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Abstract

In this thesis we study regular tessellations of closed orientable surfaces
of genus 2 and higher. We differentiate between a purely topological
setting and a metric setting. In the topological setting we will describe
an algorithm that finds all possible regular tessellations. We also provide
the output of this algorithm for genera 2 up to and including 10. In the
metric setting we will prove that all topological regular tessellations can
be realized metrically. Our method provides an alternative to that of
Edmonds, Ewing and Kulkarni.
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1 Introduction

In this thesis we will show how to find all possible regular tessellations of a
genus-g surface, where g ≥ 2 (genus-2+ surfaces for short). Precise defini-
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tions of (regular) tessellations will be given in Section 2.6. We will differentiate
between topological regular tessellations—basically embedded regular graphs
with regular dual—and metric regular tessellations.

We begin with a short discussion regarding the preliminary knowledge that
will be needed. We will define what tessellations are and will recall the basics
of hyperbolic geometry. Then we will define, side pairings and fundamental
domains. This will lead to a brief discussion of Poincaré’s (polygon) Theorem.
We will then be able to give a quick summary of the relation between the
hyperbolic plane and genus-2+ surfaces.

In Section 3 we will start looking for tessellations that can fit on a genus-2+

surface, in a strictly topological sense. The first part of this section will focus
on how we can represent a genus-2+ surface by a polygon, using a specific kind
of tessellation. In the last part we will derive an algorithm to find all regular
tessellations that a genus-2+ surface admits. The whole section is an elaborate
discussion on necessary and sufficient conditions to find if a regular tessellation
is possible.

Once we know that a genus-2+ surface admits a certain tessellation in the
topological sense, we want to know if we can fit it onto such a surface metrically.
In Section 4 we will explore how we can find this out. We will give our own
constructive proof to serve as an alternative to the proofs available in the current
literature.

Specifically we will focus on the following questions:

• For what values of p and q is there a closed genus-2+ Riemann surface
with a topological regular tessellation by p-gons, such that q of them meet
in each vertex?

• Can we construct a closed genus-2+ Riemann surface with a metric regular
tessellation by p-gons, such that q of them meet in each vertex, whenever
this is topologically possible?

2 Preliminaries

In this section we will present an overview of some definitions used in this thesis
and of preliminary knowledge.

2.1 Hyperbolic geometry

Hyperbolic geometry studies spaces of constant negative curvature. In this
thesis we choose to use the Poincaré disk model to represent the hyperbolic
plane. We will denote this by D. One of the remarkable characteristics of the
hyperbolic plane is that the angle sum of any triangle is strictly less than π.

D is an representation of the hyperbolic plane in the Euclidean plane. C is
usually used for the Euclidean plane. D is then the open unit disk equipped
with the metric

ds2 =
4dz2

(1− |z|2)2
=

4
(
dx2 + dy2

)(
1− (x2 + y2)

)2 ,
which we call dD. One can now calculate that D has constant Gaußian curvature
K = −1.
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In D, lines appear either as Euclidean diameters of the unit disk or as Euc-
lidean circular arcs which meet ∂D orthogonally. In both cases lines are geodesic
curves in D (a geodesic is a path that is locally the shortest between two points).
Moreover, D is a conformal model, meaning that angles are not distorted with
respect to the Euclidean plane. Distance on the other hand is heavily distorted.

Just like in the Euclidean plane, an equilateral equiangular polygon is called
a regular polygon. If 2π

q is the size of the angles of a regular p-gon in the

hyperbolic plane, then we call it a q-regular p-gon and we must have (p−2)(q−
2) > 4. This can be derived from the fact that the angle sum of triangles is less
than π.

The orientation preserving isometries of D are exactly the Möbius maps

f(z) =
az + b

bz + a
, with |a|2 − |b|2 = 1.

They form a group under composition called the automorphism group Aut(D).
If f(z) ∈ Aut(D), then f(z̄) is an orientation reversing isometry. We write
Isom(D) for the set of all isometries of D.

In the hyperbolic plane, all triangles having the same angles can be mapped
onto each other by isometries. This means that there is no such thing as simil-
arity in the hyperbolic plane, only congruence.

2.2 Fundamental domains

Definition 2.1. Take Γ a group of homeomorphisms acting on D, i.e. every
g ∈ Γ is a homeomorphism g : D → D. We say that Γ acts properly discon-
tinuously on D if, for every compact subset K of D, there are only finitely
many g ∈ Γ for which g(K) ∩K 6= ∅.

Definition 2.2. If a group of isometries Γ acts properly discontinuously on D,
then X ⊂ D is a fundamental domain for Γ if

• X ∩ g(X) 6= ∅ =⇒ g = id,

•
⋃
g∈Γ g(X) = D.

If a fundamental domain is a polygon, we will speak of a fundamental polygon
for Γ. We use analogous terminology for other shapes.

One could say that the images of X under Γ form a tessellation of D, where
each g(X) corresponds to a tile. Strictly speaking this is an abuse of the defin-
ition of tessellation (which we give in Section 2.6.1), but thinking of it in this
way helps to provide an intuitive understanding of the interaction between Γ
and X.

We will assume here that each compact subset K of D meets only finitely
many g(X). A fundamental domain with this property is called locally finite.
Note that this is in general not part of the definition of a fundamental domain.
For a rigorous discussion on fundamental domains, their existence and what it
means to be locally finite we refer to [1].

A fundamental domain is never unique. We can easily see this by taking a
fundamental domain X for Γ and a g 6= id. Then gX is another fundamental
domain and so is (X\A) ∪ g(A), for any A ⊂ X.
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2.3 Side pairings

Throughout this section we will assume that X is a fundamental finite sided
polygon for some group Γ ⊂ Isom(D) acting properly discontinuously on D (this
is allowed: [1]).

Definition 2.3 (Copied from [1]). A side of X is a geodesic segment of the
form X ∩ g(X), for some g ∈ Γ\{id}. A vertex of X is a single point of the
form X ∩ g(X) ∩ h(X), for some distinct g, h ∈ Γ\{id}.

Definition 2.4. A side pairing (transformation) is an element g ∈ Γ for
which X ∩ g

(
X
)

is a side of X.

Because X is a fundamental domain, there is a unique gs ∈ Γ for each side
s of X, that maps s to some other side t of X. For if s = X ∩ g(X) is a side
of X, then so is t := g−1(s) = X ∩ g−1(X). We set gs = g−1 and call it the
side pairing associated to s. It is easily seen that g−1

s is the side pairing
associated to t. They essentially pair s and t.

Lemma 2.5. The side pairings of X generate Γ.

Proof. Because X is a fundamental domain for Γ, there is a bijection between
the elements of Γ and the copies of X. So to prove the lemma we need only
show that we can map X to any g(X), using only side pairings.

Pick any g ∈ Γ and consider a path of finite length from a point in X to a
point in g(X) that does not pass through any vertices. We can label the copies
of X crossed by this path as X0 = X, . . . ,Xn and let Xi = gi(X). We do this
in such a way that two consecutive copies are adjacent. This means that they
share a side, or equivalently that gi(X)∩ gi+1(X) 6= ∅. This also means that we
set g0 = id and gn = g.

Now we note that

gi(X) ∩ gi+1(X) 6= ∅ =⇒ X ∩ g−1
i gi+1(X) 6= ∅,

meaning that g−1
i gi+1 is a side pairing of X. This means that g =

∏n−1
i=0 g

−1
i gi+1

is a decomposition of g into side pairings of X.

The technique used in the proof above can also be applied to a very specific
case. We choose a path from X to itself that makes a little circle around some
vertex v of X. We choose it so that this path only passes through copies of
X containing v, in a consecutive way. Then by the same reasoning as before,
id =

∏n−1
i=0 g

−1
i gi+1, were each g−1

i gi+1 is a side pairing. This is known as a
cycle relation, or vertex relation.

Definition 2.6. Let g0 = id, g1, . . . , g`−1, g` = id be side pairings of X such
that g1(X), . . . , g`(X) are consecutive copies of X, when walking around some
vertex v0 of X exactly once (Figure 1a). Set hi := gi−1g

−1
i . Note that, by the

same reasoning as before, all hi’s are side pairings of X. If we have a cycle

v0
h17−→ v1

h27−→ v2,
h37−→, . . . , hk7−→ vk = v0

in which v0 only occurs at the beginning and end, then we call this a vertex
cycle of v0 (Figure 1b). If we complete our walk around v0, then the cycle

v0
h17−→ v1

h27−→ v2,
h37−→, . . . , h`7−→ v` = v0
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(in which v0 might also occur in the middle somewhere) is called the full vertex

cycle of v0. Note that only for a full vertex cycle,
∏`
i=1 hi = id.

Definition 2.7. Take X, vi, gi and hi as above, such that v0, v1, . . . , vk is a
vertex cycle. Let θi be the angle at vi in X. Note that this is also the size of
the angle at v0 in gi(X). It is a standard result (see [1] and [16]) that either of
the following holds (see also Figure 1):

•
`−1∑
i=0

θi = 2π

•
k∑
i=1

θi =
2π

κ
, κ ∈ N>1.

We call
∑
θi the angle sum of the vertex cycle of v0. If we feel like abusing

notation, we will simply call it the angle sum of v0.
If the angle sum of v0 equals 2π, then its vertex cycle is a full vertex cycle.

We refer to this case by saying that v0 has a full angle sum.

X

θ0

g1(X) θ1

gi(X)

θi

g`−1(X)

θ`−1

(a) Copies of X around the vertex v0.

v0

θ0

v1
θ1

v2

θ2

h1

h2

X

(b) The first three vertices in the vertex
cycle of v0.

Figure 1: Construing-aid for the definition of a (full) vertex cycle.

2.4 A brief discussion on Poincaré’s Theorem

In the previous section we started with a fundamental finite sided convex poly-
gon X for some group Γ acting properly discontinuously on D, such that its
copies under Γ cover D in a locally finite manner. From this, we derived that Γ
is generated by the side pairings of X. We also saw that the angle sums of the
vertices of X are equal to 2π

κ , κ ∈ N≥1.
It turns out that we can also move in the other way. That is, we can start

with some nice polygon; choose nice side pairings and end up with a group Γ
that acts properly discontinuously on D. Poincaré’s Theorem below, makes this
precise.
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Poincaré’s Theorem. Take X a finite sided polygon in D, whose sides are
paired by the side pairings g1, . . . , gn. The side pairings are isometries. Further
assume that each vertex of X has a an angle sum of 2π

κ , κ ∈ N≥0. Then

• g1, . . . , gn generate a group Γ, that acts properly discontinuously on D.

• We have that Γ = 〈g1, . . . , gn | vertex relations〉.

• X is a fundamental domain for Γ and its copies under Γ are a locally finite
cover of D.

We will not give a proof of the theorem here, but we would like to discuss
some delicacies regarding it. Firstly, we would like to note that we left out the
cases where X has a vertex that lies on ∂D. This is simply because we will not
concern ourselves with these cases here.

Secondly, it is very common that authors assume that the polygon X is
convex, moreover. This is however not strictly necessary. In Section 4 we will
explicitly need that Poincaré’s Theorem also applies to non-convex polygons.

For a proof of the theorem we refer the reader to §9.8 of [1] and [13]. Both
give essentially the same proof, which does not rely on X being convex.

2.5 Riemann Surfaces

We will now introduce Riemann surfaces and list some well known topological
properties of these surfaces. In particular, the topological invariants “genus”
and “Euler characteristic” will be defined here. We refer the reader to either
[10] or [17] for proofs of all the claims we make below and for more elaborate
definitions than those we give here.

2.5.1 Definitions and characteristics

A Riemann surface is a one-dimensional connected complex manifold. Two-
dimensional real manifolds are Riemann surfaces precisely when they are ori-
entable and metrizable. Riemann surfaces carry a structure that allows one to
measure angles on the surface. A (Riemann) surface is called closed when it is
compact and without boundary.

Definition 2.8 (Copied from [17]). Suppose that a collection ∆ of triangles is
defined on a Riemann surface Σ such that each point x ∈ Σ belongs to at least
one triangle in ∆ and that

• if x belongs to a triangle t of ∆ but is not on an edge of t, then t is the
only triangle containing x and t is a neighbourhood of x;

• if x belongs to an edge e of a triangle t1 in ∆ and x is not a vertex of t1,
then there is exactly one other triangle t2 in ∆ such that t1 and t2 are the
only triangles containing x, t1 ∩ t2 = e and t1 ∪ t2 is a neighbourhood of
x;

• if x is a vertex of t1, there is a finite number of triangles t1, t2, . . . , t`, each
having x as a vertex, such that each successive pair of triangles ti, ti+1 or
t1, t` have only one edge in common, whilst t1, . . . , t` are the only triangles
containing x and t1 ∪ . . . ∪ t` forms a neighbourhood of x.
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When ∆ satisfies the conditions above, then we call it a triangulation.

Every compact Riemann surface can be triangulated. If the triangulation of
some Riemann surface has V vertices, E edges and F faces, then we can define
the Euler characteristic χ of that surface as χ = V − E + F . The Euler
characteristic is a topological invariant. For closed Riemann surfaces we define
the genus g of that surface as g = 2−χ

2 . Intuitively this is the number of holes
of a surface.

2.5.2 Coverings

Definition 2.9 (Copied from [10]). The manifoldM∗ is said to be a (branched)
covering manifold of the manifold M if there is a continuous surjective map
f : M∗ →M with the following property: For each x∗ ∈M∗ there exists a local
coordinate z∗ on M∗ vanishing at x∗, a local coordinate z on M vanishing at
f(x) and an integer n > 0 such that f is given by z = (z∗)n in terms of these
local coordinates. Here the integer n depends only on the point x∗ ∈ M∗. If
n > 1, then x∗ is called a branch point of order n−1 or ramification point
of order n. If n = 1 for all points x∗ ∈M∗, then the cover is called a smooth
cover. The map f is called a (branched) covering map.

We call x = f(x∗) the projection of x∗ onto M . We say that x∗ lies over
x.

We call M∗ an unlimited covering manifold of M provided that for every
curve c ⊆ M and every point x∗ ∈ M∗ with f(x∗) = c(0), there exists a curve
c∗ ⊆M∗ with initial point P ∗ and f(c∗) = c. We call c∗ a lift of c.

Definition 2.10 (Copied from [17]). Suppose we have two points x and y of a
Riemann surface Σ, two curves c1 and c2 on Σ with initial point x and terminal
point y and a continuous map h : [0, 1]2 → Σ such that

h(t, 0)

h(t, 1)

h(0, u)

h(1, u)

= c1(t),

= c2(t),

= x,

= y,

for all t, u ∈ [0, 1]. Then we say that c1 and c2 are homotopic and we write

c1
h∼ c2.

For any point x ∈ Σ consider all curves on M with x as initial and terminal
point, i.e. closed curves through x. Two such curves are equivalent whenever
they are homotopic. The set π1(Σ, x) of equivalence classes of all closed curves
through x forms a group. This group is called the fundamental group of Σ
based at x. For Riemann surfaces Σ 3 x, y the groups π(Σ, x) and π(Σ, y) are
naturally equivalent. We can therefore drop the dependency on the base point
from our notation and just speak of the fundamental group of Σ, π1(Σ). We
refer to [17] for a rigorous discussion of the group structure mentioned above.

If M∗ is a covering manifold of M with covering map f , then a homeo-
morphism h : M∗ →M∗ with the property that f ◦ h = f is called a covering
transformation of M∗. The set of covering transformations forms a group.
This group is called transitive if it acts transitively on any set f−1(x), x ∈M .
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A smooth unlimited covering M∗ has a transitive group of covering trans-
formations if and only if π1(M∗) is isomorphic to a normal subgroup of π1(M).
In this case the group of covering transformations of M∗ is isomorphic to
π1(M)/π1(M∗).

To this thesis, the most important consequence of the theory above is this:
Every Riemann surface Σ has a universal covering Σ̃. This is the smooth
unlimited covering whose fundamental group π1(Σ) is isomorphic to {0}. Σ̃ is
also a Riemann surface.

We call two Riemann surfaces conformally equivalent if there is a biject-
ive analytic function between them. The Uniformization Theorem states that
every simply-connected Riemann surface is conformally equivalent to either C,
Ĉ(= C∪ {∞}) or D. We refer to [10] and [17] for a proof of the Uniformization
Theorem and of the following.

Proposition 2.11. If Σ̃ is the universal covering of a Riemann surface Σ, then

• Σ̃ is simply connected,

• the group of covering transformations of Σ̃ is isomorphic to π1(Σ),

• Σ is conformally equivalent to Σ̃/π1(Σ).

2.5.3 Hyperbolic surfaces

If a surface is a hyperbolic 2-manifold—a 2-manifold whose charts are subsets of
D, then we simply call it a hyperbolic surface. Every closed genus-g Riemann
surface is conformally equivalent to a closed 2-manifold of constant curvature.
This curvature is negative, precisely when g ≥ 2. This means that genus-2+

surfaces are equivalent to a quotient D/Γ of D, where Γ is a subgroup of Aut(D)
whose action on D is free (i.e. g(x) = x =⇒ g = id) and properly discontinuous.
In particular, this implies that all genus-2+ surfaces are hyperbolic surfaces.
This is all a consequence of the Uniformization Theorem which we mentioned
above. Again, for a more scrutinous discussion of the Uniformization Theorem
and its consequences we refer to [10] and [17]. It thus makes sense that we
exploit the connection between the hyperbolic plane and genus-2+ surfaces.

It also makes sense to give Poincaré’s Theorem another look. It provides
us with a method to construct a group Γ acting properly discontinuously on D,
which is not necessarily free. If Γ were also free, then D/Γ would be a genus-2+

surface, according to the discussion above. It turns out that the group Γ, that
we get from Poincaré’s Theorem, acts freely on D if all vertices of the polygon
X have a full angle sum. This is very useful information, because it allows us
to construct hyperbolic surfaces with relative ease.

Lastly, suppose that Γ is a group of isometries acting freely and properly
discontinuously on D. Say that ψ : D → D/Γ is the quotient map from D to
D/Γ. Then the induced metric d on the surface D/Γ is defined as

d(x, y) := min{dD(s, t) | s ∈ ψ−1(x), t ∈ ψ−1(y)}. (2.1)

Usually, surfaces will not be described as D/Γ, but as X/Γ, where X is
a fundamental domain for Γ. This is, for all intents and purposes, the same
surface. In this case we must alter the definition of the induced metric slightly.
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Definition 2.12. We say two points x, y ∈ X are equivalent (x ∼ y) if they lie
in the same Γ-orbit. We write [x] for the equivalence class containing x ∈ X.
Then the induced metric d on the surface X/Γ is defined as

d
(
[x], [y]

)
= inf

{
n∑
i=0

dD(ξi, ξ
′
i)

}
,

where the infimum is taken over all ξ0 ∈ [x], ξ′n ∈ [y], ξ′i ∼ ξi+1 for i = 0, . . . , n−1,
and n > 0.

This definition of induced metric agrees with (2.1) on X.

2.6 Tessellations

2.6.1 Definitions and notations

The following definitions will depend on the use and knowledge of elementary
graph theory and elementary theory on graph embeddings. The reader who is
not sufficiently skilled in these subjects is referred to [2] and [12]. Just to be
on the safe side: A graph is allowed to have loops and multiple edges between
vertices.

Definition 2.13. Let Σ be a topological surface without boundary. A tessel-
lation T on Σ is a non-empty, connected, locally finite graph G embedded in
Σ, such that each component of Σ\G is homeomorphic to a disk. G will be
referred to as the graph of the tessellation.

The components of Σ\G are called open faces; the closure of an open face
is called a closed face. Note that closed faces need not be simply-connected.
When this happens, the difference between open and closed faces is vital. When
this doesn’t happen, it is rarely essential to emphasise if a face is open or closed.
In these cases we will generally just speak of faces. It is also quite common to
use the word tile in stead of face. These can and will be used interchangeably.
We write VT , ET , FT for respectively the sets of vertices, edges and faces of T .

We define a polygon as a closed disk, whose boundary is divided into p
segments (called edges) by p vertices. Every closed face f of a tessellation is
either itself a p-gon, or can be obtained from a p-gon by making identifications
on its sides. In either case we say that the face f has edge number p. To find
the edge number we count the edges of a closed face with multiplicity. An edge
of a closed face f has multiplicity 2 if it lies only in f . It has multiplicity 1 if it
lies in f and in some distinct other closed face f∗.

We have defined tessellations in such a way that they have the following
general properties:

• The interiors of two distinct tiles never intersect.

• An intersection point of two distinct tiles is either a common vertex or lies
in a common edge.

In Figure 2 we try to make the above notion a bit more intuitive.
If our tessellation looks like Figure 3a or Figure 3b anywhere, then we say

it has a trivial vertex. In a tessellation without trivial vertices, every edge is
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f1 f2 f3

f4 f5 f6

f7 f8 f9

(a) Tessellation

f1

f2

(b) Tessellation

v

f3

f1 f2

(c) Tessellation only if v is
considered a vertex of f1,
f2 and f3, meaning f3 is a
pentagon.

Figure 2: Examples of what we consider tessellations and what not.

essential to the definition of a certain face. This is not the case in Figure 3. In
Figure 3a we could just as well delete the vertex v and the edge e. In Figure 3b
we could just as well consider a∪ v∪ b as one long edge. You could say that the
vertex v is trivial in these cases. Removing it only changes the edge number of
some face. It keeps the number of faces the same.

e

v

(a)

a b 6= a

v

(b)

Figure 3: Tessellating in a trivial way.

Definition 2.14. If T is a tessellation of a topological surface then it is called
a topological regular tessellation or topologically regular if each face has
edge number p and each vertex has valence q, for some p, q. We also call this a
topological {p, q} tessellation.

Note that a regular tessellation cannot be trivial, unless we are tessellating a
sphere and q = 2 (Figure 2b for instance).

In this thesis the only metric spaces we will be studying are Riemann sur-
faces. Lengths and angles are well-defined on these surfaces. This allows us to
define the metric equivalent of the definition above.

Definition 2.15. If T is a tessellation of a Riemann surface then it is called
a metric regular tessellation or metrically regular if it is a topological
regular tessellation for which

• every edge is a geodesic segment of fixed length,

• every angle between two distinct edges is of equal size,
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• every face is convex, meaning any two points in it can be connected by a
geodesic that lies entirely within the face.

We also call this a metric {p, q} tessellation.

When it is clear if we are in a topological setting or in a metric one, then we
simply say that we have regular tessellation or {p, q} tessellation.

2.6.2 Dual tessellations

For any tessellation T of some surface Σ, there is a dual tessellation T ∗. This
dual is constructed as follows:

• Start with the tessellation T of Σ and its graph G.

• Pick a point in the interior of each face fi of T . These are the dual vertices
f∗i .

• If fi and fj are adjacent—i.e. share an edge ek—then draw an edge e∗k
between the dual vertices f∗i and f∗j . The dual edge e∗k should intersect
only ek and no other (dual) vertices or (dual) edges, its endpoints excepted.
N.B.: If ek has multiplicity 2 then fi = fj , f

∗
i = f∗j and e∗k is a loop.

• The dual vertices and the dual edges now form a dual graph G∗. The dual
tessellation T ∗ is the tessellation formed by embedding G∗ into Σ (this is
possible by construction). Each face v∗i of T ∗ contains/corresponds to a
vertex vi of T .

Recall that a graph isomorphism is a bijection on its vertex-set and its edge-set,
preserving incidence. We write G ∼= H, if two graphs are isomorphic. Now note
that in general G∗ is unique, only up to a graph isomorphism. We always have
(G∗)∗ ∼= G. In a purely topological setting we have that

T is a {p, q} tessellation ⇐⇒ T ∗ is a {q, p} tessellation. (2.2)

We choose to lay some restrictions on the definition of the dual of a metric
regular tessellation. In this case we demand that f∗i is the incentre of fi and
that the dual edges are geodesic segments. It is not hard to see that (2.2) still
holds with this definition for the dual of a metric regular tessellation. Moreover,
in this case we can say that (G∗)∗ and G are not only isomorphic, but in fact
equal. This equality now also holds for (T ∗)∗ and T .

2.6.3 Euler’s formula

With any tessellation of a closed surface Σ, we canonically associate the numbers
V , E, and F . Here V is the number of vertices of the tessellation, E is the
number of edges (not counted with multiplicity) and F is the number of faces.
These numbers are used in the well known identity

V − E + F = χ = 2− 2g. (2.3)

Here χ is the Euler characteristic of the surface and g its genus.
When we write (V,E, F )T (Σ) = (x, y, z), we mean that the tessellation T of

Σ has x vertices, y egdes and z faces. When it is clear what Σ is then we just
write (V,E, F )T = (x, y, z). If T happens to be a regular {p, q} tessellation, we
will even write (V,E, F ){p,q} = (x, y, z).

11



2.6.4 Regular maps

A tessellation of a closed surface is sometimes also called a map. An auto-
morphism of a map is defined as a permutation of its faces, preserving prop-
erties of incidence and adjacency. The automorphisms of a map form a group,
referred to as its automorphism group.

Usually when authors use the word “map” instead of “tessellation” they are
interested primarily in regular maps. A map is called a regular map if it has
two specific automorphisms:

• One that cyclically permutes the edges of a particular face;

• One that cyclically permutes the edges of a vertex belonging to that same
face.

These two automorphisms then generate the automorphism group of the map.
Regular maps are be completely determined by their automorphism groups.

This correspondence has been used to produce exhaustive lists of regular maps
for genera up to 301 [3, 4, 5, 6].

Regular maps are also regular tessellations, but regular tessellations might
not be regular maps. This is because the definition of a regular tessellation
does not rely on the existence of certain automorphisms. Many contemporary
research focuses on regular maps. See for instance [7, 14, 15, 18, 19]. In this
thesis we will consider regular tessellations and we do not limit our scope to
regular maps. Specifically we will find a way to describe regular tessellations.

2.6.5 Necessary and sufficient conditions for the existence of regular
tessellations

Suppose we have a {p, q} tessellation of an orientable surface without boundary.
Then we have Euler characteristic

V − E + F = χ = 2− 2g, (2.4)

where g is the genus of the surface. Along the edge of any tile, two tiles meet.
Every face has p edges, so we must have E = pF

2 . Likewise we must have

V = pF
q . This is equivalent to saying that

qV = 2E = pF. (2.5)

From (2.4) and (2.5) we can derive that1 −1 1
0 1 −p2
1 0 −pq

VE
F

 =

2− 2g
0
0

 .

The 3 × 3 matrix has determinant 2p−pq+2q
−2q . This equals zero, if and only if,

{p, q} is a Euclidean tessellation. Since we are only interested in hyperbolic
tessellations, we are free to writeVE

F

 =
1

2p− pq + 2q

2p 2p 2q − pq
pq 2p+ 2q −pq
2q 2q −2q

2− 2g
0
0

 . (2.6)
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From this we can derive that

V (p, q) =
2p(2− 2g)

2p− pq + 2q
, (2.7a)

E(p, q) =
pq(2− 2g)

2p− pq + 2q
, (2.7b)

F (p, q) =
2q(2− 2g)

2p− pq + 2q
. (2.7c)

For convenience, we define these formulas for (p, q) ∈ R2
≥3.

We can now use this to derive some necessary conditions for the existence
of a topological {p, q} tessellation on an orientable genus-g surface. If we are
given p, q and g then we can use (2.7) to check if V,E, F ∈ Z≥1. If not, then a
topological {p, q} tessellation is not possible.

It turns out that these conditions are also sufficient. So for given p, q and g,
there is always a topological {p, q} tessellation on an orientable genus-g surface
if (2.7) implies that V , E and F are positive integers.

Example 2.16. Suppose we want to know if a genus-2 surface can be tessellated
by a topological {8, 8} tessellation. Using (2.7) we find that this is possible and
that we must have (V,E, F ) = (1, 4, 1). Because F = 1, this tessellation will
have only one tile. Likewise, we can find that {3, 10} is also possible. It gives
(V,E, F ) = (3, 15, 10).

Proposition 2.17. For given p, q ∈ Z≥3 and g ∈ Z≥0 there exists a topological
{p, q} tessellation on some genus-g surface if and only if V,E, F ∈ Z≥1 according
to (2.7).

A proof of the sufficiency part of Proposition 2.171 can be found in [8]. The
authors (Edmonds, Ewing and Kulkarni) essentially look for branched coverings
of tessellations whose existence is easily verified. The lifts of these tessellations
are then exactly the tessellation they sought for. In Example 2.18 we illustrate
this for a particular tessellation.

Example 2.18. We take {p, q} = {7, 3}. In [8], Edmonds, Ewing and Kulkarni
use heuristics to derive the existence of the tessellation shown in Figure 4 (see
the article for the details of those heuristics). They show in Lemma 3.2 of their
paper that this tessellation can be lifted to a branched cover, such that v5 and
v6 are lifted to ramification points of order 3. All other points are lifted to
ramification points of order 1.

After lifting, we have a tessellation with 6 vertices (each of valence 3), 21
edges, and 6 faces (each with edge number 7). This is a {7, 3} tessellation on
a non-orientable closed surface with Euler characteristic χ̃ = −1. This surface
has an orientable double cover (i.e. each point lifts to two distinct points) of
Euler characteristic χ = −2. This implies that it is a surface with genus 2, on
which we have a {7, 3} tessellation with 28 vertices, 42 edges and 12 faces. This
shows that a topological {7, 3} tessellation exists on a closed genus-2 surface
(and thus also its dual: the topological {3, 7} tessellation).

1Actually the article is not even limited to just orientable hyperbolic surfaces. It explicitly
considers regular tessellations of general closed surfaces.

2To create a cross cap, remove the interior of a circle from the surface. On the circular
border that this creates, we identify every point with its antipodal point. We denote this by .
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v1

v2 v3

v4

v5 v6

f1

f2

Figure 4: A sphere with a topological {3, 2} tessellation to which
three vertices (and edges) and a cross cap2are added.

3 Tessellations of a closed orientable genus-2+

surface

In this section we study tessellations of closed genus-g surfaces, for g ≥ 2. To
keep things brief, we will simply say genus-2+ surfaces. We take on a topological
point of view. This means that there is exactly one closed orientable genus-g
surface for each g ∈ Z≥2. We denote this by Σg from now on. Section 3.1 will
focus on tessellations of genus-2+ surfaces that have only one tile. In Section 3.2
we will show how exactly this tile can be used to represent the surface Σg. In
Section 3.3 we show how to find all regular tessellations of Σg. Note that until
Section 3.3 we do not assume all tessellations to be regular.

3.1 Tessellations of a closed orientable genus-2+ surface
consisting of one tile

Let’s look at a general orientable genus-g surface, Σg, for g ≥ 2. We are going
to look for for a tessellation of Σg having only one tile with edge number p.
We will require that this tessellation has no trivial vertices. This tile can be
obtained from a p-gon by making identifications on its sides. We call this p-gon
Pp. We will slightly abuse notation from now on and say that Pp tessellates or
tiles Σg in this case.

Lemma 3.1. We can tessellate Σg without trivial vertices by exactly one polygon
Pp if and only if p ∈ {4g, 4g + 2, . . . , 12g − 6}.

14



Proof. Let’s look at the tessellation of Σg by the single tile Pp. If we draw this
tessellation on Σg, then we get a graph G. By construction, every edge of G
corresponds to exactly one pair of edges of Pp. This makes sense, because every
edge has multiplicity 2 in a tessellation with only one tile. So we have EPp =
2EG. Every vertex of G must correspond to at least 3 vertices of Pp, or else we
would have a vertex that is trivial. Using (2.3) we find that EG = VG + 2g − 1.
Lastly we note that EPp

= VPp
= p.

To sum up, so far we know that:

p =EPp

EG

EPp

VPp

= VPp
,

= VG + 2g − 1,

= 2EG,

≥ 3VG.

(3.1)

From this we can deduce that

2EG ≥ VG =⇒ 2EG ≥ 3(EG + 1− 2g) =⇒ EG ≤ 3(2g − 1).

And since p = EPp
= 2EG, we can see that p ≤ 12g − 6. We can also deduce

that
p = EPp = 2EG = 2(VG + 2g − 1) ≥ 4g.

We will see in Section 3.3 (Claim 3.4) that Σg always has the tessellations
{4g, 4g} and {12g − 6, 3}. Both of these consist of 1 tile. The first has only
1 vertex, of valence 4g. The latter has 4g − 2 vertices, all of valence 3. This
means that the lowest and highest possible values for p always occur. These are
regular, so they do not have any trivial vertices. And since p must be even, this
leaves only the claimed possibilities.

To see that all possibilities indeed occur, we generalise the techniques used in
[11] (sections 5 and 6 in particular). We start with the {12g− 6, 3} tessellation.
We then perform the following steps:

S(1) Pick an edge of the tessellation that connects two distinct vertices.

S(2) Collapse this edge. (See Figure 5.)

The result is a tessellation by exactly one (12g− 8)-gon. By repeating S(1) and
S(2) we will eventually arrive at the {4g, 4g} tessellation. In getting there we
will have seen all desired tessellations occur.

V W

e1

e2

e3

em

ε1

ε2

ε3

εn

collapse

e1

e2

e3

em

ε1

ε2

ε3

εn

Figure 5: The collapsing of an edge. V and W are two distinct
vertices, with the same image under the collapse. The ei’s and εi’s
are edges incident to V and W respectively. Note that not all these
edges need to be distinct.
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3.2 How to represent a closed orientable genus-2+ surface
as a polygon.

3.2.1 How can we determine the representation?

We now know all p-gons that can tessellate a certain Σg. We said that we
can formally obtain our only tile from this p-gon, by making identifications on
its sides. To be a bit more precise, this means that there is a natural map
π : Pp → Σg. This map is an embedding of the interior of Pp onto the (only)
open face of the tessellation. It maps ∂P to the graph G of the tessellation as
dictated by the identifications. In this section we will find how we can determine
what these identifications should be.

Lemma 3.2. Fix Σg and choose p such that the p-gon Pp can tessellate Σg (we
explained what we mean by this at the very beginning of Section 3.1). Say G is
the graph of this tessellation.

Walking around the boundary of Pp exactly once, now corresponds to a closed
walk on G with the following conditions:

Walk Conditions:

(W1) Each edge is traversed exactly two times.

(W2) Each edge is traversed exactly once in each direction.

(W3) For each edge, the two times that edge is being traversed are not consec-
utive, nor are they the beginning and end of the walk.

Proof.
(W1): Trivial.
(W2): Because we want M to be orientable.
(W3): If (W3) were false then we would have a trivial vertex, like in Figure 3a.
We chose not to consider tessellations with trivial vertices.

Every walk that satisfies the Walk Conditions corresponds to a set of side
pairings of Pp and vice versa. So if we manage to describe all walks of G
satisfying the Walk Conditions, then we know all possible sets of side pairings
for Pp that meet our needs. Determining all of these walks is no standardised
task. The quickest method to determine them all will be different every time.
An example for the case p = 18 and g = 2 can be found in Sections 2–3 of [11].

Example 3.3. The technique discussed above can be applied to any closed
surface, not just the genus-2+ ones. So we will use the torus (g = 1) in this
example. Consider the standard way to cut the torus so that it becomes a
square. In Figure 6 we have drawn the corresponding graph, both on the torus
and as a plane graph.

If we travel along a in the “right” direction, we write a. If we travel along a
in the “wrong” direction, we write ā. We do the same for b.

It is quite obvious that, up to cyclic permutation, the only walks satisfying
the Walk Conditions are abāb̄ and ab̄āb. So the identification schemes shown in
Figure 7 follow. These are, as expected, the standard identification patterns for
the torus (modulo mirror images). This all becomes more complex if the graph
has more vertices and the surface has higher genus.
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a b

ab

Figure 6: A standard graph to cut along to make a square out of a
torus.

a

ā

b b̄ab̄āb abāb̄

a

ā

b̄ b

Figure 7: Two identification schemes to turn a square into a torus.

3.3 Find all regular tessellations of a closed orientable
genus-2+ surface

In the previous sections, we explored tessellations consisting of one tile, and
showed how we can use these to represent Σg as a polygon. Note that not all of
these tessellations were regular. For instance, according to Lemma 3.1 we can
tessellate Σ2 by a single 16-gon. This tessellation, however, is not topologically
regular.

In this section we will show how to find all possible topological {p, q} tes-
sellations of Σg, for g ≥ 2. We will show that p and q are bounded for fixed g.
Since p and q are integers, this means that we can determine all possible values
algorithmically. This is exactly what we will do. In Appendix A we included an
Octave3 script that can print what all possible {p, q} are into a file, using this
algorithm.

3A scientific programming language that is mostly compatible with Matlab. See https:

//www.gnu.org/software/octave/ for more information.
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Assume throughout this section that g ≥ 2 is fixed. We may also assume
that p, q ≥ 3, since we are in hyperbolic space. So we already have lower bounds
for p and q. The next step is to look for upper bounds. For this we will use that

V (p, q) =
2p(2− 2g)

2p− pq + 2q
, (2.7a)

E(p, q) =
pq(2− 2g)

2p− pq + 2q
, (2.7b)

F (p, q) =
2q(2− 2g)

2p− pq + 2q
. (2.7c)

These equations will be of great help to derive the upper bounds.
We will start with an upper bound for q. For this we use (2.7a). It tells us

that V (p, q) is continuous and descending in q. It makes no sense for V to be
smaller than one. So we fix p and derive

2p(2− 2g)

2p− pq + 2q
= 1 =⇒ q =

2p(2− 2g)− 2p

2− p
.

This means that 2p(2−2g)−2p
2−p is an upper bound for q.

To find an upper bound for p, we use (2.7c). From it we can derive that
F (p, q) is continuous and descending in both p and q. We also revisit the proof
of Lemma 3.1, where we claimed that P4g and P12g−6 can always tile Σg. We
will now prove this claim, by showing that they always give rise to topological
regular tessellations with exactly one face.

Claim 3.4. We can always tessellate Σg with a topological {4g, 4g} tessellation
and a topological {12g − 6, 3} tessellation.

Proof. We use Equation 2.6 with (p, q) = (4g, 4g) and find that {4g, 4g} is
possible with (V,E, F ) = (1, 2g, 1). Likewise we find that {12g−6, 3} is possible
with (V,E, F ) = (4g − 2, 6g − 3, 1).

So we know that {12g − 6, 3} is always a possible topological regular tes-
sellation for Σg, with F (12g − 6, 3) = 1. Because F (p, q) is continuous and
descending in both p and q, we can only choose p > 12g − 6 if q < 3. This is
not allowed, so 12g − 6 is an upper bound for p.

So for Σg we can determine all possible {p, q} by the following algorithm.

1 For p = 3 To 12g − 6 ;
2 For q = 3 To

(
2p(2− 2g)− 2p

)
/(2− p) ;

3 Ca l cu la t e V , E and F ;
4 I f (V,E, F ) ∈ Z3

>0 ;
5 Show ”Yes” ;
6 Else Show ”No” ; % Can a l s o be l e f t out
7 End ;
8 End ;
9 End ;

Listing 1: An algorithm to determine all possible topological {p, q}
tessellations for some Σg.

We used this algorithm to produce the tables in Appendix B.
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4 Making metric regular tessellations out of to-
pological regular tessellations

4.1 Exploring the possibilities

Suppose we found a topological regular tessellation of a genus-2+ surface. We
would then like to know if we can also fit this tessellation metrically.

Proposition 4.1. Every topological regular {p, q} tessellation T of a genus-2+

surface Σg can also be realized as a metric regular {p, q} tessellation S of some
genus-2+ surface.

4.1.1 What does the literature say

Information regarding Proposition 4.1 appears to be very scarce. Its truthfulness
mostly seems to be taken for granted. The only papers we found that treated
this claim are [8] and [9], both by A. Edmons, J. Ewing and S. Kulkarni.

Edmonds, Ewing and Kulkarni discuss Proposition 4.1 in the first part of §8
of [8] and in Proposition 4.3 of [9]. In both cases the proof relies on the fact
that we can somehow “insert” some metrically regular polygon into a face of
the tessellation at hand. It is then claimed that this can be done for all faces.
They claim that this naturally turns our topological regular tessellation into a
metrically regular one.

It is the author’s opinion that this proof is not as accessible as it could be.
A priori, the surface Σg has no metric structure defined on it. So to say that
we insert a regular polygon into some face of T seems ill-defined. Secondly,
we wonder if the “insertion method” can be used as a global argument. For
example: Suppose that we do have a clear way to insert a metrically regular
polygon into a face of T and suppose that we have done this for all but one face.
Can our metrically regular polygon then be inserted into the last face, without
deforming the other faces? We therefore have decided to take another look at
Proposition 4.1 and will write down our own alternative proof in Section 4.2.

4.1.2 A heuristic method

Let’s start with the first entry from Table 1 in Appendix B: {3, 7}. According
to Conder [6] this is not a regular map. But, we can tessellate a genus-2 surface
with it in a metrically regular way. To see this is true we can use Figure 8. Here
we have taken 28 tiles from the {3, 7} tessellation of D, such that they form a
convex 18-gon. We took exactly 28 because (V,E, F ){3,7} = (12, 42, 28) for a
genus-2 surface.

According to Poincaré’s Theorem, the side pairings shown in Figure 8 gen-
erate a group Γ acting properly discontinuously on D. Dividing by the orbits of
this group turns our 18-gon into a closed orientable surface Σ. We know that
it is orientable because the side pairing isometries in Figure 8 are orientation
preserving. We can deduce that this surface must have genus 2, by observing
that we have V − E + F = −2. Now note that each vertex cycle has a full
angle sum. This means we do not get any cusps or cone points. The metric of
D induces a metric on D/Γ. If we endow our surface with the induced metric
from D, then we have described how {3, 7} can be a metric regular tessellation
of a genus-2 surface.

19



a

b

c

d

b̄

e

c̄
d̄

ē
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Figure 8: 28 congruent triangles of a {3, 7} tessellation of D, form-
ing an 18-gon. This 18-gon is equipped with side pairings that trans-
form it into an orientable genus-2 surface. Sides are given letters,
vertices on the border are numbered.
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The question now arises if we can use the method we described above to come
to a proof of Proposition 4.1. It turns out that we can. We will give an algorithm
that shows that a polygon like the one in Figure 8 can be constructed, starting
from a topological tessellation. To put it briefly, we are going to construct a
spanning tree of the dual of the graph of the tessellation. At the same time
we will construct an abstract graph in D, isomorphic to this spanning tree. Its
vertices will be regular polygons and the edges will be adjacency relations. This
will form a polygon S ⊂ D. The edges of the tessellation’s dual graph that are
not in the spanning tree will be associated with side pairings of F .

This formulation is probably more brief than comprehensible. Therefore,
we will give a thorough and lengthy explanation of the algorithm in the next
section.

4.2 Going from topologically regular to metrically regular

In what follows, we will be needing the definition of a demi-edge of a graph.

Definition 4.2. A demi-edge is an edge of a graph G that is only associated
with one vertex. If the vertices and edges of a graph are respectively points and
arcs on some surface, then we can turn an edge into two demi-edges by removing
one point from its interior. Note that this means that an embedded demi-edge
is a half open subset of the original edge. See also Figure 9.

v w v

Figure 9: An edge (left) and a demi-edge (right).

Assume that we have a topological regular {p, q} tessellation of some surface
Σg, with V vertices, E edges and F faces. Call the tessellation T and call the
graph of this tessellation G. We are going to construct a polygon S ⊂ D that
we can identify with Σg made of F (metrically) regular p-gons, by an algorithm.
We call this algorithm the Topological-Tessellation to Metric-Tessellation Al-
gorithm, TT2MT in abbreviated form.

TT2MT Algorithm

Tessellate D—Regularly tessellate D with a (metric) {p, q} tessellation. Call
this tessellation T̃ .

Dual of T—Take the graph of a dual tessellation T ∗ of T . Call it G∗.

Dual of T̃—In D, draw the vertices f̃∗i of the dual T̃ ∗ of T̃ . Each of these
vertices is the incentre of some face fi of T̃ .

Choose initial vertices—Choose an initial vertex f∗0 ∈ VG∗ . Also choose an
initial vertex f̃∗0 ∈ VT̃∗ . Now map f∗0 7→ f̃∗0 .

Make spanning tree—Create a spanning tree τ∗ of G∗. Make f∗0 the tree
root (i.e. start at f∗0 ). An edge e∗i ∈ EG∗\Eτ∗ is called a non-tree edge
(NTE abbreviated).
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Map spanning tree—Map the tree τ∗ to the tree τ̃∗ ⊂ D by a map called ϕ
that is defined by the following rules:

• f∗0
ϕ7→ f̃∗0 , i.e. f̃∗0 is the tree root of τ̃ .

• Eτ∗
ϕ→ ET̃∗ , i.e. edges of τ∗ are mapped to edges of T̃ ∗.

• Properties of incidence are preserved by ϕ, i.e. vertices and/or edges
are incident, if and only if, their images are incident as well.

Note that ϕ : τ∗ → τ̃∗ is a graph isomorphism.

Make polygon—Each vertex of τ̃∗ corresponds to exactly one face of T̃ and
each edge to an adjacency relation between two faces. The union of all
these faces form a polygon S in D. This polygon is made of exactly F
regular p-gons. Each side of S is a side of some tile of T̃ . Be aware of the
fact that some consecutive sides of S might meet at an angle π or greater.

Side pairings—Derive the side pairings from the NTEs. Do this as follows:

• Pick a vertex f∗i ∈ VG∗ that is incident to an NTE. Consecutively
label its edges e∗1, . . . , e

∗
q , such that e∗1 is not an NTE.

• Pick an NTE out of the e∗i ’s, were i is as small as possible. Call it n.
It is incident to f∗i and f∗j , not necessarily distinct. Consecutively
label the edges of f∗j as ε∗1, . . . , ε

∗
q , such that ε∗1 is not an NTE.

• These vertices are mapped, under ϕ, to f̃∗i and f̃∗j respectively. Say

f̃∗i ∈ f̃i and f̃∗j ∈ f̃j , where f̃i and f̃j are faces of T̃ . Note that they
lie in S.

• Take all edges of T̃ ∗ that are incident to f̃∗i and f̃∗j . Consecutively

label these ẽ∗1, . . . , ẽ
∗
q for f̃∗i and ε̃∗1, . . . , ε̃

∗
q for f̃∗j , such that ϕ(e∗i ) =

ẽ∗i and ϕ(ε∗i ) = ε̃∗i for all non-NTEs. Note that the ẽ∗i ’s are not
necessarily distinct from the ε̃∗i ’s.

• Remove the point from all NTE’s where they intersect with an edge of
G. This creates a bunch of demi-edges. In particular, the NTE that
we called n is now divided into two demi-edges ni and nj , incident
to f∗i and f∗j respectively. We can now extend ϕ to all these new
demi-edges, by requiring that it preserves the cyclic order of incident
(demi-)edges around a vertex. Also, the length of the image of a
demi-edge in T̃ ∗ under ϕ should be exactly half of that of the other
edges in T̃ ∗.

• ϕ(ni) and ϕ(nj) now have points arbitrarily close to distinct sides of
S. These sides are to be paired. This can be done by an isometry.

The result is a polygon S equipped with side pairings, which we call g1, . . . , g`.
Say Γ = 〈g1, . . . , g`〉 and say ψ : S → S/Γ. We define the metric on S/Γ to be
the induced metric. Then we claim that ψ(S∩T ) is a metric regular tessellation
on S/Γ, which is a closed genus-g surface.

Before we prove our claim we would like to note that the last step we de-
scribed above (Side pairings), is not necessary to prove the existence of the
metrically regular tessellation. It only serves to aid in the description of such a
tessellation.

22



α∗

β∗

γ∗ δ∗

ε∗

(a) The dual of a topological {10, 5} tessellation on an orientable genus-2 surface.

α̃∗

β̃∗

α̃∗

β̃∗ γ̃∗
δ̃∗

ε̃∗

δ̃∗

ε̃∗γ̃∗
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d̄

ē

c̄

(b) A 5-regular decagon to serve as our S. This matches
with Figure 10a.

Figure 10: An example of parts of the TT2MT algorithm for
{p, q} = {10, 5} and genus g = 2.
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Example 4.3. Suppose we are on Σ2 and we have a topological {10, 5} tessella-
tion T . We start by drawing its dual T ∗, i.e. the topological {5, 10} tessellation
(Figure 10a) and the metric {10, 5} tessellation T̃ in D. The spanning tree τ∗

is exactly the only vertex of T ∗. It is mapped to a single vertex of T̃ ∗, corres-
ponding to a 5-regular decagon (i.e. an equilateral decagon with angle sizes 2π

5 ).
This decagon is drawn in Figure 10b.

Now the edges α∗, β∗, γ∗, δ∗, ε∗ are turned into 10 demi-edges. These are
mapped to the demi-edges α̃∗, β̃∗, γ̃∗, δ̃∗, ε̃∗ of Figure 10b respectively. Their
cyclic order must be preserved during the process. The sides of the decagon
must be paired as is now dictated by these demi-edges.

In Figure 10b we try to illustrate how the demi-edges determine the side
pairings. Here we show how the demi-edges of G∗ are mapped into S. It
illustrates that we pair two sides if they are approached by corresponding demi-
edges. We can also see that we have V −E+F = 2− 5 + 1 = −2. We now have
a description of a metric {10, 5} tessellation on what must be a closed genus-2
Riemann surface.

Claim 4.4. The TT2MT Algorithm proves the existence of a metric regular
tessellation for every topological regular tessellation.

Proof. It is not hard to see that we can always cut open Σg such that we are
left with a simply-connected shape S′. Just cut along the edges of G that do
not intersect τ∗.

Because S′ was made by cutting along edges of G, we can naturally divide
the border of S′ into sides; each side corresponds to an edge of G. Moreover,
the cutting dictates how we should identify pairs of these sides in order to get
Σg back.

By construction, the (cyclic) order in which the sides of S are paired is the
same as the order in which the sides of S′ are paired (the former is derived from
the latter). So we can safely say the the side pairings we have equipped S with,
at least turn it into a topological surface of the right orientation and genus.

Also by construction, the sides of S are all of equal length (S is a union of
congruent polygons). So we are free to choose orientation preserving isometries
as side pairings.

All that’s left to check are the angle sums. Each set of identified vertices
is incident to q edges, where paired edges are counted as one. Each two neigh-
bouring edges make an angle of size 2π

q by construction. There are q pairs of
neighbouring edges. This means that our vertex has a full angle sum, as desired.
See Figure 12 for an example.

We may now use Poincaré’s Theorem on S and its side pairings. It is now
trivial to see that we have described a metrically regular tessellation of a closed
genus-g surface.

Example 4.5. Consider the case of a {3, 7} tessellation on a genus-2 surface.
In Figure 11a we have drawn a topological {3, 7} tessellation T and a spanning
tree τ∗ of the graph of its dual tessellation T ∗. In Figure 11a:

• The topological {3.7} tessellation T is drawn with solid lines.

• We use colours to indicate how the triangles “wrap around” the surface
(same colour=same triangle). If no confusion is possible, triangles are left
white.

24



• The dual vertices are dots.

• The spanning tree τ∗ of the graph of the dual tessellation T ∗ is drawn
with dashed lines.

• We have drawn two NTEs with double dashed lines.

In Figure 11b we have drawn the tree τ̃∗ in a convenient way. Each of the
dual vertices lies within some face of an equilateral triangle, with all angles
2π
7 . A priori there is only adjacency when there is a tree-edge connecting two

triangles, so one might say that this picture is misleading. We will shortly see
that this will not be a problem.

We have indicated three dual vertices f∗i f∗j and f∗k in Figure 11a. Their

images under ϕ—f̃∗i , f̃∗j and f̃∗k respectively—are indicated in Figure 11b.
In Figure 11a we can see the NTE between f∗i and f∗j . It is divided into two

demi-edges ni and nj by removing the pont indicated by a circle. The map ϕ
can be extended to these two half edges in a way that preserves the cyclic order
around the vertices f∗i and f∗j . Their images are drawn Figure 11b. Now we
know that the sides we (prematurely) labelled a and ā must be identified.

The NTE between f∗j and f∗k analogously induces an identification. The
same thing must of course also be done for all other NTEs. The sides they
identify are all, by construction, line segments in D of equal length. Thus, we
can choose orientation preserving side pairings to make the identifications.

It is now obvious why we called our positioning of the tree τ̃∗ “convenient”:
The triangles of Figure 11b that appear adjacent are in fact “made adjacent”
by choosing side pairings. Many of these side parings will be the identity in
Figure 11b.

After we made the identifications, we are left with Figure 12. Vertex v3 is
now incident, in cyclic order, to the seven edges b, j, k, c = c̄,m, d̄ = d, `, b̄ = b.
The angle between each consecutive pair is 2π

7 and there are seven angles formed.
So, v3 has a full angle sum. Analogously, we show that every vertex on the edge
of our shape (for instance v7) has a full angle sum.

Using Poincaré’s Theorem we can now deduce that we have found a metric
{3, 7} tessellation of a closed genus-2 Riemann surface.
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Figure 11: Deriving a description for a metric {3, 7} tessellation
on a closed genus-2 surface.
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ē

ā
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Figure 12: v3 has full angle sum.
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A An Octave script that prints what all possible
{p, q} tessellations for some closed orientable
genus-g surface are into a file

In this appendix we show an Octave4 script that will allow us to see what
all possible {p, q} tessellations are for a closed oreintable genus-g surface, for
a certain g. The script is given in Listing 2. It is an implementation of the
algorithm shown in Listing 1.

The script first checks if manualinput=1. This means that manualinput

must be defined before running the script. If manualinput=1, then the script
will ask to input a value for g. If manualinput6=1, then it will not set a value
for g. So in this case g must be defined before using the script.

Next it opens the files Tessellations-of-a-genus-g-surface.txt and
tableforgenusg.tex. If those files don’t exist, then they are craeated at the
spot. If either or both of those files do exist, then their contents are deleted.
Immediately thereafter it prints the first lines of those files.

The file Tessellations-of-a-genus-g-surface.txt is an ordinary .txt
file. If the script finds that {p, q} is possible, then it will say so in that file.
At the end of the file it will say “There are no more possibilities.”, emphasising
that the list is exhaustive. It also prints the number of tessellations that were
found.

The file tableforgenusg.tex creates a .tex file to be used by LATEX. It
contains a longtable-environment that will display all possible {p, q} in a table.
The tables in Appendix B are created with this method. Note that this requires
the use of the LATEX package “longtable”.

After the first lines have been printed, we enter a double for-loop. It runs
over all values of p and q described in Section 3.3. The script then calculates V,
E and F, if possible. Else it sets V=-1.

Once this is done, the script checks if V, E and F all have positive integer
values. The checking uses the && operator. This acts like an ordinary logical
AND, only it does not bother to check any more arguments, once it encounters
a false one. So if V, E and F could not be calculated (and thus it set V=-1), we
don’t get an error message.

Once the script has found that a certain tessellation is possible, it prints
corresponding lines into the .txt and .tex files. If not, then it does nothing.
When the double for-loop is completed, it prints the final lines of the files and
then closes them. Listing 3 and Listing 4 show the two files that are created by
the script, when g=2.

1 % This i s an Octave s c r i p t that c r e a t e s two f i l e s in
which i t p r i n t s what a l l p o s s i b l e t o p o l o g i c a l r e g u l a r
{p , q} t e s s e l l a t i o n s are f o r a c l o s e d o r i e n t a b l e genus−
g s u r f a c e ( g at l e a s t 2) .

2 i f manualinput==1 % Must be de f ined be f o r e us ing the
s c r i p t .

3 g=input ( ’ Give genus : ’ ) ;
4 end

4A scientific programming language that is mostly compatible with Matlab. See https:

//www.gnu.org/software/octave/ for more information.
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5 g % g stands f o r genus and must be de f ined be f o r e us ing
the s c ip t , or through manual input ( i f manualinput=1) .

6
7 % Create f i l enames that depend on g .
8 t e x t f i l e n a m e=sprintf ( ’ T e s s e l l a t i o n s−of−a−genus−%d−s u r f a c e

. txt ’ , g ) ;
9 t a b l e f i l e n a m e=sprintf ( ’ t a b l e f o r g e n u s%d . tex ’ , g ) ;

10
11 % Open/ Create f i l e s ( d e l e t e a l l that i s c u r r e n t l y pre sent

) .
12 t e x t f i l e=fopen ( t ext f i l ename , ’w ’ ) ;
13 t a b l e f i l e=fopen ( tab l e f i l ename , ’w ’ ) ;
14
15 % Print the f i r s t r u l e s o f the f i l e s .
16 fpr intf ( t e x t f i l e , ’ This f i l e l i s t s a l l p o s s i b l e

t o p o l o g i c a l r e g u l a r {p , q} t e s s e l l a t i o n s f o r a c l o s e d
o r i e n t a b l e genus−%d s u r f a c e .\ r \ nIt a l s o g i v e s the
number o f v e r t i c e s (V) , edges (E) and f a c e s (F) o f
those t e s s e l l a t i o n s .\ r \n\ r \n ’ , g )

17 fpr intf ( t a b l e f i l e , ’ \\ begin { l o n g t a b l e }{ | c | c | c}\ r \n \\
capt ion {Al l p o s s i b l e t o p o l o g i c a l r e g u l a r t e s s e l a t i o n s
o f a c l o s e d o r i e n t a b l e genus−$%d$ s u r f a c e . A {\\
normalfont ∗} denotes a t e s s e l l a t i o n with exac t l y one
t i l e .\\ l a b e l { tab le−fo r−genus−%d}}\\\\\ r \n\\ c l i n e {1−2}\
r \n $\\mathbf{\\{p , q\\}}$&$\\mathbf {(V,E,F) }$&˜\\
e n d f i r s t h e a d \ r \n \\ capt ion {genus−$%d$ cont inued \\
l d o t s }\\\\\ r \n\\ c l i n e {1−2}\ r \n $\\mathbf{\\{p , q\\}}
$&$\\mathbf {(V,E,F) }$&˜\\\\\\ c l i n e {1−2}\\endhead\ r \n ’ ,
g , g , g )

18 numberOfTesse l lat ions =0;
19
20 % Loop through a l l r ea sonab l e p and q .
21 for p = 3 : 12∗g−6;
22 for q =3: (2∗p∗(2−2∗g )−2∗p) /(2−p) ;
23 i f 2∗p−p∗q+2∗q˜=0;
24 V=(2∗p∗(2−2∗g ) ) /(2∗p−p∗q+2∗q ) ;
25 E=(p∗q∗(2−2∗g ) ) /(2∗p−p∗q+2∗q ) ;
26 F=(2∗q∗(2−2∗g ) ) /(2∗p−p∗q+2∗q ) ;
27 else V=−1;
28 end
29 % Check i f {p , q} i s a p o s s i b l e t e s s e l l a t i o n . I f so ,

wr i t e l i n e s to the f i l e s .
30 i f V>0&&V==f loor (V)&&E>0&&E==f loor (E)&&F>0&&F==

f loor (F) ;
31 fpr intf ( t e x t f i l e , ’(%d,%d) i s a p o s s i b i l i t y .\ r

\n I t g i v e s (V,E,F)=(%d,%d,%d) .\ r \n ’ ,p ,
q ,V,E,F) ;

32 numberOfTesse l lat ions=numberOfTesse l lat ions
+1;

33 i f F==1;
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34 fpr intf ( t e x t f i l e , ’ This means that the %
d−r e g u l a r %d−gon can se rve as a
fundamental polygon .\ r \n\ r \n ’ , q , p )

35 fpr intf ( t a b l e f i l e , ’ \\ c l i n e {1−2}\ r \n$\\{%d,%
d\\}$&$(%d,%d,%d) $&\\multicolumn {1}{@{} l
}{∗}\\\\\ r \n ’ ,p , q ,V,E,F)

36 else fprintf ( t a b l e f i l e , ’ \\ c l i n e {1−2}\ r \n$\\{%
d,%d\\}$&$(%d,%d,%d) $&\\\\\ r \n ’ ,p , q ,V,E,F)

37 end
38 end
39 end
40 end
41
42 % Print end o f f i l e s .
43 fpr intf ( t e x t f i l e , ’ There are no more p o s s i b i l i t i e s .\ r \

nThere are %d t e s s e l l a t i o n s in t o t a l ’ ,
numberOfTesse l lat ions ) ;

44 fpr intf ( t a b l e f i l e , ’ \\ c l i n e {1−2}\ r \n\\end{ l o n g t a b l e } ’ )
45
46 % Close f i l e s .
47 fc lose ( t e x t f i l e ) ;
48 fc lose ( t a b l e f i l e ) ;

Listing 2: Octave script that finds all possible tessellations {p, q} of
a genus-g surface. The results are printed into a .txt file and into a
.tex file. The source file has a .m extension.

1 This file lists all possible topological regular {p,q}

tessellations for a closed orientable genus -2

surface.

2 It also gives the number of vertices (V), edges (E)

and faces (F) of those tessellations.

3
4 (3,7) is a possibility.

5 It gives (V,E,F)=(12 ,42 ,28).

6 (3,8) is a possibility.

7 It gives (V,E,F)=(6 ,24 ,16).

8 (3,9) is a possibility.

9 It gives (V,E,F)=(4 ,18 ,12).

10 (3,10) is a possibility.

11 It gives (V,E,F)=(3 ,15 ,10).

12 (3,12) is a possibility.

13 It gives (V,E,F)=(2 ,12 ,8).

14 (3,18) is a possibility.

15 It gives (V,E,F)=(1,9,6).

16 (4,5) is a possibility.

17 It gives (V,E,F)=(8 ,20 ,10).

18 (4,6) is a possibility.

19 It gives (V,E,F)=(4 ,12 ,6).

20 (4,8) is a possibility.
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21 It gives (V,E,F)=(2,8,4).

22 (4,12) is a possibility.

23 It gives (V,E,F)=(1,6,3).

24 (5,4) is a possibility.

25 It gives (V,E,F)=(10 ,20 ,8).

26 (5,5) is a possibility.

27 It gives (V,E,F)=(4 ,10 ,4).

28 (5,10) is a possibility.

29 It gives (V,E,F)=(1,5,2).

30 (6,4) is a possibility.

31 It gives (V,E,F)=(6 ,12 ,4).

32 (6,6) is a possibility.

33 It gives (V,E,F)=(2,6,2).

34 (7,3) is a possibility.

35 It gives (V,E,F)=(28 ,42 ,12).

36 (8,3) is a possibility.

37 It gives (V,E,F)=(16 ,24 ,6).

38 (8,4) is a possibility.

39 It gives (V,E,F)=(4,8,2).

40 (8,8) is a possibility.

41 It gives (V,E,F)=(1,4,1).

42 This means that the 8-regular 8-gon can serve as a

fundamental polygon.

43
44 (9,3) is a possibility.

45 It gives (V,E,F)=(12 ,18 ,4).

46 (10 ,3) is a possibility.

47 It gives (V,E,F)=(10 ,15 ,3).

48 (10 ,5) is a possibility.

49 It gives (V,E,F)=(2,5,1).

50 This means that the 5-regular 10-gon can serve as

a fundamental polygon.

51
52 (12 ,3) is a possibility.

53 It gives (V,E,F)=(8 ,12 ,2).

54 (12 ,4) is a possibility.

55 It gives (V,E,F)=(3,6,1).

56 This means that the 4-regular 12-gon can serve as

a fundamental polygon.

57
58 (18 ,3) is a possibility.

59 It gives (V,E,F)=(6,9,1).

60 This means that the 3-regular 18-gon can serve as

a fundamental polygon.

61
62 There are no more possibilities.

63 There are 25 tessellations in total

Listing 3: The contents of the file Tessellations-of-a-genus-2-

surface.txt that the script in Listing 2 creates when g=2.
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1 \begin { l o n g t a b l e }{ | c | c | c}
2 \ capt ion {Al l p o s s i b l e t o p o l o g i c a l r e g u l a r

t e s s e l a t i o n s o f a c l o s e d o r i e n t a b l e genus−$2$
s u r f a c e . A {\ normalfont ∗} denotes a t e s s e l l a t i o n
with exac t l y one t i l e .\ l a b e l { tab le−f o r−genus−2}}\\

3 \ c l i n e {1−2}
4 $\mathbf{\{p , q\}}$&$\mathbf {(V,E,F)}$&˜\ e n d f i r s t h e a d
5 \ capt ion {genus−$2$ cont inued \ l d o t s }\\
6 \ c l i n e {1−2}
7 $\mathbf{\{p , q\}}$&$\mathbf {(V,E,F) }$&˜\\\ c l i n e {1−2}\

endhead
8 \ c l i n e {1−2}
9 $\{3 ,7\}$&$(12 ,42 ,28)$&\\

10 \ c l i n e {1−2}
11 $\{3 ,8\}$&$(6 ,24 ,16)$&\\
12 \ c l i n e {1−2}
13 $\{3 ,9\}$&$(4 ,18 ,12)$&\\
14 \ c l i n e {1−2}
15 $\{3 ,10\}$&$(3 ,15 ,10)$&\\
16 \ c l i n e {1−2}
17 $\{3 ,12\}$&$(2 ,12 ,8)$&\\
18 \ c l i n e {1−2}
19 $\{3 ,18\}$&$(1 ,9 ,6)$&\\
20 \ c l i n e {1−2}
21 $\{4 ,5\}$&$(8 ,20 ,10)$&\\
22 \ c l i n e {1−2}
23 $\{4 ,6\}$&$(4 ,12 ,6)$&\\
24 \ c l i n e {1−2}
25 $\{4 ,8\}$&$(2 ,8 ,4)$&\\
26 \ c l i n e {1−2}
27 $\{4 ,12\}$&$(1 ,6 ,3)$&\\
28 \ c l i n e {1−2}
29 $\{5 ,4\}$&$(10 ,20 ,8)$&\\
30 \ c l i n e {1−2}
31 $\{5 ,5\}$&$(4 ,10 ,4)$&\\
32 \ c l i n e {1−2}
33 $\{5 ,10\}$&$(1 ,5 ,2)$&\\
34 \ c l i n e {1−2}
35 $\{6 ,4\}$&$(6 ,12 ,4)$&\\
36 \ c l i n e {1−2}
37 $\{6 ,6\}$&$(2 ,6 ,2)$&\\
38 \ c l i n e {1−2}
39 $\{7 ,3\}$&$(28 ,42 ,12)$&\\
40 \ c l i n e {1−2}
41 $\{8 ,3\}$&$(16 ,24 ,6)$&\\
42 \ c l i n e {1−2}
43 $\{8 ,4\}$&$(4 ,8 ,2)$&\\
44 \ c l i n e {1−2}
45 $\{8 ,8\}$&$(1 ,4 ,1)$&\multicolumn {1}{@{} l }{∗}\\
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46 \ c l i n e {1−2}
47 $\{9 ,3\}$&$(12 ,18 ,4)$&\\
48 \ c l i n e {1−2}
49 $\{10 ,3\}$&$(10 ,15 ,3)$&\\
50 \ c l i n e {1−2}
51 $\{10 ,5\}$&$(2 ,5 ,1)$&\multicolumn {1}{@{} l }{∗}\\
52 \ c l i n e {1−2}
53 $\{12 ,3\}$&$(8 ,12 ,2)$&\\
54 \ c l i n e {1−2}
55 $\{12 ,4\}$&$(3 ,6 ,1)$&\multicolumn {1}{@{} l }{∗}\\
56 \ c l i n e {1−2}
57 $\{18 ,3\}$&$(6 ,9 ,1)$&\multicolumn {1}{@{} l }{∗}\\
58 \ c l i n e {1−2}
59 \end{ l o n g t a b l e }

Listing 4: The contents of the file tableforgenus2.tex that the
script in Listing 2 creates when g=2. pdfLATEX makes Table 1 out of
these lines.

B All regular tessellations of closed orientable
surfaces of genus 2 to 10

Table 1: All possible topological regular tesselations of a closed ori-
entable genus-2 surface. A * denotes a tessellation with exactly one
tile.

{p,q} (V,E,F)

{3, 7} (12, 42, 28)

{3, 8} (6, 24, 16)

{3, 9} (4, 18, 12)

{3, 10} (3, 15, 10)

{3, 12} (2, 12, 8)

{3, 18} (1, 9, 6)

{4, 5} (8, 20, 10)

{4, 6} (4, 12, 6)

{4, 8} (2, 8, 4)

{4, 12} (1, 6, 3)

{5, 4} (10, 20, 8)

{5, 5} (4, 10, 4)

{5, 10} (1, 5, 2)
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Table 1: genus-2 continued. . .

{p,q} (V,E,F)

{6, 4} (6, 12, 4)

{6, 6} (2, 6, 2)

{7, 3} (28, 42, 12)

{8, 3} (16, 24, 6)

{8, 4} (4, 8, 2)

{8, 8} (1, 4, 1) *

{9, 3} (12, 18, 4)

{10, 3} (10, 15, 3)

{10, 5} (2, 5, 1) *

{12, 3} (8, 12, 2)

{12, 4} (3, 6, 1) *

{18, 3} (6, 9, 1) *

Table 2: All possible topological regular tesselations of a closed ori-
entable genus-3 surface. A * denotes a tessellation with exactly one
tile.

{p,q} (V,E,F)

{3, 7} (24, 84, 56)

{3, 8} (12, 48, 32)

{3, 9} (8, 36, 24)

{3, 10} (6, 30, 20)

{3, 12} (4, 24, 16)

{3, 14} (3, 21, 14)

{3, 18} (2, 18, 12)

{3, 30} (1, 15, 10)

{4, 5} (16, 40, 20)

{4, 6} (8, 24, 12)

{4, 8} (4, 16, 8)

{4, 12} (2, 12, 6)

{4, 20} (1, 10, 5)

{5, 4} (20, 40, 16)
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Table 2: genus-3 continued. . .

{p,q} (V,E,F)

{5, 5} (8, 20, 8)

{5, 6} (5, 15, 6)

{5, 10} (2, 10, 4)

{6, 4} (12, 24, 8)

{6, 5} (6, 15, 5)

{6, 6} (4, 12, 4)

{6, 9} (2, 9, 3)

{7, 3} (56, 84, 24)

{7, 14} (1, 7, 2)

{8, 3} (32, 48, 12)

{8, 4} (8, 16, 4)

{8, 8} (2, 8, 2)

{9, 3} (24, 36, 8)

{9, 6} (3, 9, 2)

{10, 3} (20, 30, 6)

{10, 5} (4, 10, 2)

{12, 3} (16, 24, 4)

{12, 4} (6, 12, 2)

{12, 12} (1, 6, 1) *

{14, 3} (14, 21, 3)

{14, 7} (2, 7, 1) *

{18, 3} (12, 18, 2)

{20, 4} (5, 10, 1) *

{30, 3} (10, 15, 1) *

Table 3: All possible topological regular tesselations of a closed ori-
entable genus-4 surface. A * denotes a tessellation with exactly one
tile.

{p,q} (V,E,F)

{3, 7} (36, 126, 84)

{3, 8} (18, 72, 48)
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Table 3: genus-4 continued. . .

{p,q} (V,E,F)

{3, 9} (12, 54, 36)

{3, 10} (9, 45, 30)

{3, 12} (6, 36, 24)

{3, 15} (4, 30, 20)

{3, 18} (3, 27, 18)

{3, 24} (2, 24, 16)

{3, 42} (1, 21, 14)

{4, 5} (24, 60, 30)

{4, 6} (12, 36, 18)

{4, 7} (8, 28, 14)

{4, 8} (6, 24, 12)

{4, 10} (4, 20, 10)

{4, 12} (3, 18, 9)

{4, 16} (2, 16, 8)

{4, 28} (1, 14, 7)

{5, 4} (30, 60, 24)

{5, 5} (12, 30, 12)

{5, 10} (3, 15, 6)

{6, 4} (18, 36, 12)

{6, 6} (6, 18, 6)

{6, 12} (2, 12, 4)

{7, 3} (84, 126, 36)

{7, 4} (14, 28, 8)

{7, 7} (4, 14, 4)

{8, 3} (48, 72, 18)

{8, 4} (12, 24, 6)

{8, 8} (3, 12, 3)

{9, 3} (36, 54, 12)

{9, 18} (1, 9, 2)

{10, 3} (30, 45, 9)

{10, 4} (10, 20, 4)
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Table 3: genus-4 continued. . .

{p,q} (V,E,F)

{10, 5} (6, 15, 3)

{10, 10} (2, 10, 2)

{12, 3} (24, 36, 6)

{12, 4} (9, 18, 3)

{12, 6} (4, 12, 2)

{15, 3} (20, 30, 4)

{16, 4} (8, 16, 2)

{16, 16} (1, 8, 1) *

{18, 3} (18, 27, 3)

{18, 9} (2, 9, 1) *

{24, 3} (16, 24, 2)

{28, 4} (7, 14, 1) *

{42, 3} (14, 21, 1) *

Table 4: All possible topological regular tesselations of a closed ori-
entable genus-5 surface. A * denotes a tessellation with exactly one
tile.

{p,q} (V,E,F)

{3, 7} (48, 168, 112)

{3, 8} (24, 96, 64)

{3, 9} (16, 72, 48)

{3, 10} (12, 60, 40)

{3, 12} (8, 48, 32)

{3, 14} (6, 42, 28)

{3, 18} (4, 36, 24)

{3, 22} (3, 33, 22)

{3, 30} (2, 30, 20)

{3, 54} (1, 27, 18)

{4, 5} (32, 80, 40)

{4, 6} (16, 48, 24)

{4, 8} (8, 32, 16)
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Table 4: genus-5 continued. . .

{p,q} (V,E,F)

{4, 12} (4, 24, 12)

{4, 20} (2, 20, 10)

{4, 36} (1, 18, 9)

{5, 4} (40, 80, 32)

{5, 5} (16, 40, 16)

{5, 6} (10, 30, 12)

{5, 10} (4, 20, 8)

{5, 30} (1, 15, 6)

{6, 4} (24, 48, 16)

{6, 5} (12, 30, 10)

{6, 6} (8, 24, 8)

{6, 7} (6, 21, 7)

{6, 9} (4, 18, 6)

{6, 15} (2, 15, 5)

{7, 3} (112, 168, 48)

{7, 6} (7, 21, 6)

{7, 14} (2, 14, 4)

{8, 3} (64, 96, 24)

{8, 4} (16, 32, 8)

{8, 8} (4, 16, 4)

{8, 24} (1, 12, 3)

{9, 3} (48, 72, 16)

{9, 6} (6, 18, 4)

{10, 3} (40, 60, 12)

{10, 5} (8, 20, 4)

{11, 22} (1, 11, 2)

{12, 3} (32, 48, 8)

{12, 4} (12, 24, 4)

{12, 12} (2, 12, 2)

{14, 3} (28, 42, 6)

{14, 7} (4, 14, 2)
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Table 4: genus-5 continued. . .

{p,q} (V,E,F)

{15, 6} (5, 15, 2)

{18, 3} (24, 36, 4)

{20, 4} (10, 20, 2)

{20, 20} (1, 10, 1) *

{22, 3} (22, 33, 3)

{22, 11} (2, 11, 1) *

{24, 8} (3, 12, 1) *

{30, 3} (20, 30, 2)

{30, 5} (6, 15, 1) *

{36, 4} (9, 18, 1) *

{54, 3} (18, 27, 1) *

Table 5: All possible topological regular tesselations of a closed ori-
entable genus-6 surface. A * denotes a tessellation with exactly one
tile.

{p,q} (V,E,F)

{3, 7} (60, 210, 140)

{3, 8} (30, 120, 80)

{3, 9} (20, 90, 60)

{3, 10} (15, 75, 50)

{3, 11} (12, 66, 44)

{3, 12} (10, 60, 40)

{3, 16} (6, 48, 32)

{3, 18} (5, 45, 30)

{3, 21} (4, 42, 28)

{3, 26} (3, 39, 26)

{3, 36} (2, 36, 24)

{3, 66} (1, 33, 22)

{4, 5} (40, 100, 50)

{4, 6} (20, 60, 30)

{4, 8} (10, 40, 20)
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Table 5: genus-6 continued. . .

{p,q} (V,E,F)

{4, 9} (8, 36, 18)

{4, 12} (5, 30, 15)

{4, 14} (4, 28, 14)

{4, 24} (2, 24, 12)

{4, 44} (1, 22, 11)

{5, 4} (50, 100, 40)

{5, 5} (20, 50, 20)

{5, 10} (5, 25, 10)

{5, 20} (2, 20, 8)

{6, 4} (30, 60, 20)

{6, 6} (10, 30, 10)

{6, 8} (6, 24, 8)

{6, 18} (2, 18, 6)

{7, 3} (140, 210, 60)

{8, 3} (80, 120, 30)

{8, 4} (20, 40, 10)

{8, 6} (8, 24, 6)

{8, 8} (5, 20, 5)

{8, 16} (2, 16, 4)

{9, 3} (60, 90, 20)

{9, 4} (18, 36, 8)

{9, 9} (4, 18, 4)

{10, 3} (50, 75, 15)

{10, 5} (10, 25, 5)

{10, 15} (2, 15, 3)

{11, 3} (44, 66, 12)

{12, 3} (40, 60, 10)

{12, 4} (15, 30, 5)

{13, 26} (1, 13, 2)

{14, 4} (14, 28, 4)

{14, 14} (2, 14, 2)
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Table 5: genus-6 continued. . .

{p,q} (V,E,F)

{15, 10} (3, 15, 2)

{16, 3} (32, 48, 6)

{16, 8} (4, 16, 2)

{18, 3} (30, 45, 5)

{18, 6} (6, 18, 2)

{20, 5} (8, 20, 2)

{21, 3} (28, 42, 4)

{24, 4} (12, 24, 2)

{24, 24} (1, 12, 1) *

{26, 3} (26, 39, 3)

{26, 13} (2, 13, 1) *

{36, 3} (24, 36, 2)

{44, 4} (11, 22, 1) *

{66, 3} (22, 33, 1) *

Table 6: All possible topological regular tesselations of a closed ori-
entable genus-7 surface. A * denotes a tessellation with exactly one
tile.

{p,q} (V,E,F)

{3, 7} (72, 252, 168)

{3, 8} (36, 144, 96)

{3, 9} (24, 108, 72)

{3, 10} (18, 90, 60)

{3, 12} (12, 72, 48)

{3, 14} (9, 63, 42)

{3, 15} (8, 60, 40)

{3, 18} (6, 54, 36)

{3, 24} (4, 48, 32)

{3, 30} (3, 45, 30)

{3, 42} (2, 42, 28)

{3, 78} (1, 39, 26)
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Table 6: genus-7 continued. . .

{p,q} (V,E,F)

{4, 5} (48, 120, 60)

{4, 6} (24, 72, 36)

{4, 7} (16, 56, 28)

{4, 8} (12, 48, 24)

{4, 10} (8, 40, 20)

{4, 12} (6, 36, 18)

{4, 16} (4, 32, 16)

{4, 20} (3, 30, 15)

{4, 28} (2, 28, 14)

{4, 52} (1, 26, 13)

{5, 4} (60, 120, 48)

{5, 5} (24, 60, 24)

{5, 6} (15, 45, 18)

{5, 10} (6, 30, 12)

{6, 4} (36, 72, 24)

{6, 5} (18, 45, 15)

{6, 6} (12, 36, 12)

{6, 9} (6, 27, 9)

{6, 12} (4, 24, 8)

{6, 21} (2, 21, 7)

{7, 3} (168, 252, 72)

{7, 4} (28, 56, 16)

{7, 7} (8, 28, 8)

{7, 14} (3, 21, 6)

{8, 3} (96, 144, 36)

{8, 4} (24, 48, 12)

{8, 8} (6, 24, 6)

{9, 3} (72, 108, 24)

{9, 6} (9, 27, 6)

{9, 18} (2, 18, 4)

{10, 3} (60, 90, 18)
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Table 6: genus-7 continued. . .

{p,q} (V,E,F)

{10, 4} (20, 40, 8)

{10, 5} (12, 30, 6)

{10, 10} (4, 20, 4)

{12, 3} (48, 72, 12)

{12, 4} (18, 36, 6)

{12, 6} (8, 24, 4)

{12, 12} (3, 18, 3)

{14, 3} (42, 63, 9)

{14, 7} (6, 21, 3)

{15, 3} (40, 60, 8)

{15, 30} (1, 15, 2)

{16, 4} (16, 32, 4)

{16, 16} (2, 16, 2)

{18, 3} (36, 54, 6)

{18, 9} (4, 18, 2)

{20, 4} (15, 30, 3)

{21, 6} (7, 21, 2)

{24, 3} (32, 48, 4)

{28, 4} (14, 28, 2)

{28, 28} (1, 14, 1) *

{30, 3} (30, 45, 3)

{30, 15} (2, 15, 1) *

{42, 3} (28, 42, 2)

{52, 4} (13, 26, 1) *

{78, 3} (26, 39, 1) *

Table 7: All possible topological regular tesselations of a closed ori-
entable genus-8 surface. A * denotes a tessellation with exactly one
tile.

{p,q} (V,E,F)

{3, 7} (84, 294, 196)
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Table 7: genus-8 continued. . .

{p,q} (V,E,F)

{3, 8} (42, 168, 112)

{3, 9} (28, 126, 84)

{3, 10} (21, 105, 70)

{3, 12} (14, 84, 56)

{3, 13} (12, 78, 52)

{3, 18} (7, 63, 42)

{3, 20} (6, 60, 40)

{3, 27} (4, 54, 36)

{3, 34} (3, 51, 34)

{3, 48} (2, 48, 32)

{3, 90} (1, 45, 30)

{4, 5} (56, 140, 70)

{4, 6} (28, 84, 42)

{4, 8} (14, 56, 28)

{4, 11} (8, 44, 22)

{4, 12} (7, 42, 21)

{4, 18} (4, 36, 18)

{4, 32} (2, 32, 16)

{4, 60} (1, 30, 15)

{5, 4} (70, 140, 56)

{5, 5} (28, 70, 28)

{5, 8} (10, 40, 16)

{5, 10} (7, 35, 14)

{5, 15} (4, 30, 12)

{5, 50} (1, 25, 10)

{6, 4} (42, 84, 28)

{6, 6} (14, 42, 14)

{6, 10} (6, 30, 10)

{6, 24} (2, 24, 8)

{7, 3} (196, 294, 84)

{7, 42} (1, 21, 6)

44



Table 7: genus-8 continued. . .

{p,q} (V,E,F)

{8, 3} (112, 168, 42)

{8, 4} (28, 56, 14)

{8, 5} (16, 40, 10)

{8, 8} (7, 28, 7)

{8, 12} (4, 24, 6)

{8, 40} (1, 20, 5)

{9, 3} (84, 126, 28)

{10, 3} (70, 105, 21)

{10, 5} (14, 35, 7)

{10, 6} (10, 30, 6)

{10, 20} (2, 20, 4)

{11, 4} (22, 44, 8)

{11, 11} (4, 22, 4)

{12, 3} (56, 84, 14)

{12, 4} (21, 42, 7)

{12, 8} (6, 24, 4)

{12, 36} (1, 18, 3)

{13, 3} (52, 78, 12)

{15, 5} (12, 30, 4)

{17, 34} (1, 17, 2)

{18, 3} (42, 63, 7)

{18, 4} (18, 36, 4)

{18, 18} (2, 18, 2)

{20, 3} (40, 60, 6)

{20, 10} (4, 20, 2)

{24, 6} (8, 24, 2)

{27, 3} (36, 54, 4)

{32, 4} (16, 32, 2)

{32, 32} (1, 16, 1) *

{34, 3} (34, 51, 3)

{34, 17} (2, 17, 1) *

45



Table 7: genus-8 continued. . .

{p,q} (V,E,F)

{36, 12} (3, 18, 1) *

{40, 8} (5, 20, 1) *

{42, 7} (6, 21, 1) *

{48, 3} (32, 48, 2)

{50, 5} (10, 25, 1) *

{60, 4} (15, 30, 1) *

{90, 3} (30, 45, 1) *

Table 8: All possible topological regular tesselations of a closed ori-
entable genus-9 surface. A * denotes a tessellation with exactly one
tile.

{p,q} (V,E,F)

{3, 7} (96, 336, 224)

{3, 8} (48, 192, 128)

{3, 9} (32, 144, 96)

{3, 10} (24, 120, 80)

{3, 12} (16, 96, 64)

{3, 14} (12, 84, 56)

{3, 18} (8, 72, 48)

{3, 22} (6, 66, 44)

{3, 30} (4, 60, 40)

{3, 38} (3, 57, 38)

{3, 54} (2, 54, 36)

{3, 102} (1, 51, 34)

{4, 5} (64, 160, 80)

{4, 6} (32, 96, 48)

{4, 8} (16, 64, 32)

{4, 12} (8, 48, 24)

{4, 20} (4, 40, 20)

{4, 36} (2, 36, 18)

{4, 68} (1, 34, 17)
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Table 8: genus-9 continued. . .

{p,q} (V,E,F)

{5, 4} (80, 160, 64)

{5, 5} (32, 80, 32)

{5, 6} (20, 60, 24)

{5, 10} (8, 40, 16)

{5, 14} (5, 35, 14)

{5, 30} (2, 30, 12)

{6, 4} (48, 96, 32)

{6, 5} (24, 60, 20)

{6, 6} (16, 48, 16)

{6, 7} (12, 42, 14)

{6, 9} (8, 36, 12)

{6, 11} (6, 33, 11)

{6, 15} (4, 30, 10)

{6, 27} (2, 27, 9)

{7, 3} (224, 336, 96)

{7, 6} (14, 42, 12)

{7, 14} (4, 28, 8)

{8, 3} (128, 192, 48)

{8, 4} (32, 64, 16)

{8, 8} (8, 32, 8)

{8, 24} (2, 24, 6)

{9, 3} (96, 144, 32)

{9, 6} (12, 36, 8)

{10, 3} (80, 120, 24)

{10, 5} (16, 40, 8)

{11, 6} (11, 33, 6)

{11, 22} (2, 22, 4)

{12, 3} (64, 96, 16)

{12, 4} (24, 48, 8)

{12, 12} (4, 24, 4)

{14, 3} (56, 84, 12)
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Table 8: genus-9 continued. . .

{p,q} (V,E,F)

{14, 5} (14, 35, 5)

{14, 7} (8, 28, 4)

{14, 21} (2, 21, 3)

{15, 6} (10, 30, 4)

{18, 3} (48, 72, 8)

{19, 38} (1, 19, 2)

{20, 4} (20, 40, 4)

{20, 20} (2, 20, 2)

{21, 14} (3, 21, 2)

{22, 3} (44, 66, 6)

{22, 11} (4, 22, 2)

{24, 8} (6, 24, 2)

{27, 6} (9, 27, 2)

{30, 3} (40, 60, 4)

{30, 5} (12, 30, 2)

{36, 4} (18, 36, 2)

{36, 36} (1, 18, 1) *

{38, 3} (38, 57, 3)

{38, 19} (2, 19, 1) *

{54, 3} (36, 54, 2)

{68, 4} (17, 34, 1) *

{102, 3} (34, 51, 1) *

Table 9: All possible topological regular tesselations of a closed ori-
entable genus-10 surface. A * denotes a tessellation with exactly one
tile.

{p,q} (V,E,F)

{3, 7} (108, 378, 252)

{3, 8} (54, 216, 144)

{3, 9} (36, 162, 108)

{3, 10} (27, 135, 90)
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Table 9: genus-10 continued. . .

{p,q} (V,E,F)

{3, 12} (18, 108, 72)

{3, 15} (12, 90, 60)

{3, 18} (9, 81, 54)

{3, 24} (6, 72, 48)

{3, 33} (4, 66, 44)

{3, 42} (3, 63, 42)

{3, 60} (2, 60, 40)

{3, 114} (1, 57, 38)

{4, 5} (72, 180, 90)

{4, 6} (36, 108, 54)

{4, 7} (24, 84, 42)

{4, 8} (18, 72, 36)

{4, 10} (12, 60, 30)

{4, 12} (9, 54, 27)

{4, 13} (8, 52, 26)

{4, 16} (6, 48, 24)

{4, 22} (4, 44, 22)

{4, 28} (3, 42, 21)

{4, 40} (2, 40, 20)

{4, 76} (1, 38, 19)

{5, 4} (90, 180, 72)

{5, 5} (36, 90, 36)

{5, 10} (9, 45, 18)

{6, 4} (54, 108, 36)

{6, 6} (18, 54, 18)

{6, 12} (6, 36, 12)

{6, 30} (2, 30, 10)

{7, 3} (252, 378, 108)

{7, 4} (42, 84, 24)

{7, 7} (12, 42, 12)

{7, 10} (7, 35, 10)
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Table 9: genus-10 continued. . .

{p,q} (V,E,F)

{7, 28} (2, 28, 8)

{8, 3} (144, 216, 54)

{8, 4} (36, 72, 18)

{8, 8} (9, 36, 9)

{9, 3} (108, 162, 36)

{9, 18} (3, 27, 6)

{10, 3} (90, 135, 27)

{10, 4} (30, 60, 12)

{10, 5} (18, 45, 9)

{10, 7} (10, 35, 7)

{10, 10} (6, 30, 6)

{10, 25} (2, 25, 5)

{12, 3} (72, 108, 18)

{12, 4} (27, 54, 9)

{12, 6} (12, 36, 6)

{12, 24} (2, 24, 4)

{13, 4} (26, 52, 8)

{13, 13} (4, 26, 4)

{15, 3} (60, 90, 12)

{16, 4} (24, 48, 6)

{16, 16} (3, 24, 3)

{18, 3} (54, 81, 9)

{18, 9} (6, 27, 3)

{21, 42} (1, 21, 2)

{22, 4} (22, 44, 4)

{22, 22} (2, 22, 2)

{24, 3} (48, 72, 6)

{24, 12} (4, 24, 2)

{25, 10} (5, 25, 2)

{28, 4} (21, 42, 3)

{28, 7} (8, 28, 2)
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Table 9: genus-10 continued. . .

{p,q} (V,E,F)

{30, 6} (10, 30, 2)

{33, 3} (44, 66, 4)

{40, 4} (20, 40, 2)

{40, 40} (1, 20, 1) *

{42, 3} (42, 63, 3)

{42, 21} (2, 21, 1) *

{60, 3} (40, 60, 2)

{76, 4} (19, 38, 1) *

{114, 3} (38, 57, 1) *
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