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Abstract

In this thesis we propose a novel approach for Indoor Navigation Systems that is based
on visual information. This new method discards the need for precise Global Localization
while adopting a more human-like approach. For this aim, we deeply analyze the current
state of the art of computer vision, comparing the classical methods such as Scale Invariant
Feature Transform (SIFT) and Visual Bag of Words, with the most recent successes of
Convolutional Neural Networks in this field. A further analysis of the state of the art of
Deep Neural Networks for image classification is proposed, which focuses on the similarities
and differences when compared to navigation tasks. Based on this analysis, we developed a
novel Deep Neural Network architecture that takes inspiration from the most recent Inception
V3 architecture. The results obtained from specifically designed tests show how Visual
Navigation tasks rely on geometrical properties of the scene. Although previous deep
learning architectures have often made use of techniques such as pooling, our architecture
does not use this. In fact, we show how our neural network significantly outperforms the
state of the art of image classification in the particular task of visual navigation.
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Chapter 1

Introduction

This thesis reports a project with the goal to develop a complete indoor navigation system
based only on visual information.
When we talk about indoor navigation systems, we refer to the systems that enable robots
or vehicles to autonomously move in closed environments [1–5], like houses or factories,
where the Global Positioning System [6](GPS) is not available. Even if this method is not
as precise as others, it is important to divide navigation in two categories because of the
nature of navigation itself: to be able to move from point to point it is absolutely essential for
the system to know where it is. For this reason, indoor navigation mainly differs from the
outdoor one for the techniques, technologies and algorithms used for localization. In fact
these techniques are optimal for indoor situations because they do not have the restrictions of
outside environments such as sunlight, range finder systems range and noise. [5, 3]
The state of the art in indoor navigation relies on lasers, sonars, depth cameras, and sensor-
fusion system architectures. One of the key elements is being able to create a map of the
environment, in order for the system to be able to perceive the environment and localize
itself on the map. The most famous type of maps are grid-like occupancy maps, where the
system’s position is represented by the map’s coordinates. To produce such maps mostly
a range finder, like laser or ultrasound system, is used in combination with odometry and
SLAM methods. However this system costs a lot. There are approaches that use visual
information, and some can create such maps as well. [7, 8]
In our method, however, we want to remove the need of a laser system for the global
localization of the robot. Moreover in the system proposed we do not use a grid-map
approach. These two differences suggest the need to develop a novel approach, that we
developed by taking inspiration from human navigation. This means a navigation system
which will not rely on precise localization, while still being able to move safely in an indoor
environment.
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In order to show this in more detail, we will describe the general structure of navigation
systems.

1.1 General Navigation System

In this section we show a generalized Navigation System, separating the different sub-systems
and their relative tasks.

• Localization: this subsystem has the task to localize the robot in the environment, both
globally and locally. It associates the inputs from the various sensors to the known
map of the environment to localize the robot. On the other hand, the most common
source for outdoor applications is the GPS.

• Mapping: this is an essential task for the localization system to work. It consists in
creating a model, map, of the environment, where the localization system will project
its position based on the surroundings.

• Navigation: this subsystem’s goal is to decide the action the robot needs to perform in
order to reach a destination. We can divide this sub-system into two components:

– Global Navigation: this subsystem has the task to generate the path from the
current position (given by the Localization system) to the destination, by having
access to the Map.

– Local Navigation: this subsystem has the task to ensure that the robot avoids
obstacles in the path that are not present in the map. A typical example of these
obstacles are moving objects, like chairs or people.

• Sensor Fusion System: this subsystem needs to read and translate the inputs from
the various sensors into ready-to-use data for the other subsystems. It also needs to
cope with sensor errors, mostly by combining different sensor readings (for example
odometry and laser readings).

These subsystems are mainly separated to cope with the different tasks that are needed for
the mobile robot to autonomously navigate safely.
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1.2 Indoor Navigation Systems

The main difference between an outdoor Navigation System and an indoor Navigation System
is the possibility to use GPS information as well. In fact for indoor situations, the GPS is
not accessible; this creates the need for another source/algorithm for the robot to be able to
localize itself in the environment. We can separate two situations: a hardwired navigation
system, and a non-hardwired one:

• Hardwired Navigation: generally it means that there is a pre-establish path to follow.
The robot will always follow the specific path, and the localization only needs to be
on this path. This system has the advantage of being more precise when compared to
non-hardwired systems, given its smaller position domain. But if the robot is outside
the specified path, or this is blocked, the system can not work anymore till the situation
is reconfigured. [9]

• Non-Hardwired Navigation: is a more general system. A map of the environment
is needed, but the system will generate the optimal path every time from the current
position to the destination. Generally this system is less precise, given the higher
complexity of localizing itself; but it is more robust since the robot should be able to
localize itself virtually everywhere, and, if possible, find the path to the destination.

In this thesis we will work with an indoor, Non-Hardwired Navigation System.

1.3 Proposed Navigation System

We propose a Non-Hardwired Navigation System only based on depth-camera information.
This means that this system will work without the use of laser systems. In particular the
depth-camera information will only be used in the Local Navigation System (LNS) for
obstacle avoidance. The Localization will be performed only on pure-visual information.
The system proposed will be in general less precise and robust than a system that uses laser
information for localization; but should drastically reduce the cost of the hardware, and is
more similar to what humans do when they move in the environment.[10]
This means that this system is ideal to be used by cheap mobile robots; or with a future
implementation of a locally more precise system, it could even be a valid solution for every
type of Autonomous Navigation System.
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1.4 Human Navigation

To be able to reach our destinations, humans strongly rely on visual information . Especially,
we rely on specific landmarks like objects, doors and walls to be able to navigate in known
indoor environments. In this case we can categorize our navigation system as a Local and a
Global one. Reading directions and knowing through which rooms or hallways to pass to
reach our goal can be considered as Global Navigation. Passing through doors and avoiding
collisions with other people or objects can be considered as Local Navigation. Doing this
blindfolded makes it difficult for us as well; this shows how necessary it is to have the ability
to see the environment.
From these considerations we built our Navigation System.

1.5 Our Navigation System vs State Of The Art

Given the previous analysis on Human Navigation, we need landmarks in order to navigate.
Those can be artificial or natural (already present in the environment). Using natural ones is
normally very complicated given the generalization that these need; while artificial ones can
be designed specifically to be unique, easy to recognize, and meaningful to the System. The
disadvantage is that for using these, we need to modify the environment, and they need to be
always visible by the robot. Changing or modifying these landmarks even a little, can stop the
system from working correctly. For these reasons we decided to use artificial, non-expensive
landmarks in the first phase, with the possibility to be removed later on. This will give all the
benefits of Artificial Markers (later called Visual Markers), while removing the downside
during navigation. More specifically these Visual Markers will be used to generate labels and
meaning, from which the system can generalize and learn to use the Natural Visual Markers.
The algorithms for recognizing and learning are proposed in chapter 3.2.
Taking inspiration from Human Navigation, we do not use a precise grid to navigate: by
looking at our surrounding we humans do not know precisely (centimeters wise) where we
are in a room; while we are still able to navigate and pass through tight corners or doors [10].
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1.6 Research Questions

The first question is: are we able, with the current technology and algorithms, to create a
working Localization System only relying on camera information?
This question immediately generates others: what algorithm should we use to extrapolate
knowledge from the camera information? Are the standard computer vision algorithms
suitable for this task?
In the recent time CNNs (Convolutional Neural Networks) have achieved impressive results
in image classification problems and in general computer vision problems; will they be
as good for Navigation Tasks? and why? In specific, how important is the Geometrical
Invariance property for navigation/classification tasks?
In this thesis we will give an answer to these research questions, based on the results we will
report.





Chapter 2

Robotic Operating System

For this project we use the Robotic Operating System [11] (ROS) as the main framework. In
this section we will describe in general ROS, focusing on the main functions we are using.
ROS is an Opensource operating system designed as a communication platform between
multiple processes, sensors, and actuators. The system allows the control from very low level
hardware (drivers for the engines, actuators, cameras, lasers, etc) to very high level decision
making processes. This is achieved thanks to a system based on a server-client approach:
every function, task and controller, is able to publish or read data on specific topics, allowing
development through a module based approach.
It fully supports Python, while the main core is written in C++.

2.1 Alice

Alice is the name of the robot we use to perform all the experiments. It is a four wheels
rectangular based robot, with two driving wheels, and two caster wheels, as can be seen in
Figure 2.1. On the top of it, it has two infrared time of flight cameras, facing front and back.
The front one can rotate over the vertical and horizontal axes thanks to two electric engines.
Here we list the hardware specification of Alice:

• Base and engines: The base of Alice is the VolksBot RT3. This is a 13 Kg metal base,
with two Maxon DC Motors, 150 W. It supports a payload of 40 Kg and has a top
speed of 1.4 m/s.

• Infrared 3D cameras: Two identical Xtions are used for obstacle detection in the
proximity of the robot. One facing backward with an angle of 15°, facing ground, where
0°is vertical; one facing forward, that can rotate over the Z and Y axis. Max camera
RGB resolution is 1280x720, while depth point-cloud max resolution is 320x240.
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Fig. 2.1 Robot Alice

2.2 Move Base

Move Base is the main component of the Navigation Stack. It is the combination of all the
subsystems needed for Navigation. We will use only part of the system. This is the high level
scheme; where the red line denotes the part of the system that we will not use (above the red
line is NOT used; Figure 2.2) :

• Global Planner inputs: goal (destination), and Global Costmap. Output: optimal path.

• Local Planner inputs: optimal path. Output: command velocities. This is the output of
the whole Move Base.

• Odometry: information on the rotation of the wheels, keeping track of the path

• Laser: using the adaptive Monte Carlo localization (AMCL) approach, and a saved
map of the environment, localization is obtained thanks to the laser

• Infra-red 3D cameras: those are cameras with depth sensors based on infra-red. There
are two of them: one on the back, fixed, and one on the front able to move.
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Fig. 2.2 Move Base Hight level scheme

Since in our project we decided to remove the laser sensor, and propose a new approach
for localization, we need to substitute the Global Planner, Global Costmap, AMCL and
map server. In fact, our goal is to have a localization system based only on visual camera
information, that will function together with the existing local planner system.

Fig. 2.3 Adapted Move Base Hight level scheme

This is the adapted version of Move Base that we propose:

• Region Graph Map: this is the map of the environment. This is a Graph Map, in
contradiction to the previous Grid Map. Every node of it, that we will call Regions,
represents a location in the real word, and it is defined using visual RGB information.
The connection between regions is a geometrical distance that connects them together.
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• Visual Localization System: this system receives as input the camera RGB information,
and localizes the robot in the environment given the Region Map.

• Region Planner: this system computes the path from the current position to the
destination, such as which nodes/regions to pass through, and translates in geometrical
coordinates the current goal, in order to communicate with the local planner. This is
necessary due to the different domains of the global planner and the local planner: a
graph-based domain for the first, and a geometrical domain for the second.

2.3 Region Graph Map

When humans need to navigate, they know the route from the starting position to the
destination. For example if they need to go from home to work, they know they need to exit
the house, take the first street, turn onto a second street, etc, until they arrive to the work
place. The same can be said if they need to go to the bathroom from the bedroom: exit the
bedroom through the door, cross the hallway, pass through the bathroom door, and reach the
destination.

Map Structure

We would also like to implement our visual-based navigation using human behavior, and the
first step is to use an adequate map.

The map is based on the intermediate steps,
or Regions. These Regions define a specific
place in the environment, and the map
consists of the geometrical connection
between those regions. For example Figure
2.4 represent a possible Graph Map. During
the mapping procedure, the Regions R1,
R2, etc. have been defined using the visual
RGB information; and the connection
between these have been mapped with the
geometrical distance from each other thanks
to Odometry information. In fact to go from
Region 3 to Region 6, we need to move 2
meters in a certain direction.

Fig. 2.4 Graph Map



2.3 Region Graph Map 11

To cope with the orientation problem, every Region is defined by several Nodes. These
Nodes represent a certain rotation, relative to the region itself.

Figure 2.5 is the representation of a
region and its nodes. Each of these nodes
are separated by a rotation of 45 degrees.
Assuming that the robot is in the center,
it will define one node for every angle.
During the mapping process the robot
will record a node: first it examines
Node 0; next it will rotate 45° and scan
Node 45, and so on until it reaches its
starting orientation. These nodes, and
their relative orientations, define a region.

Fig. 2.5 Nodes orientations in a Region

The Nodes are the main components of the Regions, and they need to be unique based
on the visual information received from the RGB camera. The input to generate a node is the
output of our Scene Recognition System: a list of the top five most likely scenes.

Given a frame, the Scene Recognition
System outputs a histogram of the top
5 scenes that can match the picture
received. The Node is then defined
by the combination of 3 histograms,
each representing what the robot de-
tects in front of it, 90° on the left, and
90° on the right. This will give the
node the property to be unique both
given its orientation, as its absolute
position.

Fig. 2.6 Top 5 likely scenes

The Node is unique, and at the same time invariant to small positional or rotational
changes of the robot. This can be seen in the next figure:
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(a) Node: 0; Region: 0 (b) Node: 0; Region: 1

(c) Node: 270; Region: 0

Fig. 2.7 Robot positions in Node and Region

As we can see from Figure 2.7, small movements of the robot will lead to the same Node
as long as the visual surroundings do not change enough. At the same time, by definition
of Region and Node, moving forward enough will lead the robot into another Node in a
different Region; while rotating on the spot, will lead to a new Node in the same Region.

2.4 Mapping

Now that we have explained the structure and the various elements of the Map, we will show
how this structure can be created during the mapping procedure. We assume that the Scene
Recognition System is already operational.
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Let’s consider the robot is in the starting position, in Figure 2.7. The first operation is to
define the current Region, with the Region_Registration function:

input :
Region=() // generating an empty region

for (current-angle) in (0,45,90, ..., 360) do
RotateRobot(current-angle) // rotate the robot to the desired

relative angle

CurrentNode=() // generating an empty node

for (orientation) in (front, left, right) do
RotateCamera(orientation) // this function rotate the camera

to the desired angle

histogram← DetectScene() // this function call the Scene

Detector System, and return the histogram of the top 5

scene detected

CurrentNode← SaveHistogram(histogram, orientation) // this

function saves the histogram in the node at the proper

position: front, left, right

end
Region← SaveNode(CurrentNode, current-angle) // this function

saves the current node in the region with the current

robot's angle

end
Return(Region)

Algorithm 1: Region_Registration
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(a) Example Map (b) Example Regions

Fig. 2.8 Possible regions in a map

This will generate the first region (R0) in our map. The next step is to move the robot
to another location. During the movement the robot will save the relative position from
the starting region using the Odometry information. Once the new position is selected, the
Region Registration function is called to generate R2. The geometrical connection between
R0 and R1 is saved in the Region Graph Map. Each connection is saved and registered based
on the following parameters:

• Starting Region: the region we start from (R_x)

• Starting Node: the node in R_x we start moving from (N_x)

• Distance: the distance in meters saved by the Odometry from R0 to R1

• Arriving Region: the region of the destination.

Following this procedure we will map the whole area of interest. It is important to notice
that the regions do not have to be close together, but just in meaningful places: i.e. beginning
and end of an hallway, before a turn, in a cross-section etc. Given this property we can easily
map vast areas with only few relevant regions: this is very similar to what we humans do to
navigate.



Chapter 3

Visual Markers

In this section we will discuss the implementation, recognition, and creation of custom Visual
Markers (VMs) that have been used in the project.
After having researched already existing types of VMs [12, 13], as can be seen in Figure 3.1,
we decided to implement a custom type. All the VMs already existing have the common
objective to hold information: some a lot, some a few; some were designed to be rotation
invariant, some orientation invariant; and each of them were designed to accomplish their
task in the best way. For this project we needed very specific VM properties :

• 1. Information: our type of VM only needs to save a number, an Identification Digit
(Id). No other explicit information is needed.

• 2. Prospective Invariant: since the VMs are going to be applied on walls or objects,
and the camera reading can be made with any angle, we need the VM to intrinsically
hold information of the relative prospective between camera/VM.

• 3. Robust recognition: given the complexity of the whole system, we need a design that
eliminates all possible false positives, on the other end false negatives do not influence
much the performance of the full system.

• 4. Recognition from distance: while most of the VMs consider an optimal distance
from detector to VM, for this project we need to be able to detect the VM as far as
possible. This combined with point 3, gives a strong restriction for the design of the
VM.
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Fig. 3.1 Examples of various VMs. Starting from right: QR code, LARICS, reacTIVIsion

3.1 Custom Visual Marker

After analyzing the necessity of the system, and looking at existing types of VMs, we
designed a custom VM that can be seen in Figure 3.2. In the process of designing it we
focused on the points we previously described. Here we present the solution point by point:

• 1. Information: while the 3 concentric squares are used only for identification, the
central area holds the Id. This area is divided in 9 squares, each can be empty (white)
or full (small square) representing the binary values 0 or 1. This allows a total of 29

possible Ids.

• 2. Prospective Invariant: thanks to the square properties ( same length borders, and 90
degree angles) it’s always possible to determine the prospective between camera and
VM.

• 3. Robust recognition: to obtain the most robust recognition, the VM has 3 con-
centric squares, with equal difference in border length. This creates a very unique
configuration, almost impossible to be repeated by accident by random lines in a
picture.

• 4. Recognition from distance: since the whole VM is fairly simple, there are very few
features needed to distinguish to correctly identify this marker. This greatly influences
the distance from which it is possible to recognize the VM.



3.2 Visual Marker Identification Process 17

Fig. 3.2 Custom VM

3.2 Visual Marker Identification Process

In this section we will describe the identification process used by the system to identify a
VM in a picture. The next graph will show the structure of the Identification process.

Fig. 3.3 Identification process

The graph in Figure 3.3 represents the whole Identification process: from the input
(RGB picture) to the output (Publish). This system runs as services connected to ROS, and
subscribes to the Xtion RGB picture’s topic. Every time a new frame is available from the
camera, this process will elaborate and publish the information of the detected VMs.
The first function, Callback, checks if this is the first frame received, and accordingly, calls
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Function1 or Function2. Every 20 frames the counter is reset.

Fig. 3.4 Function1

Function1, described in Figure 3.4, generates multiple binarized pictures, using α ∗T
thresholds; where T is the average ink density of the frame, and α is a value from [0.1−
2.0|step = 0.1]. This is done to be sure to always find the optimal binarization threshold for
every VM. In fact using only one threshold is never optimal in case there are multiple VMs
in the picture, in different light condition. This process is computationally expensive, but it’s
only applied once every 20 frames.
Once all the binarized pictures are computed, the Find Qrs function is called, and this finds
all the VMs in all the pictures. Once the VMs are found, we define a portion of picture
around the VM with Apic = 1.5∗Avm, where ∗Avm is the area of the external square of the
VM.
For every VM found in all the binarized pictures, a specific area, or sub picture, is generated:
this is the output of Function 1.

Fig. 3.5 Function2

Function2, described in Figure 3.5 takes as input the small pictures of Function 1. For
each of those, it uses the find QRs function to find the VM inside the small picture and
outputs the coordinates of the outer square of the VM found. Then for every unique VM
found, it calculates the distance to it, the ID number, and updates the area to look in the next
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frame. In order to do this, it finds the center of the VM and computes the coordinates of
the new small picture. The output is a list of: distances, ID numbers, and the updated small
pictures. This last list will be taken as input, togther with the next frame, at the next loop.
Next is the Find_QRs code:

input :Picture; small pictures coordinates

frame← RGBtoGray(frame) // convert frame from color to gray

for small-pic-coordinates ∈ small pictures do
// for every small picture found: extract small picture

small-pic← TakeFromFrame(small-pic-coordinates);
small-pic← OtsuBbinarization(small-pic) // convert gray to

binary

squares← FindSquares(small-pic) // find VMs outer square

if length (squares)==0 then
small-pic← RemoveBlur(small-pic) // compensate horizontal

Blur

squares← FindSquares(small-pic);

end
RemoveFalse(squares) // check geometrical feature of real VM

if length (squares)==1 then
// we proceed only if there is one VM per small picture

dist← GetDistance(squares) // calculate the distance from

VM

if dist < 5000 then
// if the distance to the VM is less then 5 meters

ID-num← GetID(squares) // read the ID number of VM

small-pic-coordinates← CheckAndResize(squares) // given the

identified VM, centers it in the new small picture

end
end

end
Return (VMs IDs, Distance to VMs, Coordinates (Hull) of VMs)

Algorithm 2: Find_QRs
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Here you can see the pseudo-code for the Find_Squares function:

input :small-pic
(contours, hierarchy)← FindContours(small-pic) // this function return

all the closed contours in a picture, and their hierarchy

for (cont, hier) in (contours, hierarchy) do
valid-cont← IsAVm(cont, hier) // this function check if the

contour is the outer square of a VM

if valid-cont==True then
valid-contours← cont

end
end
Return(valid-contours)

Algorithm 3: Find_Squares
The function Is_AVm checks the correct nesting of contours, for representing our custom

VM:

input :cont, hier
if IsASquare(cont) ==True then

(child1, parent1)← GetHier(cont, hier) // given a contour check in

the hierarchy for children and parents (contour inside

and to which is inside

if child1 and parent1 then
(child2, parent2)← GetHier(child1, hier) ;
if child2 and parent2 then

(child3, parent3)← GetHier(child2, hier) ;
if child3 and parent3 then

(child4, parent4)← GetHier(child3, hier) ;
if child4 then

Return True;
end

end
end

end
end
Return False

Algorithm 4: Is_AVm
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Thanks to the combination of these functions we are able to identify a custom VM inside
a picture or a frame of a video.

3.3 Visual Marker ID

Every VM has a unique ID, that identifies itself. The ID is red following this simple scheme:

Fig. 3.6 VM Identifier

As can be seen in Figure 3.6, every portion of the center square is interpreted as a binary
value. The presence of ink or not determines the value 1 or 0. The ID reader will calculate a
number given the function:

ID =
8

∑
i=0

2i ∗ ji (3.1)

Where ji can be 0 or 1, and refers to the portion inside the inner square.





Chapter 4

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are one of the latest, and most successful, Neural
Network architectures. This type of architectures started to become extremely popular in
2012 [14–18], and started to outperform all the other architectures, giving them a strong
focus from the scientific community. In particular CNNs perform really well with large and
geometrical input: for these reasons they find a vast utilization in the Computer Vision field.
While the convolution layers can be applied on 1D, 2D and 3D inputs, we will focus on 2D:
the width and height of a picture.

4.1 Convolution Layers

The key component of CNNs is the implementation of specific layers, that apply convolutional
operations on the input: these are called Convolution Layers.
A convolution operation is defined, in mathematics, as an operation over two functions. In
the computer vision field, this means applying a filter over an image: where one function
is the picture, and the second one is the filter itself. In the ANN field the principle is very
similar; instead of a filter, a kernel is defined. Normally the kernel size is much smaller than
the picture, and this is moved over the whole input. This can be seen in figure 4.1. While
the kernel values are defined a priori, usually randomly, the randomly initialized, kernels are
modified during the training procedure. It is important to notice that every kernel will have
the same amount of trainable weights as the number of parameters: this means that a 3x3
kernel will have a total of 9 weights. Thanks to this the number of weights is several times
smaller compared to a fully connected layer.
When we apply the convolution we need to decide how to behave at the borders of the
input: we can decide to always have the whole kernel "inside" the input matrix, resulting
in a reduction of the input equal to half of the neighbor pixels (a 3x3 filter will reduce one
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pixel at the borders, losing a total of two pixels per dimension), or to make the center of
the kernel central pixel to on the border itself. This last method does not change the output
resolution. An example of the first case can be seen in figure 4.1, while an example of the
second approach is visible in figure 4.3.

Fig. 4.1 Convolution operation

Also by deciding how much, or how many pixels/cells to move the kernel over the picture,
we can reduce the original size of the input: considering the central cell, and its neighbors
cells, we can move it one pixel or more. This will determine the output’s size.

Fig. 4.2 Convolution with stride = 2

By looking at figure 4.3, we can clearly see the different results obtained by moving the
kernel over the picture with more than one pixel: the distance in pixels between the current
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cell and the next is called stride. This technique is used to greatly reduce the size of the
input: considering an input of size WxH and stride = s, the output will have dimension
W1xH1 =

W
s xH

s . As an example applying a filter of 3x3 with stride = 2 on a 128x128 input,
we obtain an output of 64x64.
Reducing the input size also means reducing the intrinsic information of it. To cope with this,
it is possible to apply many filters on the same input: this will produce as many outputs as
the amount of different kernels used. These outputs are collected in a new dimension called
Depth or channels.

Fig. 4.3 Convolution with stride = 2

To better understand this we can think of pictures. A color picture can be represented
with RGB or HSV values. This means that every pixel of the picture is defined by three
features: Red, Green Blue for RGB, or Hue, Saturation and Value for HSV. We can also see
this as three pictures on top of each other, where every picture, or channel, refers to the same
picture but has different intrinsic information. This can be seen in figure 4.4.
In the same way, when we apply different kernels on the same pictures, they will specialize
on recognize specific information, like the R channel contains the Red color information of
the image. We can see from figures 4.4d, 4.4e, 4.4f that in a single convolution layer, the
different kernels will focus on learning specific information, very close to the original image.
Going deeper, and applying more convolution layers in series, we will analyze the data in
an always higher and more abstract level. This can be seen in figures 4.4g, 4.4h, 4.4i. This
represents very high level information: a very low size in terms of width and height (15x15)
but with many different channels (24). At this level we transformed a 300x300x3 (3 channels
= RGB) size input in a 3D shaped tensor of size 15x15x24 that contains really high level
information, even reducing the actual tensor size. Thanks to their relative low (compared to
Fully Connected layers) computational cost, it is possible to have many in series, and to go
very deep in the information hyperspace.
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(a) Red channel (b) Green channel (c) Blue channel

(d) First channel (e) First channel (f) First channel

(g) Last channel (h) Last channel (i) Last channel

Fig. 4.4 Different Channels
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4.2 Activation Functions

Given the particular operations applied in Convolution layers, it is important to use proper
activation functions. For example, a classical Sigmoid activation function is not ideal for this
type of network. There are two main reasons for this:

• Vanishing Gradient: during back-propagation, the derivative of all the activation
functions is needed to calculate the weight adjustments. Sigmoid’s derivative, as can
be seen in figure 4.5, has a very small value. If many convolution layers are stuck
together, or if it is a very deep network, the back-propagated error at the end will be
very low, almost zero.

• Computational Complexity: considering a fully connected layer, the sigmoid acti-
vation is computed once per every unit. If we consider convolution layers, the filter
passes through the whole picture, and depending on the stride and padding, it can go
over every single pixel. In this case the sigmoid operation would be computed once
per every pixel, and every channel: as an example, cosider a 300x300 color picture as
input the first convolution layer will compute 300∗300∗3 = 270000 times the sigmoid
function. For this reason a more easy to compute and optimized activation function is
needed.

Fig. 4.5 Sigmoid function and first order derivative

Given the considerations mentioned a new activation function needs to be considered.
But at the same time using a simple linear multiplication is not effective, since the network
will not have the ability to approximate non linear functions: it will just be a complex, linear
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transformation. To be able to solve non-linear problems, or to approximate these, we need
non-linear activation function. The one that is easiest to compute, and yet non linear, is the
ReLU activation function. This can be seen in figure 4.6.

Fig. 4.6 ReLU and Similar activation functions

This is ideal given its computational simplicity (it is just a max operation), and has the
non-linearity property needed. More complex, yet cheap to compute, activation functions can
be used: LRelu, or Leaky Relu, performs a max operation over the input and a smaller linear
function to cope with the negative part of the input. LRelu = max(α ∗ x,x) with 0 < α < 1.
This operation consists of a dot multiplication and a max function: still very computational
cheap. It is also possible to add some randomness in the negative part of the input to force a
more stable network.
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Scene Recognition

Once the system is able to detect and recognize Visual Markers, we are able to create in
a fast and efficient way a Data Set of the environment we want to navigate in. Thanks
to VM Recognition System, we are now able to immediately associate to every scene in
our environment (by positioning different VMs in specific and well visible places) a label.
Thanks to this we are able to simply record a video (possible by the robot Point Of View),
and later analyze, frame by frame, all the VMs present in the scene; and save every frame
based on its label (VM’s id number). This will result in a perfect Data Set, easy and fast to
create, perfect for any classification algorithm.
Once the data set is created, we can train the system to recognize the scenes; once the system
is trained we can remove the VMs from the real scene. Our system will be able to detect the
scenes of our environment, giving it enough visual landmarks to localize itself.
In this section we will present and compare two different methods used to achieve our goal
of scene recognition. The results of real world experiments will be show.

5.1 Data Set Enhancement

The data set used to train and compare all the experiments contains 1408 unique pictures,
generated from various recordings of the test environment, divided in 20 classes. This means
the average number of pictures per class is 352; and the data set has a Standard Deviation of
174.
On top of those original data, we augmented the data set using HSV color space modifications.
We augmented the data set to a total of 7040 pictures.
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5.1.1 Hue Saturation Value (HSV) color space

HSV is one of the most used color spaces. The color information is divided in three channels:

• Hue (H): this channel refers to the closed pure color of the current color. This is
invariant to tints, tones and shades. The value, normalized from 0 to 1, refers to the
color wheel where: 0 is red, 1/6 is yellow, 1/3 is green, and so forth around the color
wheel.

• Saturation (S): this channel refers to how white the color is. Pure color has saturation
of 1, while white has a saturation of 0.

• Value (V): this channel refers to the lightness of the color. A value of 0 refers to black,
and 1 to the pure color.

Fig. 5.1 HSV color space

Thanks to this colorspace it is easy to change the lightness of a picture, with well
resemblance to actual real word light conditions. We enhanced our data set creating 4
copies of every picture, multiplying their Value, or lightness, by 0.2,0.4,1.4,1.6. In case the
resulting value would exceed the max value of the channel, we set it at the max value.
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Fig. 5.2 Original Picture

(a) 40% lightness (b) 20% lightness

(a) 140% lightness (b) 160% lightness

Fig. 5.4 Data Set enhancement in HSV colorspace example
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5.2 Bag of Visual Words

The first approach to scene recognition uses Bag of Visual Words [19](BOW) with the Scale
Invariant Feature Transform (SIFT) [20].

5.2.1 Scale Invariant Feature Transform

The Scale Invariant Feature Transform, or SIFT, has been use extensively in computer vision,
especially in scene recognition, object detection, etc [20].
The first step in the SIFT algorithm is the key-points detection: this is done by using a cascade
filtering approach to find candidate location that are then examined in details. Detecting
locations that are invariant to scale change of the image can be accomplished by searching
for stable features across all possible scales. Gaussian function is the scale-space kernel.
Therefore, the scale space of an image is defined as a function, L(x,y,σ), that is produced
from the convolution of a variable-scale Gaussian, G(x,y,σ), with the input image, I(x,y):

L(x,y,σ) = G(x,y,σ)∗ I(x,y) (5.1)

where ∗ is the convolution operation in x and y, and

G(x,y,σ) =
1

2πσ2 e−(x
2+y2)/2σ2

(5.2)

To efficiently detect strong and scale invariant key-points, we will look at scale-space
extrema in the difference-of-Gaussian, D(x,y,σ), defined as follow:

D(x,y,σ) = (G(x,y,kσ)−G(x,y,σ))∗ I(x,y) = L(x,y,kσ)−L(x,y,σ) (5.3)

This function is pretty efficient to compute, since, after the smoothed picture L is compute
for all the scales, D can be computed simply by image subtraction.
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Fig. 5.5 Difference of Gaussian

The difference-of-Gaussian function provides a close approximation to the scale-normalized
Laplacian of Gaussian, σ2∇2G. Moreover a factor of σ2 is needed for true scale invariance
[20]. To better understand the relation between D and σ2∇2G, we look at the heat distribution
function:

∂G
∂σ

= σ∇
2G (5.4)

From this we see that ∇2G can be computed using the finite difference of nearby scales
kσ and σ :

σ∇
2G =

∂G
∂σ
≈ G(x,y,kσ)−G(x,y,σ)

kσ −σ
(5.5)

and finally:

G(x,y,kσ)−G(x,y,σ)≈ (k−1)σ2
∇

2G (5.6)

This shows that when the difference-of-Gaussian function has scales differing by a con-
stant factor, (k−1) in this case, it already incorporates the σ2 scale normalization required
for the scale-invariant Laplacian.
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Now to find the local maxima and minima of D(x,y,σ), each sample point is compared
to its eight neighbors in the current image and nine neighbors in the scale above and below:

Fig. 5.6 Difference of Gaussian

It is selected only if it is larger than all of these neighbors or smaller than all of them. The
cost of this check is reasonably low due to the fact that most sample points will be eliminated
following the first few checks. Once the key-point is accepted as a candidate, the step is to
perform a detailed fit to the nearby data for location, scale, and ratio of principal curvatures.
This is done by using the Taylor expansion (up to the quadratic terms) of the scale-space
function, D(x,y,σ), shifted so that the origin is at the sample point:

D(χ) = D+
∂DT

∂ χ
χ +

1
2

χ
T ∂ 2D

∂ χ2 χ (5.7)

where χ = (x,y,σ)T . To find the extremum, χ̂ , we take the first derivative of this function
with respect to χ and set it to zero, and we obtain:

χ̂ =−∂ 2D
∂ χ2

−1
∂D
∂ χ

(5.8)

so we can now calculate:

D(χ̂) = D+
1
2

∂D
∂ χ

T

χ̂ (5.9)
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and all the extrema with a value of |D(χ̂)| < 0.03 were discarded (assuming the pixel
values are in range [0,1]). This is done to remove all the extrema with a low contrast.

Now that we have found strong key-points, we will compute the descriptors for each of
them: for each key-point, we take a 16x16 cell around it, we divide it in four 4x4 cells. Then
we apply the Histogram of Oriented Gradients transform to each cell, using 8 bins: meaning
that every SIFT point will have as descriptor a 128 (= 4∗4∗8) feature long vector:

Fig. 5.7 Keypoint descriptor

In this picture we see the feature transform using the Histogram of Oriented Gradients
(HOG)[21]. The resulting vector contains the features we will use for the BOW clusters.

5.2.2 BOW with Adapted SIFT

Now that we have defined the features we will use for BOW, we decided to use an adapted,
or partial, SIFT algorithm that is more appropriate for our case. The input image will always
have a fixed size of 1280∗720 pixels, since all of our pictures or frames come from the same
robot camera.
Instead of using the SIFT detection algorithm previously described, we will use a fixed
amount and position of key-points; this will generate a higher number of total features per
picture, and will remove the computation time of finding the SIFT points using the classic
method[sift].
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Since we will use the standard SIFT
key-points description method, where each
point is analyzed by a 16x16 cell grid, we
decided to take the centers with a distance
of 8 pixels. This means that two consecutive
key-points will include a total space of 32
pixels, with 50% overlap. This can be seen
in the picture on the left: the red, green, and
blue squares represent 3 descriptors of 3
key-points.

In this way we will extract 160x34 (1280/8 = 160; 720/8≈ 34) cells from every pictures.
Since every cell is described by 128 bins, we will extract 5440x128 feature per picture.

After this process the BOW will generate N cluster points (decided by us at priory), and
cluster all the features from all the pictures. Those cluster points will be the reference for the
next step. On top of BOW we will use a Neural Network (NN) [cit], that will us as inputs an
histogram of linear distances to those N cluster points; and as label the scene name.The NN
will have as many inputs as the number of BOW clusters.

5.2.3 The Neural Network for the BOW

We use the Neural Network to associate the BOW feature (distances to cluster points) to
their respective labels. To do so, we see from other researches [cit] that a very simple Neural
Network can be used. Those are the specification of the NN used:

• Number of inputs: as many as the BOW cluster points

• Number of layers: input layer, 1 or 2 hidden layers, output layer

• Activation functions: the hidden layers nodes use Leaked Rectified Linear Function
(LRELU).

• Layer connections: all the layers are fully connected

• Number of outputs: number of total unique VMs.

It’s important to notice that if we change the number of cluster points, we need to retrain
both the BOW and the NN. In fact while the BOW is an unsupervised algorithm, the NN
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on top is a supervised algorithm that needs the output of the trained BOW and the labels
generated from the previously seen VMs Detector System.

LRELU: this activation function is an adaptation of the RELU activation function, defined
as f (x) = max(0,x); while the LRELU is defined as: f (x) = max(αx,x), with α ∈ [0,1]

Fig. 5.8 RELU and LRELU functions

5.2.4 Experiments and Results

In this table we show the best results obtained with the Bag of Visual Words and the Neural
Network.

Table 5.1

BOW_cluster N_hidden1 N_hidden2 Min Val Error Test Set Accuracy
1000 1000 1000 0,29 88,5
1000 1000 500 0,27 88,5
1200 1500 1000 0,35 86,27

Those reported are the best results obtained with various configurations and parameters.
The best result is chose by lowest Validation error, and then highest Test Set Accuracy.
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5.3 Scene Recognition with Inception V3 CNN

After testing and implementing the BOW system for Scene Recognition, we decided to try a
different approach: Inception Neural Network (INN). Recently this new type of NN have
achieved incredible results in the computer vision field, especially in images classification
, setting the new state of the art in the field. Given the incredible success of those new
architecture, we decided to try use those for our task. In particular we decide to use a specific
model called Inception V3. [22] This NN is the current state of the art for the ILSVRC
2014 Data Set.

5.3.1 Inception Neural Network

The INN is an evolution of the classic Convolution Neural Network (CNN). The main
idea of the Inception architecture is to consider how an optimal local sparse structure of a
convolutional neural network can be approximated and covered by readily available dense
components.[23]
The main idea is to perform different operations on a single layer, and stack the results of
those together.

Fig. 5.9 Inception Module

In the Inception Module, three different operations are performed: a convolution with
5x5 and with 3x3 kernel; and an average pooling operation. Also both Convolution operations
are preceded by a 1x1 convolution operation, in order to increase the depth of the Inception
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Module.
All the results are then stuck together in the next layer, as can be seen in Figure ??

5.3.2 Inception V3

The Inception V3 architecture is a modified version of the classical INN. The main focus of
this version is to drastically reduce computation time while improving overall results. This
architecture is currently the state of art for the ILSVRC 2014 Data Set. This is achieved
with a relative low increase in computational cost (2.5x).[22]

(a) Inception Module (b) Adapted Inception Module

The above pictures represent the original Inception Module (on the left), and the adapted
Inception V3 Module (on the right). As we can see, instead of the 5x5 convolution, two
consecutive 3x3 convolution are used. This immediately reduces the computational cost of
the operation, given the smaller amount of weights to calculate: in fact a 5x5 convolution
operation is more computational expensive than a 3x3 by a factor of 25/9 = 2.78. And while
the 5x5 convolution can detect dependencies of signal in further away units, if we use the
same number of input for the first 3x3 convolution, the second 3x3 convolution will reduce
to 1 output maintaining intact the 5x5 ratio input/output as in the figure 5.11
This replacement reduce the computational cost, while losing the geometrical information;
but since we are using this for visual networks we can rely on the translation invariance
propriety.
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Fig. 5.11 Use of two 3x3 convolution instead of 5x5

Following the same idea, it’s possible to exploit it further, by considering to replace a
3x3 convolution with a 3x1 and a 1x3 convolution in succession. Again this will reduce
the computational time, while not losing meaningful information thank to the translation
invariance propriety.

(a) Generalized Inception Module (b) Used Inception Module

Fig. 5.12 Inception Module adaptations

While the scheme represented in figure is least computational expensive possible, it
will generate a representation bottlenecks. To avoid this, while maintaining computational
reduction, and removing bottlenecks, can be seen in figure 5.8:

The Inception Module represented in figure 5.8 is the final Inception V3 Module.
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This is the full architecture of the Inception
V3 network. The input connection is at the
top, while the output at the bottom. The full
architecture has 33 layers, considering the

Inception Module as a single layer.
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5.3.3 Inception V3 Use and Results

We used the fully trained Inception architecture till the last convolution layer. On top we
added a hidden fully connected hidden layer, with 250 hidden units, and our output layer.
The hidden layer uses the RELU activation function.
This has been done to be able to use the pre-trained parameters of the Inception V3, and only
train our final hidden and output layer’s weight for our Scene Recognition System.
In Figure 5.13 is possible to see the accuracy graph. We used 10% as validation set, 10% as
test set, and the remaining 80% as training set. We obtained a 100% accuracy on the test set.

Fig. 5.13 Validation Accuracy
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5.4 BOW vs INN

Given the better results obtained by the INN, on the same exact Data Set, we decide to
leave the BOW algorithm for the much more performant INN. Other then better results, the
INN is way faster to train over new data compared to the BOW, mainly tanks to the use of
pre-trained network. In fact to train the final layer with optimal results it takes around 30
minutes with a data set of 7000 pictures; while takes around 3 days, on the same machine, to
only compute the cluster point needed for the Bow. This huge difference is due the difference
in algorithms: the BOW clustering algorithms runs on the CPU with a single thread given its
sequential intrinsic propriety; while the training of the INN is computed on the GPU taking
advantage of its highly scalable nature.

5.5 Real Word Performance

Given the high performance of the INN we where expecting similar good performance in
the Real World: unfortunately this wasn’t the case. During the test performed in the Real
World we notice that when the image input was very similar to the one present in our Data
Set the INN was performing according to our Test Set, but every time the input image was
different from the ones present in the Training Test the results where INN’s predictions where
completely off.
After investigating the problem we concluded that the INN didn’t generalize well. Given the
method used to capture the pictures for the Data Set, all the data per class are consecutive
frames of the recorded video: this means those are quite similar to each other in term of
feature computed from the pre-trained INN. To better understand this imagine taking a
picture of a table in a room, then move two meters on your left, and take a second picture of
the table. The difference in those two pictures, in terms of INN features, are almost none.
All the difference in those two pictures lies in the geometrical proprieties of the objects itself:
the table moved to the right in the picture, its prospective changed, etc.
To confirm our theory we performed a simple experiment: Paragraph 5.5.1
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5.5.1 Geometrical Invariance Experiment

To prove that, regardless the optimal results of the INN on the Test Set, the poor performance
in the Real World are due to a "wrong" feature selection of the pre-trained INN we designed
the following text: we took a random picture (5.14a) from our Data Set and created a flipped
copy (5.14b).

(a) Original Picture (b) Flipped Picture

Fig. 5.14 Experiment pictures

We then use those two pictures as inputs for the pre-trained INN, and take as output the
values of the last pre-trained layer. This output is indeed the input of our fully connected
layer, and is the actual data we use to train our final layers.
Here we call T 1 the tensor output from the original picture, and T 2 the tensor output of the
flipped picture. Then we compute the tensor D as D = T 1−T 2.

len(T 1) = 2048
Mean(T 1) = 0.292797
ST D(T 1) = 0.296673

(a) T1 proprieties

len(T 2) = 2048
Mean(T 2) = 0.284759
ST D(T 2) = 0.304073

(b) T2 proprieties

len(D) = 2048
Mean(D) = 0.008037
ST D(D) = 0.111435

(c) D proprieties

Analyzing the propriety of the resulting tensor D, we can see that the pre-trained INN
generalized in a way that doesn’t find much differences in the experiment pictures. In fact
since tensor D represent the differences of the experiment’s pictures in the feature space of
the INN, the low average (Mean), and the low Standard Deviation (STD) are clear indicator
of the similarity of those. This experiments, and the reported extensive use of geometrical
invariant propriety used in the INN [22], prove the inability of this network to find differences
in the geometric feature space.



5.5 Real Word Performance 45

5.5.2 Geometrical Variant Data Set

After the experiment discussed in the section 5.5.1, we decided to create a new Data Set with
an explicit geometrical variance propriety; in order to further test the impact on the final
results on the INN.
We created a new class with all the images of our Data Set flipped, and use half of those for
the training, and the other half for testing. The order of the picture is randomize, in order to
not have only some classes, flipped, in the training and the other in the test.
More precisely, our train set has all the original images, divided in their respective classes,
and a new class with a copy of half the images flipped. The test set only has the other half of
the flipped images. This is done to exactly see how the INN will perform with this extreme
case.
We used 90% of the new data set as training and 10% as validation set; with the test set
containing the rest of the flipped images. The label for those images is a new class called
flipped. We trained and the network on the training set, and we stopped when we had a
validation accuracy of 96%. After the network was trained, we test in on the test set, with
only the flipped images:

• Correct: 0%

• Tricked: 97.43%

• Missed: 2.57%

With Correct we mean every time the NN classify the image as
part of the class flipped. With Tricked we count the all the time
the NN recognizes the image as the original one picture from
which the flipped is created. Finally with Missed we counted all
the time the NN classify the image neither as flipped, neither as
the original one.

As this test results, the INN will classify all the flipped images as their original, non flipped,
class. As we expected this pre-trained NN can not generalize well those types of Data Set.
We will use this new Data Set to test future implementation, in order the respond of the new
systems regarding the Geometrical Variance property.





Chapter 6

New Deep Neural Network

After the results discussed in the previous section, we realized that to be able to well
generalize our Data Set, while keeping the geometrical variance information, we needed a
novel approach to Deep Neural Network (DNN).
After analyzing the construction of the INN, we decided to rebuild a new model that will not
rely on the geometrical invariance property.

6.1 ANN without Geometric Invariance

Once we identified, in the previous chapter, the influence of this property in our situation, we
needed to analyze every element of our possible new ANN to identify every component that
was relying on the Geometric Invariance property.
Starting from the INN structure cit[inception], we identify the main component that rely on
this property as: Pooling Layers and the layer discussed in chapter 5.3.2, picture 5.11.

6.1.1 Pooling Layer

Pooling layers where designed to reduce the size of the input, while maintaining the key
features in it. By applying a convolution operation on the input, it can reduce this by a
factor of 2,3 or more while maintaining the most prominent information. This is done by
applying computational inexpensive operations like mean or max. While these functions can
well represent the input information, drastically reducing its dimensionality, these lose the
geometrical information of it. As an example, when we apply a mean or max operation on a
3x3 matrix, as output we will have only one number that represents the nine input numbers.
While the output value can represent the "intensity" of the input, it can not represent the
distribution or position of the input values. When these operations are applied in a NN,
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we say that these operations maintain the features of the previous layers, but they lose the
position or distribution of them.
It is true that the geometrical information lost only concerns a limited neighbor (in the
example of 3x3 cell, we lose a precision of 3), but when we consider DNN architectures,
this can cause a way larger loss. If we take the Inception V3 as an example, with an input
of 300x300, and 33 total layers, we have a Pooling layer on the 30th layer. At this level
of deepness, the input has been "squeezed" to ≈ 10x10 size, with multiple channels. The
average operation used now, even if applied on a 3x3 cell, will actually lose the geometry
of 90x90 neighbor relative to the input. This is given by the ratio 300x300/10x10 of the
original input, and the tensor input prior to the Pooling layer. The key element is the core idea
of back propagation in ANNs. A mean or max operation is irreversible: from one number
representing the mean or max of a 3x3 input it is not possible to reconstruct the original 3x3
input.

6.1.2 Convolution Layers with Strides

As an alternative to Pooling layers, we can apply convolution operations, with a fixed
kernel and strides, to reduce the dimensionality of the input, while maintaining geometrical
information.

Fig. 6.1 Convolution operation with strides

In Figure 6.1 we can see how we can reduce, with a convolution operation, a 5x5 input to
a 3x3 output with a 3x3 kernel size. This operation maintains the geometrical information
thanks to the kernel. When we do the back propagation operation, the geometrical propriety
are intrinsic in the kernel values: each kernel’s value represents the weights of one of the
nine input pixels.
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6.2 New Deep Neural Network Architecture

After the considerations discussed in the chapters 6.1.1, 6.1.2, we present our new DNN
architecture:

DNN structure:

• Input Layer 6.2.1

• Convolution Layer 1 6.2.1

• Convolution Layer 2 6.2.1

• Convolution Layer 3 6.2.1

• Convolution Layer 4 6.2.1

• Inception Layer 6.2.1

• Flatten Layer

• Fully Connected Layer 6.2.1

• Softmax Layer

• Output Layer 6.2.1
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6.2.1 DNN Description

Here we describe in details the full architecture of the DNN:

Layer Name

Input Layer
Convolution Layer 1
Convolution Layer 2
Convolution Layer 3
Convolution Layer 4
Inception Layer
Flatten Layer
Fully Connected Layer
Softmax Layer
Output Layer

Layer Description

fully connected
7x7x48; strides=3; dropout=0.1
9x9x32; strides=2; dropout=0.1
11x11x24; strides=1; dropout=0.1
22x22x16; strides=1; dropout=0.1
3x3x8 left; 5x5x8 right

200 hidden units

12

Tensor size

300x300x3
98x98x48
45x45x32
35x35x24
14x14x16
28x14x8
3136
200

10

Weights

0
7104
124448
92952
185872
4912
0
627400
0
2010

The RELU activation function is used in all the layers.
In particular we use a modified version of the Inception Module. Taking inspiration from the
[cit inception] we created a new module that is able to maintain the geometrical information
of the input.

(a) Modified Inception Module

We use in parallel two deep convo-
lutions: on the left a 1x1 kernel fol-
lowed by a 3x3, and on the right a
1x1 kernel followed by a 5x5. We
remove the pooling layer and all the
weight optimization discussed in Sec-
tion 5.3.2. But we use the 1x1 convo-
lution: in fact this generate a deeper
network and increases the channels,
while performing a a simple dot oper-
ation that is extremely cheap in terms
of computational resources.

Now the new architecture is described, we show the results obtained.
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6.2.2 New DNN Results

Now that we designed a new architecture, that maintains the geometrical proprieties of the
image in the whole architecture, we test it on the special data set discussed in Chapter 5.5.2.
Here are the results obtained:

• Correct: 99.7%

• Tricked: 0%

• Missed: 0.3%

From these results we can be sure that our DNN is able to
distinguish between flipped images, and to an extent, it maintains
and elaborates the geometrical features of the input.

After this test we test the DNN on the classic data set used for navigation described in
chapter 5.1.

Fig. 6.4 New DNN accuracy

As we can see we obtain a total accuracy of 98.7% on the test set. Moreover, thanks to
the previous experiments, we also rely on geometrical property. During live experiments, we
can see a nice transition of class prediction when the camera moves from a VM to another.
The direct correlation between the transition in the probability of the output of the DNN, and
the geometrical transition of the camera shows even more the intrinsic geometrical propriety
analyzed by the NN. This effect can be seen in figure 6.5. A deeper explanation is proposed
in the section 6.2.3.

6.2.3 DNN Geometrical Results

Looking in detail we can see the image at the starting position (figure 6.5a), with the DNN
output at the bottom. Here the output is presented as an histogram of probability over the
total classes of the DNN. Each class represents a specific VM, and the level of the histogram
represent the DNN certainty of recognizing a specif scene.
Now we start rotating the camera (or robot), to have a transition from the first scene to the
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(a) Starting Position (b) First step rotation (c) Final step rotation

Fig. 6.5 DNN output over rotation movement

second scene. We start rotating to the right, and we can see in real time the DNN output. At
some point of the rotation we will start looking at a scene that is a transitions scene between
scene one and scene two. This is figure 6.5b. Now here it is very important to notice the
almost equal level of the two scene. Note that the scale automatically changed, so both
classes have a 50% certainty. By continuing the rotation we will end up in the new scene.
This is represented by figure 6.5c.
This results perfectly shows the new relation between our DNN and the real geometrical
world. All the geometrical information, not only are preserved in the whole network, but are
intricately learned and associated to the final certainty output of our network. This is only
possible thanks to the new proposed architecture: geometrical information are essential to
achieve this result.



Chapter 7

Conclusions

In this thesis we proposed a procedure to enable a robot or vehicle to autonomously navigate
in an indoor environment, relying on visual information. We proposed many novel approaches
to different tasks needed to create a working system. In this chapter we will summarize the
most relevant ones.

7.1 Data Labeling and Mapping and Localization

Thanks to the use of VMs, we proposed a method that follows the lazy teacher approach:
we automated as much as possible the procedure of labeling of the data. We designed a new
VM, focusing on the needs of our task. This new VM design enables the detection of it from
a further distance than other designs, greatly reducing the false positives errors and holds
only the essential information needed to generate labels for a visual based scene recognition
dataset. Thanks to this approach we combined the benefits of natural landmarks and artificial
landmarks: using simple and inexpensive artificial landmarks we created a dataset, that was
used to train a DNN that relies on the natural landmarks to robustly recognize different
locations. This combined approach enables the creation of big dataset in a fast, efficient and
inexpensive way. In fact, while the data recording is done with simple video recording, the
label generation procedure is fast and almost fully automatic. This procedure also enables a
dynamic creation of the dataset: both for fine tuning or adding new scenes, there is no need
to repeat the whole procedure, but by simply adding new VMs in the new area it is possible
to increase the existing dataset.
Moreover thanks to this approach we focused on a non grid-like map, but on a graph map
instead that takes inspiration from human navigation. The use of key areas, denoted as
Regions, enables a fast and memory efficient map creation process. While this approach
loses precision compared to a grid based map approach, it has the robustness of human-like
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navigation: simply by looking at the surroundings it is possible to have a reliable likelihood
of being in a certain region. This can be increased by performing simple tests to maximize
the certainty of the system, like looking around. This is possible thanks to the structure of
the Regions that are composed of Nodes, and their intrinsic geometry information.
Moreover this approach solves the same door localization problem in Navigation: if there are
two very similar areas in the map, like being in front of one of many doors in the area, the
difficulty of knowing which door are we close to. Thanks to a graph map approach we know
the connections between regions: knowing the region we come from, and the movement we
performed, we can greatly reduce the possible regions we arrived at. Moreover by defining
all the Nodes with the visual information from the front, left and right side of the robot we
can solve the same door localization problem, and highly increase the robustness of the
localization system.

7.2 A novel Deep Neural Network Architecture
1 In this thesis we proposed a novel Deep Convolutional Neural Network architecture, that
does not rely on the geometrical invariance property. While using layers like Pooling and
weight optimization like the one used in INN V3 greatly increases the performance of DCNN
for scene recognition tasks, it is not the optimal choice in every field. Here we focused on
navigation, where geometry is essential for any navigation system. We showed that it is
possible to create high performing DCNNs that can also maintain the geometrical properties
of the input, giving an intrinsic knowledge of the geometry of the environment to the network
itself.
Since the proposed DNN is a key component of a visual based navigation system, we focused
on experimenting on datasets which represent real world scenarios. The whole pipeline
consists of an almost autonomous way of generating labels, to create in a fast way a dataset of
the environment. This is used to train the proposed DNN, which can generalize the training
data in a meaningful way: a direct correlation between geometrical movement and the DNN
output probability. This is only possible when the DNN relies on geometrical properties. It is
also important to notice that we experimented with removing the VMs from the environment,
and the DNN performances remain the same; but no extensive experiments were performed
with this focus.
To conclude, we show that it is possible to use convolution layers to create deep architectures,
while maintaining all the geometrical properties of the data. This can be applied in all the

1This chapter is part of a waiting for review conference paper
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fields where the position, or geometrical properties of the features are as important as the
features themselves.

7.3 Future Work

The work we proposed focused on the localization and mapping systems. These are combined
with the classic Navigation System through ROS. Thanks to this modular nature of this work,
it is possible to implement it side by side with other systems. In fact one of the key elements
of this work was the possibility to be ready to use for most applications. As an example,
when a precise localization is needed, the system proposed can work in parallel with a grid
based map approach: while using our localization for the global map, once a desired region
is reached, it is possible to switch to a classical laser based localization, for a more precise
position in the region. This combination allows the possibility to create laser maps of only
specific areas of interest, while using the proposed graph map approach for the totality of the
environment.
Another focus of this whole system and general procedure is to be as independent as possible
from hardware specifications. In fact it is possible to use this procedure on a completely
different robot or vehicle, as long as a camera is available. This is possible thanks again to
the modularity approach: the localization system and the graph map are independent from
the rest of the system, and can be used in combination with other systems.

The new DNN architecture proposed, showed that is possible to use DCNNs for gemetri-
cally based data. Moreover it can be applied as the core localization subsystem for a visual
based navigation system. This would rely on the geometrical properties of the real world
environment to possibly create a human like approach to navigation. If we consider that
humans are able to perfectly navigate in any environment with solely visual information, then
the proposed approach would fit the need of a human like navigation system. To accomplish
this, more considerations and research needs to be done, focusing on the system itself: the
use of 3D cameras, stereoscopic cameras and more.
On a more general level this approach shows potential in applications where geometrical
structure matters. As an example we could consider FMRI scans: these visual data are
directly correlated to the brain areas. Another example could be visual games: from chess
to Atari games. Given the ability of the proposed DCNN to rely on the positions of the
features and to generalize the geometrical properties of the data, the possible benefits are clear.
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Moreover is possible to experiment and build further and more sophisticated localization
behavior. As an example the possibility to use Long Short Term Memory (LSTM) Net-
works on top of the localization system for more robustness. Moreover this would allow
a real continuous learning procedure: using as input of this network output tensor of the
scene recognition system, the graph map status and the movement performed, it is possible
to predict the reached Region. This will enable the system to continuously learn the possible
hardware errors, or even small environment modifications.
On another topic, we introduced a new DNN architecture, that shows the importance of
geometrical information of the input
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