is overlooked due to it rarely be-

ing encountered. Consequently, adjudicators become experienced on often encountered

cases, but develop blind spots for others, resulting in high error rates. The PADUA

protocol is designed to ameliorate errors resulting from inexperience with rare cases by

integrating knowledge from several sources or data sets (here offices) through means of

dialogue.

At the basis of these dialogues are association rules. With ‘association rule’ the authors

mean “that the antecedent is a set of reasons for believing the consequent”. A concrete

example is the rule contr y5 = not paid -> entitles = no, which would read as “if

in the fifth year no contribution was paid, then one is not entitled to this benefit”.

From the meaning of an association rule follows that an association rule consists of a

premise or antecedent (contr y5 = not paid), a conclusion or consequent (entitles

= no) and a confidence. Confidence is derived from a player’s data set. It is defined

as a percentage of cases for which the consequence holds if the condition holds as well.

Suppose the example rule has a confidence of 73.14%. That would then mean that of all

cases in which the contribution for the fifth year was not paid, 73.14% were not granted

the benefit. These association rules are mined from their data sets using standard data

mining techniques.

In a dialogue, proponent and opponent take turns, defending their proposed classification

or attacking the other’s proposition. To do so, during every turn a player can choose a

certain move. A move consists of a speech act, or the type of that move, as well as some

content. Six different speech acts are included, where Conf is a pre-defined confidence

threshold representing the lowest acceptable confidence:

Propose rule: This speech act proposes a new rule with a confidence higher than the

threshold (Conf), (in the case of two player games the confidence of this rule should

also be higher than any other move played by the other side).

Distinguish: This act adds some new premise(s) to a previously proposed rule, such

that the confidence of the new rule is lower than the confidence threshold (Conf).

Unwanted consequences: This speech act suggests that certain consequences (con-

clusions) of some rule previously played in the dialogue do not match the studied case.

Counter rule: This speech act places a new rule that contradicts the previous rule.

The confidence of the proposed counter rule should be higher than the confidence of the

previous rule (and higher than the threshold Conf).

16 Chapter 2 Theoretical background

Increase confidence: This speech act adds some new premises to a previous rule so

that the overall confidence rises to some acceptable level.

Withdraw unwanted consequences: This act excludes the unwanted consequences

of the rule it previously proposed, while maintaining a certain level of confidence (at

least higher than the confidence threshold Conf).

A dialogue ends when a player fails to play a legal move in its turn, meaning this

particular player loses the game while the other wins. In effect, the class proposed by

the winner is the most convincing one, since the loser is unable to counter it.

2.4.2 PISA

The PISA (Wardeh et al., 2012) (Pooling Information from Several Agents) multi-agent

framework is an extension to PADUA. Just like PADUA, PISA models argument from

experience. Every agent has a background data set of past examples. This database

is considered as encapsulating an agent’s experience. Arguments are mined from this

database using the same data mining techniques as used in PADUA.

A major difference between PADUA and PISA is that PISA is capable of incorporating

multiple agents, while PADUA only allowed two agents to argue about the classification

of novel instances. Having more than two agents presents several challenges for dialogues.

For example the multi-agent argument has to be coordinated and groups may be formed

between several agents promoting the same classification.

A neutral Chair Person Agent (CPA) is elected for coordinating the dialogue. Its re-

sponsibilities are:

• Starting a dialogue;

• Terminating a dialogue when a termination condition is satisfied;

• Announcing the resulting classification for the given case (once the dialogue has

terminated).

If several agents advocate the same class, they are required to join forces and act as a

single Group of Participants. Within this group, a leader is elected which is the agent

with the greatest experience (expressed in number of records in its database). At every

round, the group leader decides what move to play (if any). Group members are allowed

to suggest moves if they are able to, while the leader compares all the moves and selects

the best one based on confidence, if any are proposed.

2.5 Goals revisited 17

The performance of PISA is evaluated against other classification approaches, including

decision trees and ensemble methods. The authors conclude that performance is com-

parable with these other methods, but when operating groups or in noisy data, PISA

outperforms these approaches.

2.4.3 Value-based argumentation

In the argumentation methods discussed before, individual reasons or arguments are

considered of equal value or strength. Despite differences between the kind of arguments,

like undercutting or rebutting defeaters, any individual reason is not credited differently

from any other.

In real-life conditions however certain arguments may be stronger to some people than

others. For instance in a debate about whether taxes should be raised or lowered. Some

parties, or in general the more formal term audiences, will argue for taxes to be raised to

promote social equality, while other parties will argue for taxes to be lowered to promote

enterprise. Which side a party supports depends mainly on which norm they value more,

social equality or enterprise.

(Bench-Capon, 2003) incorporates different values to different audiences by extending

argumentation frameworks to value-based argumentation frameworks (VAF). In this

extension, every argument is associated with an (abstract) value. Whether an argument

defeats another one, depends on the audience: if argument A attacks argument B, then

A defeats B for audience a if the associated value of B is not higher than the associated

value of A for audience a.

2.5 Goals revisited

Recall the three problems identified in the previous chapter:

Grounding in data Implementing an alert for potentially fraudulent electronic trans-

actions requires an automated system. Based on historical data, the system ought to

distinguish fraudulent transactions from non-fraudulent ones.

Explanation by reasons The system ought to report why a specific transaction is

suspicious (or not).

Ordering by values Not every transaction is equally important. Hence, there should

be a method of ordering transactions by importance.

18 Chapter 2 Theoretical background

We believe the three research fields discussed in this chapter are individually capable of

solving one of the aforementioned problems. With the literature in mind, it is possible

to provide a more specific description of how each field provides a solution to one of the

problems:

Machine learning Classify transactions as legitimate or illegitimate based on past

transactions.

Argumentation Provide an understandable support by means of dialogue.

Utility theory Decide whether or not to investigate a transaction based on the ex-

pected utility of an investigation (action).

On top of that, two approaches are discussed that combine aspects from the three

research fields.

(Wardeh et al., 2009) PADUA uses association rules (rule mining) inside dialogues

to decide whether or not someone is entitled to a benefit. Hence, PADUA combines the

fields of machine learning and argumentation.

(Bench-Capon, 2003) Value based argumentation frameworks (VAF) incorporate value,

for certain audiences, into arguments. While not explicitly using expected utility, it can

be said that this approach combines argumentation and utility theory. Since expected

utility also offers a way of valuating, the value in a VAF might be expressed by expected

utility.

Ultimately, the goal is to combine the three fields machine learning, argumentation and

utility theory to solve all three problems at once. How can these three research fields be

combined into one approach? This question is at the core of the next chapter.

Chapter 3

The AGKA architecture

Recall the narrative from Section 1.1, where an illegitimate transaction just came in for

the system to verify. Recall that the system need not only recognise a transaction to be

illegitimate, it is also desirable that it gives an understandable reason why. Suppose the

incoming transaction is illegitimate because the transfer is made to a foreign account. We

argue that AGKA is capable of discerning this transaction as illegitimate, including the

association rule Foreign = true ⇒ illegitimate as support. The labelling together

with the support provided allows a bank representative to clearly inform a potential

victim of the situation. Before showing how the label and its support are generated,

first the AGKA architecture needs to be explained.

This chapter provides a description of the AGKA architecture. The aim is not to describe

the details of the implementation used here. Emphasis is on the conceptual aspect of

the components: what the use of a component is and, if applicable, what underlying

processes support a component’s result.

In this chapter we first turn toward some (abstract) data structures (Section 3.1). First

the basic concept of a construct is introduced in Section 3.1.1. Next, a general association

rule (AR) is formalised in Section 3.1.2. Section 3.1 concludes with the structure of an

instance (Section 3.1.3).

After clarifying these general structures, focus is shifted to their specific implementa-

tions with regard to data generation (Section 3.2). This section is divided into two

parts: transactions (Section 3.2.1) are a specific implementation of instances, while data

generation rules (Section 3.2.2) are a specific implementation of association rules. Be

informed that the details of generating the utilised test sets are reserved until chapter

5.3.

19

20 Chapter 3 The AGKA architecture

Section 3.3 is devoted to all the components of the AGKA architecture. Continuing on

the subject of data, the database component is discussed first in Section 3.3.1. Another

specific implementation of AR, called knowledge rules here, returns in Section 3.3.5.

This section also formalises how the utilities of knowledge rules are determined. Finding

knowledge rules is covered by the machine learning component, which is described in

Section 3.3.2. The dialogue component, using knowledge rules, is explained in Section

3.3.3. The error component, described in Section 3.3.4, allows the system to learn from

its mistakes. How the individual components of AGKA are put together to provide

classifications is described in Section 3.4.

3.1 Data structures in AGKA

This section describes the general format of several structures used in the architecture.

Their specific implementations are reserved for future sections. First a construct is

defined, which specifies some relationship between two items (Section 3.1.1). Next, the

format of association rules is formalised (Section 3.1.2), which resembles the definition

of association rules as found in the background literature (e.g. (Agrawal et al., 1993) or

(Wardeh et al., 2009)). Lastly, the build-up of a data point or instance is explicated in

Section 3.1.3.

3.1.1 Construct

A construct is a container of any two items, with a defined relation between them. The

first item is said to be on the left hand side (LHS), while the second item is said to be

on the right hand side (RHS). The format of a construct is formulated as:

< item 1, relation, item 2 >

or

< LHS, relation, RHS >

(3.1)

Some examples of constructs are B > A, A ≤ 2 or C < D and D > B. The latter shows

how constructs may be embedded, since it is a construct consisting of two constructs,

combined by the relation ‘and’.

3.1.2 Association rules

An association rule (AR) is here defined as:

3.1 Data structures in AGKA 21

{
First 1
Second 2
A value
B value
49 valid
}

Table 3.1: An example of an instance with five variables.

< Cd,Cs, P, T > (3.2)

Where:

Cd A rule’s condition, containing a construct.

Cs The consequence of a rule, also containing a construct.

P Defines the conditional (Cs|Cd).

T Denotes the rule type, which can either be data generation (Section 3.2.2) or knowl-

edge (Section 3.3.5).

With this definition, an AR can be envisioned as Cd ⇒ Cs, with probability P . An

example AR could be A > 0 and B < 2 ⇒ X and Y, P = 0.7.

The definition of an AR used here is close to that of the background literature (e.g.

(Agrawal et al., 1993) or (Wardeh et al., 2009)). The condition and consequence are

common. Probability is not always included, but is utilised in the literature described

before. The rule type T is added to accommodate for different use cases within the

AGKA architecture (such implementations are described in later sections).

3.1.3 Instances

Any data point is regarded as a collection of variable - value pairs, for example A

(variable) - 100 (value) or Name - Bob. An instance may contain any number of such

pairs, under the condition that every variable is unique. Due to the uniqueness condition,

it is also said that an instance consists of n variables, rather than n variable - value pairs.

An example of an instance with five variables is given as Table 3.1.

22 Chapter 3 The AGKA architecture

{
Sender Ms. S. Stam
Send. account NL99BANK0123456789
Recipient Sir I. Cashalot
Rec. account GB00AAAA9876543210
Date 12-03-2004
Time 15:50:22
Amount 12345
Pre-balance 123456
Post-balance 111111
Foreign true
.
}

Table 3.2: An example of a transaction with some fields specified.

3.2 Data generation in AGKA

This section describes how data is generated. Data points here represent transactions,

which may be considered a special case of instances in general (Section 3.1.3). The build-

up of transactions is explicated in Section 3.2.1. Transactions are generated through the

use of data generation rules (Section 3.2.2), which are one specific type of association

rules (Section 3.1.2).

3.2.1 Transactions

In our system, a data stream of (electronic) transactions between two parties is used.

The transactions are modelled as instances (Section 3.1.3). Just like an instance in

general, a transaction contains a number of variable - value pairs (also called field -

value pairs here). Unlike general instances though, the range a value can take depends

on the variable. This range is defined by a data generation rule (Section 3.2.2).

Since the variable - value pairs depend on the defined data generation rules and these

rules differ per stream, an a priori definition of the (number of) fields contained in a

transaction cannot be given. Nevertheless, several fields are always present, because of

what a transaction represents. These fields are Sender name, Recipient name, Send.

account, Rec. account, Amount, Date and Time. Date and Time are generated inde-

pendent from data generation rules (Section 3.2.3), while the other fields are required

to be defined by a rule.

An example of a transaction is displayed as Table 3.2.

3.2 Data generation in AGKA 23

Variable type Range parameters
Boolean true or false
Uniform distribution a (lower bound) and b (upper bound)
Normal distribution µ (mean) and σ (standard deviation)
Profile A set of profiles (names and bank account numbers)
Categorical A set of categorical values

Table 3.3: Distributions and how their respective ranges may be defined in the con-
sequence of a data generation rule.

3.2.2 Data generation rules

The data stream presented to the system is generated with the help of data generation

rules. Using these rules ensure a desired pattern or rule is present in the stream. Data

generation rules are a specific type of association rules. Recall the definition of an AR:

< Cd,Cs, P, T > (3.3)

Since data generation rules are an implementation of the general AR, their definition is

constrained in the following ways:

Cd The condition contains one variable of a transaction. In effect, a data generation

rule operates on one specific variable - value pair of a transaction.

Cs The consequence specifies the range of a value in a variable - value pair. The

specification requires both a distribution and range parameters, which can be one of the

following given in Table 3.3.

P The (pre-defined) probability. Samples within the specified range with probability P

and an ‘alternative value’ with probability 1− P . How values are sampled is described

in Section 3.2.3.

T The rule type is in this case a data generation rule.

3.2.3 Generating a stream

A stream is generated to simulate a real-time inflow of transactions. Several parameters

can be specified that affect the stream generated:

i max The total number of iterations.

pil Probability of an illegitimate transaction occurring.

24 Chapter 3 The AGKA architecture

Variable type Sample value
Boolean The Boolean value specified
Uniform distribution A uniformly drawn sample within the range [a, b]
Normal distribution A sample from the normal distribution (µ, σ)
Profile One of the name and account combinations (profiles) in the

specified set
Categorical One value in the specified set

Table 3.4: Ranges a value may take per variable type, based on the range parameters
defined in the consequence of a data generation rule.

tps Average number of transactions encountered every second.

n prof Number of random profiles generated, consisting of a name and a bank account

number.

A data stream is constructed on a per transaction basis, creating one transaction and

presenting it to the system per iteration. When a transaction is constructed, it is first

decided whether it will be legitimate or not, with probability pil of the transaction being

illegitimate. Next, the Date and Time fields are generated. Date is set to a random

date. Time is set to the current time stamp. The time stamp is initialised at 00:00:00

(hh:mm:ss) when a stream starts. Every successive transaction has a chance of 1
tps to

increment the time stamp by one second.

The final construction phase of transactions is governed by specified data generation

rules (Section 3.2.2). Data generation rules belong to one of three categories:

• General

• Legitimate

• Illegitimate

Rules in the general category are applied (first) on every transaction. Depending on

whether the transaction was decided to be legitimate or illegitimate, rules from the

respective category are applied on the current transaction. Note that applying a data

generation rule overwrites variable - value pairs if existing. Whenever a data generation

rule is applied, a value is sampled from the type defined in that rule (Section 3.2.2) with

specified probability P . How the samples are taken is summarised in Table 3.4.

With probability 1 − P a sample with an ‘alternative value’ is taken. The alternative

values per variable type are summarised in Table 3.5. An exception is the categorical

variable type, which has no alternative value. This type is required to have P = 1.

3.2 Data generation in AGKA 25

Variable type Alternative sample value
Boolean true or false (whichever is opposite the one specified)
Uniform distribution A uniformly drawn sample within [a, b] with b − a added or

subtracted
Normal distribution A sample from (µ, σ) with 3σ added or subtracted
Profile A (randomly generated) profile not appearing in the set given

Table 3.5: ‘Alternative values’ per variable type defined in the consequence of a data
generation rule.

{
Date 12-03-2004
Time 15:50:22
}

Table 3.6: Possible legitimate transaction after filling in the default fields.

3.2.3.1 Example transaction generation

To illustrate the construction of a transaction, consider a stream for which at some

point in time a legitimate transaction is generated. First, values for Date and Time are

generated. After adding these variables, the transaction looks like in Table 3.6.

Suppose the stream has the following set of data generation rules specified (Table 3.7):

Category Rule Variable type Probability

Sender ⇒ [(Ms. S. Stam,
NL99BANK0123456789)]

Profile 1

General Recipient ⇒ [(Sir I. Cashalot,
GB00AAAA9876543210)]

Profile 1

Amount ⇒ (µ = 10000, σ = 2000) Normal 1
Foreign ⇒ false Boolean 0.8

Legitimate Amount ⇒ (a = 10000, b = 15000) uniform 1

Illegitimate Amount ⇒ 20000 categorical 1

Table 3.7: A set of data generation rules as may be defined for a stream.

After generating Date and Time, the data generation rules are applied to generate other

variable - value pairs. The rules in the general category are applied first. Starting

off with the profile rules, the rule for the sender yields the combinations Sender name

- Ms. S. Stam and Send. account - NL99BANK0123456789. Only one (name, ac-

count) combinations is given, so that combination is picked and since the rule is defined

for the sender, it operates on those variables. Similarly for the recipient rule, this

yields the combinations Recipient name - Sir I. Cashalot and Rec. account -

GB00AAAA9876543210.

For the rule Amount ⇒ Normal (µ = 10000, σ = 2000), P = 1 a value is sampled, say

9876. Since the rule operates on the Amount variable, the variable - value pair Amount

26 Chapter 3 The AGKA architecture

{
Sender name Ms. S. Stam
Send. account NL99BANK0123456789
Recipient name Sir I. Cashalot
Rec. account GB00AAAA9876543210
Amount 9876
Date 12-03-2004
Time 15:50:22
Foreign true
}

Table 3.8: Possible transaction after applying the data generation rules in the general
category.

{
Sender name Ms. S. Stam
Send. account NL99BANK0123456789
Recipient name Sir I. Cashalot
Rec. account GB00AAAA9876543210
Amount 12345
Date 12-03-2004
Time 15:50:22
Foreign true
}

Table 3.9: Possible finalised legitimate transaction generated according to the stream
defined. It bears resemblance with the transaction in Table 3.2, except that this trans-

action has less fields.

- 9876 is generated. Assume that for rule Foreign ⇒ Boolean (false), P = 0.8 an

alternative value is generated, since P < 1. According to Table 3.5, the alternative value

for this rule would be true. As such, the pair Foreign - true is added to the transaction.

The transaction after application of the general data generation rules is shown in Table

3.8.

Based on whether a legitimate or illegitimate transaction is generated, the data gener-

ation rules in the respective category are now applied. Since a legitimate transaction is

created now, the rules in the legitimate category are applied, which is only Amount ⇒
Uniform (a = 10000, b = 15000), P = 1. Suppose this rule generates the pair Amount

- 12345, overwriting the previously contained pair. The finalised transaction which is

presented to the system is displayed in Table 3.9.

In a similar fashion an illegitimate transaction may be constructed. As a matter of fact,

the general data generation rule Amount ⇒ Normal (µ = 10000, σ = 2000), p = 1 is

superfluous, because it will always be overridden by either the legitimate or illegitimate

rule specified.

3.3 AGKA components 27

Also note the similarities between the transactions in Table 3.2 and 3.9. By adding

several rules to the ones defined in 3.7, it is possible to generate the additional fields in

3.2.

3.3 AGKA components

This section focuses first on the individual components of the AGKA architecture. These

components are the database (Section 3.3.1), machine learning (Section 3.3.2), dialogue

(Section 3.3.3) and error (Section 3.3.4). Section 3.3.5 is devoted to knowledge rules,

which are an implementation of the general association rules. Despite not being a

component by itself of the architecture, knowledge rules play an integral role within the

various components. For this reason, knowledge rules are discussed in a separate section

here. The last section describes how the individual components work together to provide

a classification (Section 3.4).

3.3.1 Database

The database stores encountered transactions, as described in Section 3.2.1 as well as

inferred knowledge rules, which are described in Section 3.3.5. The maximum number of

stored transactions is (theoretically) infinite, while the number of stored rules is limited

to 10 for each class { legitimate, illegitimate}.

All transactions encountered in a stream are stored inside the database, after the true

class is received by the error component (Section 3.3.4). Whenever the utility of a knowl-

edge rule is calculated, all transactions currently contained in the database component

are used.

Knowledge rules are inferred by the dialogue component (Section 3.3.3). All inferred

rules offered by the dialogue component may be stored, under the condition that a rule

turns out to be useful. Useful is here defined as having a lower cost to apply than to

ignore. How costs are calculated is explained in Section 3.3.5.1. If one class already

contains 10 rules and a useful rule is found, the least useful rule is discarded, which may

be the newly found one.

3.3.2 Machine learning component

The machine learning component serves to extract meaningful regularities from previ-

ously encountered transactions contained in the database (Section 3.3.1). Regularities

28 Chapter 3 The AGKA architecture

are expressed as knowledge rules (Section 3.3.5), which form ‘arguments’ in the dialogue

component (Section 3.3.3).

In order to extract knowledge rules from the database, a decision tree is used, the

specifics of which are explicated in Section 3.3.2.1. After a decision tree is fit to the

data, knowledge rules are extracted from its model. The extraction process is explained

in Section 3.3.2.2.

3.3.2.1 Decision tree

The machine learning algorithm responsible for finding patterns in the data is a decision

tree implementation, specifically an adaptation from CART (Breiman et al., 1984). The

implementation originates from the Scikit-learn environment (Pedregosa et al., 2011).

An advantage of the CART approach is that it supports numerical values.

Recall the discussion of decision trees in Section 2.1.2.1. A decision tree can classify

novel observations by successively splitting past observations into subsets, until ideally

all observations in a subset belong to one class. To determine the quality of a split, here

the Gini impurity is used. Let J be the set of all classes (here {legitimate, illegitimate}),
while fi is the fraction of items belonging to class i. The Gini impurity (IG) can then

be calculated using Equation 3.4.

IG(f) =
J∑

i=1

fi(1− fi) = 1−
J∑

i=1

f2i (3.4)

From Equation 3.4, it can be inferred that a subset containing just one class yields the

lowest value (impurity), namely 0. Other fractions of classes yield a higher impurity.

When fitting a decision tree, the maximal depth allowed is set to 1. In other words, the

model of a fitted decision tree is only allowed to consist of (at most) one node with an

attribute on which the data is split. In effect, extracting rules from a fitted decision tree

yields rules with (at most) one condition. This forces dialogues (Section 3.3.3) to only

add one condition at every turn, instead of adding multiple conditions at once.

3.3.2.2 Rule extraction

When a tree is fit, it is possible to extract association rules from its model. Extracting

association rules occurs through a recursive process, which traverses all nodes by first

accessing the left child and then the right child. A knowledge rule (Section 3.3.5) is

3.3 AGKA components 29

Figure 3.1: A data set representing the non-linearly separable XOR problem.

Figure 3.2: A potential model after fitting a decision tree to the data depicted in Fig-
ure 3.1. Every node of the tree displays the attribute and value for split, the calculated
Gini impurity as well as the number of samples remaining. Leafs also display member-
ship of the remaining samples to respective classes. A knowledge rule is depicted which

can be extracted by following the left paths.

built while traversing the nodes. Once a leaf is reached, the association rule built up

and until that point is stored.

Consider the data set depicted in Figure 3.1. The diligent reader may recognise this set

as the XOR problem, a classical example of a set that is not linearly separable (Elizondo,

2006). In principle, it is impossible to draw one straight line separating class C1 from

class C2. Instead a decision tree ‘solves’ the problem by drawing two lines or decision

boundaries, also shown in Figure 3.1. One possible model of a decision tree fit on this

data is shown in Figure 3.2.

Figure 3.2 also shows how the rule y ≤ 0.5 and x ≤ 0.5 ⇒ C1 can be deduced or

extracted from the model by following the leftmost path to a leaf node. Following all

paths to all leaf nodes yields the four rules:

30 Chapter 3 The AGKA architecture

Figure 3.3: A visual chart of the dialogue process.

• y ≤ 0.5 and x ≤ 0.5 ⇒ C1

• y ≤ 0.5 and x > 0.5 ⇒ C2

• y > 0.5 and x ≤ 0.5 ⇒ C2

• y > 0.5 and x > 0.5 ⇒ C1

3.3.3 Dialogue component

The dialogue component serves to provide understandable support for a classification.

The dialogue process is visualised in Figure 3.3. Dialogues consist of four stages: initial-

isation, turn, resolve and conclusion. Initialisation and conclusion occur exactly once in

every dialogue (respectively at the start and the end), while turn and resolve can occur

many times. There are three conditions under which a dialogue is initiated:

1. No rules in the rule base (Section 3.3.1) apply to a transaction.

2. Multiple rules from different classes in the rule base apply to a transaction.

3. An erroneous label was given (Section 3.3.4).

3.3 AGKA components 31

If any of the above three conditions apply, the initialisation phase commences, which

receives all transactions stored D in the database (Section 3.3.1), as well as the current

transaction tc. The initialisation phase serves to pass on D and tc to the proponent

(γ = P), who pleads for an illegitimate label. This passing on starts the first turn in a

dialogue, without a proposed rule yet (R = None).

During a turn phase, either of two parties (proponent γ = P , or opponent γ = O) can

play one of two moves:

1. Refute: With the refute move, an agent denies the label provided by R (which is

its consequence Rcs). Instead the agent proposes the label it is pleading for (γ).

Refuting is allowed when turning R into favour of the current party is less costly.

2. Differentiate: Propose an additional condition for R. To find a suitable addi-

tional condition, association rules are mined from the provided database D′ using

the machine learning component 3.3.2. Useful ARs are stored in the rule base

(Section 3.3.1). All found ARs are constrained to those applying on tc. γ proposes

the AR which is most in its favour R′, which is the rule with the greatest difference

between application cost and ignoring cost (Section 3.3.5.1). R′ is provided to the

resolve phase. If no rules can be found, a player concedes, leading to the conclusion

phase.

Refuting has precedence over differentiating. That is, an agent will try to refute if

possible and only differentiate if it cannot refute. Both moves lead to a resolve phase,

with the exception of conceding. What happens in the resolve phase depends on the

move played:

Refute: Adapt R by changing its consequence Rcs to γ and swapping its costs

RU . In effect R is changed to its contra-position (Section 3.3.5.1).

Differentiate: Several operations take place after a differentiate move:

1. Limit D′ to transactions which satisfy the additional condition R′cd, the con-

dition of R′. The result is D′′.

2. Check if D′′ < D′. That is, D′′ ought to contain less transactions than D′,

otherwise the move is not actually a differentiation. Should this check fail,

then γ is forced to concede.

3. Adapt R by adding R′cd as a conjunct to Rcd, the condition of R. Rcs is set

to R′cs, which is equal to γ since in the turn phase γ turned all applicable

rules in its favour.

32 Chapter 3 The AGKA architecture

If the resolve phase turns out successfully, another turn phase is commenced with D′′,

tc, γ̄, which is the opponent if γ = P and vice versa, as well as (the adapted) R.

Recommencing the turn phase coincides with arrow 1 in Figure 3.3.

If anywhere during the cycle a party concedes, the conclusion phase takes place. During

the conclusion phase the final label is proposed as classification for tc. The final label is

Rcs and R is provided as support. R is also stored in the rule base.

3.3.4 Error component

After AGKA provided a label for a novel transaction, ‘external feedback’ is received

about the true class of that transaction. The external feedback is implemented as a

function that indicates whether the given label and the true class coincide or not. The

feedback is delivered to the error component, which acts upon the outcome.

If the label is correct (no error is made), no actions need to be undertaken. Whenever

the system does make an error, that indicates that classification gave a wrong label to a

transaction. To prevent similar errors from occurring in the future, the error component

activates a process to adapt classification. This process consists of two parts:

1. Recalculate the utility of all association rules involved in the erroneous classifica-

tion.

2. Initiate a dialogue to find the most applicable rule to the transaction classified

wrongly.

Since beneficial inferred rules are stored in the database and these rules are not con-

tinuously reevaluated, part 1 is required: it can be the case that an inferred rule was

useful in the past, but new transactions yield counter evidence. It may also hold in case

a rule resulting from a dialogue is applied. Such a rule may only apply to very specific

transactions, so another example may have a big impact on the utility of that specific

association rule. Should the expected utility of applying a rule turn out to be lower than

ignoring it, it is deleted from the database.

Initiating another dialogue, part 2 also aids in updating inferred knowledge rules. Since

this transaction caused the system to make an error, it is in some respect deviating from

the regularities (or rules) inferred before. That is, this transaction may contain useful

information which differentiates it from others. This difference may be captured by a

new rule, which can be found by means of a dialogue.

3.3 AGKA components 33

The two parts of the error process can thus be regarded as operations on the knowledge

inferred: 1 evaluates past knowledge, while 2 learns new information based on the mistake

made.

3.3.5 Knowledge rules

A knowledge rule is another type of AR. Knowledge rules are used to stipulate regularities

found in encountered transactions. In addition to a general AR, knowledge rules may

have an expected utility. Hence, the definition of a knowledge rule becomes:

< Cd,Cs, P,EU, T > (3.5)

with the following specifications:

Cd A rules’ condition, consisting of constructs, such as foreign = false AND average

amount < 10000.

Cs Consequence or classification of a rule. Here it resembles the most likely classification

of a transaction. (Cs ∈ {legitimate, illegitimate})

P Probability of the consequence Cs being correct if the condition Cd is satisfied by an

instance. This probability is calculated from the database. Suppose 1000 stored

transactions satisfy a rule’s condition and 990 belong to the class signified by its

consequence, say legitimate, then P is computed to be 990
1000 = 99%.

EU Expected utility of a rule, computed as a tuple of costs for applying or ignoring the

rule. How the expected utility is computed is explained in section 3.3.5.1.

T In this case the rule type is a knowledge rule.

3.3.5.1 Rule utility

The expected utility of a rule aids in deciding whether or not to use or ‘believe’ a rule.

Once a rule is formulated, one can decide to either accept and store it, or ignore and

delete it. In the framework of expected utilities (Section 2.3) these can be considered

acts. The act with the highest expected utility is considered the best decision in a

situation.

To calculate the expected utility of every action, priors of states and utilities of outcomes

are required. With respect to association rules, the states of a rule can be that the

34 Chapter 3 The AGKA architecture

classification is either correct or incorrect. The prior of state ‘correct’ (P (correct)) is

the probability of a rule’s classification being correct for satisfying instances (which is

the same as P in Section 3.3.5). Conversely, the prior for state ‘incorrect’ (P (incorrect))

is 1 minus the prior for state ‘correct’.

P (correct) and P (incorrect) are computed from the database using Equation 3.6.

P (C) =

∑
i=I fa(i) · equals(C, iC)∑

i=I fa(i)
(3.6)

Here C is the classification or consequence of a rule, I the set of all instances or transac-

tions stored, iC the class of an instance and fa(i) a function that equals 1 if the current

rule applies to instance i and 0 otherwise. In words, the probability of a rule being

correct equals the amount of times its class equals the class of an instance it applies to,

divided by the number of times it applies to an instance.

The actions taken in the ‘correct’ and ‘incorrect’ states lead to distinct outcomes. The

acts, states and their respective outcomes are summarised in Table 3.10. If a rule leads

to the correct classification and it is applied, this is called a hit, while ignoring it in

such a circumstance is a miss. Should a rule’s classification be incorrect then the rule

can be considered as misleading or misguiding, because it steers toward a bad decision

(assigning the wrong class). Should a rule be applied in such a situation, then the

classification is misguided, while ignoring it can be seen as a revised classification.

Classification
correct incorrect

Action apply hit misguided

ignore miss revised

Table 3.10: Consequences for applying a rule or not while the classification is either
correct or not.

Expected utility adds onto probability, because certain decisions may be more beneficial

than others, even though the probability of correctness (accuracy) may be the same.

This is reflected in the utility of the various outcomes.

The outcomes in Table 3.10 do have different utilities or ’desirability values’. Intuitively,

it is preferable to apply a rule if it is correct and to ignore it if it is incorrect. On the

other hand, applying an incorrect rule or ignoring a correct one should be avoided.

For quantifying the utilities of the outcomes in Table 3.10, a difference has to be made

between rules discerning legitimate transactions and rules discerning illegitimate cases.

The aim of applying legitimate rules is to diminish costs for verifying transactions (as-

signing the class ‘legitimate’ means a transaction is not checked), while the aim of

3.3 AGKA components 35

applying illegitimate rules is to diminish the amount of money lost by an illegitimate

transaction. From this point forward, the utilities are referred to as costs. In this set-

ting, it is more intuitive to talk about the outcomes incurring a cost, rather than some

benefit. In reality, four different situations exist, which involve whether or not a trans-

action is actively verified (phone calls with the presumed victim etc.). Suppose the cost

of such a verification occupies one person with one hour of labour at a gross income of

κ Euro an hour. Moreover, if a fraudulent transaction occurs, the transferred amount λ

is either lost or it can be recovered. The four different situations can then be described

as follows:

1. A legitimate transaction is classified as such. No costs are incurred. The costs of

this outcome are thus zero (Cost(o) = 0).

2. A legitimate transaction is classified as illegitimate. The costs of verification κ

are expended, but nothing (λ) is gained nor lost, since the warning was a false

positive. Hence, Cost(o) = κ.

3. An illegitimate transaction is classified as such. Again κ is expended, but the

transferred amount λ may be recovered (it is not lost, this is not a cost). Similarly,

Cost(o) = κ.

4. An illegitimate transaction is classified as legitimate. It is not verified, so κ is not

incurred, but λ is lost. Hence, Cost(o) = λ.

In terms of costs, options 2 and 3 are similar. It is presumed that λ > κ, otherwise

it would be more costly to prevent fraud than to let it happen. Comparing above four

situations with the outcomes in Table 3.10, leads to Table 3.11 for legitimate rules and

Table 3.12 for illegitimate rules.

Classification
correct incorrect

Action apply Cost(o) = 0 Cost(o) = λ

ignore Cost(o) = κ Cost(o) = κ

Table 3.11: Incurred costs for the outcomes of applying a rule classifying regular cases
or not.

Classification
correct incorrect

Action apply Cost(o) = κ Cost(o) = κ

ignore Cost(o) = λ Cost(o) = 0

Table 3.12: Incurred costs for the outcomes of applying a rule discerning fraudulent
cases or not.

36 Chapter 3 The AGKA architecture

3.3.5.2 Calculation example

To clarify how cost affects the usability of association rules, consider the data set depicted

in Figure 3.4. Transactions are displayed on two axes, namely post-balance and amount,

respectively representing the money left on an account after the transaction and the

amount of money transferred.

Figure 3.4: An example data set to calculate the utilities of association rules.

Consider the rule post-balance ≤ 0 -> illegitimate. Since this is an illegitimate

rule, Table 3.12 is applied and the cost for applying the rule can immediately be de-

termined as k, or 5000. Of all transactions to which the rule applies, 8 are legitimate

and 2 illegitimate, so the rule is correct in 2
8+2 = 20% of cases. The average of amount

for the illegitimate transactions (consistent with the rule’s classification) λ = 100000.

Consequently, the cost of ignoring this rule equals 0.2 · 100000 + 0.9 · 0 = 20000. Hence,

applying this rule is less costly than ignoring it (5000 < 20000). In other words, de-

spite the rule being inaccurate, the ‘severity’ of missing the illegitimate instances makes

checking all applying instances worthwhile nonetheless.

Now consider the rule post-balance > 200000 -> legitimate. This time Table 3.11

applies and the cost of ignoring it can immediately be determined as k = 5000. For

this rule also, λ = 100000 (inconsistent with the rule’s classification). The accuracy of

this rule is 9
9+1 = 90%, implying the cost of applying it equals 0.1 · 1000000 = 10000.

As a result, applying the rule is costlier than just ignoring it (10000 ≥ 5000). In other

words, despite the rule being accurate and amount being relatively high for legitimate

transactions, again the ‘severity’ of an illegitimate transaction prompts checking all

applying transactions.

3.4 AGKA process 37

Figure 3.5: A visual chart of how all AGKA components are combined to provide
classifications. *“Euro Coin Transparent Background” by Eric is licensed under CC

BY 2.0

3.4 AGKA process

With each of AGKA’s components explained, it is time to turn to how the system as a

whole functions to classify transactions. What happens during every iteration is visually

represented in Figure 3.5. The respective arrows and components depicted correspond

to the following actions:

1 At the onset of an iteration, a novel transaction tc is generated and offered to the

system.

Database The database component checks whether stored knowledge rules apply.

2 At least one stored knowledge rule applies to the novel transaction. All applying rules

share the same consequence or class, so that class is proposed as label.

3 There are no stored rules which apply, or multiple rules with different classes apply.

These are two out of three conditions to initiate a dialogue (Section 3.3.3).

Dialogue A dialogue is initiated with the entire database and tc.

4 Useful knowledge rules found by the dialogue component are stored in the database

(rule base). These rules may have been found during the dialogue or it may be the final

rule proposed.

5 The label proposed by the dialogue component is applied to tc.

External feedback Feedback concerning the transaction’s class arrives.

Error? The error component (Section 3.3.4) determines whether the system made an

error (given label does not correspond with true class).

http://www.pngmart.com/image/29863
http://www.pngmart.com/image/author/eric
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/

38 Chapter 3 The AGKA architecture

6 Regardless of the outcome, tc is stored in the database.

Correct If there was no error, the system immediately continues to the next iteration.

Wrong If a mistake was made, the database component is notified of the error.

Database The rules responsible for the classification are reassessed in the rule base.

Rules are deleted if they are no longer useful (costlier to apply than to ignore).

7 A dialogue is initiated, under the last condition that an error was made.

Dialogue Another dialogue is initiated with the entire database, this time including tc.

Again a classification is sought for tc.

8 The dialogue component may store useful rules in the rule base in the same way as

in step 4.

9 After the dialogue finishes, continue to the next iteration.

Next iteration Start the process over from step 1.

Chapter 4

Illustrative cases

In this chapter several examples are discussed, to illustrate step-by-step how the system

as a whole handles detecting fraudulent transactions.

4.1 Binary decision

Suppose transactions consist of one attribute, namely Foreign, which states whether the

recipient resides in a different country than the sender. Furthermore suppose all foreign

transactions are illegitimate. In other words, the data adheres to the data generation

rules Foreign ⇒ true with p = 1 for the illegitimate category and Foreign ⇒ false

with p = 1 for the legitimate category. A data set with both a legitimate and an

illegitimate transaction is depicted in Figure 4.1.

Figure 4.1: A set where legitimate and illegitimate transactions can be discerned
based on the binary attribute foreign. The drawn decision boundary shows where the

two classes are separated.

39

40 Chapter 4 Illustrative cases

Keep in mind that the data is a stream in nature. In other words, the data set depicted

in Figure 4.1 is accumulated over time. At the onset, there are no transactions from

which inferences can be made.

Now suppose a transaction with Foreign = false is encountered. According to the

definition, this transaction is then legitimate. For every novel transaction, the system

passes the steps described in Section 3.4:

1 Generate the transaction and present it to the system. This trivial step is omitted

from hereon.

Database Check the database for inferred association rules that apply to the current

transaction.

3 At the onset, no rules are in the rule base yet, so a dialogue is initiated.

Dialogue (initialisation) The complete database of past transactions (none), as well

as the transaction in question, is provided to the proponent, pleading for an ‘illegitimate’

label.

Turn The proponent (also referred to as P) cannot refute the proposal, since there is

none yet. Hence, only a differentiate move is an option. Proponent tries to find rules

present within the provided transactions. Since there are no transactions, finding rules

fails, resulting in the proponent conceding.

Conclusion The dialogue fails, so the proposed label defaults to ‘legitimate’ without

support.

External feedback and error? Give the labelling to the novel transaction and com-

pare that to the ‘true’ label. In this case, the transaction was indeed legitimate, so the

system proved to be correct.

6 Store the novel instance including its true label in the database.

Correct Act according to whether an error was made or not. Since no error was made,

no adjustments are applied.

After these steps are finished, another novel transaction from the stream can be consid-

ered, starting the process over. Suppose this time an illegitimate transaction is encoun-

tered, with Foreign = true. The previous steps are repeated:

Database The database still does not contain inferred knowledge rules, so there are no

rules applying on this transaction.

4.1 Binary decision 41

3 and dialogue A dialogue is initiated. The entire database, consisting of the previous

transaction, is provided to the proponent.

Turn Again, a differentiate move is the only option for P. This time however it can find

a rule. Since all encountered transactions belong to one class (legitimate), the knowledge

rule⇒ legitimate may be inferred. It is also useful, because it is 100% correct (p = 1),

so it is stored in the database. However, that rule is not in favour of P, so instead it

proposes the counter rule ⇒ illegitimate with p = 0.

Resolve Although this is a legal move, the fact that the database is not shrinking by

this differentiation (rule applies to one instance, while the database already contained

one) means P has to concede.

Conclusion Dialogue failed again, so the default label ‘legitimate’ is proposed.

Error? The label ‘legitimate’ is given to the novel transaction. However, comparing

that labelling to the true class reveals that the system made an error.

6 The novel transaction including its true class is stored. Note that this step is omitted

for the rest of this discussion, since it is trivial and recurring in every process.

Wrong and database The system is notified of its error, prompting it to reassess the

rules that led to the wrong classification. Since the label was given by default, without

support, there are no rules no reevaluate.

7 The dialogue initiated now does yield interesting information though, because the

database now contains an additional, meaningful transaction:

Initialisation A dialogue is initiated and P is provided with the complete database

(containing one legitimate and one illegitimate transaction) and the transaction in ques-

tion (the wrongly classified illegitimate transaction).

Turn A differentiate move is still the only option for P. For finding applicable rules,

fitting a decision tree would now split on the variable Foreign and the rule extrac-

tion procedure yields the rules Foreign = false ⇒ legitimate and Foreign = true

⇒ illegitimate. Since both turn out with p = 1 according to the database, both

knowledge rules are stored. P will bring forward the latter rule, since it applies on the

transaction in question and is best in its favour (p = 1).

Resolve Foreign = true ⇒ illegitimate is accepted. The database is limited to

transaction on which the proposed rule applies (the single illegitimate one). The limited

database, as well as the transaction in question, is passed on to the opponent (or O).

Turn and resolve O cannot refute the proposed rule, since the counter rule Foreign

= true ⇒ illegitimate is never correct (p = 0). O cannot differentiate either, since

only one transaction remains. In effect O concedes.

42 Chapter 4 Illustrative cases

Conclusion P is regarded the winner of the dialogue and its pleading, ‘illegitimate’, is

brought forward as label, with the knowledge rule Foreign = true ⇒ illegitimate

as support. Since the database already contains this knowledge rule, it is not stored

again.

Notice that the iteration now ended. Despite disregarding the label provided after the

dialogue in the error phase (there is no need classifying the same transaction again),

that dialogue did have an impact on the system: During the dialogue, the rules Foreign

= false ⇒ legitimate and Foreign = true ⇒ illegitimate were stored in the

database. As a matter of fact, this additional knowledge perfectly models the defini-

tion of legitimate and illegitimate transaction in the stream. Consequently, the system

consolidates in a shorter process, which becomes apparent with additional transactions.

Suppose the next transaction in the stream is legitimate (Foreign = false):

Database The stored knowledge rule foreign = false ⇒ legitimate is the only

rule that applies to this transaction.

2 The label ‘legitimate’ is given to the transaction. This labelling does not conflict with

the true class, so no error is detected and no further action is undertaken.

The run is similar for illegitimate transactions, with the exception that the other stored

rule is used instead. Since all transactions are correctly classified by the inferred rules,

no errors are made and no adjustments to the database are required.

4.2 Continuous values

The present discussion should however not be constrained to binary, or even multi-

valued, attributes. An advantage of the CART algorithm is that it can handle continuous

values. As a matter of fact, binary values are converted to 0 and 1 for respectively false

and true. A split of a binary attribute is then translated into ≤ 0.5 for false and > 0.5

for true.

Suppose transactions now, instead of the binary attribute Foreign, consist of one contin-

uously valued attribute Dif. avg., which represents the difference between the currently

transferred amount and the average amount transferred by that account. Assume there

is a (hard) boundary, where the value of Dif. avg. for legitimate transactions never

exceeds 12500, while illegitimate transactions always have a higher value.

4.2 Continuous values 43

Figure 4.2: The first decision boundary found for the continuously valued Dif. avg.

For as long as only one class of transactions is encountered, the system keeps undergoing

the same process as described in Section 4.1. Suppose at some point in time, the situation

depicted in Figure 4.2 presents itself, where the illegitimate transaction is encountered

last. The system will classify this wrongly, because it gives the default label ‘legitimate’,

just as in Section 4.1. The error component however prompts the system, or more

specifically the decision tree, to infer the boundary depicted:

Wrong and database Reevaluating responsible knowledge rules cannot be done, since

the error resulted from assigning the default label ‘legitimate’.

Dialogue A dialogue is initiated.

Turn P does a differentiate move. Finding rules includes fitting a decision tree, which

calculates the best split to be on the attribute Dif. avg. at value 20000+−10000
2 =

5000. The extraction procedure yields the knowledge rules Dif. avg. ≤ 5000 ⇒
legitimate and Dif. avg. > 5000 ⇒ illegitimate from the split. Both rules are

stored, because both are correct all the time. P proposes the rule Dif. avg. > 5000⇒
illegitimate.

Resolve The proposed rule is accepted and the database is limited to the illegitimate

transaction with Dif. avg. = 20000, because it constitutes ‘all transactions with Dif.

avg. > 5000’.

Turn O concedes because it is not allowed to play either move.

Notice that from this point forward, the decision boundary as depicted in Figure 4.2 is

maintained, which is described by the two inferred knowledge rules. However, since we

know the found boundary (5000) deviates from the true cutoff (12500), at some point

in time, a novel transaction will lead the system to an error. This novel transaction will

be legitimate, since it falls in the range < 5000, 12500] (classified as illegitimate because

44 Chapter 4 Illustrative cases

Figure 4.3: The second decision boundary found after making an error based on the
first boundary.

the value is higher than 5000, but actually legitimate because it is lower than or equal

to 12500). Suppose this legitimate transaction has the value 10000 for the Dif. avg.

attribute. This situation is depicted in Figure 4.3. Consider what happens during the

iteration in which the error is made:

2 The only applying rule is Dif. avg. > 5000 ⇒ illegitimate, so the label ‘ille-

gitimate’ is given to the novel transaction.

Error? The given label ‘illegitimate’ does not agree with the class ‘legitimate’.

Wrong and database Upon notification of the error, the system reassesses the single

applied rule, which turns out to be no longer useful, as the current database shows that

is incorrect half of the time. Consequently, that knowledge rule is deleted from the

database.

Dialogue A dialogue commences:

Turn During P’s turn, fitting a decision tree makes a new split at value 10000+20000
2 =

15000, yielding the rules Dif. avg. ≤ 15000 ⇒ legitimate and Dif. avg. >

15000⇒ illegitimate. Both rules are stored since they are always correct. The only

applicable rule left is Dif. avg. ≤ 15000⇒ legitimate, so P proposes its favourable

form Dif. avg. ≤ 15000⇒ illegitimate.

Resolve The proposal is accepted and the database is limited.

Turn O refutes the proposal, because the counter rule Dif. avg. ≤ 15000⇒ legitimate

is 100% accurate, which is much better than the proposed 0%.

Resolve The proposed rule is adapted to the counter rule. The database stays the

same, because a refute move is played.

Turn P concedes as it cannot refute the proposal, nor propose a distinction.

4.2 Continuous values 45

Figure 4.4: The third decision boundary found after the system made another error.

It can be seen that in this iteration the knowledge rule Dif. avg. > 5000⇒ illegitimate

is replaced in favour of Dif. avg. > 15000⇒ illegitimate. We know however that

this adjustment ‘overshot’ the true boundary of 12500. Therefore, eventually the system

might make another error. Figure 4.4 depicts such a moment in time. Suppose a novel

transaction contains Dif. avg. = 14000, which means it is illegitimate according to

the definition. Consider the response of the error component to this mistake:

Database The knowledge rule Dif. avg. ≤ 15000 ⇒ legitimate is solely respon-

sible for the error. The recalculated accuracy (89%) does not warrant it’s deletion

however.

Dialogue The dialogue in summary yields the additional rules Dif. avg. ≤ 13000⇒
legitimate and Dif. avg. > 13000⇒ illegitimate, in a similar fashion as earlier

dialogues.

The database now contains the knowledge rules:

1. Dif. avg. ≤ 5000⇒ legitimate

2. Dif. avg. ≤ 13000⇒ legitimate

3. Dif. avg. > 13000⇒ illegitimate

4. Dif. avg. ≤ 15000⇒ legitimate

5. Dif. avg. > 15000⇒ illegitimate

Arguably rule 1 and 5 have become obsolete, since rule 2 covers 1 already, while 3 covers

5. Deleting these seemingly obsolete rules would be fundamentally wrong though. For

one, knowing these rules are obsolete is based on the background knowledge that there

46 Chapter 4 Illustrative cases

exists a true boundary. In fact there might be ‘patches’ of each class within one attribute,

where multiple boundaries are required to differentiate the classes.

Also notice that a transaction with Dif. avg. = 14000 gives rise to conflict, because

rule 3 and 4 both apply, which have different classifications. Deleting the older rule would

however not be a viable solution. Shifting entire boundaries rather than reassessing rules

may have detrimental effects in the long run. Why this is the case, and also how the

system copes with ‘patches’ becomes apparent in the next example.

Before turning to the next example, it is worth mentioning that this example shows how

the system slowly converges to the true boundary. Every successive split made shifted

closer toward the true boundary.

4.3 Multiple (binary) attributes

Until now, we have assumed transactions consist of one attribute. However, transactions

do not consist of a single attribute. A more realistic example is one where every trans-

action has three fields, namely Foreign, Known and Night. Respectively meaning: the

recipient resides in a different country than the sender, the sender transferred money

to the recipient before and the transaction took place between 22:00 and 6:00 (time

zone of sender). Let illegitimate transactions be uniquely determined by the combi-

nation {Foreign = true, Known = false, Night = true}. Legitimate transactions

may take any (binary) value for these attributes, but never in this combination.

Figure 4.5: Example to show how multiple attributes are handled. The attributes
known and night are plotted against foreign. Note that the scattering of transactions

with the same combination of values is merely to aid visibility.

Since the processes are nearly identical as elaborated before, we’ll skip forward to a point

in time where all possible combinations for legitimate transactions have been populated

and an illegitimate one is encountered. For convenience of calculation, presume every

combination of values is encountered exactly once. This situation is depicted in Figure

4.5. The following dialogue initiated by the error component after wrongly classifying

the illegitimate transaction shows how the system recovers from its error:

4.3 Multiple (binary) attributes 47

Turn P can only differentiate. Fitting a decision tree with depth = 1 can split at any at-

tribute, since the quality of any split is equal. Assume a split is made at Foreign = 0.5,

yielding the rules Foreign ≤ 0.5 ⇒ legitimate and Foreign > 0.5 ⇒ legitimate.

Both rules are saved, since they respectively carry an accuracy of 100% and 75%. The

applying (counter) rule most in favour of P is Foreign > 0.5⇒ illegitimate with an

accuracy of 25%, which P therefore proposes.

Resolve Database is limited and the proposed rule becomes Foreign > 0.5⇒ illegitimate

Turn O refutes the proposal.

Resolve The proposed rule is adapted to Foreign > 0.5⇒ legitimate.

Turn P cannot refute, but proposes a further distinction. Fitting a decision tree on the

limited database yields the rules Known ≤ 0.5 ⇒ legitimate and Known > 0.5 ⇒
legitimate with respectively 50 and 100% accuracy. P proposes Known ≤ 0.5 ⇒
illegitimate with 50% accuracy.

Resolve The database is limited and the proposed rule becomes Foreign > 0.5 and

Known ≤ 0.5⇒ illegitimate.

Turn O cannot refute, because 50% is not better than 50%. Fitting a decision tree now

yields the rules Night ≤ 0.5⇒ legitimate and Night > 0.5⇒ illegitimate, both

with 100% accuracy. O proposes Night > 0.5⇒ legitimate with 0% accuracy.

Resolve Database is limited and the proposed rule becomes Foreign > 0.5 and Known

≤ 0.5 and Night > 0.5⇒ legitimate.

Turn P refutes.

Resolve The proposed rule is adapted to Foreign > 0.5 and Known ≤ 0.5 and Night

> 0.5⇒ illegitimate.

Turn O concedes.

Conclusion The label ‘illegitimate’ is proposed. The knowledge rule Foreign > 0.5

and Known ≤ 0.5 and Night > 0.5⇒ illegitimate is given as support and stored.

Storing the supportive knowledge rule makes the system make no errors anymore. Re-

member that only the rules Foreign ≤ 0.5 ⇒ legitimate and Foreign > 0.5 and

Known ≤ 0.5 and Night > 0.5 ⇒ illegitimate are saved. Nevertheless, once a

transaction is encountered on which neither rule applies, P will eventually lose, since

O can propose either the rule foreign > 0.5 and known > 0.5 -> legitimate or

foreign > 0.5 and night ≤ 0.5 -> legitimate, both of which are always correct.

48 Chapter 4 Illustrative cases

Hence the legitimate label is given, which is correct according to our definition, prompt-

ing storage of these association rules and eventually settling the system into a stable

solution.

This example is similar to the example from Section 4.1, with the exception that the

dialogue involves several steps. As such, the example may be extended to continuous

values and even noisy data. These extensions will not be discussed here for brevity.

4.4 Rules with utility

Until now we have ignored the role of utilities. The motivation behind storing a rule

or discarding it, depends on whether it is more useful to use it or not. In the previous

examples, a rule is stored whenever it is correct in over 50% of applying transactions.

Nevertheless, the utility of a rule encompasses more than just the prior likelihood: the

desirability of outcomes is also incorporated. As described in Section 3.3.5.1, the at-

tribute Amount is taken as a measure of how much impact a certain transaction has on

misclassifications.

To illustrate the impact of utility on the classification process, consider the following data

stream: Besides amount, transactions contain the binary attributes Foreign and Known

(with the same meaning as previously). Suppose the data is scattered as depicted in

Figure 4.6. The illegitimate transactions with Foreign = true have Amount = 50000,

while the illegitimate transactions with Known = true have Amount = 10000. Assume

the system already inferred the rules Foreign > 0.5⇒ illegitimate, Known > 0.5⇒
illegitimate and Foreign ≤ 0.5 and Known ≤ 0.5 ⇒ legitimate. The expected

utilities (EU) are respectively: {5000, 50000}, {5000, 10000} and {0, 5000}

Once a transaction with Foreign = true and Known = true is observed, we see the

impact of utility by running through (part of) the process once more:

Database Both illegitimate rules, Foreign > 0.5 ⇒ illegitimate and Known >

0.5⇒ illegitimate, apply.

2 There is no conflict, so the ‘best’ rule Foreign > 0.5 ⇒ illegitimate is applied.

This rule is considered the ‘best’ since its EU (50000−5000 = 45000) is highest (10000−
5000 = 5000, which is < 45000).

Suppose the novel transaction is indeed illegitimate and so are all future ones with the

same combination. In that case, the latter rule will always be given as support for the

4.4 Rules with utility 49

Figure 4.6: Data stream illustrating the effect of utility. Bigger fraud transactions
contain a higher value of the attribute amount. The scattering is merely for the sake of

visibility.

classification, rather than the ‘weaker’ rule Known > 0.5 ⇒ illegitimate, since its

expected utility is higher.

In contrast, if the transaction and all future ones with the same combination turn out

to be legitimate, utility will have an impact on the proposed and stored rules. Consider

the following dialogue after the erroneous label ‘illegitimate’ was given.

Dialogue commences

Turn and resolve P proposes the rule Foreign > 0.5 ⇒ illegitimate, since it is

still the strongest rule it may propose. Its expected utility is now 25000−5000 = 20000.

Turn and resolve O will propose the distinction Known > 0.5. The compound asso-

ciation rule Foreign > 0.5 and known > 0.5⇒ legitimate has EU = {0, 5000}.

Turn P cannot counter the proposed rule.

Conclusion O wins the argument and the label ‘legitimate’ is accredited, with the

association rule Foreign > 0.5 and known > 0.5 ⇒ legitimate as support. This

rule is also stored.

Another way in which utility may have effect is if the classes can no longer be perfectly

separated. Suppose there are also legitimate transactions with Foreign = true and

Known = false. Since the rule Foreign > 0.5 ⇒ illegitimate is less discriminate,

it can be calculated that its expected utility decreases (refer to Section 3.3.5.1). As a

50 Chapter 4 Illustrative cases

matter of fact, should the ratio between legitimate transactions with this combination

and illegitimate ones exceed 9:1, then considering all these cases as legitimate regardless

would prove less costly than checking all of them.

Chapter 5

Experimental setup

In this chapter the setup for the experiments is discussed, which allow an assessment

of the performance of the AGKA architecture. Section 5.1 summarises other machine

learning algorithms to compare AGKA’s performance to. These algorithms are inte-

grated into the AGKA architecture. How the integration is achieved is described in

Section 5.1.1. The chapter concludes with a discussion of the measures used to compare

the approaches (Section 5.2).

5.1 Methods of comparison

To assess AGKA’s performance, its accuracy is compared to several other machine learn-

ing algorithms.

All these algorithms have been limited to train on only the numerical attributes. This is

mainly due to several algorithms, such as KNN, only being able to cope with numerical

data. Incorporating categorical attributes would require defining some function(s) to

turn categorical values into numerals, which is theoretically debatable.

The algorithms used are:

Legitimate regardless (Dummy). Always proposes the label ‘legitimate’. Since a

vast majority of transactions is not illegitimate, an algorithm that is oblivious to

differences between both classes may still score very well.

k-Nearest neighbours (KNN) (Cover and Hart, 1967). KNN looks at the k data

points ‘closest’ to the current one. Whichever class is dominant inside the closest

neighbours is provided as classification.

51

52 Chapter 5 Experimental setup

Support vector machine (SVM) (Cortes and Vapnik, 1995). A support vector

machine works by finding boundaries or support vectors between classes. These

boundaries are made with as big a margin as possible. To do so, an SVM uses

kernels to increase the dimensionality within the data. The SVM used here is a

C-support SVM using a linear kernel.

CART (DT) (Breiman et al., 1984). Despite AGKA already using CART, a com-

parison with CART by itself is appropriate. Since AGKA uses (extracted) asso-

ciation rules stored in a database, a dialogue component as well as utilities, it is

useful to see whether these added components yield any advantages over CART

by itself.

Random forest (RF) (Breiman, 2001). Rather than using just one decision tree,

random forest is an ensemble method that utilises a multitude of decision trees to

provide classifications. The number of trees is set to 8.

Multi-layered perceptron (MLP) (Hinton, 1989). A neural network with three

hidden layers, each consisting of 10 units. The activation function used is a rectified

linear unit function (f(x) = max(0, x)) and ‘adam’, a stochastic gradient-based

optimizer, is used for the weights (Kingma and Ba, 2014).

5.1.1 Integration into AGKA

Instead of replacing the entire AGKA architecture, only the classification part is replaced

by a machine learning algorithm. Specifically the dialogue component is replaced entirely

by the machine learning component, which constitutes one of the previous machine

learning algorithms (Section 5.1) without rule extraction. Whenever a transaction is

presented to the system, a fitted model of the algorithm in question is consulted to

predict the class. If a model does not exist yet, one is fit on the existing database. If

that fails, the default label ‘legitimate’ is proposed. Whenever an error is made, the

model is refit on the entire database at that point.

This modification allows the described machine learning algorithms to operate on a

stream, despite being intended to operate on data sets.

5.2 Measures of performance

To assess the performance of the algorithms used, two measures of performance are

recorded that allow a comparison between all algorithms. The first, accuracy (Section

5.2 Measures of performance 53

Class
Legitimate Illegitimate

Label Legitimate True negative (tn) False negative (fn)

Illegitimate False positive (fp) True positive (tp)

Table 5.1: Confusion matrix to show the performance of an algorithm.

5.2.1), simply shows how often an algorithm is correct or not. As such, the first mea-

sure assesses classification performance. Such a measure is insufficient, because in this

experiment costs are also included. The second measure, costs incurred (Section 5.2.2),

is a way to assess the cost-effectiveness of a system. That is, how much money is lost

due to illegitimate behaviour and verification?

Lastly, since the streams adhere to pre-defined rules, the measure inferred rules described

in Section 5.2.3, is devised to assess the efficacy in finding those rules back. However,

only AGKA explicitly extracts rules, so this measure can only be given for AGKA and

not for the algorithms used for comparison.

5.2.1 Accuracy

To assess the classification performance of an algorithm, the accuracy is used. The

accuracy is given both as a percentage and a confusion matrix. The confusion matrix

displays counts in every cell as in Table 5.1.

The accuracy in percentages can be calculated from the confusion matrix using Equation

5.1.

accuracy =
tn+ tp

tn+ fn+ fp+ tp
· 100% (5.1)

5.2.2 Costs incurred

To measure how cost-effective an algorithm is, the costs incurred are also recorded.

Costs are incurred whenever either one of two situations occurs (Section 3.3.5.1):

1. A transaction is flagged for verification.

2. A transaction was illegitimate, but not flagged as such.

Respectively, these situations incur a cost of κ and λ. These costs are summed and

displayed after every run. A lower number is better, because it means the system

proved to be less costly in operation.

54 Chapter 5 Experimental setup

5.2.3 Inferred rules

In order to assess whether the system is capable of finding back the rules present in

the stream, the rules found by the system are also listed. The listed rules are those

contained in the database component 3.3.1 at the end of a run. The top ten rules of

both categories are listed.

Note that assessing whether the inferred rules resemble the patterns in the data is

subjective. For this reason, this measure is merely given as reference. Whether the

performance actually performs ‘well’ in this respect is left for the discussion.

5.3 Simulated data streams

In order to assess whether the system is capable of discerning explicit patterns that the

data conforms to, data streams are simulated with a resemblance to actual transactions.

The simulated data streams adhere to pre-defined rules, governing what and how in-

stances are generated. Specifically the data generation rules define the value range for

every field of a transaction. A formal description, as well as the procedure of application,

of these rules is given in Section 3.2.2 and Section 3.2.3. Using such a method for data

generation ensures that certain ‘typical’ fraudulent patterns can be specified and tried.

The data generation rules are contained in three categories: general, legitimate and

illegitimate. The first, general, applies to all instances. Since these are applied first

however, certain affected fields can be overridden by more specific rules of the latter

categories. The several simulated test streams for assessing performance of the system

have different rules in these three categories. The rule sets used for every test stream

are specified in Section 5.3.1.

5.3.1 Test streams

Five test streams are devised to assess whether the system is capable of finding the

rule(s) governing whether or not a transaction is legitimate or not.

Since the data generation rules in the general category are common across all test

streams, these general rules are first summarised in Section 5.3.2. Subsequent sections

describe one test stream each. These test streams follow a similar set-up as used for

Section 4 and therefore present successively harder classification problems.

5.3 Simulated data streams 55

5.3.2 Shared settings

All test streams share a number of settings that affect how the stream is generated. This

section lists all shared settings. Where specific test streams deviate from this general

setup, that is mentioned explicitly in the description of that test stream.

First of all, the stream parameters are fixed to the following default values:

i max 100000 (one hundred thousand)

pil 0.001 (one in a thousand)

tps 100

n prof 25

Beside the stream parameters, the data generation rules in the general category are also

shared among test streams. The shared data generation rules are summarised in Table

5.2.

Rule Distribution Probability

Sender ⇒ none profile p = 0
Receiver ⇒ none profile p = 0
Pre-balance ⇒ (µ = 100000, σ = 20000) normal p = 1
Amount ⇒ (a = 10000, b = 100000) uniform p = 1
Known ⇒ true Boolean p = 0.9
Foreign ⇒ true Boolean p = 0.1

Table 5.2: Data generation rules from the general category that are shared among all
test streams.

The profile rules require clarification. Essentially these rules specify that random profiles

are picked for both the sender and recipient. Since the probability is set to p = 0,

alternative values are sampled for these rules. That means a profile is sampled that does

not appear in the consequence, which is none. Since all profiles are different from none,

any (random) profile may be picked.

5.3.3 Binary decision

The first test stream presents the binary decision problem as described in Section 4.1 to

the system. This means that the association rule Foreign = true ⇒ illegitimate,

as well as its contraposition Foreign = false ⇒ legitimate, hold in the stream.

The data generation rules defined for this stream are given in Table 5.3.

56 Chapter 5 Experimental setup

Category Rule Distribution Probability

Legitimate Foreign ⇒ false Boolean 1

Illegitimate Foreign ⇒ true Boolean 1

Table 5.3: Data generation rules per category for the binary decision stream.

5.3.4 Combination of binary attributes

Illegitimate transactions in this stream adhere to a specific combination of variable -

value pairs, namely Foreign = true AND previous Foreign = false AND Known =

false. Legitimate transactions can have any Boolean value for these fields, but never

such that the combination holds. The presence of this combination makes this test

stream more difficult than the previous one, because no field by itself is sufficient for

solving the classification problem.

Category Rule Distribution Probability

Legitimate previous Foreign ⇒ true Boolean 0.2

Foreign ⇒ true Boolean 1
Illegitimate previous Foreign ⇒ false Boolean 1

Known ⇒ false Boolean 1

Table 5.4: Data generation rules defined for the combination of binary attributes
stream.

5.3.5 Continuous attribute

In previous streams illegitimate transactions may be discerned based on Boolean at-

tributes. In this stream, the class to which a transaction belongs is decided by a cut-off

in a continuous variable. The balance on the sender’s account after fulfilling the trans-

action (Post-balance) is higher than -10000 for legitimate, but lower for illegitimate

transactions.

Category Rule Distribution Probability

Legitimate Post-balance ⇒ (a = −5000, b = 2000000) uniform 1

Illegitimate Post-balance ⇒ (a = −1000000, b = −15000) uniform 1

Table 5.5: Data generation rules per category for the continuous attribute stream.
Illegitimate transactions can be singled out based on a cut-off (-10000) in a continuous

attribute (Post-balance).

5.3.6 Continuous attribute with overlap

In this test stream legitimate and illegitimate transactions can no longer be uniquely

determined. That is, the classes can only be discerned by one field, whose value is

5.3 Simulated data streams 57

Figure 5.1: Distributions of values for the post-balance field in the continuous at-
tribute stream, based on class. Notice that a ‘gap’ of values exists between both distri-

butions, allowing the distributions to be perfectly separated.

Figure 5.2: Distributions of values for the post-balance field in the continuous at-
tribute with overlap stream, based on class.

normally distributed in such a way that the distributions of both classes exhibit an

overlap.

The field Post-Balance is normally distributed with (µ = 50000, σ = 20000) for legiti-

mate and (µ = −10000, σ = 10000) for illegitimate transactions.

Category Rule Distribution Probability

Legitimate Post-balance ⇒ (µ = 50000, σ = 20000) normal 1

Illegitimate Post-balance ⇒ (µ = −10000, σ = 10000) normal 1

Table 5.6: Data generation rules per category for the continuous attribute with over-
lap stream.

58 Chapter 5 Experimental setup

5.3.7 Use of utility

To show how utilities affect the system, this stream is devised such that illegitimate

transactions may easily be discerned, but it is not worthwhile to actually investigate

illegitimate cases. Put differently, it costs more to retrieve the money than it costs to

consider it lost.

This stream is the same as that describe in Section 5.3.3, with the addition that il-

legitimate rules are not worth investigating. This addition is realised by adding the

data generation rule Amount ⇒ 10 in the illegitimate category. In summary, the data

generation rules for this stream are:

Category Rule Distribution Probability

Legitimate Foreign ⇒ false Boolean 1

Illegitimate Foreign ⇒ true Boolean 1
Amount ⇒ 10 categorical 1

Table 5.7: Data generation rules per category for the utility stream.

5.3.8 Repetitive streams

To ensure all algorithms receive the same stream of data to classify on, first a stream

of transactions is generated. After generating max i transactions, one instance of the

resulting database of transactions is saved. This database is then used for all algorithms,

where the transactions are offered in the same sequential order. By offering each data

stream in this format, the results obtained from each algorithm may be compared.

5.4 Benefits data

Another set of data used to assess AGKA’s performance is the fictional benefits data

as utilised in (Wardeh et al., 2009). This data set may be downloaded from http:

//www.csc.liv.ac.uk/~maya/PADUA/testcases.zip. Since this data also adheres to

pre-defined rules, it can be used to evaluate the AGKA architecture on its capability of

inferring those rules. The set consists of 35851 observations (proponent and opponent

combined) with 11 attributes each. Since proponent and opponent contain duplicate

observations (cases known to both parties), these duplicate entries are filtered, leaving

3371 observations.

The 11 attributes contained in every observation, as well as their range of values and

their respective meanings can be found in Table 5.8 (For a more detailed description of

http://www.csc.liv.ac.uk/~maya/PADUA/testcases.zip
http://www.csc.liv.ac.uk/~maya/PADUA/testcases.zip

5.4 Benefits data 59

Attribute Value Meaning

Gender 1 male
2 female

3 age < 60
4 ≤ 60 age < 65

Age 5 ≤ 65 age < 75
6 ≤ 75 age < 80
7 age ≥ 80

8 UK
Residency 9 armed forces

10 merchant navy
11 diplomatic services

12 < 15
Income 13 < 20

14 < 25
15 ≥ 25

16 < 2000
Capital 17 < 3000

18 < 4000
19 ≥ 4000

Contribution Year1 20 paid
21 not paid

Contribution Year2 22 paid
23 not paid

Contribution Year3 24 paid
25 not paid

Contribution Year4 26 paid
27 not paid

Contribution Year5 28 paid
29 not paid

CLASS 30 not entitled
31 entitled

Table 5.8: The 11 attributes found in every observation of the housing benefits data
set. The range of (numerical) values every attribute may take are displayed, including

their respective meaning.

the attributes and the pre-defined rules, consult (Wardeh et al., 2009) or (Bench-Capon,

1993)).

Two modifications to this data set are required before presenting it to AGKA. First

of all an ‘amount’ attribute is added to each observation, which is set to the constant

10000. The attribute CLASS is regarded as ‘label’, with its values ‘not entitled’ and

‘entitled’ turned into respectively ‘illegitimate’ and ‘legitimate’.

A second modification is that the data set is offered as a stream. To do so, all obser-

vations are presented in the same sequential order until all have been presented to the

system.

60 Chapter 5 Experimental setup

Since the attributes are numerical values already, all algorithms may readily be applied

on the set. The accuracy results obtained (Section 5.2.1) are used to compare AGKA’s

performance to the other algorithms. Note that the incurred costs measure is not used

in the comparison. The original set is not designed to incorporate a cost measure, which

makes a comparison based on the costs measure inappropriate.

Chapter 6

Results

The system is evaluated on five simulated data streams (Section 6.1), which are defined

by the rules given in Section 5.3.1. Each of the subsections (Sections 6.1.1 through 6.1.5)

display detailed results from each test stream. The last subsection (Section 6.1.6) lists

all knowledge rules inferred by AGKA on every stream.

The system is also evaluated on the benefits data set used for PADUA, as described in

Section 5.4. Results obtained from this set are given in Section 6.2.

6.1 Simulated data streams

Table 6.1 summarises the accuracy of every classifier on each of the five test streams.

The highest accuracy obtained within a stream is emphasised.

For every stream the two shared performance measures described in Section 5.2, accuracy

and incurred costs are provided. Section 6.1.6 reports the rules inferred by AGKA per

stream.

Classifier Binary Combination Continuous Overlap Utility

AGKA 99.99 % 99.82 % 99.99 % 99.74 % 99.89 %
DT 99.99 % 99.99 % 99.99 % 99.83 % 99.99 %
Dummy 99.90 % 99.90 % 99.91 % 99.89 % 99.89 %
KNN 99.90 % 99.90 % 99.99 % 99.88 % 99.98 %
MLP 99.90 % 99.90 % 99.98 % 99.88 % 99.99 %
RF 99.99 % 99.98 % 99.99 % 99.87 % 99.99 %
SVM 99.90 % 99.90 % 99.99 % 99.88 % 99.99 %

Table 6.1: Accuracy of all classifiers on all test streams, rounded down to two deci-
mals. The highest accuracy on every stream are displayed in bold.

61

62 Chapter 6 Results

6.1.1 Binary decision

The binary decision data stream allows illegitimate transactions to be discerned from

legitimate ones based on the value of one binary attribute. Table 6.2 lists the confusion

matrices of all tested classifiers on this data stream. Table 6.3 lists the costs incurred

by each classifier.

classification
truth legitimate illegitimate

legitimate 99899 4

illegitimate 1 96

(a) AGKA

classification
truth legitimate illegitimate

legitimate 99903 0

illegitimate 1 96

(b) DT

classification
truth legitimate illegitimate

legitimate 99903 0

illegitimate 97 0

(c) Dummy

classification
truth legitimate illegitimate

legitimate 99903 0

illegitimate 97 0

(d) KNN

classification
truth legitimate illegitimate

legitimate 99903 0

illegitimate 97 0

(e) MLP

classification
truth legitimate illegitimate

legitimate 99903 0

illegitimate 3 94

(f) RF

classification
truth legitimate illegitimate

legitimate 99903 0

illegitimate 97 0

(g) SVM

Table 6.2: Confusion matrices for all classifiers on the binary decision data stream.

Incurred costs
Verification Lost Total

AGKA 500000 89730 589730
DT 480000 89730 569730
Dummy 0 4821514 4821514

Classifier KNN 0 4821514 4821514
MLP 0 4821514 4821514
RF 470000 183689 653689
SVM 0 4821514 4821514

Table 6.3: Incurred costs for the binary decision data stream.

6.1.2 Combination of binary attributes

The combination of binary attributes stream allows illegitimate transactions to be recog-

nised by a combination of values of three attributes. Table 6.4 lists the confusion matrices

6.1 Simulated data streams 63

of all tested classifiers on this data stream. Table 6.5 lists the costs incurred by each

classifier.

classification
truth legitimate illegitimate

legitimate 99733 171

illegitimate 5 91

(a) AGKA

classification
truth legitimate illegitimate

legitimate 99904 0

illegitimate 2 94

(b) DT

classification
truth legitimate illegitimate

legitimate 99904 0

illegitimate 96 0

(c) Dummy

classification
truth legitimate illegitimate

legitimate 99904 0

illegitimate 96 0

(d) KNN

classification
truth legitimate illegitimate

legitimate 99903 1

illegitimate 96 0

(e) MLP

classification
truth legitimate illegitimate

legitimate 99903 0

illegitimate 10 86

(f) RF

classification
truth legitimate illegitimate

legitimate 99903 1

illegitimate 96 0

(g) SVM

Table 6.4: Confusion matrices for all classifiers on the combination of binary attributes
data stream.

Incurred costs
Verification Lost Total

AGKA 1310000 238298 1548298
DT 470000 158791 628791
Dummy 0 5209862 5209862

Classifier KNN 0 5209862 5209862
MLP 5000 5209862 5214862
RF 440000 375500 815000
SVM 5000 5209862 5214862

Table 6.5: Incurred costs for the combination of binary attributes data stream.

6.1.3 Continuous attribute

The continuous attribute stream allows illegitimate transactions to be discerned based

on one attribute that can take on a range of values. Table 6.6 lists the confusion matrices

of all tested classifiers on this data stream. Table 6.7 lists the costs incurred by each

classifier.

64 Chapter 6 Results

classification
truth legitimate illegitimate

legitimate 99906 4

illegitimate 3 87

(a) AGKA

classification
truth legitimate illegitimate

legitimate 99910 0

illegitimate 3 87

(b) DT

classification
truth legitimate illegitimate

legitimate 99910 0

illegitimate 90 0

(c) Dummy

classification
truth legitimate illegitimate

legitimate 99910 0

illegitimate 7 83

(d) KNN

classification
truth legitimate illegitimate

legitimate 99901 8

illegitimate 3 87

(e) MLP

classification
truth legitimate illegitimate

legitimate 99910 0

illegitimate 4 86

(f) RF

classification
truth legitimate illegitimate

legitimate 99910 0

illegitimate 4 86

(g) SVM

Table 6.6: Confusion matrices for all classifiers on the continuous attribute data
stream.

Incurred costs
Verification Lost Total

AGKA 455000 183007 638007
DT 435000 183007 618007
Dummy 0 4979850 4979850

Classifier KNN 415000 431138 846138
MLP 475000 231116 706116
RF 430000 282365 712365
SVM 430000 193401 623401

Table 6.7: Incurred costs for the continuous attribute data stream.

6.1.4 Continuous attribute with overlap

Just as the continuous attribute stream, the continuous attribute with overlap stream

allows a distinction of illegitimate transactions based on an attribute that could take on

a range of values. For this stream however, no perfect distinction between legitimate

and illegitimate can be made based solely on this attribute, since values from both

distributions show overlap. Table 6.8 lists the confusion matrices of all tested classifiers

on this data stream. Table 6.9 lists the costs incurred by each classifier.

6.1 Simulated data streams 65

classification
truth legitimate illegitimate

legitimate 99730 167

illegitimate 87 16

(a) AGKA

classification
truth legitimate illegitimate

legitimate 99817 80

illegitimate 81 22

(b) DT

classification
truth legitimate illegitimate

legitimate 99897 0

illegitimate 103 0

(c) Dummy

classification
truth legitimate illegitimate

legitimate 99870 27

illegitimate 87 16

(d) KNN

classification
truth legitimate illegitimate

legitimate 99887 10

illegitimate 102 1

(e) MLP

classification
truth legitimate illegitimate

legitimate 99856 41

illegitimate 82 21

(f) RF

classification
truth legitimate illegitimate

legitimate 99873 24

illegitimate 93 10

(g) SVM

Table 6.8: Confusion matrices for all classifiers on the continuous attribute with
overlap data stream

Incurred costs
Verification Lost Total

AGKA 915000 5124790 6039790
DT 510000 4892003 5402003
Dummy 0 6102071 6102071

Classifier KNN 215000 5063592 5278592
MLP 55000 6033588 6088588
RF 310000 4814295 5124295
SVM 170000 5825780 5995780

Table 6.9: Incurred costs for the continuous attribute with overlap data stream.

6.1.5 Use of utility

The use of utility stream allows a distinction between legitimate and illegitimate trans-

actions based on a binary attribute. However, every illegitimate transaction is not worth

an investigation. Table 6.10 lists the confusion matrices of all tested classifiers on this

data stream. Table 6.11 lists the costs incurred by each classifier.

66 Chapter 6 Results

classification
truth legitimate illegitimate

legitimate 99891 0

illegitimate 109 0

(a) AGKA

classification
truth legitimate illegitimate

legitimate 99891 0

illegitimate 1 108

(b) DT

classification
truth legitimate illegitimate

legitimate 99891 0

illegitimate 109 0

(c) Dummy

classification
truth legitimate illegitimate

legitimate 99891 0

illegitimate 20 89

(d) KNN

classification
truth legitimate illegitimate

legitimate 99891 0

illegitimate 7 102

(e) MLP

classification
truth legitimate illegitimate

legitimate 99891 0

illegitimate 1 108

(f) RF

classification
truth legitimate illegitimate

legitimate 99891 0

illegitimate 3 106

(g) SVM

Table 6.10: Confusion matrices for all classifiers on the utility data stream.

Incurred costs
Verification Lost Total

AGKA 0 1090 1090
DT 540000 10 540010
Dummy 0 1090 1090

Classifier KNN 445000 200 445200
MLP 510000 70 510070
RF 540000 10 540010
SVM 530000 30 530030

Table 6.11: Incurred costs for the utility data stream.

6.1.6 Extracted rules

Tables 6.12 through 6.16 list all knowledge rules inferred by AGKA on each data stream.

6.1 Simulated data streams 67

Category Rule (condition) P Costs (apply, ignore)

foreign > 0.5 1 (5000.0, 89730.0)
Illegitimate receiver name == Mr. Daniel Caulfield and

sender name == Mr. Bart Humbleton
0.25 (5000.0, 22432.5)

time == 00:06:12 and receiver name == Mr.
Daniel Caulfield

0.2 (5000.0, 17946.0)

time == 00:06:12 and post-balance >
61834.0

1 (0.0, 5000.0)

time == 00:06:12 and pre-balance ≤
113164.0

1 (0.0, 5000.0)

time == 00:06:12 and amount ≤ 79082.0 1 (0.0, 5000.0)
sender name == Mr. Bart Humbleton and
foreign ≤ 0.5

1 (0.0, 5000.0)

receiver name == Mr. Daniel Caulfield and
sender name == Mr. Bart Humbleton and
foreign ≤ 0.5

1 (0.0, 5000.0)

Legitimate time == 00:06:12 and receiver name == Sir
Michael Verheij

1 (0.0, 5000.0)

time == 00:06:12 and foreign ≤ 0.5 1 (0.0, 5000.0)
foreign ≤ 0.5 1 (0.0, 5000.0)
receiver name == Mr. Daniel Caulfield and
foreign ≤ 0.5

1 (0.0, 5000.0)

time == 00:06:12 and pre-balance ≤
118580.0

1 (0.0, 5000.0)

Table 6.12: Knowledge rules inferred for the binary decision data stream.

68 Chapter 6 Results

Category Rule (condition) P Costs (apply, ignore)

foreign > 0.5 and known ≤ 0.5 and
prev foreign ≤ 0.5

1 (5000.0, 47659.6)

foreign > 0.5 and time == 00:02:55 and re-
ceiver name == Mrs. Betty Cashalot

0.33 (5000.0, 30787.0)

foreign > 0.5 and time == 00:01:47 and re-
ceiver name == Sir Daniel Ferguson

0.5 (5000.0, 35076.5)

foreign > 0.5 and time == 00:06:38 and
post-balance ≤ −3499.0

0.33 (5000.0, 30774.0)

Illegitimate foreign > 0.5 and time == 00:08:26 and
sender account == PO51MINE8234629224

0.5 (5000.0, 43029.0)

time == 00:12:21 and receiver name ==
Mrs. Betty Cashalot

0.5 (5000.0, 36306.0)

foreign > 0.5 and time == 00:15:53 and
post-balance > 81377.5

0.5 (5000.0, 15890.0)

foreign > 0.5 and receiver name == Sir Jack
Caulfield and post-balance ≤ −33324.5

0.33 (5000.0, 29668.0)

foreign > 0.5 and time == 00:08:37 and
sender account == AA13BANK5957501967

0.33 (5000.0, 11173.67)

foreign > 0.5 and known ≤ 0.5 and time ==
00:07:12

0.33 (5000.0, 26924.67)

time == 00:04:19 and pre-balance ≤
111378.5

1 (0.0, 5000.0)

time == 00:07:09 and foreign ≤ 0.5 1 (0.0, 5000.0)
time == 00:04:19 and receiver name == Sir
Ferdinand Bond

1 (0.0, 5000.0)

time == 00:12:51 and sender account ==
XX68LOVE6635409499

1 (0.0, 5000.0)

Legitimate time == 00:12:51 and known > 0.5 1 (0.0, 5000.0)
time == 00:12:51 and prev foreign > 0.5 1 (0.0, 5000.0)
time == 00:12:51 and pre-balance >
83525.0

1 (0.0, 5000.0)

time == 00:12:51 and post-balance >
15711.0

1 (0.0, 5000.0)

time == 00:04:19 and known > 0.5 1 (0.0, 5000.0)
foreign ≤ 0.5 1 (0.0, 5000.0)

Table 6.13: Knowledge rules inferred for the combination of binary attributes data
stream.

6.1 Simulated data streams 69

Category Rule (condition) P Costs (apply, ignore)

post-balance ≤ −351815.5 1 (5000.0, 42093.0)
post-balance ≤ −36590.5 1 (5000.0, 49430.5)
pre-balance ≤ 6342.0 1 (5000.0, 49430.5)
post-balance ≤ −36832.0 1 (5000.0, 37586.0)

Illegitimate pre-balance ≤ −398.5 1 (5000.0, 47106.0)
post-balance ≤ −14385.0 1 (5000.0, 58369.75)
post-balance ≤ −14411.0 1 (5000.0, 59153.33)
post-balance ≤ −10293.0 1 (5000.0, 61211.22)
time == 00:01:41 and sender name == Sir
Warren Janssen

0.5 (5000.0, 42073.0)

time == 00:16:21 and sender name == Ms.
Lucy Bond and post-balance > 352836.5

1 (0.0, 5000.0)

time == 00:01:41 and receiver account ==
ZZ34FAST5483087747

1 (0.0, 5000.0)

time == 00:16:21 and receiver account ==
NL47PLAN7189721687 and known ≤ 0.5

1 (0.0, 5000.0)

time == 00:16:21 and post-balance >
98262.5

1 (0.0, 5000.0)

Legitimate time == 00:16:21 and pre-balance >
133447.5

1 (0.0, 5000.0)

time == 00:01:41 and pre-balance >
580279.5

1 (0.0, 5000.0)

time == 00:01:41 and post-balance >
490184.0

1 (0.0, 5000.0)

time == 00:01:41 and pre-balance >
62338.0

1 (0.0, 5000.0)

post-balance > −14385.0 1 (0.0, 5000.0)
post-balance > −14411.0 1 (0.0, 5000.0)

Table 6.14: Knowledge rules inferred for the continuous attribute data stream.

70 Chapter 6 Results

Category Rule (condition) P Costs (apply, ignore)

time == 00:13:13 and post-balance ≤
6701.5

1 (5000.0, 72553.0)

time == 00:06:14 and post-balance ≤
1984.5

1 (5000.0, 77394.0)

time == 00:04:38 and post-balance ≤
2046.5

1 (5000.0, 48640.0)

time == 00:03:59 and post-balance ≤
7788.5

1 (5000.0, 64902.0)

Illegitimate time == 00:02:14 and post-balance ≤
2170.0

0.5 (5000.0, 46881.5)

time == 00:06:00 and post-balance ≤
1721.0

1 (5000.0, 59589.0)

time == 00:01:45 and post-balance ≤
−7676.0

1 (5000.0, 68875.0)

time == 00:11:19 and post-balance ≤
2834.0

1 (5000.0, 60613.0)

time == 00:08:50 and post-balance ≤
5162.5

1 (5000.0, 63473.0)

time == 00:03:12 and foreign > 0.5 0.5 (5000.0, 27370.0)

time == 00:05:45 and pre-balance >
61518.5

1 (0.0, 5000.0)

time == 00:05:45 and post-balance >
−11500.5

1 (0.0, 5000.0)

time == 00:15:13 and pre-balance >
52862.5

1 (0.0, 5000.0)

time == 00:15:13 and post-balance >
7852.0

1 (0.0, 5000.0)

Legitimate time == 00:08:07 and pre-balance >
88288.0

1 (0.0, 5000.0)

post-balance ≤ −4659.5 and time ==
00:05:38

1 (0.0, 5000.0)

time == 00:08:07 and pre-balance >
74546.0

1 (0.0, 5000.0)

time == 00:08:07 and amount ≤ 57188.5 1 (0.0, 5000.0)
post-balance ≤ −14382.0 and time ==
00:06:23

1 (0.0, 5000.0)

post-balance ≤ −14382.0 and time ==
00:08:42

1 (0.0, 5000.0)

Table 6.15: Knowledge rules inferred for the continuous attribute with overlap data
stream.

6.1 Simulated data streams 71

Category Rule (condition) P Costs (apply, ignore)

Illegitimate None - -

foreign ≤ 0.5 1 (0.0, 5000.0)
amount > 5036.5 1 (0.0, 5000.0)

Legitimate amount > 5026.0 1 (0.0, 5000.0)
amount > 5007.0 1 (0.0, 5000.0)
amount > 5006.0 1 (0.0, 5000.0)
amount > 5005.0 1 (0.0, 5000.0)

Table 6.16: Knowledge rules inferred for the utility data stream.

72 Chapter 6 Results

Classifier Accuracy

AGKA 97.09 %
DT 98.22 %
Dummy 26.22 %
KNN 90.09 %
MLP 65.02 %
RF 96.79 %

Table 6.17: Accuracy of every classifier on the benefits data set. The highest accuracy
is emphasised. The SVM classifier is excluded since its excessive run time does not allow

it to finish classifying the set timely.

6.2 Benefits data

The classifiers used for the streams are also applied to the benefits data set. One

exception is that the SVM classifier is excluded, due to excessive run time on the set

(not being able to process 1000 transactions within one day of processor time).

Table 6.17 summarises the accuracy in percentages of all classifiers on the benefits data

set. The respective confusion matrices for every classifier are listed in Table 6.18. The

knowledge rules inferred by AGKA are summarised in Table 6.19.

classification
truth legitimate illegitimate

legitimate 871 13

illegitimate 85 2402

(a) AGKA

classification
truth legitimate illegitimate

legitimate 859 25

illegitimate 35 2452

(b) DT

classification
truth legitimate illegitimate

legitimate 884 0

illegitimate 2487 0

(c) Dummy

classification
truth legitimate illegitimate

legitimate 835 49

illegitimate 285 2202

(d) KNN

classification
truth legitimate illegitimate

legitimate 238 646

illegitimate 533 1954

(e) MLP

classification
truth legitimate illegitimate

legitimate 837 47

illegitimate 61 2426

(f) RF

Table 6.18: Confusion matrices for all classifiers, except SVM, on the benefits data
set.

6.2 Benefits data 73

Category Rule (condition) P Costs (apply, ignore)

Capital > 17.5 1 (5000.0, 10000.0)

Residency ≤ 8.5 and Capital > 17.5 1 (5000.0, 10000.0)

Capital ≤ 17.5 and Residency > 8.5 and

Residency ≤ 9.5 and Contr y4 > 26.5 and

Age ≤ 3.5

1 (5000.0, 10000.0)

Residency > 8.5 and Age ≤ 5.5 and Age

≤ 3.5

1 (5000.0, 10000.0)

Illegitimate Residency > 8.5 and Age > 3.5 and Age ≤
5.5 and Contr y4 > 26.5 and Income > 13.5

1 (5000.0, 10000.0)

(Not entitled) Capital≤ 17.5 and Residency> 8.5 and Age

> 3.5 and Residency ≤ 9.5 and Income >

13.5

1 (5000.0, 10000.0)

Age ≤ 3.5 1 (5000.0, 10000.0)

Gender ≤ 1.5 and Capital ≤ 16.5 and Age

≤ 4.0

1 (5000.0, 10000.0)

Capital ≤ 17.5 and Age > 3.5 and Contr y2

> 22.5 and Income ≤ 13.5 and Residency

> 9.5

1 (5000.0, 10000.0)

Income > 13.5 1 (5000.0, 10000.0)

Residency ≤ 9.5 and Capital ≤ 17.5 and In-

come ≤ 13.5 and Age > 3.5 and Contr y2

> 22.5 and Age > 4.5 and Contr y5 ≤ 28.5

and Contr y1 ≤ 20.5 and Contr y4 > 26.5

and Contr y3 > 24.5

1 (0.0, 5000.0)

Residency ≤ 9.5 and Capital ≤ 17.5 and In-

come ≤ 13.5 and Age > 3.5 and Contr y2

≤ 22.5 and Contr y5 ≤ 28.5 and Contr y3

> 24.5 and Contr y1 > 20.5 and Contr y4

> 26.5 and Age ≤ 4.5 and Gender > 1.5

1 (0.0, 5000.0)

Capital ≤ 17.5 and Residency ≤ 9.5 and In-

come ≤ 13.5 and Age > 3.5 and Contr y5

≤ 28.5 and Contr y2 > 22.5 and Contr y1

> 20.5 and Age > 4.5 and Contr y3 > 24.5

1 (0.0, 5000.0)

Continued on next page

Table 6.19: Knowledge rules inferred from the benefits data set.

74 Chapter 6 Results

Table 6.19 – Continued from previous page

Category Rule (condition) P Costs (apply, ignore)

Residency ≤ 9.5 and Capital ≤ 17.5 and In-

come ≤ 13.5 and Age > 3.5 and Contr y5

> 28.5 and Age > 4.5 and Contr y4 > 26.5

and Contr y1 ≤ 20.5 and Contr y2 ≤ 22.5

and Contr y3 > 24.5

1 (0.0, 5000.0)

Legitimate Residency ≤ 9.5 and Capital ≤ 17.5 and In-

come ≤ 13.5 and Age > 3.5 and Contr y5

> 28.5 and Age > 4.5 and Contr y4 > 26.5

and Contr y1 ≤ 20.5 and Contr y2 > 22.5

1 (0.0, 5000.0)

(Entitled) Income ≤ 13.5 and Capital ≤ 17.5 and Res-

idency ≤ 9.5 and Age > 3.5 and Contr y5

≤ 28.5 and Contr y2 > 22.5 and Contr y1

> 20.5 and Age > 4.5 and Contr y4 > 26.5

1 (0.0, 5000.0)

Income ≤ 13.5 and Capital ≤ 17.5 and Res-

idency ≤ 9.5 and Age > 3.5 and Contr y5

≤ 28.5 and Contr y2 ≤ 22.5 and Contr y3

> 24.5 and Contr y1 > 20.5 and Contr y4

> 26.5 and Age > 4.5

1 (0.0, 5000.0)

Income ≤ 13.5 and Capital ≤ 17.5 and Res-

idency ≤ 9.5 and Age > 3.5 and Contr y5

> 28.5 and Age > 4.5 and Contr y4 ≤ 26.5

and Contr y3 ≤ 24.5 and Contr y1 > 20.5

and Contr y2 > 22.5

1 (0.0, 5000.0)

Capital ≤ 17.5 and Income ≤ 13.5 and Res-

idency ≤ 9.5 and Age > 3.5 and Contr y5

> 28.5 and Age > 4.5 and Contr y4 ≤ 26.5

and Contr y1 ≤ 20.5 and Contr y3 > 24.5

and Contr y2 > 22.5

1 (0.0, 5000.0)

Capital ≤ 17.5 and Income ≤ 13.5 and Res-

idency ≤ 9.5 and Age > 3.5 and Contr y5

> 28.5 and Age > 4.5 and Contr y4 > 26.5

and Contr y2 ≤ 22.5 and Contr y1 > 20.5

1 (0.0, 5000.0)

Table 6.19: Knowledge rules inferred from the benefits data set.

Chapter 7

Discussion

In this chapter first an analysis of the obtained results is provided (Section 7.1). Section

7.2 discusses the implications of the analysis. Section 7.3 mentions some aspects in which

improvements can be made. Lastly, section 7.4 describes how the findings are relevant

in a research perspective, as well as for practical applications.

7.1 Analysis

In this section the performances of the classifiers on the test streams are analysed,

according to the two comparison measurements accuracy and incurred costs. The focus

of this analysis lies on the performance of AGKA compared to the other algorithms.

The first measurement, the classification accuracy of an algorithm, is discussed in Sec-

tion 7.1.1. The second measurement, cost-efficiency, is discussed in Section 7.1.2. The

discussion of extracted rules which only applies to AGKA can be found in Section 7.1.3.

7.1.1 Classification accuracy of AGKA

As can be seen in Table 6.1 all classifiers achieve an accuracy of at least 99% on all

test streams. Also apparent from Table 6.1 is that the standalone decision tree (DT)

performs best overall. Only in the overlap stream does Dummy (classify everything as

legitimate) outperform the other classifiers. In terms of accuracy, it would therefore be

best to choose DT for finding illegitimate transactions.

First consider the percentages on the utility stream. AGKA performs just as bad as

Dummy on this stream in terms of accuracy. This result is expected, since the illegitimate

transactions in this stream are not worth investigating, so AGKA outputs the (wrong)

75

76 Chapter 7 Discussion

label ‘legitimate’. This behaviour has a desired effect as discussed in the next section

(Section 7.1.2).

Looking at the remaining streams, the accuracy of the decision tree approaches (AGKA,

DT and RF) follow a similar trend. The classifiers perform relatively well on the binary,

combination and continuous streams, but relatively bad on the overlap stream. This

similarity in accuracy may be expected, since the approaches are founded on the same

rationale. In comparison with DT and RF, AGKA appears to perform worse overall,

with exceptional low accuracy on the combination and overlap streams.

Why AGKA performs worse can be discerned from the confusion matrices. For instance,

Table 6.2 shows that AGKA (6.2a) outputs the label ‘illegitimate’ more often than DT

(6.2b). This difference is also found in the other tables, especially for streams where

AGKA’s performance is much worse, such as for the overlap stream (Table 6.8). It can

be said that AGKA employs a more ‘cautious’ approach compared to DT: AGKA prefers

to investigate more transactions rather than risking letting an illegitimate transaction

slip by. Even though this cautious approach hurts classification accuracy, there is a

justification for it, which will be explained in Section (7.2.1).

Note that an accuracy of 100% is not achievable. Since the data is a stream in nature

and the system starts without any previously encountered transactions, there is no other

way than ‘guessing’ what the label of the first transactions should be. As soon as both

classes, legitimate and illegitimate, contain at least one example, it becomes possible to

look for differences between the classes. Nevertheless at this point, the system is bound

to have made an error, because it had to guess the correct label. Even one such error

will mean 100% accuracy cannot be attained.

These findings also hold for the results obtained on the benefits data (Table 6.17 and

6.18). Notice however from Table 6.18 that AGKA now employs a less cautious approach

in comparison with DT. This may be attributed to the fact that all instances contain an

amount equal to 10000. Since this value is equal to 2κ, AGKA can propose a ‘legitimate’

label as soon as one counter example is encountered.

7.1.2 Cost efficiency of AGKA

Since classification algorithms focus on achieving high classification accuracy and not

on diminishing costs incurred as defined here, it is only useful to discuss how AGKA

performs relative to the other classifiers on this measure.

AGKA is designed to minimise costs incurred during operation, so it should perform

better than the other classifiers used in that respect. Looking at the incurred costs

7.1 Analysis 77

tables (for example Table 6.3) shows that DT performs best overall, just like for the

accuracy measure. The utility stream (Table 6.11) is a notable exception, where AGKA

together with the Dummy classifier perform best. Since the illegitimate transactions in

this stream are not worth investigating, AGKA simply ignores them, which leads to less

incurred costs in total.

On the other streams, AGKA comes in either second or third in terms of incurred costs.

The overlap stream (Table 6.9) is an exception where AGKA performs worse. This can

be attributed to the ‘cautious’ approach mentioned before, as well as correlation between

accuracy and incurred costs. Since AGKA outputs the ‘illegitimate’ label more often,

the verification costs are higher. In combination with the lost amounts not being lower

than for DT, this results in higher total incurred costs. Although a cautious approach

proves to be more costly in these settings, it may still be justified as explained in Section

7.2.1.

It should be noted that classification accuracy and cost-efficiency are correlated. This

can be deduced from the costs defined for every outcome (Section 3.3.5.1). Since the

costs for wrong classifications are higher than for correct ones, it is logical that costs

incurred by the system are lower if it is correct more often (has higher accuracy).

7.1.3 Extracted rules

The rules extracted by AGKA are included to assess its capability in finding back the

rules governing the stream. For the binary decision and the continuous attribute streams

it can be said that AGKA was capable of finding the rule(s) back. Knowledge rules

stored for the binary decision stream (Table 6.12) include the rules foreign > 0.5 ⇒
illegitimate and foreign < 0.5 ⇒ legitimate, which are in accordance with the

rules specified for that stream (Table 5.3).

Recall that for the continuous attribute stream a ‘gap’ exists between the legitimate

and illegitimate values for the attribute post-balance. The gap constitutes values

between -15000 and -5000, which implies any decision boundary between these values

appropriately describes a distinction between both classes. Table 6.14 shows that AGKA

indeed stored several knowledge rules which describe a decision boundary within the gap,

such as the rule post-balance > -14411 ⇒ legitimate.

For the utility stream (Table 6.16) it can also be said that AGKA found the rules

present, despite only the rule Foreign ≤ 0.5 ⇒ legitimate being shown. Only this

rule may ever be stored, because its contra-position Foreign > 0.5 ⇒ illegitimate

78 Chapter 7 Discussion

will be more costly to apply than to ignore. Thus the counter rule, as well as any other

illegitimate rule found in this stream for that matter, is never stored.

The overlap stream does not really have a decision boundary between both classes. The

deciding attribute is normally sampled for both classes and even exhibits some overlap.

Defining a decision boundary between these distributions is therefore debatable. For

this reason, saying whether or not the extracted rules (Table 6.15) resemble the ones

present in the data is inappropriate.

For the combination of binary attributes stream it can be said that AGKA was par-

tially able to find the rules back. As can be seen in Table 6.13, the rule foreign >

0.5 and known ≤ 0.5 and prev foreign ≤ 0.5 ⇒ illegitimate perfectly describes

the combination uniquely determining illegitimate transactions. Nevertheless, for legit-

imate transactions ideally there would be three rules with one attribute each, namely

foreign ≤ 0.5 ⇒ legitimate, known > 0.5 ⇒ legitimate and prev foreign >

0.5 ⇒ legitimate. These three rules are sufficient to distinguish legitimate transac-

tions. AGKA however only found foreign ≤ 0.5⇒ legitimate. The other legitimate

rules contain variants of the ideal rules, as the inferred rules contain additional (irrele-

vant) conditions.

It is true in general that a lot of irrelevant rules are inferred for every stream. This

behaviour is due to the hypothesis space for every stream: with more attributes and

more examples, the number of possible splits increases exponentially, which means ex-

ponentially more conditions are possible. Whether it is a good thing to have irrelevant

rules and conditions, and whether anything can be done to alleviate it is reserved for

Section 7.2.3.

The same holds for the rules inferred from the benefits data (Table 6.19). The rules

in the illegitimate (not entitled) category are shorter, since not meeting one condition

can already be enough to reject a benefit. The rule Capital > 17.5 ⇒ illegitimate

(which translates to Capital > 3000 ⇒ illegitimate) is one example. Possessing

that amount of capital makes one not entitled to a benefit. The legitimate rules are

longer, since an application has to fulfil all set conditions for a benefit to be entitled.

Most rules contain some of the necessary conditions and vary in which years contribu-

tion is paid (contribution needs to be payed in at least three of the last five years).

Concluding, AGKA is capable of finding back rules present in the data, with irrelevant

rules and conditions among them.

Why AGKA uses a ‘cautious’ approach also becomes apparent from the inferred rules.

Table 6.12 for example shows the system stored the knowledge rule time == 00:06:12

and receiver name == Mr. Daniel Caulfield ⇒ illegitimate, P = 0.2(5000, 17946).

7.2 Implications 79

Basically this knowledge rule states that the transactions to which it applies contains

a very expensive illegitimate transaction or transactions, so it is better to check ev-

ery transaction fulfilling the condition, despite there being more legitimate transactions

(P = 0.2). Worst case this means 4 out of 5 transactions would be wrongly classified

based on this knowledge rule, yet its expected utility shows that it is still better to apply

than to ignore.

7.2 Implications

In this section, AGKA’s performance is evaluated and defended (Section 7.2.1) based

on the analysis in Section 7.1. Section 7.2.2 discusses whether it is appropriate to use a

decision tree in the setting of fraud detection. With regard to the irrelevant information

acquired by the system, Section 7.2.3 concludes with a discussion of the over-fitting

issue. Lastly the effect of skewed distributions is discussed in Section 7.2.4.

7.2.1 Why use AGKA?

If a decision tree shows the best results overall, why not just use that approach? Several

reasons can be formulated, which plead for using AGKA despite it having worse results

in accuracy and incurred costs.

For one, AGKA incorporates reasoning and utilities. Why reasoning can be useful is

apparent, since reading dialogues is much more common to humans than reading a

decision tree model. Moreover, the inferred rules (Tables 6.12 through 6.16) are shown

to be in accordance with the data, so it can be said that the dialogues are grounded.

The incorporation of utilities has proven to be disadvantageous with respect to accu-

racy and incurred costs in most streams. That does not say that using utility is unwise

however. The utility stream is a notable example in that respect: AGKA did achieve

the least incurred costs in this stream, thanks to using utilities. Moreover, the cautious

approach may be beneficial under different circumstances. While for these streams it

is beneficial to immediately disregard rules that turn out to be incorrect, in situations

where such rules may become relevant again in the future, it is good to retain them.

Suppose a fraudster is detected and all transactions to their account are investigated.

Suppose the fraudster then switches to a different account for their illegitimate actions.

If a system would forget about the first detection and immediately switch to only in-

vestigating the new account, the fraudster would be able to use the old account for

illegitimate actions again.

80 Chapter 7 Discussion

7.2.2 Proper rationales

Using a decision tree for classification implicitly assumes that the classes present may

be discerned by a number of splits based on the value of attributes. Obviously this

assumption falls flat in the overlap stream, where it may be wiser to model the normal

distributions and decide on the membership based on the likelihood a transactions be-

longs to either of the distributions. For this reason, is AGKA using a proper rationale

for its classifications?

For the stream in question the answer is no, but only with additional knowledge. For a

system that has to learn from data, any rationale is appropriate: it simply cannot know

better than to try anything. This problem is related to over-fitting (Section 7.2.3). Only

with knowledge about the structure of data, it becomes possible to choose an appropriate

rationale for discerning classes. Typically it is left to the designer to find an appropriate

method, which may also be a process of trial and error involving grid search, parameter

sweeps and so on.

All in all, only knowledge determines what is appropriate and that shows an option for

improvement: Instead of leaving the designer to find a proper rationale, the system may

also try to find an optimal rationale by trying several methods.

7.2.3 Over- or under-fitting?

With any machine learning method one cannot simply bypass the problem of over-fitting.

Since AGKA ultimately aims to provide an accurate classification with solid grounding,

over-fitting may have an impact on both the accuracy and grounding provided. The

abundance of inferred rules are an example of this. These rules can be (and have been)

given as support for a classification, but they are neither accurate nor informative.

AGKA somewhat addresses the over-fitting problem by only meticulously investigating

‘difficult’ cases. The knowledge rules stored in the database provide an indication to

the true class of a transaction. If there are only indications for one class, that label is

immediately provided, by virtue of it being less costly to apply a rule than to ignore it.

Such a case could be considered ‘easy’, because everything indicates to one label. It is

possible though that there are no, or even contradicting, indications for a transaction.

These cases may be considered ‘difficult’ because there is uncertainty over the true class

of a transaction. Only for these cases will AGKA engage in a dialogue to find the most

appropriate label and support for a transaction. Hence, AGKA responds according to

the difficulty of a case in question, rather than applying a possibly over- or under-fitting

model to all novel observations.

7.3 Improvements 81

7.2.4 Skewedness

The ratio of 1 illegitimate transaction to 1000 legitimate transactions is (luckily) skewed

compared to real world estimates. Nevertheless, the ratio is maintained in order to

eliminate the necessity of huge data sets, merely to ensure a few illegitimate examples

are encountered. With the accuracy of all classifiers being well over 99% on every stream

(Table 6.1), it can be concluded that such a skewed distribution does not pose a problem

to classification.

It should be noted though that even an accuracy of 99.99% still implies 1000 mistakes

in 10,000,000 cases. Such a number may be undesired for real applications. Since

currently it is impossible to assess the performance on larger streams (Section 7.3.1), it

is interesting to know whether the accuracy holds in larger streams with even further

skewed distributions, such as 1:1,000,000.

7.3 Improvements

Certain procedures and implementations in the design of AGKA can readily be improved.

With regard to computational complexity, Section 7.3.1 mentions a specific issue. An

improvement to the controversial behaviour of ignoring low cost cases is given in Section

7.3.2. Lastly, the notion of concept drift is discussed in Section 7.3.3 as an area to assess

AGKA’s performance on.

7.3.1 Optimisation

A measure that is not reported is the run time for each classifier. A design goal of AGKA

is to let it operate on a stream of transactions in order to distinguish fraudulent ones. For

the overlap stream, consisting of 100,000 transactions, AGKA needed to run for a full

day. In real world scenarios, banks need to process many millions of transactions every

day. In effect, in order to use AGKA for such scenarios, computational improvements

are required.

The dialogue component is the most computationally expensive part of the system.

Since a dialogue is inherently sequential in nature, the dialogue procedure cannot be

parallelized. Also, during every turn a decision tree is fit on all transactions in the (sub-

set of the) database. All candidate rules, extracted from the fitted model or applying

categorical combinations, are verified (costs calculated) again according to all transac-

tions. These operations may do the same calculations a multitude of times, because

fitting a decision tree on a subset of data explores some of the possible splits it already

82 Chapter 7 Discussion

explored before. Verification calls on all transactions again, so it would benefit from an

integration with the fitting procedure. With a large (> 100000) number of transactions

to consider, these inefficiencies make holding a dialogue a lengthy, possibly infeasible

operation.

7.3.2 Automatic blocking

The utility stream shows how the system decides to ignore illegitimate transactions,

because it is too costly to investigate them. This behaviour is intended, despite having

side effects as mentioned in Section 7.2.1.

There are several methods to change this behaviour. One option is to add a third

action to knowledge rules of the illegitimate category: block, which means preventing

a transaction being fulfilled. The new cost table is shown in Table 7.1. It doesn’t

cost anything to block a fraudulent transaction, because the system can instantly block

it without intervention and no money is lost. However, if a legitimate transaction is

blocked, this is even costlier than having it checked: A (credible) customer may furiously

ask why she is unable to fulfil a transaction, which occupies a bank spokesperson with

offering an explanation and possibly a system’s expert to manually allow the transaction.

Hence the cost of this outcome, ν, should be (far) greater than κ.

Classification
correct incorrect

apply Cost(o) = κ Cost(o) = κ

Action ignore Cost(o) = λ Cost(o) = 0

block Cost(o) = 0 Cost(o) = ν

Table 7.1: Costs of outcomes for an illegitimate rule, including the block action.

7.3.3 Concept drift

The design goals for AGKA also touch the subject of concept drift (Widmer and Kubat,

1996; Zliobaite, 2010). Concept drift implies that the target concept depends on a

hidden context which may change. For instance, the buying preferences of customers

may be different during the weekend. Concept drift learners need to be able to catch

such differences and adapt appropriately.

Concept drift is something that may occur within fraud detection as well. It is often

the case that criminals resort to different methods if one method proves to be ineffective

in accomplishing their goal. If hacking a bank account becomes impossible, perhaps

copying a credit card will do the trick. Since AGKA is an implementation for fraud

7.4 Relevance 83

detection, it is interesting to see how the system responds to concept drift. The streams

used in the experiments adhere to (one) pre-defined pattern, but would it catch onto a

change in this pattern?

7.4 Relevance

How the findings of this research are relevant with respect to the literature in Chapter

2, is described in Section 7.4.1. A mention of the relevance toward the topic of rule- or

case-based reasoning in argumentation is given in Section 7.4.2. The section is concluded

with examples of other domains to which the results may be relevant (Section 7.4.3).

7.4.1 Dialogues, decision trees, utilities?

The reason to combine the research fields of argumentation, machine learning and de-

cision theory, was because each field individually was capable of solving a sub-problem:

machine learning exploits regularities in data, argumentation provides reasons for a con-

clusion and decision theory aims to define the ‘right’ course of action. The aim of this

article is to provide an architecture capable of learning from past examples and ‘act

appropriately’ in novel circumstances, while providing logical support for its acts. The

hypothesis is that this goal may be achieved by combining the aforementioned fields.

With the hypothesis and the results of AGKA in mind, this begs the question, is it

useful to combine the three fields? The author believes the combination is fruitful, but

there is a lot more refinement required to successfully integrate the different components.

AGKA shows how a system using a classification algorithm can provide an intelligible

grounding. Moreover, it is capable of diminishing incurred costs, rather than merely

improving classification accuracy.

The dialogue component is restricted in the sense that it only explains the fitted decision

tree. The machine learning component is specifically designed to extract knowledge rules

from a fitted decision tree model, which serve as arguments for the dialogue component.

Using a different machine learning algorithm breaks the interaction between the machine

learning component and the dialogue component. As such, there is not yet a universal

way of employing dialogues to explain machine learning results.

Moreover, the dialogue component does not add complexity to the decision tree. The

only additions are that categorical variables may be used as arguments and proposals

may be refuted. Refuting can however be envisioned as taking the opposite path in

a tree model. This means the function of dialogues is basically reduced to wording a

84 Chapter 7 Discussion

decision tree approach, where every turn is simply stating what happens at a node in

the tree model.

What are the commonalities between the three fields? When it comes to machine learn-

ing and argumentation, a commonality is the support for a classification: Machine learn-

ing basically provides a fitted model, while argumentation offers reasons. Although dif-

ferent in appearance, fitted models and reasons may be interchangeable, as shown by the

conversion of a decision tree model into knowledge rules for a dialogue. A commonality

between argumentation and decision theory is the strength of arguments. Some argu-

ments are stronger than others, which may be expressed by a utility value. Conversely,

the ‘best’ action depends on its utility, which may be conceived as an argument (“This

action is better than that one, because the outcome is more preferable”). Machine

learning compares to decision theory, because both are an optimisation of the result:

For classification the best class needs to be found, while decision theory looks for the

best action. AGKA shows how both notions can be connected, as the class is also con-

nected to an action: Giving the illegitimate label leads to an investigation, so the label

given has consequences, which should be taken into account for the classification. Can

these commonalities be mathematically formulated? Possibly, but that requires further

investigation.

7.4.2 Rule- or case-based reasoning?

At a first glance it may seem that AGKA utilises rule-based reasoning: Rules are ex-

tracted from the data which are used for a dialogue and rules are provided as support

for a classification. It would be blunt to classify AGKA as rule-based reasoning for these

matters though.

Consider the shrinking of the database during dialogues (Section 3.3.3). Conceptually,

for every turn in the dialogue, the agents are consecutively limited to transactions which

are more similar to the one in question. In effect, the dialogue may also be viewed as

trying to find the most similar transaction(s) to the current one, in the end deciding

on the label based on the properties of these similar transactions. As a matter of fact,

instead of giving a rule as support, it is possible to give the final limited database as

support.

Is there a clear distinction between rule- and case-based reasoning, or are the two similar?

The author believes the two are merely different sides of the same coin. AGKA is a

practical application that shows how the process of finding an appropriate label may be

framed in terms of both kinds of reasoning. This view is supported by other work in the

field of argumentation, such as (Verheij, 2017; Bench-Capon and Sartor, 2003).

7.4 Relevance 85

7.4.3 Domains of application

Although this research is focused on the setting of fraud detection, the findings may be

relevant to other domains. Relevant domains include crime prevention (Section 7.4.3.1)

and emergency services (Section 7.4.3.2).

7.4.3.1 Crime prevention

Tied closely to fraud is crime in general. For fraud detection, it is necessary to figure out

how fraudsters work and apply measures to prevent them from doing so. Crime could

be prevented in a similar fashion.

Utility may even play a bigger role in this domain. With limited resources, it is best to

prioritise the crimes that involve the greatest risks or pose the biggest threats. Expected

utility could play a pivotal role here.

Moreover, preventing one type of crime may lead criminals to use other methods for

achieving their goals. Having a system that adapts to such changes is beneficial over a

fixed approach of preventing one type of crime.

7.4.3.2 Prioritising emergency services

Similar to prioritising which transactions should be investigated or which type of crimes

should be prevented, deciding where to deploy emergency services could benefit from

the approach described here.

For instance, certain traffic accidents may have bigger impacts than others. A flat tire on

a country road will likely have smaller consequences than a chain collision on a highway.

Therefore, sending in more units to the highway to quickly alleviate the disruption

of traffic flow would be wise. Based on collected data on the effect of accidents on

disruptions such as traffic jams, a system may be able to discern which accidents should

be prioritised and what an appropriate response would be.

Chapter 8

Conclusion

The goal of this thesis was to integrate the research fields of machine learning, ar-

gumentation and decision theory in order to provide a system that can detect and

prevent fraudulent behaviour. The system needed to be able to learn from data, be self-

explanatory and to take the ‘best’ course of action. The AGKA architecture described

in Chapter 3 provides a preliminary practical implementation that combines the three

fields.

With the results obtained in regard to AGKA’s performance, it can be said that the per-

formance is ‘acceptable’: In terms of classification accuracy and costs incurred, AGKA

falls behind the best performing algorithms in most conditions. When it comes to the

rules inferred though, AGKA does find back the rules which were embedded in a stream.

The lack in performance may be attributed to the design goals. Incorporating utilities

either leads to a ‘cautious’ or ‘ignorant’ approach, which affects performance. Whether

this effect is desired or not is debatable and depends on the circumstances.

In conclusion, it can be said that the integration of the three research fields is successful,

since AGKA achieves a reasonable performance and accomplishes the requirements set

out for the system. Nevertheless, more research is required to formalise how machine

learning, argumentation and decision theory may be integrated.

87

Bibliography

R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets of items

in large databases. SIGMOD Rec., 22(2):207–216, June 1993.

E. Alpaydin. Introduction to machine learning. MIT press, 2014.

R. Anderson, C. Barton, R. Böhme, R. Clayton, M. J. G. Eeten, M. Levi, T. Moore, and

S. Savage. The Economics of Information Security and Privacy, chapter Measuring the

Cost of Cybercrime, pages 265–300. Springer Berlin Heidelberg, Berlin, Heidelberg,

2013. ISBN 978-3-642-39498-0.

T. Bench-Capon. Neural networks and open texture. In Proceedings of the 4th Interna-

tional Conference on Artificial Intelligence and Law, ICAIL ’93, pages 292–297, New

York, NY, 1993. ACM. ISBN 0-89791-606-9.

T. Bench-Capon and G. Sartor. A model of legal reasoning with cases incorporating

theories and values. Artificial Intelligence, 150(1):97 – 143, 2003. AI and Law.

T. J. M. Bench-Capon. Persuasion in practical argument using value-based argumenta-

tion frameworks. Journal of Logic and Computation, 13(3):429–448, 2003.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and regres-

sion trees. The Wadsworth statistics/probability series. Wadsworth & Brooks/Cole

Advanced Books & Software, Monterey, CA, 1984.

R. Briggs. Normative theories of rational choice: Expected utility. In E. N. Zalta, editor,

The Stanford Encyclopedia of Philosophy. Winter 2015 edition, 2015.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297,

1995.

T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on

Information Theory, 13(1):21–27, January 1967.

89

Bibliography BIBLIOGRAPHY

D. Elizondo. The linear separability problem: some testing methods. IEEE Transactions

on Neural Networks, 17(2):330–344, March 2006.

U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowledge dis-

covery in databases. AI magazine, 17(3):37, 1996.

D. M. Gabbay, C. J. Hogger, and J. A. Robinson, editors. Handbook of Logic in Ar-

tificial Intelligence and Logic Programming (Vol. 3): Nonmonotonic Reasoning and

Uncertain Reasoning. Oxford University Press, Inc., New York, NY, 1994. ISBN

0-19-853747-6.

G. E. Hinton. Connectionist learning procedures. Artificial Intelligence, 40(1):185 – 234,

1989.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR,

abs/1412.6980, 2014.

R. S. Michalski, J. G. Carbonell, and T. M. Mitchell. Machine learning: An artificial

intelligence approach. Springer Science & Business Media, 2013.

S. K. Murthy. Automatic construction of decision trees from data: A multi-disciplinary

survey. Data Min. Knowl. Discov., 2(4):345–389, December 1998.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

J. L. Pollock. Defeasible reasoning. Cognitive Science, 11(4):481 – 518, 1987.

J. L. Pollock. Cognitive Carpentry: A Blueprint for How to Build a Person. MIT Press,

Cambridge, MA, 1995. ISBN 0262161524.

J. L. Pollock. Oscar: An architecture for generally intelligent agents. Frontiers in

Artificial Intelligence and Applications, 171:275, 2008.

J. L. Pollock and J. Cruz. Contemporary theories of knowledge, volume 35. Rowman &

Littlefield, 1999.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers

Inc., San Francisco, CA, 1993. ISBN 1558602402.

R. Reiter. Special issue on non-monotonic logic a logic for default reasoning. Artificial

Intelligence, 13(1):81 – 132, 1980.

Bibliography 91

S. Russell and P. Norvig. Artificial Intelligence: a modern approach (Third International

Edition). Prentice-Hall, 2010.

S. R. Safavian and D. Landgrebe. A survey of decision tree classifier methodology. IEEE

Trans. Systems, Man, & Cybernetics, 1991.

B. Verheij. Formalizing arguments, rules and cases. The 16th International Conference

on Artificial Intelligence and Law (ICAIL 2017). Proceedings of the Conference, pages

199–208, 2017.

M. Wardeh, T. Bench-Capon, and F. Coenen. PADUA: a protocol for argumentation

dialogue using association rules. Artificial Intelligence and Law, 17(3):183–215, 2009.

M. Wardeh, F. Coenen, and T. Bench-Capon. PISA: A framework for multiagent clas-

sification using argumentation. Data & Knowledge Engineering, 75:34 – 57, 2012.

G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts.

Machine Learning, 23(1):69–101, 1996.

I. Zliobaite. Learning under concept drift: an overview. CoRR, abs/1010.4784, 2010.

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Problem description
	1.1 Example fraud scenario
	1.2 Research goal

	2 Theoretical background
	2.1 Machine Learning
	2.1.1 Rule mining
	2.1.2 Classification
	2.1.2.1 Decision trees

	2.2 Argumentation
	2.2.1 Defeasible reasoning

	2.3 Expected utility theory
	2.4 Hybrid approaches
	2.4.1 PADUA
	2.4.2 PISA
	2.4.3 Value-based argumentation

	2.5 Goals revisited

	3 The AGKA architecture
	3.1 Data structures in AGKA
	3.1.1 Construct
	3.1.2 Association rules
	3.1.3 Instances

	3.2 Data generation in AGKA
	3.2.1 Transactions
	3.2.2 Data generation rules
	3.2.3 Generating a stream
	3.2.3.1 Example transaction generation

	3.3 AGKA components
	3.3.1 Database
	3.3.2 Machine learning component
	3.3.2.1 Decision tree
	3.3.2.2 Rule extraction

	3.3.3 Dialogue component
	3.3.4 Error component
	3.3.5 Knowledge rules
	3.3.5.1 Rule utility
	3.3.5.2 Calculation example

	3.4 AGKA process

	4 Illustrative cases
	4.1 Binary decision
	4.2 Continuous values
	4.3 Multiple (binary) attributes
	4.4 Rules with utility

	5 Experimental setup
	5.1 Methods of comparison
	5.1.1 Integration into AGKA

	5.2 Measures of performance
	5.2.1 Accuracy
	5.2.2 Costs incurred
	5.2.3 Inferred rules

	5.3 Simulated data streams
	5.3.1 Test streams
	5.3.2 Shared settings
	5.3.3 Binary decision
	5.3.4 Combination of binary attributes
	5.3.5 Continuous attribute
	5.3.6 Continuous attribute with overlap
	5.3.7 Use of utility
	5.3.8 Repetitive streams

	5.4 Benefits data

	6 Results
	6.1 Simulated data streams
	6.1.1 Binary decision
	6.1.2 Combination of binary attributes
	6.1.3 Continuous attribute
	6.1.4 Continuous attribute with overlap
	6.1.5 Use of utility
	6.1.6 Extracted rules

	6.2 Benefits data

	7 Discussion
	7.1 Analysis
	7.1.1 Classification accuracy of AGKA
	7.1.2 Cost efficiency of AGKA
	7.1.3 Extracted rules

	7.2 Implications
	7.2.1 Why use AGKA?
	7.2.2 Proper rationales
	7.2.3 Over- or under-fitting?
	7.2.4 Skewedness

	7.3 Improvements
	7.3.1 Optimisation
	7.3.2 Automatic blocking
	7.3.3 Concept drift

	7.4 Relevance
	7.4.1 Dialogues, decision trees, utilities?
	7.4.2 Rule- or case-based reasoning?
	7.4.3 Domains of application
	7.4.3.1 Crime prevention
	7.4.3.2 Prioritising emergency services

	8 Conclusion
	Bibliography

