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Abstract

Human strategic reasoning in turn-taking games has been extensively investigated by game theo-
rists, logicians, cognitive scientists, and psychologists. Whereas game theorists and logicians use
formal methods to formalize strategic behaviour, cognitive scientists use cognitive models of the
human mind to predict and simulate human behaviour. In the present body of work, we create a
translation system which, starting from a strategy represented in formal logic, automatically gen-
erates a computational model in the PRIMs cognitive architecture. This model can then be run
to generate response times and decisions made in centipede games, a subset of dynamic perfect-
information games. We find that the results of our automatically generated models are similar
to our hand-made models, verifying our translation system. Furthermore, we use our system to
predict that human players’ strategies correspond more closely to extensive-form rationalizable
strategies than to backward induction strategies, and we predict that response times may be a
function of the number of possibilities a strategy can prescribe.
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Chapter 1

Introduction

1.1 Marble drop

Many real-world interactions are comparable to turn-taking games. Examples are presidential
debates, negotiating a division of labour or competing with other students, employees or even
companies. When involved in such an interaction we continuously have to ask ourselves whether
we should accept the current outcome, or continue - hoping for a better one.

Dynamic perfect-information games can be used to model such interactions. Dynamic perfect-
information games are dynamic because both players take turns choosing an action, and both
players can see which actions the other player has chosen in the past before they have to choose
their next action. This contrasts with simultaneous games, where both players choose an action
at the same time, after which these actions are revealed to either player, such as in the prisoner’s
dilemma. perfect-information games are games where both players know everything there is to
know about the game - all possible actions and all possible outcomes. There are no hidden elements,
and there are no chance elements.

Dynamic perfect-information games can be presented as game trees. A game tree is a graph
where each node represents a turn and each outgoing edge represents an action that can be per-
formed at a turn. These edges are not symmetric: you cannot traverse an edge back to the previous
node. The game ends when a leaf node is reached: at each leaf node the payoff for each player is
specified, which is the outcome of the game when that node is reached.

To get a better intuitive understanding of dynamic perfect-information games and game trees,
let’s consider the example in Figure 1.1. Black dots are non-leaf nodes and arrows are edges (and
indicate their direction). Let’s suppose player C is Claudia and player P is Paul. At the leaf
nodes, payoffs can be found between parentheses, where the number on the left is Claudia’s payoff
and the number on the right is Paul’s payoff. The game starts at the node on the far left with
Claudia. In the remainder of this thesis, we will simplify these trees by omitting the black dots
and using line segments instead of arrows.

Figure 1.1: An example of a game tree of a two-player dynamic perfect-information game (adapted
from Ghosh & Verbrugge (online first)). Within the payoffs (between parentheses), the number on
the left is Claudia’s payoff and the number on the right is Paul’s payoff.
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On the first turn, Claudia has two options. She can move down and end the game, giving
her three points and Paul one point. She can also move right, giving Paul a turn. If she moves
right, Paul has to decide whether to move down, in which case Claudia gets one point and Paul
gets two points. Paul may also move right, giving Claudia a turn. The game either continues
until someone moves down, or until Paul moves right in the last turn. This example is not just a
dynamic perfect-information game, but also a centipede game.

In this thesis we will focus on these centipede games. Centipede games are a subset of dynamic
perfect-information games. In centipede games, at each decision point, one option ends the game
while the other option gives the other player a turn, until the last turn where both options end the
game. Furthermore, in a centipede game, ending the game in your current turn will always give
you more points than when the other player ends the game in the next turn.

Centipede games can be visually presented as the game of marble drop, a game where a marble
rolls through a set of pipes and both players take turns deciding where the marble goes. The
game of marble drop in Figure 1.2 is the same game as the game tree in Figure 1.1. Because it is
intuitively easier to understand than game trees, marble drop has been used in empirical studies
of centipede games (such as Ghosh, Heifetz & Verbrugge (2015) and Ghosh, Heifetz, Verbrugge &
de Weerd (2017)).

Figure 1.2: Marble drop version of the game in Figure 1.1 (adapted from Figure 4 in Ghosh &
Verbrugge (online first))

1.2 Strategies

A strategy is a specification of how an agent should act at each decision point where it has a turn.
In the example in Section 1.1, Claudia’s strategy could be moving down at the first node, and
moving down at the third node. In game theory, a Nash equilibrium is achieved when no one can
change his strategy without losing points. For example, this happens when Claudia’s strategy is
to move down in both of her nodes, and Paul’s strategy is to move down in both of his nodes as
well. If Claudia changes her strategy by moving right in the first node, Paul will move down (by
his strategy), and Claudia will receive one point instead of three. This can be verified for all nodes
in the game tree. A subgame perfect equilibrium is a more general case of a Nash equilibrium. It
is achieved when the current strategies achieve a Nash equilibrium in each subgame, which is a
smaller version of a game, represented by a subtree of the corresponding game tree. For example,
a subgame of the game in Figure 1.1 can be obtained by removing the first node, starting with
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Paul instead. The corresponding subtree is Game 1′ in Figure 1.3. A game is also a subgame of
itself.

Figure 1.3: A subgame of Game 1 from Ghosh & Verbrugge (online first), obtained by removing
the first node.

In dynamic perfect-information games, a subgame-perfect equilibrium can be achieved using
the strategy of backward induction. With backward induction you start reasoning from the leaf
nodes and continue backwards to the current node, ignoring any past nodes. You assume that the
other player does the same. At a node that only has outgoing edges to two leaf nodes, you assume
that the current player will select the action that gains him the highest number of points. You
then assign this outcome to this node, and continue with the same reasoning from the previous
node.

To illuminate backward induction, let us use Figure 1.1 on page 11 as an example. Suppose
Claudia is using backward induction. The only node that only has outgoing edges to leaf nodes
is the rightmost non-leaf node, which is Paul’s. Paul has to choose between going down for (0, 3)
and going right for (4, 1). Claudia assumes that Paul will go for three points instead of one, so she
assumes that Paul will go down. Therefore, she assigns the value (0, 3) to the rightmost non-leaf
node. Using this value, she would have to choose between going down and getting (2, 0) and going
right to get (0, 3) at the third node, so she will choose (2, 0). She then assigns (2, 0) to the third
node and starts thinking about the second node, where Paul would have to choose between (1, 2)
when going down and (2, 0) when going right. She assumes Paul would prefer two points over one
point, so she assumes that Paul will go down for (1, 2). Therefore, she assigns the value (1, 2) to the
second node. Moving to the first node, she has to choose between going down for (3, 1), or going
right for (1, 2). Obviously, she prefers three points over one, so she decides to go down. These
choices remain the same when one or more of the first nodes are removed: past actions do not
influence backward induction behaviour. The full game tree with corresponding value assignments
can be found in Figure 1.4.

Figure 1.4: The game tree from Figure 1.1 with backward induction payoffs assigned to each
decision point.
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As opposed to backward induction, the strategy of forward induction does take past actions into
account. Suppose Claudia decides to move right in her turn in the game in Figure 1.1. In forward
induction, players try to rationalize their opponent’s past moves. One such rationalization may
be ‘Claudia is not going down to get three points, because she wants to reach the four points on
the far right’. If Paul is using forward induction, he may think that Claudia’s strategy is to move
right in both of her turns. Paul can take advantage of this by moving right at his first node, and
moving down at his second node, denying Claudia four points and getting three points for himself,
instead of the two points he would have gotten if he moved down immediately. According to the
findings of Ghosh et al. (2015), people usually do not use backward induction. Their behaviour
often corresponds to forward induction, but there may be alternative explanations, such as the
extent of risk aversion people attribute to their opponent.

1.3 Cognitive modelling and previous work

This work continues from Ghosh & Verbrugge (online first). In their paper, they try to understand
how people make decisions in centipede games and how to classify players and their strategies.
They perform an analysis of the results of the experiment performed in Ghosh et al. (2015). In
Ghosh et al. (2015), subjects had to play centipede games such as the one above against a computer.
The computer often deviated from backward induction by moving right instead of moving down
in its first node. There were 50 subjects who played 48 games each, for a grand total of 2400
games played. Ghosh et al. (2015) found that people often do not use backward induction: they
use forward induction or a seemingly random strategy.

Ghosh & Verbrugge (online first) performed a latent class analysis and a theory-of-mind analysis
on these findings. Latent Class Analysis is a statistical method used to assign subjects to groups
using a probability of group membership (instead of absolute membership). They found three
classes: players who use forward induction, players who play randomly, and players who start by
playing randomly and learn to use forward induction over the course of the experiment.

They also performed a theory-of-mind analysis on the same data. Theory of mind refers to the
ability to attribute beliefs and thoughts to others. Zero-order theory of mind is thinking about
the world. First-order theory of mind is thinking about how other people think about the world.
Second-order theory of mind is thinking about how others think about how others think about
the world. For example, suppose two people, Paul and Claudia, are playing hide-and-seek. There
are two locations to hide: behind a fence and in a bush. Paul knows that in the past, Claudia
hid behind the fence more often than in the bush. If Paul thinks “Claudia often hides behind the
fence, so she will probably hide behind the fence this time”, he is using zero-order theory of mind,
because he only reasons about the world. If Paul thinks “Claudia often hides behind the fence.
She knows I know that she often hides behind the fence, so she may think that I think that she
will hide behind the fence again. Therefore she may expect that I will look behind the fence, so
perhaps she will hide behind the bush instead”, he is using second-order theory of mind, because
he thinks about what Claudia thinks that he, himself, thinks. According to the analysis of Ghosh
& Verbrugge (online first), most players used first-order theory of mind, but the other two levels
were also present. No usage of theory of mind of an order above two was found.

Ghosh & Verbrugge (online first) not only explain and classify behaviour in centipede games,
they also work towards the creation of computational models of strategies in centipede games
and how to represent them in formal logic. Their formal logic extends the one created in Ghosh,
Meijering & Verbrugge (2014). The logic can be used to represent dynamic perfect-information
games as well as strategies and beliefs used in them.

They implement two of these strategies in PRIMs, a cognitive architecture (Taatgen, 2013b).
PRIMs models the mind as a set of separate modules, such as a procedural, visual and motor
module. These modules exchange information using chunks, basic pieces of information. PRIMs
is specialized in modelling transfer of skill and learning. Transfer of skill has occurred when
skills learned in one task are beneficial for performance in another task. In PRIMs, tasks are
performed through primitive information-processing elements (each of which is called a PRIM),
which either compare information or pass it around. One of PRIMs’ most important features is
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production compilation: when PRIMs are executed in the same order often enough, these PRIMs
are combined into larger productions, which models speed-ups in learning, among other things.

The two strategies implemented in PRIMs in Ghosh & Verbrugge (online first) are a myopic
strategy and an own-payoff strategy. In the myopic strategy, players only look at the current and
the next payoffs. In the own-payoff strategy, players only look at their own payoffs, and not at
the payoffs of other players. Ghosh and Verbrugge performed the initial leaps in bridging the gap
between logic (by creating a formal logic used to represent strategies and centipede games) and
cognition (by creating two models in PRIMs and classifying human strategies). We will continue on
this line: our goal is to create a general, preferably automated, method of translating strategies, as
specified in their logic, into PRIMs models. We will fit our models on and compare their behaviour
to the results of Ghosh et al. (2017). His results are the most recent and also consist of 2400 game
items in total.

Implementing such strategies in PRIMs allows us to explain human behaviour in centipede
games from a cognitive modelling perspective. Unlike the previously mentioned formal logic,
PRIMs can be used to model errors, deviations from a strategy, and learning. It can also make
concrete predictions on reaction times, loci of attention, and brain activity. Creating models in
PRIMs is often a laborious and time-consuming task, requiring considerable expertise on model
creation. A system that automatically translates strategies to PRIMs models will alleviate these
problems, as strategies only need to be specified in the formal logic. Such a system will be a first
step in automated model creation, as well as the next step in connecting game theory, logic, and
cognitive modelling.

1.4 Research goals

In this thesis, we will investigate how to translate strategies in dynamic perfect-information games,
represented in the formal logic of Ghosh & Verbrugge (online first), into models in the PRIMs cog-
nitive architecture. Our goal is to create a general translation method: a system that automatically
creates a PRIMs model given a strategy represented in formal logic.

To do so, we will first implement two strategies by hand, and use our findings in the creation of
our translation system. We will implement models of the myopic and own-payoff strategies,
which is were Ghosh & Verbrugge (online first) end. Not only will this give us insight
into translating strategies into PRIMs models, it may also validate the findings of Ghosh &
Verbrugge (online first).

Because we use PRIMs, we are obliged to find out what the smallest elements of ‘skill’ are in
centipede games. In PRIMs, action sequences are built from primitive elements, which either
compare or move pieces of information. Are the smallest elements in our models PRIMs
themselves or are they sequences of PRIMs?

Our models should make predictions of reaction times, scores, and choices made. We wish to
compare our model results to those in Ghosh & Verbrugge (online first) and Ghosh et al.
(2017).

We will not create a graphic user interface in our system, which would be a possible extension for
future work. The logical formulae corresponding to the to-be-translated strategy will be hardcoded
into the system. In future versions, the system could be extended with a parser for the formal
logic, which would allow the user to enter strategies into the system without having to access the
code.

1.5 Thesis outline

In Chapter 2 on page 17 we will discuss the previous research relevant to this thesis. We will
begin by giving an in-depth description of the centipede games used in Ghosh & Verbrugge (online
first) and Ghosh et al. (2017). We will also provide the reader with a full explanation of the logic
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created in Ghosh & Verbrugge (online first), as well as a more detailed explanation of the PRIMs
cognitive architecture. In Chapter 3 on page 37 we will describe our findings in designing the
myopic and own-payoff models, as well as the model results. Chapter 4 on page 52 elaborates on
the translation method we found and the encompassing system. Finally, Chapter 5 on page 70
contains a summary, discussion and interpretation of our findings, as well as directions for future
research.
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Chapter 2

Theoretical Background

2.1 Marble drop

In this section, we first give an overview of the relevant papers preceding this thesis. We then give
an in-depth explanation of the set of centipede games we are going to use, as well as the possible
strategies in these games.

This thesis continues the line of work started by Ghosh et al. (2014). Until their paper, empirical
studies and cognitive modelling of centipede games were mostly separated from logical studies of
centipede games. Ghosh et al. view these methods as complementary and investigate how to
bridge the gap between them. In order to do so, Ghosh et al. (2014) depart from the common
practice of describing idealised agents using formal logic. Instead, they focus on describing limited
agents, which can be used to describe the empirically observed reasoning of human players. For
this purpose, Ghosh et al. (2014) present a formal logic that can describe game trees and strategies
in extensive-form games. Their logic does not include knowledge and belief operators, yet. They
also create cognitive models in the ACT-R cognitive architecture capable of playing marble drop.
The strategies these models use are based on strategies represented in their formal logic. In doing
so, they make the first steps in bridging the gap between logic and cognitive modelling.

This line of research continues in Ghosh et al. (2015). In this paper, an experiment is per-
formed where people play games of marble drop against a computer, one such game being depicted
in Figure 1.1 on page 11. There were fifty participants, each of which played forty-eight games.
The computer often deviated from backward induction by moving right in the first turn instead
of moving down. They find that players often play corresponding to the forward induction strat-
egy when this happens. However, this does not necessarily imply they actually applied forward
induction. Their strategies could also have been caused by cardinality effects and the extent of
risk aversion attributed to the computer opponent.

The data collected in Ghosh et al. (2015) has been analyzed in Ghosh & Verbrugge (online first).
They perform two analyses: a latent class analysis and a theory-of-mind analysis. In their theory-
of-mind analysis they find three classes: players who use zero-order theory of mind, of which there
were five, players who use first-order theory of mind, of which there were twenty-seven, and players
who use second-order theory of mind, of which there were sixteen. Their latent class analysis
was performed on the same set of participants. They found three types of players in their latent
class analysis: expected players, who played in correspondence to the forward induction strategy, of
which there were twenty-four, learners, who learned to play in correspondence to forward induction
throughout the trials, of which there were nine, and random players, who deviated from forward
induction, of which there were seventeen. Because this analysis was performed on the data from
Ghosh et al. (2015), the same uncertainties arise: players may be playing in correspondence to
forward induction because they are actually using forward induction, but their behaviour may also
be explained by cardinality effects and the extent of risk aversion attributed to the computer.

Ghosh & Verbrugge (online first) continue by extending the logic presented in Ghosh et al.
(2014) with belief operators. This allows them to express players’ actual strategies in more detail.
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They demonstrate this extended logic by expressing two strategies commonly seen in players in it:
the myopic strategy and the own-payoff strategy. In the own-payoff strategy, a player only looks
at their own payoffs at each leaf node and tries to move to the first leaf node with the highest
payoff. The myopic strategy is similar to the own-payoff strategy, except that the player only looks
at the current and next leaf nodes, ignoring any other future leaf nodes.

Finally, Ghosh & Verbrugge (online first) create PRIMs models of these two strategies, based on
their corresponding logical formulae. They compare the models’ reaction times to human reaction
times, and find a good fit for the own-payoff model, but not for the myopic model. In doing so they
demonstrate how the logical framework can be used to make models in a cognitive architecture,
which in turn can be used to make empirical predictions.

These papers show that people do not use backward induction, but due to cardinality effects
it remains to be seen whether they apply forward induction or not. To investigate whether the
results of Ghosh et al. (2015) are still valid when cardinality effects are removed, Ghosh et al.
(2017) replicated the experiments in Ghosh et al. (2015). Their centipede games have different
payoff structures to prevent cardinality effects. These payoff structures do not include payoffs of
zero. Another advantage over the games in Ghosh et al. (2015) lies in the fact that these newer
games are more similar. Only the first and last leaf nodes differ across games. Nonetheless, the
actions corresponding to backward and forward induction are the same in both papers. In our
thesis we will use the games of Ghosh et al. (2017) and results to fit our models. In the remainder
of this section, we will describe the games of Ghosh et al. (2017)

The first four of these games are depicted in Figure 2.1. In these games, C is the computer and

Figure 2.1: Games 1 through 4 of Ghosh et al. (2017)

P is the player. In the leaf nodes, payoffs for the computer are on the left and the player’s payoffs
are on the right. The differences between these games lie in the computer’s payoff in the first leaf
node, and the player’s payoff in the last leaf node. In games 1 and 3, the computer’s payoff is four
in the first leaf node, whereas it is two in games 2 and 4. In games 1 and 2, the player’s payoff
is three in the last leaf node, whereas it is four in games 3 and 4. Ghosh et al. (2017) uses two
more games, which are truncated versions of the four games in Figure 2.1. They can be found in
Figure 2.2. In Figure 2.2, Game 1′ is the same as Games 1 and 2 in Figure 2.1, except that the
first node has been removed. Similarly, Game 3′ is the same as Games 3 and 4 but with the first
node removed.

For comparison, the games used in Ghosh & Verbrugge (online first) can be found in Figure
2.3 and Figure 2.4.

We continue by giving an in-depth explanation of the how to find the backward and forward
induction strategies in a single game, such that the reader understands how to find the actions
corresponding to backward and forward induction in the other games.

To find all sequences of actions corresponding to forward induction, we use the Iterated Con-
ditional Dominance Procedure (ICDP) from Gradwohl & Heifetz (2011). For backward induction,
we use the Backward Dominance Procedure from Gradwohl & Heifetz (2011). Due to the similarity
between these procedures, we will only give an example of the ICDP. We will use Game 3 from
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Figure 2.2: Games 1′ and 3′ of Ghosh et al. (2017)

Figure 2.3: Games 1 through 4 of Ghosh & Verbrugge (online first)

Ghosh & Verbrugge (online first) as our example game, which can be found in Figure 2.3. The
algorithm is as follows:

� Initial Step: For every decision node n let Φ0(n) = S(n) be the full decision problem at n.

� Inductive Step: Let k ≥ 1, and suppose that the decision problems Φk−1(n) have already
been defined for every node n. Then for every player i ∈ I and each decision node n ∈ Ni
delete from Φk−1

i (n) all the strategies of player i that are strictly dominated at some Φk−1(n′),
n′ ∈ N , unless this would remove all the strategies in Φk−1

i (n). In the latter case, do not
remove any strategies from Φk−1

i (n). The resulting reduced decision problem is denoted by
Φk(n).

At some point no more strategies are eliminated at any node n. Denote the resulting reduced
decision problem at n by Φ(n).

A strategy si in a game G is extensive-form rationalizable if and only if si ∈ Φi(r), where r is
the root of the game tree. The above procedure has been copied from Gradwohl & Heifetz (2011).

Here, I is the set of players and Ni is the set of player i’s decision nodes. The full decision
problem at n is a tuple with for each player the set of strategies possible at that node. For example,
in the first node of Game 3 this would be ({ae, af, be, bf}, {cg, ch, dg, dh}). In the last decision
node, belonging to player P , this would be ({bf}, {dg, dh}), because this node can only be reached
if C played according to the strategy bf , and if P played according to a strategy that includes d.
A decision problem, in general, is a tuple with for each player a set of strategies.

We use as our decision node’s names n1, n2, n3 and n4. If we apply the initial step to Game 3
of Ghosh & Verbrugge (online first), we obtain the following decision problems:
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Figure 2.4: Games 1′ and 3′ of Ghosh & Verbrugge (online first)

Φ0(n1) = ({ae, af, be, bf}, {cg, ch, dg, dh})

Φ0(n2) = ({be, bf}, {cg, ch, dg, dh})

Φ0(n3) = ({be, bf}, {dg, dh})

Φ0(n4) = ({bf}, {dg, dh})

Now we use k = 1 and find the decision problems for Φ1(n). Therefore we must find all strategies
in Φ0(n) that are strictly dominated in some decision problem, for some player.

A strategy si of player i is strictly dominated at a decision problem D(n) if, assuming that
players can only play according to the strategies present in the decision problem D(n), for every
belief player i can have about its opponent’s strategy, there exists a strategy s′i in D(n) belonging
to i such that the strategy s′(i) yields player i a higher expected payoff than does si (rephrased
from Gradwohl & Heifetz (2011)).

For example, in Φ0(n1), ae would be strictly dominated if for each of player P ’s strategies cg,
ch, dg, and dh, there is a player C strategy that would give player C a higher outcome than ae.

To find the strictly dominated strategies in Game 3, we use a payoff table, which can be found
in Table 2.1. A payoff table contains the payoffs for each combination of player C and player P
strategies.

P
cg ch dg dh

C ae (3, 1) (3, 1) (3, 1) (3, 1)
af (3, 1) (3, 1) (3, 1) (3, 1)
be (0, 3) (0, 3) (2, 2) (2, 2)
bf (0, 3) (0, 3) (1, 4) (4, 4)

Table 2.1: Payoff table for Game 3 in Ghosh & Verbrugge (online first)

The lines in this table separate it into sections which are relevant for each of the four decision
problems. This table can be verified with Figure 2.3 on page 19. If we wish to see whether a
strategy is strictly dominated, we simply have to select a strategy, such as ae for player C, and
then ascertain whether there is a strategy that yields a higher payoff for C for each of player P ’s
strategies. If there is even one player P strategy where there is no strategy for player C that yields
a higher payoff, the strategy is not strictly dominated. In this case, consider player C’s belief cg.
In this column, there is no strategy that yields a higher payoff than ae, which is 3, so ae is not
strictly dominated.

However, be is strictly dominated at Φ0(n1). The strategy be yields player C payoffs of 0, 0,
2, and 2, respectively. Both ae and af always yield player C a payoff of 3, and bf yields player C
a payoff of 4 under the belief that player P plays dh. Therefore, for each belief about player P ’s
strategy, there is a player C strategy that yields player C a higher payoff than be. Therefore we
must eliminate be from each decision problem in Φ0(n).
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There are no other strategies that are strictly dominated in Φ0(n) (the reader is invited to
verify this herself), so we obtain the following reduced decision problem:

Φ1(n1) = ({ae, af, bf}, {cg, ch, dg, dh})

Φ1(n2) = ({bf}, {cg, ch, dg, dh})

Φ1(n3) = ({bf}, {dg, dh})

Φ1(n4) = ({bf}, {dg, dh})

In these reduced decision problems, player C cannot play be and player P cannot believe that
player C plays be. Therefore we can revise our payoff table, obtaining the one in Table 2.2.

P
cg ch dg dh

C ae (3, 1) (3, 1) (3, 1) (3, 1)
af (3, 1) (3, 1) (3, 1) (3, 1)
bf (0, 3) (0, 3) (1, 4) (4, 4)

Table 2.2: Payoff table for Game 3 in Ghosh & Verbrugge (online first), with strategy be removed

Now consider the decision problem Φ1(n2) = ({bf}, {cg, ch, dg, dh}). In this decision problem,
player C plays according to bf , because it is the only strategy left for C. We can look at the lower
half of Table 2.2 to see that dg and dh will give player P 4 points, whereas cg and ch yield 3 points
for player P in Φ1(n2). The strategies cg and ch are strictly dominated at Φ1(n2) so we must
eliminate cg and ch from all decision problems in Φ1(n).

Because there are no other strategies that are strictly dominated at this stage (the reader is
invited to verify this herself), we obtain the following reduced decision problem:

Φ2(n1) = ({ae, af, bf}, {dg, dh})

Φ2(n2) = ({bf}, {dg, dh})

Φ2(n3) = ({bf}, {dg, dh})

Φ2(n4) = ({bf}, {dg, dh})

At this point, there are no more strictly dominated strategies (the reader is invited to verify
this herself). The root of the game tree is n1, so the forward induction strategies are ae, af , bf ,
dg and dh.

The Backward Dominance Procedure is very similar to the Iterated Conditional Dominance
Procedure. There is only one difference: in the Iterated Conditional Dominance Procedure, for
some node n, if a strategy is strictly dominated at a decision problem Φk(n), it must be deleted from
all decision problems Φk(n′) (including Φk(n) itself). In the Backward Dominance Procedure, for
some node n, if a strategy is strictly dominated at the decision problem Φk(n), it must be deleted
from Φk(n), and from any decision problem Φk(n′) where n′ comes before node n.

The BI and FI strategies for the games in Ghosh & Verbrugge (online first) are the same as
the BI and FI strategies for the games in Ghosh et al. (2017). In both papers, the strategy table
as found in Table 2.3 on page 22 is presented.

However, we make a few notes with regard to this table. First of all, be should not be among
the BI strategies for Game 3. This is because be is strictly dominated at Φ0(n1), as seen in the
first step of our previous example. Because n1 is the root node of the tree, be should not be in the
BI strategies.

Secondly, the strategies ae and af of player C, and the strategies cg and ch for player P , always
yield the same outcome, which can be verified in Table 2.1 on page 20. Because a and c both end
the game, the second action in these strategies will never be played. In the rows corresponding
to Games 1, 2 and 1′ in Table 2.3 on page 22, only ae and cg are present, suggesting af and ch
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BI strategies FI strategies

Game 1
C: a;e
P: c;g

C: a;e
P: d;g

Game 2
C: a;e
P: c;g

C: a;e
P: c;g

Game 3
C: a;e, a;f, b;e, b;f
P: c;g, c;h, d;g, d;h

C: a;e, a;f, b;f
P: d;g, d;h

Game 4
C: a;e, a;f, b;e, b;f
P: c;g, c;h, d;g, d;h

C: a;e, a;f, b;e, b;f
P: c;g, c;h, d;g, d;h

Game 1′
C: e
P: c;g

C: e
P: c;g

Game 3′
C: e;f
P: c;g, c;h, d;g, d;h

C: e;f
P: c;g, c;h, d;g, d;h

Table 2.3: BI and FI strategies for the games in Ghosh & Verbrugge (online first) and Ghosh et al.
(2017). Actions are separated by semicolons, strategies are separated by commas.

could be eliminated in the procedure. This would imply they are strictly dominated at some point.
However, if af or ch are strictly dominated, ae and cg must also be strictly dominated, because
they yield the same outcome. Therefore either both strategies or neither of these strategies must
be eliminated: it is impossible to separate ae from af and cg from ch.

The BI and FI strategies, according to our own calculations, can be found in Table 2.4.

BI strategies FI strategies

Game 1
C: a;e, a;f
P: c;g, c;h

C: a;e, a;f
P: d;g

Game 2
C: a;e, a;f
P: c;g, c;h

C: a;e, a;f
P: c;g, c;h

Game 3
C: a;e, a;f, b;f
P: c;g, c;h, d;g, d;h

C: a;e, a;f, b;f
P: d;g, d;h

Game 4
C: a;e, a;f, b;e, b;f
P: c;g, c;h, d;g, d;h

C: a;e, a;f, b;e, b;f
P: c;g, c;h, d;g, d;h

Game 1′
C: e
P: c;g, c;h

C: e
P: c;g, c;h

Game 3′
C: e, f
P: c;g, c;h, d;g, d;h

C: e, f
P: c;g, c;h, d;g, d;h

Table 2.4: BI and FI strategies for the games in Ghosh & Verbrugge (online first) and Ghosh
et al. (2017), second calculation. Actions are separated by semicolons, strategies are separated by
commas.

However, it has to be noted that Ghosh & Verbrugge (online first) appear to be aware of the
equivalence of ae and af , as they state that there is only one unique outcome in Games 1, 2 and
1′, namely C playing a and ending the game immediately. Due to the equivalance of ae and af
and cg and ch, omitting af and ch may be seen a simplification for the reader.

2.2 Logic

In the current section we describe the formal logic used to describe marble drop in Ghosh &
Verbrugge (online first). This logic is an adaptation of the logic introduced in Ghosh et al. (2014).
Most of this section has been adapted from Section 2 of Ghosh & Verbrugge (online first), but we
provide some additional information for readers who are less proficient in logic. However, we do
assume that the reader has some basic knowledge of logic and set theory.
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Representing centipede games In this formal logic, N = {C,P} is the set of players. The
notation i is used to denote a player, and ı̄ to denote i’s opponent. In this case, C = P and
P = C. The set Σ is a finite set of actions, where a and b range over Σ (that is, a and b are
variables that can bind to any element in Σ). Lastly, suppose we have a set X and a finite
sequence ρ = x1x2...xm ∈ X∗. Then last(ρ) = xm is the last element in this sequence. Here,
∗ is the Kleene star (Kleene, 1956): If X is a set, then X∗ is the set of all concatenations
of the elements in X (including the empty concatenation λ). For example, if X = {a, b, c},
then X∗ = {λ, a, b, c, aa, ab, ac, ba, bb, ...}. For empty concatenations, last(λ) = ∅.
Let T = (S,⇒, s0) be a tree where S is a set of vertices (which are the choice points and leaf
nodes in our games). The function⇒: (S×Σ)→ S is a partial function specifying the edges,
or actions, of the tree. Here, × is the Cartesian product of sets, which results in ordered pairs
of the elements of both sets. For example, {a, b}×{c, d} = {(a, c), (a, d), (b, c), (b, d)}. In our
case these will be node-action pairs. Because ⇒ is a partial function, a subset of (S × Σ)
may be used. In the case of centipede games, we omit any pairs containing leaf nodes and we
only use those node-action pairs (s, a) where a can be played at s. So, ⇒ specifies for each
of these node-action pairs (s, a) which node is reached when a is played at s. The element
s0 is the root node of the tree.

For a node s ∈ S, ~s = {s′ ∈ S | s a⇒ s′ for some a ∈ Σ}. Or, ~s is the set of all nodes that can
be reached by playing some action a at s. A node s is called a leaf node if ~s = ∅, that is, s
is a leaf node if no other nodes can be reached from it.

A tree T is said to be finite if S is a finite set, or, the tree is finite if it has a finite number
of nodes.

An extensive-form game tree T = (T, λ̂) is a pair where T is a tree (which has been previously

explained) and λ̂ : S → N is a turn function which maps each node in the game tree to a
player. Even though only non-leaf nodes need labelling, Ghosh & Verbrugge (online first)
opted to keep labelling for leaf nodes for the sake of uniform representation. For a player
i ∈ N , one defines Si = {s | λ̂(s) = i}, that is, Si is the set of all nodes belonging to player
i. The set frontier(T) is the set of all leaf nodes in T.

An extensive-form game tree T = (T, λ̂) is finite if T = (S,⇒, s0) is finite, which, as we have
previously seen, is finite if S is finite. Therefore an extensive-form game tree is finite if it has
a finite number of nodes.

Strategies A strategy for some player i is a function µi : Si → Σ which specifies a move at every
node where i has a turn. For a player i ∈ N , the notation µi is used for i’s strategy, often
abbreviated µ, and τ ı̄ for i’s opponent’s strategy, often abbreviated τ . A strategy µ can also
be seen as a subtree of T where for nodes belonging to i, there is a unique outgoing edge,
and for nodes belonging to ı̄, all outgoing edges are included. For example, if we take Game
1 from Figure 2.1, and consider player P ’s strategy of playing d in his first node and g in his
second node, we would obtain the strategy tree as seen in Figure 2.5.

Ghosh & Verbrugge (online first) formally define a strategy tree, recursively, as follows: for a player

i ∈ N and his strategy µi : Si → Σ, the strategy tree Tµ = (Sµ,⇒µ, s0, λ̂µ) associated with µ is
the least subtree of T satisfying the following property:

– s0 ∈ Sµ

– For any node s ∈ Sµ

• if λ̂(s) = i then there exists a unique s′ ∈ Sµ and action a such that s
a⇒µ s

′, where

µ(s) = a and s
a⇒ s′.

• if λ̂(s) 6= i then for all s′ such that s
a⇒ s′, we have s

a⇒µ s
′ .

– λ̂µ = λ̂ |/ Sµ
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Figure 2.5: A subtree of Game 1 of Ghosh et al. (2017)

In words: the root node of the game tree is always in the strategy tree. From the root node, edges
and nodes are recursively added. If a node belongs to the opponent, both outgoing edges and the
next nodes are added. If a node belongs to player i, one outgoing edge (the one corresponding to
his strategy), as well as the node that is followed by it, is added. The symbol |/ restricts a function
to a subset of its domain.1 From this property, Sµ is the set of nodes relevant to the strategy tree,

⇒µ is the set of edges (dependent upon which strategy is used), s0 is the root node, and λ̂µ is the
turn function for those nodes in the strategy tree.

They then let Ωi(T ) denote the set of all strategies for player i in the extensive-form game
tree T . In Game 1 (see Figure 2.1), all strategies for player C are a; e, a; f, b; e and b; f . Then, a
play ρ : s0a0s1 . . . is said to be consistent with µ if for all j > 0, we have that sj ∈ Si implies
µ(sj) = aj . Or, “for all nodes and actions in the play, if a node sj is in player i’s nodes, then the
action aj is prescribed by strategy µ at sj”.

A pair (µ, τ) is called a strategy profile which consists of a pair of strategies, one for each player.

Partial strategies A partial strategy for a player i is a strategy that specifies an action at
some, but not necessarily all, of player i’s nodes. For example, a partial strategy for player
P could be to play d at his first decision node without specifying what to do at his second
node. A partial strategy is a function σi : Si ⇀ Σ which maps some nodes s to an action
a. Here, ⇀ denotes a partial function. The notation Dσi is used to denote the domain of
the partial function σi, that is, Dσi is the set of possible input values in Si for the function
σi. The notation σi will be used for i’s partial strategies, and πı̄ for i’s opponent’s partial
strategies. Superscripts are omitted when unnecessary. A partial strategy σ can also be seen
as a subtree of T where for some nodes belonging to i, there is a unique outgoing edge. For
all other nodes, every outgoing edge is included. For example, player P ’s strategy of playing
g at his second decision node in Game 1 of Ghosh et al. (2017) can be found in Figure 2.6.
Note that both actions c and d are still enabled. A partial strategy can be seen as a set of
total strategies. Consider the previous example in Figure 2.6. Here P ’s strategy is to play
g, which may be viewed as the set of strategies c; g and d; g.

Given a partial strategy tree Tσ = (Sσ,⇒σ, s0, λ̂σ), a set of trees T̂σ of total strategies can

be defined as follows: a tree T = (S,⇒, s0, λ̂) ∈ T̂σ if and only if

– if s ∈ S then for all s′ ∈ ~s, s′ ∈ S implies s′ ∈ Sσ
– if λ̂(s) = i then there exists a unique s′ ∈ S and action a such that s

a⇒ s′.

In words: if a node is in this tree, then if a node that follows it is in the tree, it is in the
partial strategy tree. All nodes in this tree T must come from the partial strategy tree.
Furthermore, if node s belongs to player i, then there is a unique node that follows it as well
as an action that can be played to reach this node.

1Appendix F on page 108 contains a list of relatively uncommon LaTeX symbols used in this thesis, such as |/ .
Hopefully this appendix will prove to be a useful tool for other students working on this topic.
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Figure 2.6: A partial strategy for player P in Game 1 of Ghosh et al. (2017)

By construction, T̂σ is the set of all total strategy trees for player i that are subtrees of the
partial strategy tree Tσ for i. Any total strategy can also be viewed as a partial strategy,
where the corresponding set of total strategies becomes a singleton set. For example, Figure
2.5 on page 24 also depicts a partial strategy for player P , where the set of total strategy
trees only contains the tree in Figure 2.5. This simply shows that all total strategies are
partial strategies, but not all partial strategies are total strategies.

Syntax for extensive-form game trees Ghosh & Verbrugge (online first) then continue by
building a syntax for game trees. This syntax is used to parametrize the belief operators
introduced later, such that one can distinguish between belief operators at different nodes of
the game tree. N = {C,P} is used as the set of players, where i and ı̄ range over the set N .
Σ denotes a finite set of actions, and a and b range over Σ. Since we have explained these
items before (see page 23), we will not do so again.

Now, Nodes is a finite set. The syntax for specifying finite extensive-form game trees is as
follows:

G(Nodes) ::= (i, x) | Σam∈J((i, x), am, tam)

where i ∈ N , x ∈ Nodes, J(finite) ⊆ Σ, and tam ∈ G(Nodes).

Note that within Σam∈J , Σ denotes a formal sum and does not denote the set of actions.
The notation ‘::=’ can be translated as ‘is recursively defined as’. The symbol ‘|’ is used as
‘or ’. There are two options: first of all, G(Nodes) can be a pair (i, x) where x is a node and
i is a player. This is a leaf node (recall that leaf nodes were also player-labelled). Secondly,
G(Nodes) can be a formal sum of triples, where the first item in such a triple is always a
pair (i, x) consisting of a player and the node’s label, the second is always an action, and the
third is either a pair (i, x) or another sum of triples. In short, such a sum of triples is simply
a non-leaf node. Each item in this sum corresponds to one of the actions that can be played
at this non-leaf node.

To clarify, consider the game tree as found in Figure 2.7 on page 26.

The only relevant player is P , and the relevant actions are g and h. We use P1, l1, and l2 as
names for the nodes. Using the previously defined syntax, we can represent this game tree
as follows. Note that we use P as player label for the leaf nodes:

((P, P1), g, (P, l1)) + ((P, P1), h, (P, l2))

Given h ∈ G(Nodes), a tree Th generated inductively by h is defined as follows:
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Figure 2.7: A small example game tree adapted from Game 1 of Ghosh et al. (2017)

– h = (i, x) : Th = (Sh,⇒h, λ̂h, sx) where Sh = {sx}, λ̂(sx) = i.

– h = ((i, x), a1, ta1) + . . . + ((i, x), ak, tak) : Inductively we have trees T1, . . . , Tk where

for j : 1 6 j 6 k, Tj = (Sj ,⇒j , λ̂j , sj,0).

Define Th = (Sh,⇒h, λ̂h, sx) where

• Sh = {sx} ∪ ST1 ∪ . . . ∪ STk
;

• λ̂h(sx) = i and for all j, for all s ∈ STj
, λ̂h(s) = λ̂j(s);

• ⇒h=
⋃
j:16j6k({(sx, aj , sj,0)}∪ ⇒j).

In words: if h is a leaf node, the tree consists of just this leaf node (including its edge function
and turn function). If h is a non-leaf node, and therefore is a sum of triples, create a tree for
each item in this sum. Then, add the current node to all nodes in these trees, add the turn
function corresponding to the current node to all turn functions in these trees, and add the
edge function of the current node to all edge functions in these trees.

Since⇒ is not only a relation but also a function (S×Σ→ S), the following notation, which

is more in line with the notation used for λ̂h, may be clearer:

• For all j, ⇒h (sx, aj) = sj,0 and for all j, for all (s, a) ∈ STj
× ΣTj

,⇒h (s, a) =⇒j (s, a).

Lastly, given h ∈ G(Nodes), Nodes(h) is used to denote the set of distinct pairs (i, x) that oc-
cur in the expression of h. In our example in Figure 2.7, this would be {(P, P1), (P, l1), (P, l2)}.

2.2.1 Specifying strategies

Ghosh & Verbrugge (online first) provide the syntax and semantics required to specify strategies
within their logic. First of all, BPF (X) is defined: for any countable set X (a countable set is
a set that is bijective to a subset of the natural numbers, a set is bijective to another set if each
element of the first set pairs with exactly one element of the second set, and each element of the
second set pairs with exactly one element of the first set, and there are no unpaired elements in
either set), BPF (X) is the set of formulae given by the following syntax:

BPF (X) ::= x ∈ X | ¬ψ | ψ1 ∨ ψ2 | 〈a+〉ψ | 〈a−〉ψ,

where a ∈ Σ, a countable set of actions. BPF is short for “the boolean, past and future combi-
nations of the members of X”. In words, a formula in BPF (X) is either an element in X, or a
formula constructed from a formula in BPF (X) using negation, disjunction, or one of the 〈a+〉
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and 〈a−〉 operators. Note that negation and disjunction can be used to construct any formula in
propositional logic. Formulae in BPF (X) are interpreted at game positions. The operator 〈a+〉ψ
means “there is an outgoing action a at the current node, and if we follow it to the next node, ψ
holds at that node”. The operator 〈a−〉ψ means “there is an incoming action to the current node,
and if we follow it backwards to the previous node, ψ holds at that node”. These operators can be
used iteratively. For example, if we consider Game 1 in Figure 2.2, and we are at player P ’s first
node, the formula 〈d+〉〈h+〉ψ would state that ψ holds at player P ’s second node.

Bool(X) is used to denote just the boolean formulae in BPF (X), without the 〈a+〉 and 〈a−〉
operators:

Bool(X) ::= x ∈ X | ¬ψ | ψ1 ∨ ψ2.

For each h ∈ G(Nodes) and (i, x) ∈ Nodes(h), a new operator to the syntax of BPF (X) is added:

B(i,x)
h . The resulting set of formulae is denoted as BPFb(X). The notation B(i,x)

h ψ can be read as
“in the game tree h, player i believes at node x that ψ holds”.

BPFb(X) ::= x ∈ X | ¬ψ | ψ1 ∨ ψ2 | 〈a+〉ψ | 〈a−〉ψ | B(i,x)
h ψ.

Syntax Ghosh & Verbrugge (online first) present the syntax required to formulate strategies.
The set P i = {pi0, pi1, . . .} is used as a countable set of observables (dynamic variables that can be
measured) where i ∈ N (i is in the set of players) and P =

⋃
i∈N P

i, that is, P is the union of each
player’s P i. Two kinds of propositional variables are added to this set of observables: (ui = qi) to
denote “player i’s payoff is qi”, and (r 6 q) to denote “the rational number r is less than or equal
to the rational number q”, which can be used to compare payoffs in strategy specifications.

The syntax of strategy specifications is as follows:

Strati(P i) ::= [ψ 7→ a]i | η1 + η2 | η1 · η2,

where ψ ∈ BFPb(P i). In words, a strategy is one of three things: a formula [ψ 7→ a]i, which means
“player i has the following strategy: if ψ holds, play a”, or a combination of strategies η1 and η2

using the operators + and ·. The formula η1 +η2 means “the strategy of player i conforms to either
η1 or η2, or both”. The formula η1 ·η2 means “the strategy of player i conforms to both η1 and η2”.
In these formulae, ψ is either a payoff (ui = qi), a comparison (r 6 q), or a formula constructed
from other formulae using negation ¬, disjunction ∨, the edge operators 〈a+〉 and 〈a−〉, and the

belief operator B(i,x)
h . It is important to note that in the strategy specification [ψ 7→ a]i, player i

must play action a when ψ holds, but when ψ does not hold, player i is free to choose any possible
action.

Semantics Ghosh & Verbrugge (online first) consider perfect-information games with belief

structures as models. The model M = (T, {−→x
i }, V ) where T = (S,⇒, s0, λ̂,U). The object

(S,⇒, s0, λ̂) is an extensive-form game tree. The utility function U : frontier(T ) ×N → Q maps
each combination of leaf nodes and players to a payoff. For each node sx ∈ S where the turn
function λ̂(sx) = i, there is a binary relation −→x

i over the set of nodes S. A binary relation over
S is a collection of ordered pairs of elements in S. These ordered pairs are presumably of the type
〈sx, sy〉, where sy can be reached by playing some action at sx. Lastly, V : S → 2P is a valuation
function. The powerset of P is denoted by 2P . The powerset of P is the set of all (inclusive)
subsets of P . Recall that P contained payoffs (ui = qi) and comparisons (r 6 q). The valuation
function V maps each node s to the set of payoffs and comparisons that are true in said node. For
example, suppose P = {x, y, z}. In this case, 2P = {∅, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}.
Now suppose x and y are true in sx, but z is not. In this case, V maps sx from S to {x, y} in 2P .

The truth value of a formula ψ ∈ BFPb(P ) at a state (or node) s, denoted M, s |= ψ, is defined
inductively as follows:

1. M, s |= p iff p ∈ V (s) for atomic formulae p ∈ P.

2. M, s |= ¬ψ iff M, s 6|= ψ.

3. M, s |= ψ1 ∨ ψ2 iff M, s |= ψ1 or M, s |= ψ2.
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4. M, s |= 〈a+〉ψ iff there exists an s′ such that s
a⇒ s′ and M, s′ |= ψ.

5. M, s |= 〈a−〉ψ iff there exists an s′ such that s′
a⇒ s and M, s′ |= ψ.

6. M, s |= B(i,x)
h iff the underlying game tree of Tm is the same as Th and for all s′ such that

s −→x
i s
′,M, s′ |= ψ in model M at state s.

In short, a formula is true if it is one of the following: (1) it is an atomic formula in V (s), (2) it is
negated and the remainder is not true, (3) it consists of a disjunction between two formulae and
at least one of them is true, (4) it is of the type 〈a+〉ψ and ψ is true in a next node after following
edge a, (5) it is of the type 〈a−〉ψ and ψ is true in a previous node after backtracking over edge
a, or (6) if it is a belief formula and if the belief’s game tree corresponds to the actual game tree
and the believed formula is true in each node that can be reached from the current node s.

There are two new propositions, also with accompanying truth definitions:

1. M, s |= (ui = qi) iff U(s, i) = qi.

2. M, s |= (r 6 q) iff r 6 q where r and q are rational numbers.

In words: (1) a payoff ui is indeed equal to qi if the payoff function U says so, and (2) (r 6 q) is
true if r is equal to or smaller than q and r and q are both rational numbers.

Ghosh & Verbrugge (online first) interpret strategy specifications on strategy trees of T . Two
special propositions turn1 and turn2 are added, which specify which player’s turn it is in the
current node s. The valuation function satisfies the property

– for all i ∈ N, turni ∈ V (s) iff λ̂(s) = i.

In words: turni is in the valuation function V (s) if it is player i’s turn at s.
The last special proposition that is added is root. The proposition root is true if the current

node s is the root node:

– root ∈ V (s) iff s = s0.

Semantics for strategy specifications are also given. Given a model M and a partial strategy
specification η ∈ Strati(P i), there is the semantic function J·KM : Strati(P i) → 2Ωi(TM ). Here,
Ωi(T ) is the set of all of player i’s possible strategies in the game tree T . Furthermore, each
partial strategy specification is associated with a set of total strategy trees. There is an important
difference between the strategies specified with Strati(P i) and with Ωi(T ). Strategies in Ωi(T )
only specify a move at each of player i’s nodes. Strategies in Strati(P i) are logical formulae which
may contain beliefs or other operators previously introduced.

For any η ∈ Strati(P i), the semantic function JηKM is defined inductively:

1. J[ψ 7→ a]iK = Υ ∈ 2Ωi(TM ) satisfying µ ∈ Υ iff µ satisfies the condition that, if s ∈ Sµ is a
player i node then M, s |= ψ implies outµ(s) = a.

2. Jη1 + η2KM = Jη1KM ∪ Jη2KM .

3. Jη1 · η2KM = Jη1KM ∩ Jη2KM .

Here, outµ(s) is the unique outgoing edge in µ at s.
In words, a strategy η is one of the following, as defined by the semantic function JηKM : (1)

J[ψ 7→ a]iK is a set of strategies µx having the property that for each player i node sx in the strategy
tree of µ, if ψ is true in this node, then the unique outgoing edge at this node is a. (2) Jη1 + η2KM
is the union of the underlying strategies η1 and η2, and (3) Jη1 · η2KM is the intersection of the
underlying strategies η1 and η2.
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2.2.2 Abbreviations and examples

Ghosh & Verbrugge (online first) continue by introducing a few more new concepts and notations.
First of all, it is assumed that actions are part of the observables, so Σ ⊆ P . n1 through n4 are
used to denote each of the four nodes in Game 1 through 4 (see Figure 2.1). Player C controls
nodes n1 and n3, and player P controls nodes n2 and n4. Therefore, in Game 1, there are four
belief operators: Bn1,C

g1 , Bn2,P
g1 , Bn3,C

g1 and Bn4,P
g1 . In 〈a+〉, the superscript may be dropped, using

〈a〉 instead.
Ghosh & Verbrugge (online first) describe strategies for player P at node n2. Because this node

is fixed, the actions required to reach each leaf node are fixed. Therefore, they can abbreviate the
formulae describing the payoff structure of the game:

α := 〈d〉〈f〉〈h〉((uC = pC) ∧ (uP = pP ))

β := 〈d〉〈f〉〈g〉((uC = qC) ∧ (uP = qP ))

γ := 〈d〉〈e〉((uC = rC) ∧ (uP = rP ))

δ := 〈c〉((uC = sC) ∧ (uP = sP ))

χ := 〈b−〉〈a〉((uC = tC) ∧ (uP = tP ))

The payoffs these formulae refer to can be found in Figure 2.8. The conjunction of these five

Figure 2.8: Locations of payoffs corresponding to abbreviated formulae

descriptions is defined as
ϕ := α ∧ β ∧ γ ∧ δ ∧ χ.

Lastly, ψi is used to denote the conjunction of all the order relations of the rational payoffs for
player i ∈ {P,C} given in the game. Formally, α through χ and ψi are used to describe Game 1,
so subscript is used when another game is considered. In Games 1′ and 3′, χ is not used. As an
example, consider player P ’s payoffs in Game 3′ in Figure 2.2. Here, his payoffs can be 2, 1, or 4.
In this case, ψP3′ = (1 6 2) ∧ (1 6 4) ∧ (2 6 4).

Finally, we’ll describe two examples given by Ghosh & Verbrugge (online first). The first of
these considers the so-called myopic strategy. A player using the myopic strategy only looks at his
current payoff, should he play down, and the payoff he would get if he plays right and his opponent
plays down. This strategy is described for Game 1′ and 3′ as follows:

K1′

P : [(δ1′ ∧ γ1′ ∧ (0 6 2) ∧ root) 7→ c]P

K3′

P : [(δ3′ ∧ γ3′ ∧ (2 6 3) ∧ root) 7→ c]P

In Game 1′ (in Ghosh & Verbrugge (online first), not in Ghosh et al. (2017)), a c move from P ’s
first node leads to the payoffs (1, 2), corresponding to δ1′ . A d move followed by an e move by C
leads to the payoffs (2, 0), corresponding to γ1′ . Player P compares his payoff of 0 to his payoff
of 2, which corresponds to (0 6 2). The proposition root holds because P ’s first node is indeed
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the root node. Lastly, the formula prescribes P to play c due to ‘7→ c’. In short, P compares his
current and next payoffs and plays c because the first one is bigger, corresponding to the myopic
strategy. Note that almost the same formulae can be used to describe the myopic strategy in
Game 1 through 4, because the relevant payoffs are the same (the subscripts would have to be
replaced) and the inclusion of a C node before the first P node only requires root to be replaced
by 〈b−〉root.

Lastly, we’ll give the description of the own-payoff strategy from Ghosh & Verbrugge (online
first). A player using the own-payoff strategy will only look at his own payoffs, ignoring his
opponent’s payoffs as well as any past nodes. If playing down yields a higher payoff than or
an equal payoff to any payoff that can be reached by playing right, the player will play down.
Otherwise, he will play right. This strategy is described for Game 1′ and 3′ as follows:

X 1′

P : [(α1′ ∧ β1′ ∧ γ1′ ∧ δ1′ ∧ (0 6 2) ∧ (2 6 3) ∧ (1 6 2) ∧ root) 7→ d]P

X 3′

P : [(α3′ ∧ β3′ ∧ γ3′ ∧ δ3′ ∧ (2 6 3) ∧ (3 6 4) ∧ root) 7→ d]P

These formulae can also be rewritten to fit Game 1 through 4 in a similar manner as the formulae
corresponding to the myopic strategy. In these formulae, P considers all payoffs, and makes the
comparisons corresponding to his own payoffs. root still ensures that the current node is the root
node. If all of these hold, player P should play d. Otherwise he is free to choose any possible
action.

In the next chapter, Chapter 3 on page 37 we will begin by translating these two sets of logical
formulae to cognitive models as a test case.

It is important to stress that the present section has merely echoed the logic as presented in
Ghosh & Verbrugge (online first). Aside from the added examples an in-depth explanations, no
new concepts were introduced.

2.3 PRIMs

PRIMs, short for primitive information processing elements, also known as ACTransfer, is a cog-
nitive architecture initially presented in Taatgen (2013b). Broadly speaking, PRIMs is a system
that models the human mind as it performs experimental tasks. PRIMs has been used to model
arithmetics (Taatgen, 2013a), counting, semantic reasoning, text editing, verbal and spatial work-
ing memory tasks and the Stroop task (Taatgen, 2013b), distraction (Taatgen, Katidioti, Borst
& van Vugt, 2015), theory of mind (Wierda & Arslan, 2014), and card sorting tasks and false
belief tasks (Arslan, Verbrugge & Taatgen, in press), among others. PRIMs arose from the ACT-R
cognitive architecture (short for Adaptive Control of Thought - Rational). For more information
on ACT-R, see Anderson (2007). Unlike in ACT-R, all processes in a PRIMs model are performed
by executing primitive elements, which move or compare information, among others. PRIMs can
be used to model transfer of skill through production compilation. In production compilation,
primitive elements that are used in the same sequence often enough are combined into production
rules, which may be used in a novel task. Like ACT-R, PRIMs can be used to predict reaction
times, decisions, and neural activity. Most of the information in the present section is based on
Taatgen (2013b) and Taatgen (2016).

2.3.1 PRIMs modules

Specific areas in the human brain have specific functions, as well as corresponding input and
output. For example, the visual cortex receives, processes, and sends visual information. The
motor cortex does the same for information regarding actions and movement. Because PRIMs
models the human mind, it also has a set of modules with specific functions: a visual module,
a manual module, a working memory module, a declarative memory module and a task control
module. Different modules can work in parallel, but within a single module only one thing can be
done at a time. Modules communicate with each other through their buffers. Each buffer has a
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number of slots (temporary storage locations that can hold a single piece of information, such as
a number or a word) that can be used to exchange information with other buffers. All the buffers
together are the system’s global workspace. (Taatgen, 2016)

The visual module receives visual input from the task being performed and places it in its slots.
The visual module only sends output to the global workspace, it does not receive input from it.

The manual module receives actions to be performed from the global workspace and places
them in its slots. Tasks and experiments implemented in PRIMs can then react to these actions,
for example by giving feedback as visual input after an answer has been uttered.

The working memory module can be seen as a mental scratchpad. Each slot in working memory,
named WM1, WM2, et cetera, can hold a single piece of information. The system can write to
and read from working memory slots. Information stored in memory cannot be forgotten unless it
is cleared or overwritten, but the amount of information that can be stored in working memory is
limited. Working memory is also used to send information to declarative memory.

Before we continue by explaining the declarative memory module and the task control module,
we need to introduce operators and goals.

Operators can perhaps best be compared to lines of code in computer programs. An operator
consists of a set of conditions, which usually test whether some value is in some slot in some buffer,
and a set of actions, which usually place values in buffer slots. While running, a PRIMs model
searches for an operator that can be applied to the current values in all buffer slots. As an example,
consider the following operator:

operator see−fish {
V1 = fish
V2 <> nil

==>
say −> AC1
V2 −> AC2

}

This operator can be used in a very simple task: a participant is presented with a picture of a fish,
and has to state the colour of said fish. In the experiment, the type of the object is placed in V1
and the colour of the object in V2. The condition V1 = fish ensures the perceived object is a fish.
The condition V2 <> nil tests whether there exists a value in the second slot of the visual buffer.
The actions say -> AC1 and V2 -> AC2 copy this value into the second slot of the manual buffer
and ensure it is said by the model. Note that this operator can also be used if the value in V2
is not red or blue. Values can also be read from and written to the working memory, declarative
memory, and goal buffer.

Operators are organized within goals. Goals within slots of the goal buffer are currently active
goals, and operators defined in active goals are more likely to fire. Let’s expand our previous
example to task-switching by adding goals:

define goal state−fish−colour {
operator see−fish {

V1 = fish
V2 <> nil

==>
say −> AC1
V2 −> AC2

}

operator switch−task {
V1 = message
V2 = switch

==>
state−red−animal −> G1

}
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}
define goal state−red−animal {

operator see−red {
V1 <> nil
V2 = red

==>
say −> AC1
V1 −> AC2

}

operator switch−task−2 {
V1 = message
V2 = switch

==>
state−fish−colour −> G1

}
}

These goals and operators can be used for the following task: a participant is presented with
pictures of animals in different colours. There are two tasks: stating the colour of the animal if
the animal is a fish, or stating the name of the animal if the animal is red. Only one of these tasks
has to be performed at a time. If the message ‘switch’ appears on-screen, the participant has to
switch to the other task.

The operators see-red and see-fish ensure that the model gives an answer to the task at hand.
The operators switch-task and switch-task-2 replace the first slot value in the goal buffer with the
new goal whenever the message ‘switch’ appears on-screen. In a PRIMs model, one or more initial
goals can be defined: these are goals that are already in the goal buffer when the model starts
running.

Note that the model we described can also use working memory instead of goals to perform
task-switching. It could place the values saycolour and sayanimal in WM1 to keep track of the
current task.

We continue by describing the task control module and the declarative memory module, now
that we have explained operators and goals.

The declarative memory module handles long-term storage of information. Items stored in
declarative memory are called chunks. A chunk has a name and a set of attribute-value pairs. For
example, some chunks used to compare numbers to each other are as follows:

larger−2−1
first two
relation bigger
second one
isa comparison

notlarger−1−1
first one
relation not
second one
isa comparison

notlarger−1−2
first one
relation not
second two
isa comparison
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A chunk’s name is mostly used to make a model easier to understand. The values connected to
each of a chunk’s attributes refer to other chunks. The value one would refer to the chunk that
corresponds to the concept of the number one.

Each chunk has an activation value, which determines how easily a chunk can be recalled. The
higher the activation, the more likely it is that the chunk will be remembered. A chunk’s activation
value consists of three components: its base-level activation, its spreading activation, and activation
noise.

A chunk’s base-level activation is determined by how often and how recently the chunk has
been used. If a chunk has been used more often and more recently, its base-level activation will be
higher. The equation used to calculate base-level activation in PRIMs is the same as the one used
in ACT-R, which is

Bi(t) = ln(
∑
k

(t− tk)−d)

(from Anderson & Schooler (1991), see also Anderson (2007); Taatgen (2016)). In this equation, t is
the current time. Each point in time tk is a moment where the chunk has previously been recalled.
The parameter d is the decay parameter, which specifies how quickly the activation of a chunk
decreases. It is usually set to 0.5. The subscript i is used as an index for each chunk. Consider
a chunk that is recalled at 0, 2, 10, and 11 seconds. The corresponding base-level activation over
the first fifteen seconds of the chunk’s existence, given a decay parameter of 0.5, would look like
the plot in Figure 2.9. As can be seen in Figure 2.9, a chunk’s activation decreases over time after
it has been recalled. This phenomenon is called temporal decay.

Figure 2.9: An example plot of PRIMs’ base-level activation

A chunk’s spreading activation is determined by the associative strength chunks have with each
other. We will not discuss it in further detail as our models will not use spreading activation
between chunks in declarative memory. For more information see Taatgen (2016).

Lastly, activation noise is added to or subtracted from each chunk when a recall is made.
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Activation serves three purposes: being able to select between multiple relevant chunks, for-
getting information, and calculating retrieval times. For more detailed information, see Taatgen
(2016).

Operators are small structures of chunks, and all of them have their own activation. If multiple
operators match the current buffer contents, the operator with the highest activation is used.
Operators defined within one of the currently active goals receive spreading activation from that
goal.

Memory retrievals are performed by placing values in slots of the declarative memory buffer.
Given the previous example of chunks, a model can send a retrieval request to figure out whether
two is larger than one as follows:

operator retrieve−two−successor {
−conditions−

==>
two −> RT1
one −> RT3
comparison −> RT4

}

Within the set of actions of the operator retrieve-two-successor, the value two is placed in the first
slot of the declarative memory buffer. A retrieval is made for a chunk where the chunk’s first
attribute has the value two, the third attribute has the value one, and the fourth attribute has the
value comparison. The only chunk that has these values is larger-2-1, so it is retrieved (assuming
its activation is above the retrieval threshold) and its values are sent to the slots in the retrieval
buffer. In this case, RT1 will contain two, RT2 will contain bigger, RT3 will contain one, and
RT4 will contain comparison. The model can then use this retrieved information and, for example,
state that two is bigger:

operator say−bigger−or−not {
RT1 <> nil
RT2 <> nil
RT3 <> nil
RT4 = comparison

==>
say −> AC1
RT2 −> AC2

}

The operator say-bigger-or-not can be used to state whether two numbers are bigger or not, after
retrieving them. If a chunk has been retrieved that is labelled as a comparison and its slots are not
empty, then the model states the second slot in this chunk. Note that the fourth slot value of the
comparison chunks can be omitted if these are the only chunks in declarative memory. However,
if there are multiple chunks of different natures RT4 = comparison prevents these chunks from
being retrieved.

2.3.2 Production compilation

A primitive element (PRIM) is a single condition or action in an operator. In the above example,
primitive elements are RT1 <> nil and RT4 = comparison, as well as every other condition and
action in the operator. As can be seen, PRIMs either move, copy, or compare information. PRIMs
are seen as the smallest elements of skill, and are used to model performance speed-ups caused by
training (Taatgen, 2013b).

Each PRIM takes a small amount of time to be carried out. A model can become faster through
production compilation: if two PRIMs fire together often enough, they are combined into a single
production rule, which can be carried out more quickly than both individual PRIMs. This process
is also applied to production rules themselves: if two production rules fire together often enough,
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they are combined into one production rule, which takes less time to be carried out. PRIMs and
production rules are stored in declarative memory, and the time needed to retrieve them depends
on their activation. A single production rule takes less time to carry out than a set of PRIMs
because only one memory retrieval has to be performed.

Production compilation has been used to model both speed-ups caused by training and transfer
of skill. Transfer of skill occurs when training on one task improves proficiency in another task.
For more detailed examples, see Taatgen (2016).

2.3.3 Visual representation in PRIMs

A PRIMs file contains a model, which is comprised of goals and operators, and a script, which runs
the experiment and sends visual input, such as feedback, to the visual module of the PRIMs model.
Visual input is sent to a PRIMs model using the function screen. For example, screen(“three”,
“plus”, “five”) will send three to V1, plus to V2, and five to V3. This is analogous to displaying
three plus five on-screen in an experiment with human participants.

More complex hierarchical structures can be displayed, where each item has a set of properties.
In this case, each item on display is a list. The first item in this list is the item itself (such as plate).
Each next item is a property of this item (such as blue and large). After the item’s properties, the
next items in this list are any sub-items. If the item itself is a plate, then a sub-item could be an
object on this plate (such as chicken and potato). These sub-items follow the same syntax.

To illustrate such a hierarchy, consider Figure 2.10.

Figure 2.10: Two bins with marbles (adapted from Ghosh et al. (2017))

In Figure 2.10 there are two bins with marbles in them. This image could be represented as
follows:

screen(
[’’bin’’,’’one’’,

[’’marble’’,’’blue’’],
[’’marble’’,’’blue’’],
[’’marble’’,’’blue’’],
[’’marble’’,’’blue’’],
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[’’marble’’,’’orange’’],
],
[’’bin’’,’’two’’,

[’’marble’’,’’orange’’],
[’’marble’’,’’blue’’],
[’’marble’’,’’orange’’],

]
)

A PRIMs model can only focus on one item at a time. When a model starts running, it will focus
on the first item. In this case, the model will receive bin in V1 and one in V2, and nothing else.
To look at other items, it has to change focus. It can do so by sending focus actions to the manual
module. For example, focus-next -> AC1 would have to be in the actions of an operator. There
are four focus actions in PRIMs:

� focus-next moves the focus to the next item on the current level. In the example above, both
placemats are on the same level. If the focus is on the first placemat, focus-next moves the
focus to the second placemat.

� focus-down moves the focus to the first sub-item of the current item. If the focus is on the
first placemat, focus-down would move the focus to the first fork on this placemat.

� focus-up moves the focus up one level, and then moves the focus to the next item on this
level.

� focus-first moves the attention back to the first item on the current level.

These actions allow a PRIMs model to look around a more complex hierarchical representation of
an image. We will use such a representation and the accompanying actions to represent the game
of Marble Drop starting with Chapter 3 on page 37.
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Chapter 3

Translating the myopic and
own-payoff models

3.1 The myopic and own-payoff strategies in logic

In Section 2.2.2 on page 29, logical formulae are given for the myopic and own-payoff strategies.
The former can also be found in Section 2.2.2. We will repeat them here. The myopic strategies
for Games 1′ and 3′ of Figure 2.4 on page 20 as represented in the logic are as follows:

K1′

P : [(δ1′ ∧ γ1′ ∧ (0 6 2) ∧ root) 7→ c]P

K3′

P : [(δ3′ ∧ γ3′ ∧ (2 6 3) ∧ root) 7→ c]P

The own-payoff strategies for Games 1′ and 3′ as represented in the logic are as follows:

X 1′

P : [(α1′ ∧ β1′ ∧ γ1′ ∧ δ1′ ∧ (0 6 2) ∧ (2 6 3) ∧ (1 6 2) ∧ root) 7→ d]P

X 3′

P : [(α3′ ∧ β3′ ∧ γ3′ ∧ δ3′ ∧ (2 6 3) ∧ (3 6 4) ∧ root) 7→ d]P

These formulae apply to the games as presented in Ghosh & Verbrugge (online first) (see Figure
2.4 on page 20), which differ from the games we use. The games we use are presented in Ghosh
et al. (2017) and can be found in Figures 2.1 on page 18 and Figure 2.2 that immediately follows
it. Furthermore, the abbreviations α through δ are shorthand for both player C and player P ’s
payoffs. Because the myopic and own-payoff strategies only consider player P ’s payoffs, we will
introduce a set of new abbreviations and use those in our formulae:

αC := 〈d〉〈f〉〈h〉(uC = pC)

βC := 〈d〉〈f〉〈g〉(uC = qC)

γC := 〈d〉〈e〉(uC = rC)

δC := 〈c〉(uC = sC)

χC := 〈b−〉〈a〉(uC = tC)

αP := 〈d〉〈f〉〈h〉(uP = pP )

βP := 〈d〉〈f〉〈g〉(uP = qP )

γP := 〈d〉〈e〉(uP = rP )

δP := 〈c〉(uP = sP )

χP := 〈b−〉〈a〉(uP = tP )
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The formulae for the myopic and own-payoff strategies in Ghosh et al. (2017)’s games are as follows:

K1′

P : [(δP,1′ ∧ γP,1′ ∧ (1 6 2) ∧ root) 7→ c]P

K3′

P : [(δP,3′ ∧ γP,3′ ∧ (1 6 2) ∧ root) 7→ c]P

X 1′

P : [(αP,1′ ∧ βP,1′ ∧ γP,1′ ∧ δP,1′ ∧ (1 6 2) ∧ (2 6 4) ∧ (2 6 3) ∧ root) 7→ d]P

X 3′

P : [(αP,3′ ∧ βP,3′ ∧ γP,3′ ∧ δP,3′ ∧ (1 6 2) ∧ (2 6 4) ∧ root) 7→ d]P

Note that only the values within the comparisons have changed. Since we are interested in writing
a PRIMs model that can play Games 1 through 4 of Figure 2.1 and Games 1′ and 3′ of Figure 2.2,
we are also interested in the myopic and own-payoff strategies for games 1 through 4, as represented
in the logic. As mentioned in Section 2.2.2 on page 29, we can create these formulae by changing
the subscripts and root in the formulae we already have:

K1
P : [(δP,1 ∧ γP,1 ∧ (1 6 2) ∧ 〈b−〉root) 7→ c]P

K2
P : [(δP,2 ∧ γP,2 ∧ (1 6 2) ∧ 〈b−〉root) 7→ c]P

K3
P : [(δP,3 ∧ γP,3 ∧ (1 6 2) ∧ 〈b−〉root) 7→ c]P

K4
P : [(δP,4 ∧ γP,4 ∧ (1 6 2) ∧ 〈b−〉root) 7→ c]P

X 1
P : [(αP,1 ∧ βP,1 ∧ γP,1 ∧ δP,1 ∧ (1 6 2) ∧ (2 6 4) ∧ (2 6 3) ∧ 〈b−〉root) 7→ d]P

X 2
P : [(αP,2 ∧ βP,2 ∧ γP,2 ∧ δP,2 ∧ (1 6 2) ∧ (2 6 4) ∧ (2 6 3) ∧ 〈b−〉root) 7→ d]P

X 3
P : [(αP,3 ∧ βP,3 ∧ γP,3 ∧ δP,3 ∧ (1 6 2) ∧ (2 6 4) ∧ 〈b−〉root) 7→ d]P

X 4
P : [(αP,4 ∧ βP,4 ∧ γP,4 ∧ δP,4 ∧ (1 6 2) ∧ (2 6 4) ∧ 〈b−〉root) 7→ d]P

Each of these formulae specifies that the currently active node is player P ’s first node, using root
or 〈b−〉root. The myopic strategies prescribe the action c, while the own-payoff strategies prescribe
d. In the myopic strategies, δ and γ are used to indicate that the player looks at his current and
next payoffs, and compares these according to (1 6 2). In the formulae corresponding to the
own-payoff strategy, α, β, γ and δ indicate that player P looks at the current and all next payoffs.
χ is not present: player P ignores past payoffs, if present. The comparisons indicate that player
P compares his current payoff, 2, to each of his future payoffs. These are 1, 4 and 3 in Games 1′,
1 and 2, and 1 and 4 in Games 3′, 3 and 4.

3.2 The myopic and own-payoff models in PRIMs in Ghosh
& Verbrugge (online first)

The myopic and own-payoff models implemented in PRIMs in Ghosh & Verbrugge (online first)
are composed of four components: the model definition, the initial chunks in declarative memory,
the script that runs the task and the set of goals and operators. The model definition and the
initial chunks in declarative memory are the same for both models. The script that runs the task
and the specific operators differ between both models. We describe each of these in the next
four subsections. Note that the models presented in Ghosh & Verbrugge (online first) are not full
models - they have been written to quickly validate the logic and are not full-scale models.

3.2.1 Model definition

Each PRIMs model has a model definition which is used to define which goals are initially in the
goal buffer, which task constants exist, and what values each PRIMs parameter has. If a PRIMs
parameter is not set within the model definition, it is set to the PRIMs default value, if a default
exists. The model definitions for the myopic and own-payoff models are both as follows:
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define task MyopicForwardReasoning {
initial−goals: (find)
goals: (compare next)
task−constants: (bigger compare)
imaginal−autoclear: nil
default−activation: 1.0
rt: −1.0
ol: t
batch−trace: t

}

MyopicForwardReasoning is the task’s name. It is ForwardReasoning in the own-payoff model.
The goal find is initially in the first slot of the goal buffer. The goals compare and next also exist,
but they are not yet in the goal buffer. bigger and compare are task constants. Task constants
are placed in slots GC1, GC2, et cetera. Any occurrence of bigger and compare in an operator
is replaced by these slots. Task constants are not restricted to an operator, allowing them to be
reused.

All parameters can be found in Taatgen (2016), except batch-trace, which is unique to the
version of PRIMs we use. When set to t, it increases the amount of information logged when the
model is run using a batch file.

3.2.2 Initial memory chunks

The initial chunks in declarative memory are also the same for the myopic and own-payoff models.
A PRIMs model can have two scripts: a main script that runs the task, and an initialization
script, which is run once at the start of a model run. The initial chunks in declarative memory are
specified in the initialization script. They are created iteratively as follows:

define init−script {
for i in 0 to 4 {

for j in 0 to 4 {
if (i > j) {

name = ”larger−” + i
name = name + ”−”
name = name + j
add−dm(name, i, ”bigger”, j)

} else {
name = ”notlarger−” + i
name = name + ”−”
name = name + j
add−dm(name, i, ”not”, j)

}
}

}
}

There is a chunk for each combination of two of the numbers 0 through 4. If the first number is
larger than the second, the chunk’s name will be larger-i-j (where i and j are two numbers), and
its second slot value will be bigger. If the first number is not larger than the second, the chunk’s
name will be notlarger-i-j, and its second slot value will be not. The first slot contains the first
number, and the third slot contains the second number. Let’s give an example to demonstrate:

name larger−3−1
slot 1 3
slot 2 bigger
slot 3 1

39



This chunk indicates that 3 is larger than 1. A model can retrieve whether 3 is larger than 1 by
placing 3 in RT1 and 1 in RT3. If the retrieval succeeds, bigger will be placed in RT2.

3.2.3 Task script

A PRIMs model always contains a script that is used to determine what should be displayed on-
screen for the task at hand, and how the task should respond to the model’s actions. The task
script for the myopic model is as follows:

define script {
params = batch−parameters()
if (params == ”NA”) {

params = [1, 0]
}
trial−start()
if (params[0] == 1) {

screen(2, 0)
run−until−action(”play”)
trial−end()

} else {
screen(3, 2)
run−until−action(”play”)
trial−end()

}
}

On each trial, parameters are first read from a batch file. The parameters of a task execution script
differ from the PRIMs parameters a model is initialized with, the latter of which can be found in
the model definition in Section 3.2.1 on page 38. PRIMs parameters change the way the PRIMs
cognitive architecture behaves, by, for example, increasing the amount of activation noise chunks
have or decreasing the activation required to retrieve a chunk. The parameters of a task execution
script change the task that is being performed, by, for example, using different games, different
rewards, or different stimuli. If a batch file is not used or no parameters are specified in it, the
parameters will be set to 1 and 0, respectively. The first value in the list of parameters determines
which game the model will play. If it is set to 1, Game 1′ from Ghosh & Verbrugge (online first)
will be used, which can be found in Figure 2.4 on page 20. If set to any other value, Game 3′ will
be used. The function call trial-start() starts a trial, as well as the model, and trial-end() ends a
trial. The function call screen(2,0) is used to display 2 in V1 and 0 in V2, whereas screen(3,2)
displays 3 in V1 and 2 in V2. The function call run-until-action(“play”) pauses script execution
until play is sent to AC1.

This script does not display the entire game tree. It only displays the information that is
relevant when using the myopic strategy in Game 1′ and 3′. In V1, player P ’s payoff is displayed
should he play c. In V2, player P ’s payoff is displayed if he plays d and player C plays e. This
can be verified in Figure 2.4 on page 20.

The task script for the own-payoff model is similar, but iteratively displays two values for each
comparison that the model makes. The task script for the own-payoff model can be found in
appendix A on page 76.

In the own-payoff model’s task script, the second parameter determines whether the model
should compare his payoff when c is played to his payoffs when e or g are played, or whether the
model should compare his payoff when c is played to his payoffs when e, g, or h are played. It does
the latter when this parameter is set to 1.

The function call run-until-action(“focus”) pauses script execution until focus is placed in AC1.
This is used to emulate the focus actions available to the model. Only the values relevant to the
comparisons necessary to use the own-payoff strategy are displayed. The payoff that P gets if he
plays c is always displayed in V1, whereas the payoffs he gets if e, g, or h are played are always
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displayed in V2. The script does not display the entire game tree, only those payoff values relevant
to the own-payoff model.

3.2.4 Goals and operators

Both the myopic model and the own-payoff model have three goals: find, compare, and next. The
operators in the goal find make the model look at the ‘screen’ and remember the perceived values
in its working memory slots. The operators in the goal compare are used to perform a retrieval
request using the values remembered in working memory and, based on which value is bigger, act
accordingly. The operators in the goal next are used to prepare for a next comparison, if necessary.

No more than two goals are ever in the goal buffer at once. The three goals are always placed in
the goal buffer in the order find -compare-next. Because in the myopic model only one comparison
needs to be made, the model only traverses through these goals once. In the own-payoff model,
multiple comparisons have to be made, so the model traverses through these goals once for each
comparison, or until the model decides to play an action.

To further clarify the models created in Ghosh & Verbrugge (online first), the full model code
for the myopic model can be found in appendix A on page 76.

Each of the myopic model’s operators should be self-explanatory. At the start of a model
run, the current payoff value can be found in V1 and the next payoff value in V2. The operator
find-location-1 places the first of these values in working memory slot WM1 and the operator
find-location-2 places the second of these values in working memory slot WM2. It also changes the
current goal to compare.

The goal compare contains three operators. The operator check-largest-payoff-retrieve sends
a retrieval request to determine which of the values in working memory is bigger. If the model
retrieves that the first value is bigger, the operator check-largest-payoff-bigger plays left (which is
the same as down). If the model retrieves that the first value is not bigger, the operator check-
largest-payoff-not-bigger plays right.

In the actions of both check-largest-payoff-bigger and check-largest-payoff-not-bigger, the value
done is placed in the first slot of the goal buffer to ensure that no new operators will fire.

Note that this model only plays an action at the player’s first decision node. It does not play
an action at its second node.

The own-payoff model is almost the same as the myopic model in terms of operators. It can be
found in appendix A on page 76 as well.

The goal find in the own-payoff model and its associated operators are identical to the ones in
the myopic model. Within the goal compare in the own-payoff model, the operator check-largest-
payoff-retrieve is the same as in the myopic model. However, the operator check-largest-payoff-
bigger is different in both models. As opposed to the myopic model, the own-payoff model compares
the current payoff to every future payoff. Therefore, if the current payoff is bigger, the model does
not necessarily have to play down. There may be another future payoff that is bigger still. It can
only play down if there is no future payoff that is bigger. Therefore, focus and next are placed in
the first two slots of the action buffer, causing the script to display the next two values needed for
comparison.

The operator check-largest-payoff-not-bigger does not differ between both models. The own-
payoff strategy dictates that if there is a future payoff that is bigger than the current payoff, the
model should play right.

Within the goal next, the operator new-comparison resets the model such that it can compare
the next two payoffs.

3.3 Our myopic and own-payoff models

3.3.1 Requirements

Our work starts where Ghosh & Verbrugge (online first) left off. We begin by creating full myopic
and own-payoff models and next, we use our findings to construct a general translation system. If
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we want to build general models based on the concepts in Ghosh & Verbrugge (online first), they
should satisfy the following requirements:

First of all, our models should have access to the complete game tree, and should use the focus
actions available in PRIMs to direct their attention to different aspects of the game tree, because
human participants can also see the complete game tree and also change their focus of attention
between different aspects of the game tree.

It should be possible to set the computer opponent’s strategy in our task script, and the model
should be able to play both of participant P ’s moves, if necessary. The model should perform the
entire task with all information available, just like a human participant would.

Because the myopic strategy and the own-payoff strategy are general strategies, which can be
applied to any (in the case of the own-payoff strategy, finite) centipede game, our implementation
should be general. Our new models should be able to play at least all of the six games we are
interested in (which can be found in Figure 2.1 on page 2.2 and Figure 2.2 that immediately follows
it). We will also use the games used in Ghosh et al. (2017) instead of those in Ghosh & Verbrugge
(online first), to avoid cardinality effects.

3.3.2 Representing centipede games

Our new models have access to each node in the game tree throughout the entire task. This is
in contrast with the setup introduced in Payne, Bettman & Johnson (1993), where some payoffs
are covered. We give the model the same information as the human participants in Ghosh et al.
(2017), who played the game of marble drop (see Figure 1.2 on page 12). To do so, we use the
function screen() already present in PRIMs and translate the relevant games into the hierarchial
representation used in PRIMs. Our representation requires the following information, as this
information can also be found in the games themselves:

1. How are all nodes connected in the tree.

2. Which nodes are leaf nodes and which nodes are non-leaf nodes (non-leaf nodes are decision
nodes).

3. For leaf nodes: what is player C’s payoff and what is player P ’s payoff.

4. For non-leaf nodes: which player’s turn it is.

5. For non-leaf nodes: whether the node is the currently active decision node.

6. Which node is the root node.

7. Which non-leaf node is the last non-leaf node.

The first five of these can all be found in Figure 1.2 on page 12 and Figure 2.1 on page 18 as well,
and hence are visible to a human participant. The last two are not explicitly represented in any of
the previously mentioned visual representations of centipede games. However, if a PRIMs model
performs a focus-up action at the highest-level visual item on display, it gets stuck with error in
V1 and it will no longer be able to focus back at any previous items. Since we place the root node
at this highest level, we must mark it to prevent the model from focusing up at the root node. The
root node also differs from all other nodes, as it has no incoming edges. Secondly, the last non-leaf
node differs from all other non-leaf nodes. Whereas each other non-leaf node has an outgoing edge
to one other non-leaf node and one leaf node, the last non-leaf node has two outgoing edges to leaf
nodes. The model should know this difference so it can adapt its focus actions to it.

Recall from Section 2.3.3 on page 35 that visual displays in PRIMs are hierarchically nested
lists, where each list is an object on display. Each list consists of several non-list items followed
by several lists. Each list is an object, in which each of these non-list items is a property of this
object. Each list in this list is a sub-object of this object.

We use the root node as the object at the highest level. The lists in a node’s list are any nodes
that can be reached by playing an action at this node. The first of these is always the node that
is reached by playing a right action, and the second of these is always the node that is reached

42



by playing a down action. We opt to use this order because we assume that participants, when
looking for a certain leaf node, first traverse across the non-leaf nodes and then direct their gaze
to the relevant leaf node. The model would accomplish this by first performing several focus-down
actions followed by a focus-down-last action (which will be discussed in more detail later).

As an example, Game 1 (from Ghosh et al. (2017)) would be represented as follows:

screen(
[”decision−node”,”c”,”notcurrent”,”root”,”notend”,
[”decision−node”,”p”,”current”,”notroot”,”notend”,
[”decision−node”,”c”,”notcurrent”,”notroot”,”notend”,
[”decision−node”,”p”,”notcurrent”,”notroot”,”end”,[”leaf”,6,3],[”leaf”,1,4]],
[”leaf”,3,1]],
[”leaf”,1,2]],
[”leaf”,4,1]])

The first property of each item is whether it is a leaf node or a non-leaf node, where the former has
the value ‘leaf’ and the latter has the value ‘decision-node’. For leaf nodes, the second property
is player C’s payoff and the third property is player P ’s payoff. For non-leaf nodes, the second
property denotes who controls the node. The third property denotes whether the node is the
currently active decision node. The fourth property denotes whether the node is the root node.
The fifth and last property denotes whether the node is the last node.

Because of the complexity of the display and the importance of moving focus we have added
several new focus actions to the PRIMs cognitive architecture, some of which we use in our new
models:

focus-up-stay moves the focus to the superitem of the current level.

focus-prev moves the focus back an item on the current level.

focus-last moves the focus to the last item on the current level.

focus-up-prev moves the focus to the superitem of the current level, and back one item on that
level.

focus-down-last moves the focus down a level and to the last item on that level.

The task execution script in our models take three parameters: which game from Ghosh et al.
(2017) is used, what C will play at its first node, and what C will play at its second node. It
may seem odd that player C’s second action is known before the game has even started, but it
corresponds to the computer-controlled player C in the experiments in Ghosh et al. (2015) and
Ghosh et al. (2017). Furthermore, if player P plays down, the game will end, so player C’s second
action is always a response to player P playing right, which can be determined beforehand. The
model plays as player P . If a leaf node is reached, the game ends. If a player P node is reached,
the model script will use the function call run-until-action(“play”) to pause script execution until
the model places play in AC1. The model should place down or right in AC2. Based on the current
node, the action the model places in AC2, and player C’s preset actions, the game will either end,
or the visual representation of the game will be updated. For example, if player C is set to play b
and f in Game 1, and the model decides to play right at its first node, the display will be changed
to:

screen(
[”decision−node”,”c”,”notcurrent”,”root”,”notend”,
[”decision−node”,”p”,”notcurrent”,”notroot”,”notend”,
[”decision−node”,”c”,”notcurrent”,”notroot”,”notend”,
[”decision−node”,”p”,”current”,”notroot”,”end”,[”leaf”,6,3],[”leaf”,1,4]],
[”leaf”,3,1]],
[”leaf”,1,2]],
[”leaf”,4,1]])
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Note that a player C node will never be the current node. The model can deduce player C’s
previous actions from its own currently active node. The display immediately transitions between
the two previous examples, without intermediately making the third node, player C’s second node,
the current node.

3.3.3 Initial memory chunks and model initialization

The initial chunks in the declarative memory of our new models are almost the same as those in
Ghosh & Verbrugge (online first). Because we use Ghosh et al. (2017)’s games, where the payoff
values range from 1 to 6, the values in our memory chunks also range from 1 to 6, instead of from
0 to 4. Furthermore, we place comparison in the fourth slot of these chunks to mark them as
comparison chunks and to prevent the model from retrieving chunks that can be created when the
first and third slots of working memory contain a number.

The PRIMs parameters of our new models are almost the same as those in the models of Ghosh
& Verbrugge (online first). These can be found in the model definition in Section 3.2.1 on page
38. There are two differences. We use −2.0 as our retrieval threshold, which is the default value,
instead of −1.0. Also, we set the parameter default-operator-self-assoc to 0, instead of −1.0. This
is the association between an operator and itself, which prevents the same operator from firing
multiple times. However, because we want the operator not-found-current-node, which we explain
later, to fire multiple times in succession, we must set it to 0 to ensure that not-found-current-node
can function properly.

Our task constants have expanded to those values that can be found in our new representation
of the game tree: decision-node, leaf, c, p, current, notcurrent, root and end, as well as the two
non-numerical values that can be retrieved from memory, bigger and not, the two actions the model
can play, down and right, and the new memory value comparison.

There is one initial goal, findcurrent, and there are three non-initial goals, findvals, compare,
and preparenext.

The myopic model and the own-payoff model are the same when it comes to the visual rep-
resentation of the game, the initial chunks in memory, the model initialization, and the available
goals. Their only difference lies in their operators, although they share many. We will discuss the
structure of their goals and operators in the next section.

3.3.4 Goals and operators

The most important part of a PRIMs model are its goals and operators, which determine its
decision-making process during a task. The myopic and own-payoff models have the same set of
goals and almost the same set of operators. The structure of goals and operators shared by both
models is as follows:

– Goal findcurrent

• Operator found-current-node

• Operator not-found-current-node

– Goal findvals

• Operator init-read-current

• Operator read-current-leaf

• Operator move-next-node

• Operator find-next-node

• Operator find-next-leaf

– Goal compare

• Operator start-retrieval
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• Operator first-bigger

• Operator second-bigger

– Goal preparenext

• Operator reset-game

In Figure 3.1, it can be seen which operators are responsible for which focus actions.

Figure 3.1: Game 1 from Ghosh et al. (2017), with focus actions in red.

The own-payoff model has two more operators within the goal findvals: the operators move-
next-node-end-of-tree and find-next-leaf-end-of-tree. It also has one more operator within the goal
compare, namely first-bigger-end-of-tree. Some of the operators are not the same across both
models. We decided to use the same operator names such that the models can be compared more
easily. Operators with the same name have the same function in both models, but sometimes have
slight differences in implementation. Due to the similarity of both models, we first describe the
myopic model and then describe the own-payoff model by describing its difference with the myopic
model.

The goal findcurrent and its two operators are the same for both our myopic model and our
own-payoff model. Whenever a model starts running, its focus is placed on the first item at the
highest hierarchical level of the visual display. In our case this is the root node. The operators in
the goal findcurrent move the focus to the currently active node. If the node currently in focus is
not the active node, the operator not-found-current-node moves the focus down a level and to the
first item on that level using a focus-down action. This operator may be repeated several times
before the currently active node is found. If the node currently in focus is the currently active
node, the operator found-current-node changes the currently active goal to findvals.

The goal findvals and its operators ensure that the relevant values are placed in working memory
for comparison. We first describe it for the myopic model. The operator init-read-current fires
first after the model focuses on the currently active node. It moves the focus to the current node’s
leaf node using a focus-down-last action. Then, the operator read-current-leaf stores the model’s
own payoff in WM1 and moves the focus back up using a focus-up-stay action.

After the model has looked at the first leaf and stored its own payoff, the operator move-next-
node moves the focus to the next node using a focus-down action. The operator find-next node
then moves the focus from this node to its leaf node using a focus-down-last action. Once it is
there, the operator find-next-leaf places the model’s own payoff at this leaf in WM3 and changes
the currently active goal to compare.

As a clarification, the focus actions and the operators that execute them can be found in Figure
3.1 on page 45, using Game 1 of Ghosh et al. (2017) as an example. The focus actions we use may
be substantiated using Figure 3 of Meijering, van Rijn, Taatgen & Verbrugge (2012) which can be
found in Figure 3.2.
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Figure 3.2: Figure 3 from Meijering et al. (2012), an example of a participant’s fixations in a
centipede game.

In Figure 3.2, it can be seen that the participant moves their attention between the decision
points themselves, and between the decision points and bins.

The goal findcurrent and its operators are exactly the same for both the myopic and the
own-payoff model. In the myopic model, the operators init-read-current, move-next-node and find-
next-node all have an extra condition the versions used in the own-payoff model do not. In the
myopic model, these operators test whether current is or is not in V 3. The model passes two non-
leaf nodes during its focus actions while it has the same contents in its working memory buffer. As
seen in Figure 3.1 on page 45, it has to perform two different actions at both of these nodes. To
distinguish between these nodes, it verifies whether the relevant non-leaf node is the current node
or not.

The own-payoff model has to look at all future payoffs. Therefore it also has to look at the last
leaf node. Because it has to act differently at this last leaf node, read-current-leaf should not fire
at it. Therefore the condition V 4 = nil is added to read-current-leaf. The operator find-next-leaf
should also not fire, so the condition V 4 = nil has also been added to it.

The own-payoff model has the same problem as the myopic model: while it is traversing through
the nodes using focus actions, there are nodes where it has to perform a focus-down in one case
and a focus-down-last in another. Because there are more than two relevant nodes, it cannot use
the visual properties current and notcurrent to distinguish between these. Because of this, the
model uses its second slot in the working memory buffer to remember that it already has passed
the first of these nodes. It does this using the value notcurrent.

The operator first-bigger also differs in the own-payoff model. According to the own-payoff
strategy, if one of the model’s future payoffs is larger than its current payoff, it should play right.
However, if the model’s current payoff is larger than one of the model’s future payoffs, there may
still be another future payoff that is bigger than the model’s current payoff. Therefore it has to
look at all future payoffs before it can play down. So, if the current payoff is bigger, it continues
by clearing WM2 and WM3 (the latter of which always holds the value of a to-be-compared future
payoff) and placing findvals in G1 again.
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The new operator find-next-leaf-end-of-tree in findvals is similar to find-next-leaf. However,
unlike read-current-leaf, it has the condition V 4 = end, so it only fires if the leaf the model currently
looking at is the rightmost leaf. It does not have the condition WM2 = notcurrent, because it is
redundant at this leaf node. Most importantly, it places end in WM2 so other operators can react
accordingly.

To ensure that the model acts properly to memory retrievals when it has reached the last
decision node, first-bigger does not fire when end is in WM2. When it is, first-bigger-end-of-tree
fires instead, which has the same conditions except that it tests WM2 = end instead. In this case
it does not have to look for any more future payoffs, so it can safely play down.

The full models can be found in appendix B on page 79.
Finally, an example of a model run can be found in Table 3.1. In this example, the own-payoff

model plays Game 1 against a computer that plays b and f. Double horizontal lines are used to
indicate the transition to a new goal.

Operator Notable actions

not-found-current-node focus-down ->AC1
found-current-node findvals ->G1

init-read-current focus-down-last ->AC1

read-current-leaf
V3 ->WM1
focus-up-stay ->AC1

move-next-node focus-down ->AC1
find-next-node focus-down-last ->AC1

find-next-leaf
V3 ->WM3
focus-up-stay ->AC1
compare ->G1

start-retrieval
WM1 ->RT1
WM3 ->RT3

first-bigger findvals ->G1

move-next-node focus-down ->AC1
find-next-node focus-down-last ->AC1

find-next-leaf
V3 ->WM3
focus-up-stay ->AC1
compare ->G1

start-retrieval
WM1 ->RT1
WM3 ->RT3

second-bigger
play ->AC1
right ->AC2
preparenext ->G1

reset-game findcurrent ->G1

not-found-current-node focusdown ->AC1
not-found-current-node focusdown ->AC1
not-found-current-node focusdown ->AC1
found-current-node findvals ->G1

init-read-current focus-down-last ->AC1

read-current-leaf
V3 ->WM1
focus-up-stay ->AC1

move-next-node-end-of-tree
focus-down ->AC1
end ->WM2

find-next-leaf-end-of-tree
V3 ->WM3
compare ->G1
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start-retrieval
WM1 ->RT1
WM3 ->RT3

first-bigger-end-of-tree
play ->AC1
down ->AC2

Table 3.1: Operators fired by the own-payoff model when running through Game 1

3.4 Model results

To test our new myopic and own-payoff models, we will use the same method as used in Ghosh &
Verbrugge (online first). We run both models one hundred times, corresponding to one hundred
virtual participants each. Fifty of these virtual participants play Game 1′, whereas the other fifty
play Game 3′. Each virtual participant plays fifty rounds of a game. The times required to make
the first decision and the decisions made are recorded at each round. The results are compared
to the experiments with human participants in Ghosh et al. (2015) and also to the experiments
with human participants in Ghosh et al. (2017). Our models play the games used in Ghosh et al.
(2017).

The proportions of players who played down in Game 1′ and Game 3′ can be found in Table
3.2. The myopic model always plays down. This happens because the myopic model plays down

Game 1′ Game 3′

Human (Ghosh et al. (2015)) 0.63 0.16
Human (Ghosh et al. (2017)) 0.42 0.24
Myopic 1 1
Own-payoff 0 0

Table 3.2: The proportion of human and virtual participants who played down in Game 1′ and
Game 3′

whenever its current payoff is higher than the payoff it would get if it plays right and the computer
opponent, C, plays down afterwards. This is always true in centipede games (“The payoffs are
arranged in such a way that at each decision point, if a player does not ‘go down’ to take the first
possible exit and the opponent takes the next possible exit, the player receives less than if she had
taken the first possible exit”, from Ghosh & Verbrugge (online first)), so a player using the myopic
strategy should always play down in centipede games.

The own-payoff model always plays right. This corresponds to what the own-payoff strategy
prescribes. In Game 1′ (see Figure 2.2 on page 19), the only own-payoff strategy for P is dg,
or right-down. in Game 3′, the own-payoff strategies for P are dg and dh, or right-down and
right-right.

Because human participants do not play down or right with proportions of 0 or 1, not all
human players use the own-payoff strategy, and not all human players use the myopic strategy.
Perhaps they do not use these strategies at all, using forward induction or backward induction, or
something different altogether. There are more reasons to play down other than using the myopic
strategy, and there are more reasons to play right other than the own-payoff strategy.

Even though our models do not resemble human participants in terms of their actions, they
may resemble human participants in terms of the number of mental ‘steps’ required to make a
decision. The myopic model looks at two payoffs and makes a single comparison, whereas the
own-payoff model looks at four payoffs (in this set of games) and makes three comparisons. By
looking at the difference in reaction times, we can make an informed guess about whether human
participants use more, or less, information than our models. This allows us to investigate whether
human participants play more like the myopic model or more like the own-payoff model.

Apparently, not all human players use the own-payoff strategy, and not all human players use
the myopic strategy. Perhaps they do not use these strategies at all, using forward induction or
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backward induction, or something different altogether. There are more reasons to play down other
than using the myopic strategy, and there are more reasons to play right other than the own-payoff
strategy.

Even though our models do not resemble human participants in terms of their actions, they may
resemble humans in terms of the amount of mental ‘steps’ required to make a decision. The myopic
model looks at two payoffs and makes a single comparison, whereas the own-payoff model looks
at four payoffs (in this set of games) and makes three comparisons. By looking at the difference
in reaction times we can make an informed guess about whether human participant use more, or
less, information than our models.

The time required to play the first action for our models and for the human participants in
Ghosh et al. (2015) and Ghosh et al. (2017) can be found in Figure 3.3.

Figure 3.3: Reaction times for our myopic and own-payoff models and for the human participants
in Ghosh et al. (2015) and Ghosh et al. (2017)

In Figure 3.3, it can be seen that even the myopic model is several seconds slower than the
human average. Can we conclude that human participants use even less information than required
for the myopic strategy? No. The own-payoff models presented in Ghosh & Verbrugge (online
first) do give a good fit for human reaction times. Our own-payoff models are about three times
slower. Therefore the slow-down in our models must be explained by something we introduced
in our models that was not yet present in the models in Ghosh & Verbrugge (online first). Both
models store each payoff in working memory, and both models compare payoffs stored in working
memory using a retrieval from declarative memory. However, the models created in Ghosh &
Verbrugge (online first) emulate gaze actions by instantly moving the model’s focus from one
payoff to the next, whereas our models actually look through the game to find the next payoff.
Not only do these gazes require more focus actions, they also require more primitive elements to
ensure that the right focus action is used at the location the model is looking at. The eye-tracking
results from Meijering et al. (2012) tell us that participants seem to look at all bins in a game of
marble drop before playing an action. Because even our myopic model is much slower than human
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behaviour, we have to conclude that the speed of focus actions in an untrained PRIMs model does
not resemble the speed of human fixations. However, it must be said that this is the first time
focus actions in PRIMs have been used to predict reaction times. Focus actions have only been
used in Arslan, Wierda, Taatgen & Verbrugge (2015) and related work, where they were used to
model task accuracy and not reaction times. Perhaps the speed of focus actions in PRIMs can
best be compared to that of very young children, who have not had as much practice as the adults
who were used as participants in Ghosh et al. (2015).

3.5 Training the models

PRIMs models seem to look through a game of marble drop much more slowly than human partic-
ipants. Human participants have been looking through tree-like structures such as maps all their
lives, allowing them to look through the marble drop games very quickly. For the PRIMs models,
the game of marble drop was the first thing they had ever seen, having no experience with looking
through such tree-like structures whatsoever.

This problem can be solved for the PRIMs models by emulating the practice human participants
have had. Naturally, we cannot show the PRIMs models everything a human participant has seen
throughout their lives, but we can give them an introduction in looking through games of marble
drop before they start playing the actual games. To do this, we create two new models in PRIMs.
These models are identical to the myopic and the own-payoff models, except that they only look
through the game tree. They do not compare payoffs by retrieving chunks from memory, and they
do not make decisions about what action they should play.

These training models will play what we will call Game 0, which can be found in Figure 3.4.
We use this game to make sure the model cannot learn anything about the payoffs of the games it
will be playing.

Figure 3.4: Game 0, constructed to train PRIMs models in focus actions.

The full training models can be found in appendix C on page 93.
Now we run the models again. This time we let each virtual participant run through one of the

training models one hundred times before playing the actual game. Virtual participants who use
the myopic strategy use the myopic training model and virtual participants who use the own-payoff
strategy use the own-payoff training model. The reaction times we obtain can be found in Figure
3.5.
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Figure 3.5: Reaction times for our myopic and own-payoff models after training on focus actions,
and for the human participants in Ghosh et al. (2015) and Ghosh et al. (2017)

With one hundred training trials, the own-payoff model fits the human data quite well: there
is no significant difference in mean reaction times for Game 1′ between the own-payoff model and
the human participants in Ghosh et al. (2015) (two-sided t-test with p = 0.3208, t = −0.997 and
120.5 degrees of freedom), and there is no significant difference in mean reaction times for Game 1′

between the own-payoff model and the human participants in Ghosh et al. (2017) (two-sided t-test
with p = 0.5293, t = 0.62994 and 265.85 degrees of freedom). However, one may wonder why we
used one hundred training trials, and not, for example, eighty or one hundred and twenty, which
is a perfectly legitimate question. In fact, we use this number because we wanted to know how
many training trials would be required to obtain a good fit. If humans indeed use the own-payoff
strategy (which they probably do not), then PRIMs models human performance with one hundred
training trials on focus actions. However, human participants may use a much slower strategy
than the own-payoff strategy and they may look around much faster than a PRIMs model that has
had one hundred training trials. In order to find a number of training trials that would properly
resemble the amount of skill humans already have in looking around a tree structure, we would
need to know exactly what strategy they are using, which is a problem we would like to help solve
using our PRIMs models.

Because of this, we will postpone the problem of predicting reaction times, and focus on the
main goal of this thesis: translating strategies as represented in logical formulae into PRIMs models.
We will use the things we learned in this chapter to make such a system in Chapter 4.
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Chapter 4

A general translation method

4.1 The logic and the models

In Chapter 3 on page 37 we created PRIMs models using the myopic and own-payoff strategies by
hand. In the current Section, we investigate the differences between these models and the logical
formulae that correspond to the myopic and own-payoff models.

4.1.1 The myopic and own-payoff models

In Section 3.3 on page 41, we have created PRIMs models capable of playing the myopic and
own-payoff strategies in centipede games. They are based on the intuitive myopic and own-payoff
strategies, as is also the case for the logical formulae in Ghosh & Verbrugge (online first) (as found
in Section 2.2.2 on page 29). However, our models in Section 3.3 are not based on these formulae
themselves.

According to the myopic strategy, a player using it should end the game immediately if doing
so yields a higher payoff than what he would get if he does not end the game and his opponent
ends the game at the next turn. If ending the game immediately yields a player a lower payoff
than if he does not end the game and his opponent ends the game in the next turn, then he should
not end the game.

According to the own-payogg strategy, a player using it should simply play those actions that
are needed to reach the highest future payoff, even if his opponent may not help him in moving
towards that payoff.

According to the myopic strategy, a player using it should end the game immediately if doing
so yields a higher payoff than what he would get if he does not end the game, and his opponent
ends the game at the next turn. If ending the game immediately yields a player a lower payoff than
if he does not end the game, and his opponent ends the game in the next turn, then he should not
end the game.

According to the own-payoff strategy, a player using it should simply play those actions that
are needed to reach the highest future payoff, even if his opponent may not help him in moving
towards that payoff.

The PRIMs models we created in Section 3.3 on page 41 can use these strategies to play Games
1 through 4, 1′, and 3′ from Ghosh et al. (2017), which can be found in Figure 2.1 on page 18 and
Figure 2.2 on page 19.

The models we created use PRIMs’ built-in focus actions to emulate how a human participant
would gaze through a game. However, because an untrained PRIMs model has no experience with
focus actions, we found that our PRIMs models are too slow, and require training before their
reaction times approximate those of human players.

We created these models in order to understand how to create a general translation system,
which is the main goal of this thesis. This general translation system should take logical formulae
from the logic presented in Ghosh & Verbrugge (online first) and automatically generate PRIMs
models from them.
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4.1.2 Strategies represented in the logic

In Section 3.1 on page 37, we display a logical formula for each game, for each strategy. Consider
the myopic strategy. The formulae required to represent the myopic strategy for Games 1 through
4, 1′, and 3′ from Section 3.1 on page 37 are displayed below, where the superscript refers to the
game number:

K1′

P : [(δP,1′ ∧ γP,1′ ∧ (1 6 2) ∧ root) 7→ c]P

K3′

P : [(δP,3′ ∧ γP,3′ ∧ (1 6 2) ∧ root) 7→ c]P

K1
P : [(δP,1 ∧ γP,1 ∧ (1 6 2) ∧ 〈b−〉root) 7→ c]P

K2
P : [(δP,2 ∧ γP,2 ∧ (1 6 2) ∧ 〈b−〉root) 7→ c]P

K3
P : [(δP,3 ∧ γP,3 ∧ (1 6 2) ∧ 〈b−〉root) 7→ c]P

K4
P : [(δP,4 ∧ γP,4 ∧ (1 6 2) ∧ 〈b−〉root) 7→ c]P

Regardless of the game it applies to, the corresponding formula always needs to specify where two
payoffs are, what they are, which two values should be compared, and where the root of the game
tree is. This can differ between games. For example, for Games 1′ and 3′ the currently controlled
node is the root node, whereas for Games 1 through 4, a 〈b−〉 move is required to reach the root
node from P ’s current decision point.

As shown in Section 2.2.1 on page 26 we can use the conjunction or disjunction of multiple
strategy formulae. However, if we use, for example, the conjunction of K1′

P and K3′

P , we would have

to adhere to both K1′

P and K3′

P , even though one of these may not apply to the current game. On
the other hand, if we use the disjunction of two strategy formulae, we would be allowed to adhere
to either of them, even though one of them may not apply to the current game. Because of this,
we are required to use one formula for each game, for each strategy.

Our goal is to create a general translation system that translates strategies represented in logical
formulae into PRIMs models. Because these formulae apply to a single game each, the PRIMs
models they are translated into should also apply to a single game each. In Section 4.1.3 on page
53, we provide a thorough exploration of such differences between the logic presented in Ghosh &
Verbrugge (online first) and the models we present in Section 3.3 on page 41.

4.1.3 Differences between the logic and the models

In the previous section, we have shown that our models can play all six games from (Ghosh
et al., 2017), whereas a logical formula specifies a strategy for a single game. Furthermore, these
logical formulae are very similar to a Horn clause (Horn (1951)). They consist of a conjunction
of propositions (sometimes preceded by operators) such as (uC = pC), (p 6 q), or root. If all of
the propositions in this conjunction are true, a specified action should be played. If at least one
of them is not true, anything may be played. Our models do not play in this manner. They do
not require that some node is the root of the tree and that some specific payoff has some specific
value. The models treat these payoffs as variable values, which are stored in working memory
and retrieved to perform a declarative memory retrieval. Furthermore, the models do not ‘play
anything’ when some payoff is not smaller than or equal to another payoff. Instead, their actions
are based on how some payoffs in the game differ from each other. Another difference is that our
own-payoff models play right as soon as a future payoff is found that is larger than the current
payoff. The formula inspects each payoff and each comparison before right can be played.

In general, the PRIMs models we created in Chapter 3 use the myopic and own-payoff strate-
gies as if they are algorithms, where payoffs are variables and the outcome of this algorithm is
determined by comparing these variables. The logical formulae, on the other hand, specify a list
of conditions that should all hold if some action is to be played. If at least one of them does not
hold, the formula allows for any action.

Because we wish to translate logical formulae into PRIMs models, we have to take these differ-
ences into account. The PRIMs models we create have the same properties as the logical formulae
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and they are not PRIMs models generated from a strategy as represented intuitively, or as an
algorithm. A general translation system does not have access to human intuition. It only has
access to a logical formula. Consider the myopic strategy for Game 1′ as presented above, which,
without abbreviations, is as follows:

K1′

P : [(〈c+〉(uP = 2) ∧ 〈d+〉〈e+〉(uP = 1) ∧ (1 6 2) ∧ root) 7→ c]P

This formula states that if all of the following hold

� After a c move from the current node, player P ’s payoff has the value 2;

� After a d move followed by an e move from the current node, player P ’s payoff has the value
2;

� The value 1 is smaller than or equal to the value 2;

� The current node is the root node;

then c should be played. If at least one of these statements does not hold, then anything may be
played.

This formula is not the myopic strategy itself, but this formula specifies which propositions
have to be tested in order to play the prescribed action. The models we create with our translation
system should also test these propositions. Furthermore, the models should play the specified
action when all of these propositions prove to be true, and should play any action when at least
one of them is not true. In a conjunction of strategy formulae this does not apply. In this case,
when at least one of the items in the conjunction is not true, the model should look for a strategy
formulae that is applicable. However, in this section, we will assume a single strategy formula.
We create a system that translates these formulae into PRIMs models, and we have to take into
account the specifications given by the logical formulae. Because of this, the PRIMs models our
translation system creates are quite different from the PRIMs models we have created in Section
3.3 on page 41. In the remainder of this chapter, we explain how we create such a translation
system.

4.2 Representations

We create our system in Java 1.8. For an introduction on Java, see, for example, (Savitch, 2012).
Class hierarchies in Java allow us to represent games and strategies more easily. Furthermore,
Java’s regular expressions and IO are very useful in creating PRIMs files.

4.2.1 Representing games

We use six Java classes to create game trees. They are the following:

� Game

� Treeobject

� Edge

� Node

� Nonleaf

� Leaf

Each of these classes has name as an instance variable, which is used to identify the object. Instance
variables are properties of the objects created using this class. For example, the class Game is a
class. Objects of this class could be be game 1 and game 2. For game 1, the instance variable
name has the value ‘Game 1’. For game 2, the instance variable name has the value ‘Game 2’.
Instance variables refer to other objects in Java. In this case, the name ‘Game 1’ is a string object.
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The Treeobject class is a superclass for all objects that constitute a tree. Its subclasses are
Node and Edge. The Edge class has as instance variables the node it comes from, the node it goes
to, and which name its corresponding direction has (such as down or right). The Node class is a
superclass for leaf nodes and decision nodes. It has as instance variable whether the node is the
root of the tree, as a boolean value. The Nonleaf class is for decision nodes. It has as instance
variables the player who controls it (C or P) and whether it is the current node. The Leaf class
is for leaf nodes. It has as instance variables what player C ’s payoff is at this leaf node, and what
player P ’s payoff is at this leaf node.

A game has as instance variables a list of leaf nodes, a list of non-leaf nodes, and a list of
edges. It also has a list of nodes, which is simply the list of leaf nodes and the list of non-leaf
nodes combined. This list is useful for performing computations. Furthermore, within a game, it
is specified within a boolean instance variable what the root node is, and what the current node
is. Games do not have a subclass or a superclass.

A class diagram containing the classes required to create games can be found in Figure 4.1.

Figure 4.1: Class diagram for games and classes required to create games.

In the diagram in Figure 4.1, each rectangle is a class. The name of the class is in bold. It
is followed by a list of instance variables of the class. These consist of the name of the instance
variable, followed by a colon, followed by the type of the instance variable. The types String,
boolean, and int (for integers) should be known to the reader. If not, it is recommended to read
Chapter 1 of (Savitch, 2012), or another introduction to Java. All other types are explained
in the present section. An arrow indicates from which class a class inherits. Classes inherit
the instance variables from their superclasses. For example, the class Leaf inherits the instance
variable root from its superclass Node, and the class Leaf inherits the instance variable name
from its superclasses’ superclass, Treeobject. The notation ‘ArrayList<Node>’ indicates that the
instance variable is a list of nodes.

4.2.2 Representing strategies

In Section 2.2.1 on page 26, four of the five propositions used for strategies in Ghosh & Verbrugge
(online first) are introduced. These are the following:

� root

� turni

� (ui = qi)

� (r 6 q)
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In Section 2.2.2 on page 29, it is stated that actions are also part of these propositions:

� Σ ⊆ P

We have a Java class for each of these propositions. Their class names are, respectively, Root,
Turn, Utility, Comparison, and Action. All of these classes are subclasses of the class Logicobject.
Each of them, except Root, has one or more instance variables. The Turn class has an instance
variable denoting what the value of i is, that is, which player it is about. The Utility class has
an instance variable denoting what the value of i is as well. Furthermore, the Utility class has
an instance variable containing its numerical value, and an instance variable containing its name,
which is required to distinguish equal payoffs at different leaf nodes.

The Comparison class has as instance variables the two utilities that should be compared. In
this, we deviate from the logic. In the logic, r and q in a comparison (r 6 q) are numerical values,
not utilities of the type (ui = qi). However, in a translated PRIMs model, a utility assignment such
as (ui = qi) would mean that a certain payoff at a certain leaf node is stored in working memory. A
comparison such as (r 6 q) means that two payoffs previously placed in working memory are used
to start a declarative memory retrieval. If there are two utilities (ui = 1) and two comparisons,
namely (1 6 2) and (2 6 1), which of these utilities refers to which comparison? It is only possible
to know this if comparisons refer directly to utilities, which we do in our system.

The Action class represents the actions, which are also part of the propositions, Σ ⊆ P . Because
the actions Σ are in bijection with the edges ⇒ (for each action there is one edge and vice versa),
the Action class has an instance variable denoting to which edge it belongs. When we create a
game and its corresponding edges, we can use those edges to create the actions required for our
strategy.

In Section 2.2.1 on page 26, three operators from Ghosh & Verbrugge (online first) are intro-

duced: 〈a+〉, 〈a−〉, and B(i,x)
h . For 〈a+〉 and 〈a−〉, we use the class Step. It is called ‘Step’ because

the operator denotes a step being taken in a game tree from one node to another. We use a single
class for these two operators because their only difference is the direction of the step. Similar to
the class Action, the class Step has an instance variable that denotes which edge it refers to. It
also has a boolean instance variable denoting which of the two operators 〈a+〉 and 〈a−〉 is used,

or which direction the edge is traversed in. For B(i,x)
h , we use the class Belief. It has an instance

variable that denotes to which player it refers, and an instance variable that denotes to which node
it refers. In the logic, the belief operator also indicates to which game it applies, but we assume
that it applies to the game of the strategy in which it resides.

The classes Step and Belief share the superclass Logicmodifier.
Using the classes we introduced, we can create more complex combinations of propositions

and operators, such as 〈d+〉BP f or 〈b−〉〈a+〉(uC = 2). For these logical propositions modified by

operators such as 〈a+〉 and B(i,x)
h , we have the class Modlogic. The Modlogic class has as instance

variables the proposition that is being modified, a list of steps that may precede it, and a list of
beliefs that may precede it as well. We assume that a list of operators preceding a proposition is
always a list of belief operators, followed by a list of steps. We do this to simplify the translation

process and to disallow constructs such as 〈a+〉B(i,x)
h 〈a+〉B(i,x)

h . Furthermore, we assume that the
belief operator is only used when the proposition is an action. This is simply because is intuitively
not necessary to formulate beliefs about whose turn it is, where the root node is, what a specific
payoff value is, or which payoff is smaller than which other payoff. Because the games we consider
are games of complete information, the first three of these should be common knowledge. The
last of these should be common knowledge because we assume that all players know which payoffs
are smaller than or equal to other given payoffs. However, players may not know which strategy
another player is using, or which action the other might play.

Using the Modlogic class, we create strategies. The class Strategy has four instance variables:
its name, which is needed to generate PRIMs models, a list of Modlogic objects, which is the
conjunction of propositions modified by operators in the strategy, the player the strategy belongs
to, and the action the strategy prescribes if all of the items in the conjunction are true.

A class diagram containing the classes required to create strategies can be found in Figure 4.2.
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Figure 4.2: Class diagram for games and classes required to create strategies.

4.3 Translating logical formulae to PRIMs models

4.3.1 Task script

Our system needs to generate all code required to run a PRIMs model. This includes a task
execution script such as the one seen in Section 3.2.3 on page 40, which includes a representation
of the game tree using the function screen. Our system recursively generates this code using the
game’s representation as presented in Section 3.3.2 on page 42. It then generates the full task
execution script which starts the trial, displays the game using screen, waits for the model to play
an action, and ends the trial. Note that the task execution script in Section 3.3.2 updates the
display as long as the game has not ended, so that the model could not only play its first move,
but also any future moves. The task execution script generated by our system does not do this,
because the strategies represented in the logic only specify one action at one node.

4.3.2 Declarative memory

Our system also needs to generate an initialization script which specifies which chunks are in
declarative memory when the model starts performing a task (see Section 3.3.3 on page 44). These
chunks consist of comparisons and beliefs.

Comparisons

Like the models in Ghosh & Verbrugge (online first) and our models in Section 3.3 on page 41,
automatically generated models need to ‘know’ which numerical values are equal to or smaller than
which other numerical values. We use the same kind of chunks as those in Ghosh & Verbrugge
(online first) (shown in Section 3.2.2 on page 39) and the one we used in our myopic and own-
payoff models (see Section 3.3.3 on page 44). These chunks have five slots, containing respectively
the chunk’s name, the first value, whether the first value is equal to or smaller than the second
value, the second value, and the value ‘comparison’. To create these chunks, our system traverses
through the game tree, keeping track of all unique payoffs in it. It then creates a chunk for each
combination of two of these payoffs, using ‘bigger’ in the third slot if the first value is bigger than
the second value, and using ‘not’ in the third slot if the first value is not bigger than the second
value.
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Beliefs

In Ghosh & Verbrugge (online first), a formula is presented for a first-order theory of mind strategy
in Game 1 for player P :

τ1
P : [(ϕ ∧ ψP ∧ ψC ∧ 〈b−〉root ∧ B(n2,P )

g1 〈d〉f) 7→ c]P .

In this formula, B(n2,P )
g1 〈d〉f indicates that player P should believe that after it plays d, player C

will play f. However, the formula does not specify how this belief should be acquired.
In Stevens, Taatgen & Cnossen (2015), a bargaining game is played where an ACT-R model

tests its beliefs by comparing its opponent’s behaviour to chunks in its declarative memory. It could
attribute an aggressive or a cooperative strategy to its opponent. Whenever its opponent played a
move, it tried to retrieve a chunk from memory corresponding to this move. If the retrieved chunk
corresponded to an aggressive strategy, it would attribute an aggressive strategy to its opponent,
and vice versa for a cooperative strategy.

We use a similar approach. Our automatically generated models start with chunks correspond-
ing to the own-payoff strategy, the EFR strategy, and the BI strategy in its declarative memory.
We use the own-payoff strategy because its PRIMs models have a good fit in Ghosh & Verbrugge
(online first). We use the EFR strategy because the actions it prescribes correspond somewhat
to the human data of Ghosh et al. (2015). We use the BI strategy because it reaches a Nash
equilibrium.

When generating a PRIMs model, our system calculates all EFR and BI strategies for the
relevant game using the algorithms specified in Gradwohl & Heifetz (2011). It also calculates all
own-payoff strategies for the relevant game. The algorithm to obtain all own-payoff strategies can
be summarized as follows: ‘If player i is at decision node sx, and the highest payoff at any leaf
node reachable from node sx for player i is q, then an action ax belongs to an own-payoff strategy
of player i if there is a play . . . sxax . . . sn where sn is a leaf node where player i ’s payoff is q ’.

Our system creates chunks corresponding to each strategy it has calculated. These chunks have
five or more slots. The first slot contains its name, which is ‘strat-fact-’ followed by a number. The
second is ‘strat’ to indicate that it is a strategy and to prevent erroneous retrievals. The third slot
specifies which strategy it is, ‘efr’ for EFR, ‘bi’ for BI, and ‘op’ for own-payoff. The fourth slot
specifies which player the strategy belongs to, player C or player P. The fifth slot, as well as any
further slots, each contain a move, and specify a sequence of moves corresponding to the strategy.
The fifth slot contains the first move in this sequence, the sixth slot contains the second move in
this sequence, the seventh slot contains the third move in this sequence, et cetera.

4.3.3 Model initialization

Automatically generating a model initialization script from a strategy is fairly straightforward.
The model initialization script generated for the myopic strategy for Game 1′ is as follows:

d e f i n e task Myopic 11 {
i n i t i a l −goa l s : ( root−one )
goa l s : ( p l a y d i r p layother u t i l i t y −one u t i l i t y −two comparison−

↪→ one )
task−cons tant s : ( b i gge r not c p cur rent notcur rent dec i s i on−

↪→ node l e a f root end comparison r i g h t down)
imaginal−a u t o c l e a r : n i l
de fau l t−a c t i v a t i o n : 1 . 0
r t : −2.0
o l : t
batch−t r a c e : t
de fau l t−operator−as soc : 8 . 0
de fau l t−operator−s e l f −as soc : −2.0

}
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For the name of the task, the name specified in the strategy in Java is used. The task’s goals
consist of playdir, playother, and one goal for each proposition in the strategy. There is one initial
goal, which is the first proposition that will be tested. Every other goal is a non-initial goal. How
the first goal is selected and how the goals are ordered can be found in the next subsection.

The task constants are the same as those in Section 3.3.3 on page 44. However, end is not
included in the tasks constants, because our generated models do not require it. Furthermore,
instead of adding right and down to each model definition, our model adds the names of the
directions found in the corresponding game, which is an instance variable for the Edge class.

The PRIMs parameters of our automatically generated models are almost the same as those in
Section 3.3.3 on page 44. There are two differences. First of all, default-operator-self-assoc is set
to −2.0 instead of 0 or −1.0. This is because no operators in our automatically generated models
should fire more than once. Furthermore, default-operator-assoc is set to 8.0 instead of its default
value of 4.0. This is the association between an operator and the goal it is defined in. We increased
it because each goal performs a small task, such as looking at the next leaf node or inspecting a
payoff value, that should not be interrupted.

4.3.4 Goals and operators

Consider the logical formula for the myopic strategy for Game 1′:

K1′

P : [(〈c+〉(uP = 2) ∧ 〈d+〉〈e+〉(uP = 1) ∧ (1 6 2) ∧ root) 7→ c]P

A model using this formula should inspect two payoffs, make a comparison, and verify where the
root of the tree is. If all of these things correspond to what the formula prescribes, the model
should play c. Otherwise, it may play anything, because we do not yet use a conjunction of
strategy formulae that exhausts all possibilities.

The translation system creates a goal for each proposition in the conjunction of the formula.
In this example, these propositions are (uP = 2), (uP = 1), (1 6 2), and root. It also creates
two more goals, one for when the model plays the prescribed action, playdir, and one for when it
may play anything, playother. Goals corresponding to propositions are named ‘root-x’, ‘turn-x’,
‘utility-x’, ‘comparison-x’, and ‘action-x’, where x is a number string such as ‘one’. Operator names
start with the name of the goal it is defined in, with the exception of operators within the goals
playdir and playother.

The goal playdir has only one operator, play. The operator play plays the action prescribed by
the strategy the model was generated with.

The goal playother has one operator for each outgoing edge from the currently active node.
Each of these operators plays one of the actions possible at the currently active decision node, but
only one can fire when the goal playother is in the goal buffer, because the task ends as soon as the
model performs an action. Which of the operators fires depends on their activation noise, because
they all have the same conditions.

The operators within the goals that correspond to propositions test whether that proposition
is true. If it is true, the next proposition is tested, because the conjunction is only true if all
of the propositions within it are true. This is done by placing a goal that corresponds to a
proposition in the first slot of the goal buffer. When the operators within this goal test the
corresponding proposition and the proposition turns out to be true, the first slot of the goal buffer
is overwritten by the goal that corresponds to the next proposition that should be tested. The
last goal corresponding to a proposition places playdir in the first slot of the goal buffer if the
corresponding proposition is true. Therefore, if all propositions are true, the prescribed action is
played.

Within a goal that corresponds to a proposition, if the proposition is false, then the conjunction
within the corresponding strategy is false, and if the conjunction is false, the strategy prescribes
that anything may be played. Therefore, if the operators within a goal that corresponds to a
proposition find out that the proposition is false, the goal playother is placed in the first slot of
the goal buffer, overwriting the current goal. Therefore, if one proposition is false, any action is
played.
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For goals corresponding to the proposition root, the proposition is true if ‘root’ is in V4,
and false if it is not. For goals corresponding to a proposition turni, the proposition is true if
i (‘c’ or ‘’p’) is in V2, and false if it is not. For goals corresponding to a proposition (ui = qi),
the proposition is true if qi (for example, ‘one’, ‘two’, or ‘three’), is in V2. Furthermore, if the
proposition is true, the value in V2 is also placed in a working memory slot for use with comparisons
later. If qi is not in V2, the proposition is false.

Each comparison (r 6 q) refers to two utilities. These utilities have to be present in buffer
slots accessible by the model at the same time so they can be copied to the retrieval buffer to
make a retrieval request. Because they are usually in different locations in the visual display,
they cannot both be in the visual buffer slots at the same time. Because of this, they have to
be copied to working memory, so they can be copied to the retrieval buffer later. To ensure that
utilities do not overwrite each other in working memory slots and to ensure that comparisons
can be executed successfully, the translation system maps each utility to a working memory slot.
When the system generates the code for a comparison, it knows which working memory slots the
comparison’s utilities are mapped to, so it knows which working memory slots have to be copied
to the retrieval buffer to make a retrieval request. A goal corresponding to a comparison has
three operators: ‘-start-retrieval’, ‘-not-bigger’, and ‘-bigger’. Note that these operator names are
preceded by the name of their goal. The operator ‘-start-retrieval’ places the values r and q from
working memory into slots of the retrieval buffer. The operator ‘-not-bigger’ fires when the chunk
that has been retrieved states that r is not bigger than q. In this case, the proposition (r 6 q) is
true. The operator ‘-bigger’ fires when the chunk that has been retrieved states that r is bigger
than q. In this case, the proposition (r 6 q) is false.

Some of the items in a conjunction of a strategy formula are an action, preceded by several belief

operators, such as B(n2,P )
g1 〈d〉f . For each of these beliefs, the model has to test whether the belief

is true. In Section 4.3.2 on page 58, we explain how automatically generated models have chunks
corresponding to beliefs in declarative memory. To test whether a belief is true, a model simply has
to retrieve such a chunk, corresponding to the situation described in the belief, from declarative
memory, and verify whether the future situation the retrieved belief describes corresponds to the

belief as prescribed by the strategy formula. For example, the proposition B(n2,P )
g1 〈d〉f states that

in Game 1 (see Figure 2.1 on page 18), at node n2, which is player P ’s first decision node, after a
d move, player C will play f. Because this belief involves a player C move, the model retrieves a
strategy chunk for player C ’s strategies. Because the belief describes a situation where player C
has already played b, which is right, the model retrieves a strategy chunk where the first move of
player C is right. It can then compare player C ’s second move in the chunk it retrieves to the move
prescribed by the strategy, which is f, which is also right. If these are the same, the proposition is
true. If it is not, the proposition is not true.

4.3.5 Sorting the propositions

Within logical formulae such as a ∧ b ∧ c and c ∧ a ∧ b, the ordering of conjuncts does not change
the meaning of the formula. The same holds for strategies such as
K1′

P : [(〈c+〉(uP = 2) ∧ 〈d+〉〈e+〉(uP = 1) ∧ (1 6 2) ∧ root) 7→ c]P . However, PRIMs models can
only fire one operator at a time, and since multiple operators need to fire to complete a goal that
tests a proposition, it can only test these propositions one at a time.

Luckily, there is already some ordering in the propositions. A PRIMs model can only test
whether root, turni, and (ui = qi) are true when it is focusing at the node to which these
propositions apply. These nodes can be found by looking at the 〈a+〉 and 〈a−〉 operators that
precede the corresponding proposition. For example, 〈d+〉〈e+〉(uP = 1) has to be verified at the
leaf node reached by performing a d and an e action at the currently active node. Furthermore, a
comparison such as (1 6 2) can only be verified once its corresponding utilities have been placed
in working memory.

We believe that human participants start playing games of marble drop by looking at the root
of a tree. An eye-tracking experiment (Figure 3.2 on page 46) confirms this. In this figure the
participant’s first fifteen fixations are depicted in black. Our PRIMs models also start with their
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focus at the root of the tree, because a PRIMs model starts with its focus at the first item on the
top-most hierarchical level of the visual display, which is the root of the tree in our models. When
our PRIMs models start, they may test whichever propositions can be tested at the root of the
tree.

We base our order of goals on this notion. For each proposition, our translation system computes
where in the game tree this proposition can be verified. Comparisons can be verified as soon as the
second utility has been inspected. Beliefs do not require the model to compare values in the visual
buffer to anything, so they do not have a location in the game tree where they can be verified.
Instead, beliefs are tested after all other propositions within our automatically generated models,
because we assume that knowing the game’s payoffs and their relations are required to do so.

The translation system then calculates the shortest path through each of the locations required
to test all of the strategy’s propositions. The goals corresponding to these propositions are sorted
based on when they can be verified on this path.

For example, consider the formula
K1′

P : [(〈c+〉(uP = 2) ∧ 〈d+〉〈e+〉(uP = 1) ∧ (1 6 2) ∧ root) 7→ c]P . It has four propositions. In
Figure 4.3, it can be seen where these propositions must be verified. In Table 4.1, it can be seen
which propositions have to be verified at each location.

Figure 4.3: Game 1′ of Ghosh et al. (2017), with locations where propositions must be verified in
red. The corresponding propositions can be found in Table 4.1

Location Proposition
1 root
2 (〈c+〉(uP = 2)
3 〈d+〉〈e+〉(uP = 1) and (1 6 2)

Table 4.1: An overview of which propositions have to be verified at which location in Figure 4.3

The proposition root must be verified at location 1. The proposition (〈c+〉(uP = 2) must be
verified at location 2. The propositions 〈d+〉〈e+〉(uP = 1) and (1 6 2) must be verified at location
3, but the comparison can only be verified once both payoff values have been placed in working
memory, so it has to be verified after 〈d+〉〈e+〉(uP = 1). The shortest route through locations 1,
2, and 3, starting at the root node, is 〈c+〉〈c−〉〈d+〉〈e+〉. If we take this route, the propositions
are verified in the following order: root, 〈c+〉(uP = 2), 〈d+〉〈e+〉(uP = 1), (1 6 2).

This is how the goals are ordered. The first goal is ‘root-one’, which is placed in the list of
initial goals. The next goals are ‘utility-one’, ‘utility-two’, and ‘comparison-one’, in that order,
which are placed in the list of non-initial goals. When any of the propositions corresponding to
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these goals are true, the next goal replaces this goal in the goal buffer. For ‘comparison-one’, the
next goal is playdir.

Before any proposition corresponding to a goal can be verified, the focus of the PRIMs model
has to be moved to the node where that proposition can be verified. To do this, each goal starts
with a set of operators that move the model’s focus to the node relevant for this goal. In the
previous example, the goal ‘utility-one’ would start with an operator moving the focus along edge
c.

4.4 Results

4.4.1 Example model

As an example of what kind of models the translation system creates, an automatically generated
myopic model for Game 1′ of Ghosh et al. (2017) can be found in Appendix D on page 100. The
logical formula this model was generated from is

K1′

P : [(〈c+〉(uP = 2) ∧ 〈d+〉〈e+〉(uP = 1) ∧ (1 6 2) ∧ root) 7→ c]P .

Table 4.2 lists, for each part of this formula, what the corresponding goal is and which focus
actions are performed in this goal. In this table, the goals are sorted in the order that is explained
in Section 4.3.5 on page 60.

Proposition Goal Focus actions
root root-one -
〈c+〉(uP = 2) utility-one 〈c+〉
〈d+〉〈e+〉(uP = 1) utility-two 〈c−〉〈d+〉〈e+〉
(1 6 2) comparison-one -
7→ c playdir -

Table 4.2: The goals of the automatically generated myopic model for Game 1′ of Ghosh et al.
(2017)

4.4.2 Exploratory statistics

To test our translation system, we recreate the models we described in Chapter 3 on page 37 using
our translation system. These are the myopic and own-payoff models for Games 1′ and 3′ of Ghosh
et al. (2017). The logical formulae for these models are as follows:

K1′

P : [(δP,1′ ∧ γP,1′ ∧ (1 6 2) ∧ root) 7→ c]P

K3′

P : [(δP,3′ ∧ γP,3′ ∧ (1 6 2) ∧ root) 7→ c]P

X 1′

P : [(αP,1′ ∧ βP,1′ ∧ γP,1′ ∧ δP,1′ ∧ (1 6 2) ∧ (2 6 4) ∧ (2 6 3) ∧ root) 7→ d]P

X 3′

P : [(αP,3′ ∧ βP,3′ ∧ γP,3′ ∧ δP,3′ ∧ (1 6 2) ∧ (2 6 4) ∧ root) 7→ d]P

We use these four formulae to automatically generate four models. We test these models using the
same method as used in Ghosh et al. (2015) (as found in Section 3.4 on page 48): for each of these
models, we let fifty virtual participants play fifty times each.

After running these models, we find that the proportions of down played for these models is the
same as those found in Table 3.2 on page 48. The automatically generated myopic models always
play down, and the automatically generated own-payoff models always play right. Reaction times
for our automatically generated myopic and own-payoff models can be found in Figure 4.4.
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Figure 4.4: Reaction times for our automatically generated myopic and own-payoff models.

In Figure 4.4, it can be seen that, just like the own-payoff models we created in Chapter 3 on
page 37, the automatically generated own-payoff models are too slow to model human reaction
times. However, we can train the models on focus actions to speed them up. To do so, we let
each virtual participant perform the training task several times, and then let them play the game
a single time to ensure that any speed-up is caused by playing the training tasks and not by the
game itself. The resulting reaction times can be found in Figure 4.5.

In Figure 4.5, it can be seen that our trained models are not much faster than the untrained
models (see Figure 4.4). In fact, we selected 200 gaze training trials because this seemed to be the
number where there was no speed-up from further training. Note that the virtual participants in
the ‘untrained’ models actually played 50 trials, so they were trained with 25 trials on average. It
appears that 25 trials of a game cause models to achieve reaction times of approximately 15 seconds,
and performing 200 gaze training tasks also cause models to achieve reaction times of approximately
15 seconds. It appears that training only on focus actions cannot bring the automatically generated
own-payoff model’s reaction times down to human reaction times, but perhaps training on the task
itself can. In Figure 4.6, reaction times for our automatically generated myopic and own-payoff
models can be found after 55 model runs.

In Figure 4.6, it can be seen that the own-payoff model fits the data from Ghosh et al. (2015)
and Ghosh et al. (2017) quite well after 55 model runs. However, it is still an issue why we should
pick this number, as explained in Section 3.5 on page 50.

We have seen that the automatically generated models cannot fit the human data when only
training on focus actions, but they fit the human data when training on playing full centipede
games. We have also seen that the models we create in Chapter 3 on page 37 can fit the human
data when only training on focus actions. This tells us that some new addition introduced in the
automatically generated models is the cause of this slow-down in reaction times. There are, in
fact, several new additions, as explained in Section 4.3.4 on page 59, which may all contribute to
this slow-down.

To prevent overfitting, we may not be able to compare our automatically generated models to
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Figure 4.5: Reaction times for our automatically generated myopic and own-payoff models after
200 training trials.

Figure 4.6: Reaction times for our automatically generated myopic and own-payoff models after
55 model runs.
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human data. However, we can compare different strategies with each other. For example, in Figure
4.6, it can be seen that the own-payoff model is faster in Game 3′ than in Game 1′. Furthermore,
the own-payoff models are about twice as slow as the myopic models, just as we’ve seen with our
models in Chapter 3 on page 37.

We also automatically create PRIMs models using the formulae corresponding to Theory of
Mind strategies as presented in Ghosh et al. (2015). These formulae describe strategies involving
zero-order, first-order, and second-order Theory of Mind. We only use Games 1′ and 3′ for these
models. Mean reaction times for these models can be found in Table 4.3. These reaction times are

Game 1′ Game 3′

ToM 0 34799.41 35220.34
ToM 1 34717.34 35341.00
ToM 2 34723.19 35337.90

Table 4.3: Mean reaction times in milliseconds for automatically generated Theory of Mind models
playing Games 1′ and 3′

very similar. This may be caused by each of these models’ formulae sharing many propositions,
such as the ones summarized with ϕ and ψP . Their main differences lie in the zero, one or two
memory retrievals they have to perform to verify their beliefs.

Table 4.4 contains proportions of down played by the Theory of Mind models. In Table 4.4,

Game 1′ Game 3′

ToM 0 0.4908 0.654
ToM 1 0.516 0.6492
ToM 2 0.5196 0.6472

Table 4.4: Proportions down played by automatically generated Theory of Mind models in Games
1′ and 3′

it can be seen that our automatically generated Theory of Mind models seem to play down more
frequently in Game 3′ than in Game 1′. None of these proportions are 0 or 1, as is the case with
our myopic and own-payoff models.

4.5 Exhaustive strategy formulae

In Section 4.3 on page 57, we describe our translation system which translates logical formulae into
PRIMs models. This translation system translates one formula at a time. However, in Ghosh et al.
(2014), it is demonstrated that the logic should be used to specify every possibility a strategy can
encounter in a game, using a disjunction of multiple formulae. For example, consider the myopic
strategy in Game 1′ of Ghosh et al. (2017) (which can be found in Figure 2.2 on page 19). A player
using the myopic strategy looks at his current and next payoff, plays down if his current payoff is
larger, and plays right if his next payoff is larger. These two possibilities can be represented as
follows:

K1′

P : [(〈c+〉(uP = 2) ∧ 〈d+〉〈e+〉(uP = 1) ∧ (1 6 2) ∧ root) 7→ c]P

K1′

P : [(〈c+〉(uP = 2) ∧ 〈d+〉〈e+〉(uP = 1) ∧ (2 6 1) ∧ root) 7→ d]P

A model can then try both of the strategies represented in the above strategy formulae. If the
conjunction of one of these formulae is true, it should play the action prescribed by the formula. If
the conjunction of one formula is not true, it should try the other formula. As long as you exhaust
all possibilities a strategy can encounter, at least one formula must be true, so the model will never
have to randomly select a strategy.

We expand our system to allow for constructs such as these. To represent them, we use a list of
strategy objects in Java. Such a list of strategy objects can then be used to automatically generate

65



a PRIMs model. The model will try a strategy and, if it does not apply, move on to the next
strategy. To do so, instead of placing the goal ‘playother’ into the goal buffer, it places the first
goal of the next strategy into the goal buffer as soon as one of the conjuncts of the current strategy
turns out to be false. Because checking the conjuncts of the next strategy starts at the root node
of the tree, the model will first move its focus back to the root of the tree, before moving on to the
next strategy. If the last strategy also fails, the model will play any enabled move. However, this
should not happen if the strategy formulae exhaust all possibilities.

Like the conjunction of propositions within a strategy formula, a disjunction of strategy for-
mulae themselves is also unordered. In this case, we simply create all permutations and run each
of them an equal number of times when generating data, removing any order effects.

4.5.1 Testing BI and EFR

To test our exhaustive models, we will create models using the BI and EFR strategies, which are
explained in Section 2.1 on page 17. We will use the strategies with Games 1 and 4 of Ghosh et al.
(2017), which can be found in Figure 2.1 on page 18. We use these games because player C ’s
payoff at the first leaf node differs between both games, which leads to different EFR strategies.
Furthermore, player P ’s payoff at the rightmost leaf node also differs between these games, leading
to different BI strategies in both games.

The formulae for BI in Game 1 are as follows:

−η1
P : [(ϕ ∧ ψP ∧ ψC ∧ 〈b−〉root ∧ B(n2,P )

g1 〈d〉e ∧ B(n2,P )
g1 〈d〉〈f〉g) 7→ c]P

The formulae for BI in Game 4 are as follows:

−η1
P : [(ϕ ∧ ψP ∧ ψC ∧ 〈b−〉root ∧ B(n2,P )

g1 〈d〉e ∧ B(n2,P )
g1 〈d〉〈f〉g) 7→ c]P

−η1
P : [(ϕ ∧ ψP ∧ ψC ∧ 〈b−〉root ∧ B(n2,P )

g1 〈d〉f ∧ B(n2,P )
g1 〈d〉〈f〉h) 7→ d]P

The formulae for EFR in Game 1 are as follows:

−η1
P : [(ϕ ∧ ψP ∧ ψC ∧ 〈b−〉root ∧ B(n2,P )

g1 〈d〉f ∧ B(n2,P )
g1 〈d〉〈f〉g) 7→ d]P

The formulae for EFR in Game 4 are as follows:

−η1
P : [(ϕ ∧ ψP ∧ ψC ∧ 〈b−〉root ∧ B(n2,P )

g1 〈d〉e ∧ B(n2,P )
g1 〈d〉〈f〉g) 7→ c]P

−η1
P : [(ϕ ∧ ψP ∧ ψC ∧ 〈b−〉root ∧ B(n2,P )

g1 〈d〉e ∧ B(n2,P )
g1 〈d〉〈f〉h) 7→ c]P

−η1
P : [(ϕ ∧ ψP ∧ ψC ∧ 〈b−〉root ∧ B(n2,P )

g1 〈d〉f ∧ B(n2,P )
g1 〈d〉〈f〉g) 7→ d]P

−η1
P : [(ϕ ∧ ψP ∧ ψC ∧ 〈b−〉root ∧ B(n2,P )

g1 〈d〉f ∧ B(n2,P )
g1 〈d〉〈f〉h) 7→ d]P

These formulae have been created by Sujata Ghosh (personal communication), author of some of
our references (Ghosh et al. (2014), Ghosh et al. (2015), Ghosh & Verbrugge (online first)). The
corresponding document can be found in Appendix E on page 104.

We use these formulae to have our translation system automatically generate a set of exhaustive
PRIMs models. We then use these models to obtain reaction times and decisions. The number
of possible orders of formulae is the factorial of the number of formulae. Therefore there will be
one possible order for the formulae for BI in Game 1, two possible orders for the formulae for BI
in Game 4, one possible order for the formulae for EFR in Game 1, and 24 possible orders for the
formulae for EFR in Game 1. We create a model for each of these orders. We run a model 48
times for each combination of a strategy and a game, where we run each possible order 48, divided
by the total number of possible orders, times. For example, there are 24 possible orders for the
formulae for EFR in Game 4, so we run each model corresponding to such an order two times.

The BI models only have BI beliefs in their declarative memory, and the EFR models only have
EFR beliefs in their declarative memory.
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Game 1 Game 4
BI 0.438 0.458
EFR 0.646 0.532
Human (Ghosh et al. (2017)) 0.397 0.273

Table 4.5: The proportion of human and virtual participants who played down in Game 1 and
Game 4

The proportions of down played for the exhaustive BI and EFR models, as well as the human
players in the experiment of Ghosh et al. (2017), can be found in Table 4.5. In Game 4, all
moves are both BI and EFR moves, according to Table 2.3 on page 22 and Table 2.4 on page 22.
Therefore, all beliefs in the BI and EFR formulae for Game 4 can be retrieved from declarative
memory. Furthermore, there is an equal number of formulae prescribing c and d. Therefore it is
not surprising that the proportions of BI and EFR models playing down in Game 4 are close to
0.5.

In Game 1, according to Table 2.3 on page 22 and Table 2.4 on page 22, C ’s only BI and EFR
move at its first decision node is to play a, or down. However, since the models start at the second
decision node, C has already played b. Therefore the model, when verifying a belief about C ’s
actions, tries to retrieve a strategy that starts with C playing b. However, because the only BI
and EFR moves for C are playing a at his first node, no such strategy is in the model’s declarative
memory. Therefore the model is not able to verify its beliefs about player C ’s actions, and it does
not always play the action prescribed by a formula.

More humans seem to play down in Game 1 than in Game 4. This corresponds to the propor-
tions of down played by the EFR models, suggesting that humans may use something similar to
EFR more than something similar to BI. However, one must remain cautious with such conclusions,
as there could be an alternative explanation for these proportions.

The reaction times for our automatically generated exhaustive BI and EFR models can be
found in Figure 4.7.

These reaction times somewhat correspond to the number of formulae required to describe all
possibilities for a strategy in the relevant game. The list of formulae for BI and EFR in Game 1
consists of one formula. Two formulae are required to describe the possibilities for BI in Game 4.
Four formulae are required to describe the possibilities for EFR in Game 4. The reaction times
do not seem to be a multiple of the number of formulae required to describe a strategy in a game,
but they do appear to be a multiple of the number of formulae required plus an intercept.

To test this, we perform a simple linear regression using number of formulae to predict reaction
times. A significant regression equation was found (F (1, 189) = 432.6, p < 2.2∗10−16), with an R2

of 0.696. Predicted reaction time in milliseconds is equal to 10401 + 50453·number of formulae.
A prediction of reaction times based on this model can be found in Figure 4.8.
It can be seen that the plots in Figure 4.8 and Figure 4.7 are very similar.
The fit of our linear regression model can be explained by the models created from our formulae.

Each model tries formulae until it finds one that fits the current situation, which could explain the
slope. The intercept could be explained by the fact that each model has to look at all payoffs and
compare all of these payoffs, regardless of the number of formulae.
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Figure 4.7: Reaction times for our automatically generated exhaustive BI and EFR models.
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Figure 4.8: Reaction times for our automatically generated exhaustive BI and EFR models, as
predicted by our linear regression model. ‘BI 1’ are the response times for our exhaustive BI model
in Game 1, and ‘EFR 4’ are the response times for our exhaustive EFR model in Game 4. The
remaining labels use the same notation.
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Chapter 5

Discussion & Conclusion

In this thesis, we try to bring two fields closer together. The field of formal logic, and the field
of cognitive modelling. We use a subset of dynamic perfect-information games, called centipede
games, in our investigations. Centipede games are explained in Section 1.1 on page 11. Within the
field of formal logic, there is a logic that can be used to express strategies in such centipede games,
which is explained in Ghosh & Verbrugge (online first). Within the field of cognitive modelling,
there is a relatively recent cognitive architecture called PRIMs (Taatgen, 2013b), which can be
used to model the human mind as it performs experimental tasks. Our goal in this thesis is to
create a general translation system which, when supplied with a strategy formula in the logic of
Ghosh & Verbrugge (online first), creates a cognitive model in the PRIMs cognitive architecture.
This PRIMs model should then be able to generate response times and decisions.

5.1 Chapter retrospect

5.1.1 Our myopic and own-payoff models

In Chapter 3 on page 37, we create PRIMs models that play the myopic and own-payoff strategies
as presented in Ghosh & Verbrugge (online first). We find that the actions performed by these
models do not resemble those of human participants, suggesting that human participants mostly
use different strategies. Furthermore, we find that the reaction times of our models are too slow
to resemble human reaction times. Because of Figure 3.2 on page 46, we believe that human
participants do not use strategies that are even less complex than the myopic strategy, so we think
that these slow reaction times are not caused by our models being too complex. Because training
the models on focus actions can be used to fit the human reaction times, we think that untrained
focus actions in PRIMs are too slow to model human gazes. An untrained PRIMs model is like a
small child, in that it does not have the experience with looking around visual displays that adults
have.

We have not only created the myopic and own-payoff models to verify the findings in Ghosh &
Verbrugge (online first) and expand on their myopic and own-payoff models, we have also created
them as a starting point for our general translation system, and to investigate focus actions in
PRIMs. Furthermore, these models help us understand what the myopic and own-payoff strategies
are, and how the logical formulae that represent them relate to them.

5.1.2 The general translation system

In Chapter 4 on page 52, we compare the formal logic presented in Ghosh & Verbrugge (online
first) to our moypic and own-payoff models created in Chapter 3 on page 37. Taking into account
the differences between them, we devise a way to create a general translation system. We describe
how we represent games and logical formulae in Java, and describe how we automatically generate
a PRIMs model using these Java representations. One of the main problems we encounter is that
propositions in a conjunction, in formal logic, are unsorted while our PRIMs models require them

70



to be ordered. We solve this problem by ordering such propositions using the shortest path through
the game tree, ordering the propositions using the order they appear in in this path.

We then automatically generate the myopic and own-payoff models, and find that our auto-
matically generate model results are similar to those of our hand-made models.

Finally, we expand our system by including exhaustive strategy formulae, where multiple for-
mulae are used to describe every possibility a strategy may encounter. We automatically generate
PRIMs models that use the backward induction (BI) and extensive-form rationalizable (EFR)
strategies from the strategies’ respective logical formulae, and find that the response times of these
models are a function of the number of formulae required to describe the corresponding strategy.

5.2 Findings

5.2.1 Our myopic and own-payoff models

In Section 3.3 on page 41, we discuss our creation of myopic and own-payoff models in PRIMs,
capable of playing any centipede game. We present a method of representing centipede games
hierarchically in PRIMs, which can be used in future work. We also add several focus actions to
the PRIMs cognitive architecture, adding more possibilities to how our models look through the
visual display.

In Section 3.4 on page 48, we present the results of our hand-made myopic and own-payoff
models. We find that the proportions of down played are the same as those in Ghosh & Verbrugge
(online first), and that the response times for the own-payoff models are approximately twice as
long as those of the myopic models, similar to the response times in Ghosh & Verbrugge (online
first). Furthermore, the proportions of down played and the relative response times adhere to
what the strategies prescribe, and how many payoffs one has to look at according to the strategies.
However, we also find that our myopic and own-payoff models respond much slower than the human
participants, unlike the myopic and own-payoff models presented in Ghosh & Verbrugge (online
first). Looking at the differences between our hand-made models and those in Ghosh & Verbrugge
(online first), this suggests that focus actions in PRIMs are too slow to resemble human saccades.
To test this, we train our models on focus actions, and find that their response times can fit those
of the human participants after doing so, confirming that our models’ focus actions are too slow,
and that PRIMs models need to be trained on focus actions to generate realistic response times.

5.2.2 Our translation system

In Section 4.2.1 on page 54, we present our method of representing game trees in Java, which may be
used in future work. In Section 4.2.2 on page 55, we present our method of representing strategies,
represented in the logic of Ghosh & Verbrugge (online first), in Java. Unlike in Ghosh & Verbrugge
(online first), our comparisons, such as (1 6 2), refer to two specific utilities at specific leaves in
the game tree, because otherwise our translation system would be unable to discern which utitilies
should be compared. In Section 4.3 on page 57, we present our system which translates logical
formulae, represented in Java, into PRIMs models. This system uses many useful Java methods
that may be used in future work. One such method computes the BI and EFR strategies given a
centipede game (or binary game), using the algorithm from Gradwohl & Heifetz (2011). Another
method automatically generates the PRIMs representation for a game tree represented using our
Java classes. We also propose a method that can be used to verify beliefs, by having the model
try to retrieve chunks from declarative memory corresponding to the belief to be verified, similar
to the method used in the models of Stevens et al. (2015). Lastly, we propose to sort propositions
in a logical formula using the location they should be verified at in the game tree, as propositions
in a logical conjunctions are unsorted, while PRIMs works through goals and operators in some
order.

In Section 1.4 on page 15, we asked what the smallest elements of ‘skill’ are in our automatically
generated models. In our system, these turn out to be the items within a conjunction of a strategy
formula.
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In Section 4.4.2 on page 62, we use our translation system to create myopic and own-payoff
models in PRIMs based on the formulae in Ghosh & Verbrugge (online first). We find very similar
results to our hand-made models presented in Section 3.3 on page 41, validating the automatically
generated models created by our translation system.

In Section 4.5 on page 65, we extend our translation system by including exhaustive strategies,
in which each possibility for a strategy in a game is listed using a logical formula. This system
creates the corresponding PRIMs models by chaining the PRIMs models for each of these formulae
together, moving its gaze back to the game tree’s root node whenever necessary.

In Section 4.5.1 on page 66, we test the exhaustive PRIMs models using the BI and EFR
strategies. Using a simple linear regression, we find that the response times of these models can
be predicted using the number of formulae used to list all possibilities for the strategy.

5.3 Future work

In the present section, we discuss future directions of research based on our findings.

5.3.1 Behavioural research questions

The system we discuss in Chapter 4 on page 52 creates models which use working memory to
store payoffs. These models can hold any number of payoffs in working memory, even though
human participants may not. We use this assumption in our models because of the increase in
model complexity when models can forget payoffs. To create more realistic models, a behavioural
experiment could be performed to investigate whether human participants forget payoffs in a
centipede game, and how they resolve this problem. To test this, one may use a method similar
to the one used in Payne et al. (1993), where the payoffs in a centipede game are not visible to
the participant unless they decide to ‘uncover’ them. A possible method would be to interrupt the
player by covering a payoff and asking them what the payoff value was.

In Section 4.5 on page 65, we find that response times are a function of the number of possibilities
a certain strategy has. This prediction can be experimentally tested, by letting human participants
play a set of games designed to have a different number of possibilities for a set of commonly used
strategies.

5.3.2 Problems in the formal logic

When creating our general translation system in Chapter 4, we encountered two problems while
interpreting the logic to create PRIMs operators. The first of these is that values in comparisons
such as (1 6 2) do not refer to specific payoffs at specific leaves in the game tree, so interpretation
is required to know which payoffs are being compared. Solving this problem may require changing
the logic. One solution would be to use payoffs such as 〈a+〉(UC = 1) instead of numerical values
within the comparison. Another would be to use variables instead of numerical values, such as
〈a+〉(UC = v1) and (v1 6 v2). The latter allows for more general strategy formulae, whereas the
former requires specific strategy formulae.

The second problem we encountered while interpreting the logic to create PRIMs operators

occurred when translating beliefs such as B(n2,P )
g1 〈d〉f . This proposition with its belief operator

states that at node n2, player P should believe that after a d move, f will be played. However, it
does not state how this belief is obtained. Therefore some interpretation is required when creating
a model that has to test this belief. Perhaps it would be better to use nested strategies, such as

the ones in Ghosh et al. (2015), to formulate beliefs. Even though the notation B(n2,P )
g1 〈d〉f is

easier to read, it does force us to make assumptions about the nature of these beliefs when creating
models. When using nested strategies for beliefs, no assumptions are required, because how the
belief should be achieved is described in the nested strategy.
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5.3.3 Cognitive modelling work

In Section 3.4 on page 48 and Section 3.5 on page 50, we found that our hand-made models are
too slow to accurately predict response times. We believe this is because models in the PRIMs
cognitive architecture are like children when gazing through a hierarchical display, in that they
have never seen such a display before. This can be tested by conducting an experiment where
children have to look through a hierarchical display, and comparing the results to those of PRIMs
models. In future work, it will be useful to conduct a behavioural experiment to investigate how
and how fast human participants look through hierarchical displays, such that its findings can be
used to improve PRIMs in order to make focus actions more representative of human gazes, or
to find a method of calculating the number of training trials that should yield realistic human
response times, assuming that the remainder of the model is accurate. Because PRIMs arose from
ACT-R, and ACT-R has a more advanced visual system (Anderson, Bothell, Byrne, Douglass,
Lebiere & Qin, 2004), one could also use ACT-R’s visual system as a starting point.

Another problem we encountered with the PRIMs visual system is that each focus action
requires one operator to be performed, including all of its conditions and actions, which inflates
response times. A solution may be to allow for multiple focus actions to be performed by a single
operator, by performing them one by one based on which slot of the manual buffer they were
placed in. For example, a single operator could place focus-down in both AC1, AC2, and AC3,
and PRIMs would perform three focus-down actions. In the current version of PRIMs this is not
possible, and only one focus action can be performed by an operator.

5.3.4 Bridging the gap

Although we have begun to bridge the gap between logic and cognitive modelling by creating a
system that creates PRIMs models from logical formulae, we are not yet finished. Our system could
be used to create more PRIMs models to be tested, and it can currently only translate a subset
of the logic presented in Ghosh & Verbrugge (online first). We did not include disjunctions and
negations in our translation system, leaving them as a subject for future work. We also assume
that beliefs are only used when describing actions, and our operators are always ordered with

beliefs first and steps last (such as B(n2,P )
g1 〈d〉), not allowing for different formats. In future work,

one could try to extend our translation system or to create a new one which allows for all formulae
possible in the logic of Ghosh & Verbrugge (online first).

Currently, our system translates formulae represented by Java classes, and these Java classes
have to be created by writing the Java code required to do so by hand. Another important
improvement could be the addition of a user interface which can be used to create games and
formulae more easily.

Finally, we have found that PRIMs models become very large when automatically generating
all possibilities a strategy prescribes. Some parts of these possibilities overlap, and some PRIMs
operators are identical. Due to the high number of operators and due to activation noise, mod-
els become prone to unexpected behaviour as they get larger, and smaller models are preferred.
Furthermore, models of such a large size are very difficult to intuitively understand.

Perhaps it could be useful to create a hybrid system, which uses PRIMs’ chunks, production
compilation, and activation formulae, but also allows for processes outside of operators. Such
a hybrid system can move through conjuncts and strategy formulae without requiring a large
number of goals and operators for each possibility. It can also keep track of which conjuncts
within a strategy’s formulae have already been checked, such that conjuncts present in multiple
formulae do not have to be checked twice without having to create even more goals and operators.
Furthermore, it can be used to greatly reduce the time required to gaze through the game tree.
Another problem that can be solved by such a hybrid system is the fact that we need, for each
goal that corresponds to a proposition, another goal that moves the focus back to the root of the
tree if this proposition turns out to be false. Within a hybrid system, a general solution could be
used for this problem.

Another question we encountered during this research is ‘Is it possible to automatically generate
logical formulae from models in the PRIMs cognitive architecture?’ Research such as Gall &

73



Frühwirth (2015) and Gall & Frühwirth (2016) has shown that it is indeed possible to formalize
models in the ACT-R cognitive architecture by hand. Due to the similarities between PRIMs and
ACT-R we suspect that this should also be possible for the PRIMs cognitive architecture. Models
in the PRIMs cognitive architecture use condition-action rules to operate, which are already quite
similar to logical if-then statements. A system that automatically generates logical formulae based
on cognitive models could be used to formalize existing models, such that their strategies can be
intuitively understood, or compared to strategy formulae based on human behaviour.

5.4 Conclusion

The main goal of this thesis is to help understand human behaviour, in our case in centipede
games, a subset of dynamic-perfect information games. On one hand, game theorists use formal
logic to describe human behaviour. On the other hand, cognitive scientists use cognitive models to
predict human behaviour. To help understand human behaviour, we created a general translation
system which can use formalizations of strategies to automatically generate cognitive models of
the human mind. The place of our work in this continuing body of research can be found in
Figure 5.1, and is indicated with a red arrow. Here, each arrow is a line of research. In Figure

Figure 5.1: A schematic diagram of how our work fits into existing research. Dashed lines indicate
automated processes.

5.1, human behaviour can be found at the top of the diagram, as all research involved aims to
understand human behaviour. By observing human behaviour, game theorists use formal modelling
to formalize strategies that are being used by human participants. These formal strategies can then
be used by cognitive scientists to manually construct cognitive models of the human mind. These
models can then automatically generate response times, decisions made, brain activity, and loci of
attention. The behaviour of such a model (as well as the strategy formula the model is based on) can
then be verified by constructing a behavioural experiment. From these behavioural experiments,
data about human behaviour can be obtained, which closes the circle.

In this thesis we describe how we succeeded in creating a general translation system which
creates cognitive models from formal strategies. This system can use any logical formula in the
subset of the logic we are using (Ghosh & Verbrugge, online first) to automatically generate fully
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functioning models in the PRIMs cognitive architecture (Taatgen, 2013b). This opens up a new
line between formal strategies and cognitive modelling. Formerly, researchers had to manually
create cognitive models that are based on strategy formulae. Our system shows that this process
can be automated, such that only formal strategies have to be created manually before model
behaviour can be obtained automatically.

The models our system creates are fully functioning PRIMs models. We verified our system
by comparing these models to models we made by hand, and found similar response times and
actions. Our system shows that not all PRIMs models have to be made by hand, and automatically
generating models can save a lot of time, as well as ensure consistency between different models.It
also shows how strategies in a formal logic can be used to predict response times and actions.
As an example of what our system could be used for, we have successfully used our system to
make predictions about human behaviour based on the backward induction and extensive-form
rationalizable strategies. When looking at the literature, our system seems to be the first effort at
automatically generating cognitive models in PRIMs based on logical formulae, and we are eager
to see more research in this area in the future.
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Appendices

A: Original myopic and own-payoff models

This section contains the full myopic and own-payoff models created for Ghosh & Verbrugge (online
first). The myopic model is as follows:

define goal find {
operator find−location−1{

V1<>nil
WM1=nil
==>
V1−>WM1

}

operator find−location−2 {
V2<>nil
WM1<>nil
WM3=nil
==>
V2−>WM3
compare−>G1

}
}

define goal compare {
operator check−largest−payoff−retrieve {

WM1<>nil
WM3<>nil
==>
WM1−>RT1
WM3−>RT3

}

operator check−largest−payoff−bigger {
RT1<>nil
RT2=GC1
RT3<>nil
==>
RT2−>WM2
play−>AC1
left−>AC2
done−>G1

}

operator check−largest−payoff−not−bigger {
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RT1<>nil
RT2<>GC1
RT3<>nil
==>
RT2−>WM2
play−>ac1
right−>ac2
done−>G1

}
}

define goal next {
operator last−comparison {

V1=done
WM2<>nil
==>
respond−>ac1
anything−>ac2

}

operator new−comparison {
V1<>done
WM2<>nil
==>
nil−>WM1
nil−>WM2
nil−>WM3
find−>G1

}

}

The own-payoff model is as follows:

define goal find {
operator find−location−1{

V1<>nil
WM1=nil
==>
V1−>WM1

}

operator find−location−2 {
V2<>nil
WM1<>nil
WM3=nil
==>
V2−>WM3
compare−>G1

}
}

define goal compare {
operator check−largest−payoff−retrieve {

WM1<>nil
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WM3<>nil
==>
WM1−>RT1
WM3−>RT3

}

operator check−largest−payoff−bigger {
RT1<>nil
RT2=GC1
RT3<>nil
==>
RT2−>WM2
focus−>AC1
next−>AC2
next−>G1

}

operator check−largest−payoff−not−bigger {
RT1<>nil
RT2<>GC1
RT3<>nil
==>
RT2−>WM2
play−>AC1
right−>AC2

}
}

define goal next {
operator last−comparison {

V1=done
WM2<>nil
==>
play−>ac1
left−>ac2
done−>G1

}

operator new−comparison {
V1<>done
WM2<>nil
==>
nil−>WM1
nil−>WM2
nil−>WM3
find−>G1

}

}
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B: Our myopic and own-payof models

This section contains the full myopic and own-payoff models we created in PRIMs, including
comments. The myopic model is as follows:

//Myopic Forward Reasoning model by Jordi Top (s2402319)
//Plays centipede games by comparing its own current payoff to its next payoff.
//Games included are the following:

//Game 1: (4,1) (1,2) (3,1) (1,4) (6,3) C−P−C−P
//Game 2: (2,1) (1,2) (3,1) (1,4) (6,3) C−P−C−P
//Game 3: (4,1) (1,2) (3,1) (1,4) (6,4) C−P−C−P
//Game 4: (2,1) (1,2) (3,1) (1,4) (6,4) C−P−C−P
//Game 1’: (1,2) (3,1) (1,4) (6,3) P−C−P
//Game 3’: (1,2) (3,1) (1,4) (6,4) P−C−P

//a,c,e,g = down, game ends. h = right, game ends
//b, d, f = right, game continues.

//Representation of game 1:
//screen(
//[”node”,”C”,”notcurrent”,
//[”node”,”P”,”current”,
//[”node”,”C”,”notcurrent”,
//[”node”,”P”,”notcurrent”,[”leaf”,6,3],[”leaf”,1,4]],
//[”leaf”,3,1]],
//[”leaf”,1,2]],
//[”leaf”,4,1]])

define task MyopicForwardReasoningJordi {
initial−goals: (findcurrent) //Start by finding where the token is
goals: (findvals compare preparenext)
task−constants: (bigger not c p current notcurrent node leaf root end down right

↪→ comparison)
imaginal−autoclear: nil
default−activation: 1.0 //Minimum activation of pre−existing chunk
rt: −2.0 //Retrieval threshold
ol: t //Optimized learning
batch−trace: t
default−operator−self−assoc: 0 //Default −1.0, self−association of operator
default−operator−assoc: 4 //Default 4.0, association between operator and goal

}

//Find where the token currently is
define goal findcurrent{

//If you are looking at the current node, move to goal ”findvals”
operator found−current−node {

V1 = node
WM1 = nil
V3 = current

==>
findvals −> G1

}
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//If you are not looking at the current node, focus down (at the next node)
operator not−found−current−node {

V1 = node
WM1 = nil
V3 = notcurrent

==>
focusdown −> AC1

}
}

//Find payoffs at the current and next node
define goal findvals{

//If you are at the current node, focus at its first leaf
operator init−read−current {

V1 = node
V3 = current
WM1 = nil
WM3 = nil

==>
focus−down−last −> AC1

}

//Store your own payoff at the current node in WM1
operator read−current−leaf {

V1 = leaf
WM1 = nil
WM3 = nil

==>
V3 −> WM1
focus−up−stay −> AC1

}

operator move−next−node {
V1 = node
V3 = current
WM1 <> nil
WM3 = nil

==>
focus−down −> AC1

}

//Move to the next leaf
operator find−next−node {

V1 = node
V3 <> current
WM1 <> nil
WM3 = nil

==>
focus−down−last −> AC1

}

//Store your own payoff for the next leaf in WM3 and move to goal ’compare’
operator find−next−leaf {

80



V1 = leaf
WM1 <> nil
WM3 = nil

==>
V3 −> WM3
focus−up−stay −> AC1
compare −> G1

}
}

//Compare two payoffs
define goal compare {

//Retrieve a ’bigger’−fact with your own current and next payoffs in slot values RT1
↪→ and RT3

operator start−retrieval {
WM1 <> nil
WM3 <> nil
RT1 = nil

==>
WM1 −> RT1
WM3 −> RT3
comparison −> RT4

}

//If we retrieve that the first is bigger, play down, and prepare start with goal ’
↪→ preparenext’

operator first−bigger {
RT1 <> nil
RT2 = bigger
RT3 <> nil
RT4 = comparison

==>
play −> AC1
down −> AC2
done −> WM2
preparenext −> G1

}

//If the second is bigger, play right, and prepare start with goal ’preparenext’
operator second−bigger {

RT1 <> nil
RT2 = not
RT3 <> nil
RT4 = comparison

==>
play −> AC1
right −> AC2
done −> WM2
preparenext −> G1

}
}

//Prepare for a next turn
define goal preparenext {
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//Clear working memory and start at ’findvals’ again
operator reset−game {

WM2 = done
==>

nil −> WM1
nil −> WM2
nil −> WM3
findvals −> G1

}
}

//Store for all combinations of 0 through 9 whether the first is larger in memory
define init−script {

for i in 1 to 6 {
for j in 1 to 6 {

if (i > j) {
name = ”larger−” + i
name = name + ”−”
name = name + j
add−dm(name, i, ”bigger”, j, ”comparison”)

} else {
name = ”notlarger−” + i
name = name + ”−”
name = name + j
add−dm(name, i, ”not”, j, ”comparison”)

}
}

}
}

define script {

params = batch−parameters() //Allows reading parameters from a batch file
if(params == ”NA”){ //If those are not present,

params = [1,”b”,”f”] //Use game 1 where player C will play ”b” and ”f” (see
↪→ above for all games). Change to 1,2,3,4,11,13,a,b,e or f, to change the
↪→ game.

}
if((params[0] == 11) || (params[0] == 31)){ //If we’re using a pruned game, set player

↪→ C’s first move to ”C” (to prevent the ”a” if−clause from firing)
params[1] = ”b”

}
trial−start()
if(params[1] == ”a”){ //If C plays ”a”, end the game

issue−reward(1)
trial−end()

}
if(params[1] == ”b”){ //If C plays ”b”, or if the pruned games are used...

if(params[0] == 1){ //Load game 1
screen(
[”node”,”c”,”notcurrent”,”root”,”notend”,
[”node”,”p”,”current”,”notroot”,”notend”,
[”node”,”c”,”notcurrent”,”notroot”,”notend”,
[”node”,”p”,”notcurrent”,”notroot”,”end”,[”leaf”,6,3],[”leaf”,1,4]],
[”leaf”,3,1]],
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[”leaf”,1,2]],
[”leaf”,4,1]])

}
if(params[0] == 2){ //Load game 2

screen(
[”node”,”c”,”notcurrent”,”root”,”notend”,
[”node”,”p”,”current”,”notroot”,”notend”,
[”node”,”c”,”notcurrent”,”notroot”,”notend”,
[”node”,”p”,”notcurrent”,”notroot”,”end”,[”leaf”,6,3],[”leaf”,1,4]],
[”leaf”,3,1]],
[”leaf”,1,2]],
[”leaf”,2,1]])

}
if(params[0] == 3){ //Load game 3

screen(
[”node”,”c”,”notcurrent”,”root”,”notend”,
[”node”,”p”,”current”,”notroot”,”notend”,
[”node”,”c”,”notcurrent”,”notroot”,”notend”,
[”node”,”p”,”notcurrent”,”notroot”,”end”,[”leaf”,6,4],[”leaf”,1,4]],
[”leaf”,3,1]],
[”leaf”,1,2]],
[”leaf”,4,1]])

}
if(params[0] == 4){ //Load game 4

screen(
[”node”,”c”,”notcurrent”,”root”,”notend”,
[”node”,”p”,”current”,”notroot”,”notend”,
[”node”,”c”,”notcurrent”,”notroot”,”notend”,
[”node”,”p”,”notcurrent”,”notroot”,”end”,[”leaf”,6,4],[”leaf”,1,4]],
[”leaf”,3,1]],
[”leaf”,1,2]],
[”leaf”,2,1]])

}
if(params[0] == 11){ //Load game 1’

screen(
[”node”,”p”,”current”,”root”,”notend”,
[”node”,”c”,”notcurrent”,”notroot”,”notend”,
[”node”,”p”,”notcurrent”,”notroot”,”end”,[”leaf”,6,3],[”leaf”,1,4]],
[”leaf”,3,1]],
[”leaf”,1,2]],)

}
if(params[0] == 31){ //Load game 3’

screen(
[”node”,”p”,”current”,”root”,”notend”,
[”node”,”c”,”notcurrent”,”notroot”,”notend”,
[”node”,”p”,”notcurrent”,”notroot”,”end”,[”leaf”,6,4],[”leaf”,1,4]],
[”leaf”,3,1]],
[”leaf”,1,2]],)

}
}

set−data−file−field(0, ”firstmove”)
run−until−action(”play”) //Display the game until the player plays an action
ac = last−action()
if(ac[0]==”play”){
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if(ac[1]==”down”){ //If the player moves down, end the game
issue−reward(2)
trial−end()

}
if(ac[1]==”right”){

if(params[2]==”e”){ //If the player moves right and the computer
↪→ moves down afterwards, end the game

issue−reward(1)
trial−end()

}
if(params[2]==”f”){ //If the player moves right and the computer

↪→ moves right, change the location of the token
if(params[0] == 1){

screen(
[”node”,”c”,”notcurrent”,”root”,”notend”,
[”node”,”p”,”notcurrent”,”notroot”,”notend”,
[”node”,”c”,”notcurrent”,”notroot”,”notend”,
[”node”,”p”,”current”,”notroot”,”end”,[”leaf”,6,3],[”leaf

↪→ ”,1,4]],
[”leaf”,3,1]],
[”leaf”,1,2]],
[”leaf”,4,1]])

}
if(params[0] == 2){

screen(
[”node”,”c”,”notcurrent”,”root”,”notend”,
[”node”,”p”,”notcurrent”,”notroot”,”notend”,
[”node”,”c”,”notcurrent”,”notroot”,”notend”,
[”node”,”p”,”current”,”notroot”,”end”,[”leaf”,6,3],[”leaf

↪→ ”,1,4]],
[”leaf”,3,1]],
[”leaf”,1,2]],
[”leaf”,2,1]])

}
if(params[0] == 3){

screen(
[”node”,”c”,”notcurrent”,”root”,”notend”,
[”node”,”p”,”notcurrent”,”notroot”,”notend”,
[”node”,”c”,”notcurrent”,”notroot”,”notend”,
[”node”,”p”,”current”,”notroot”,”end”,[”leaf”,6,4],[”leaf

↪→ ”,1,4]],
[”leaf”,3,1]],
[”leaf”,1,2]],
[”leaf”,4,1]])

}
if(params[0] == 4){

screen(
[”node”,”c”,”notcurrent”,”root”,”notend”,
[”node”,”p”,”notcurrent”,”notroot”,”notend”,
[”node”,”c”,”notcurrent”,”notroot”,”notend”,
[”node”,”p”,”current”,”notroot”,”end”,[”leaf”,6,4],[”leaf

↪→ ”,1,4]],
[”leaf”,3,1]],
[”leaf”,1,2]],
[”leaf”,2,1]])
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}
if(params[0] == 11){

screen(
[”node”,”p”,”notcurrent”,”root”,”notend”,
[”node”,”c”,”notcurrent”,”notroot”,”notend”,
[”node”,”p”,”current”,”notroot”,”end”,[”leaf”,6,3],[”leaf

↪→ ”,1,4]],
[”leaf”,3,1]],
[”leaf”,1,2]],)

}
if(params[0] == 31){

screen(
[”node”,”p”,”notcurrent”,”root”,”notend”,
[”node”,”c”,”notcurrent”,”notroot”,”notend”,
[”node”,”p”,”current”,”notroot”,”end”,[”leaf”,6,4],[”leaf

↪→ ”,1,4]],
[”leaf”,3,1]],
[”leaf”,1,2]],)

}

}
}

}

set−data−file−field(0, ”secondmove”)
run−until−action(”play”) //Play until the player has taken his second turn
ac = last−action() //Issue a reward based on the player’s last action and the game

↪→ being played
if(ac[0]==”play”){

if(ac[1]==”down”){
issue−reward(4)
trial−end()

}
if(ac[1]==”right”){

if((params[0] == 1) || (params[0] == 2) || (params[0] == 11)){
issue−reward(3)

}
if((params[0] == 3) || (params[0] == 4) || (params[0] == 31)){

issue−reward(4)
}
trial−end()

}
}

}

The own-payoff model is as follows:

//Forward Reasoning model by Jordi Top (s2402319)
//Plays centipede games by comparing its own current payoff to all of its next payoffs.
//Games included are the following:

//Game 1: (4,1) (1,2) (3,1) (1,4) (6,3) C−P−C−P
//Game 2: (2,1) (1,2) (3,1) (1,4) (6,3) C−P−C−P
//Game 3: (4,1) (1,2) (3,1) (1,4) (6,4) C−P−C−P
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//Game 4: (2,1) (1,2) (3,1) (1,4) (6,4) C−P−C−P
//Game 1’: (1,2) (3,1) (1,4) (6,3) P−C−P
//Game 3’: (1,2) (3,1) (1,4) (6,4) P−C−P

//a,c,e,g = down, game ends. h = right, game ends
//b, d, f = right, game continues.

//Representation of game 1:
//screen(
//[”node”,”C”,”notcurrent”,
//[”node”,”P”,”current”,
//[”node”,”C”,”notcurrent”,
//[”node”,”P”,”notcurrent”,[”leaf”,6,3],[”leaf”,1,4]],
//[”leaf”,3,1]],
//[”leaf”,1,2]],
//[”leaf”,4,1]])

define task ForwardReasoningJordi {
initial−goals: (findcurrent) //Start by finding where the token is
goals: (findvals compare preparenext)
task−constants: (bigger not c p current notcurrent node leaf root end down right

↪→ comparison)
imaginal−autoclear: nil
default−activation: 1.0 //Minimum activation of pre−existing chunk
rt: −2.0 //Retrieval threshold
ol: t //Optimized learning
batch−trace: t
default−operator−self−assoc: 0 //Default −1.0, self−association of operator

}

//Find where the token currently is
define goal findcurrent{

//If you are looking at the current node, move to goal ”findvals”
operator found−current−node {

V1 = node
WM1 = nil
V3 = current

==>
findvals −> G1

}

//If you are not looking at the current node, focus down (at the next node)
operator not−found−current−node {

V1 = node
WM1 = nil
V3 = notcurrent

==>
focusdown −> AC1

}
}

//Find payoffs at the current and next node(s)
define goal findvals{
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//If you are at the current node, focus at its first leaf
operator init−read−current {

V1 = node
WM1 = nil
WM3 = nil

==>
focus−down−last −> AC1

}

//Store your own payoff at the current node in WM1
operator read−current−leaf {

V1 = leaf
WM1 = nil
WM3 = nil

==>
V3 −> WM1
focus−up−stay −> AC1

}

operator move−next−node {
V1 = node
V5 <> end
WM1 <> nil
WM2 = nil
WM3 = nil

==>
focus−down −> AC1
notcurrent −> WM2

}

//Move to the next leaf
operator find−next−node {

V1 = node
WM1 <> nil
WM2 = notcurrent
WM3 = nil

==>
focus−down−last −> AC1

}

//Store your own payoff for the next leaf in WM3 and move to goal ’compare’
operator find−next−leaf {

V1 = leaf
WM1 <> nil
WM2 = notcurrent
WM3 = nil

==>
V3 −> WM3
focus−up−stay −> AC1
compare −> G1

}

operator move−next−node−end−of−tree {
V1 = node
V5 = end

87



WM1 <> nil
WM2 = nil
WM3 = nil

==>
focus−down −> AC1
end −> WM2

}

operator find−next−leaf−end−of−tree {
V1 = leaf
WM1 <> nil
WM2 = end
WM3 = nil

==>
V3 −> WM3
focus−up−stay −> AC1
compare −> G1

}
}

//Compare two payoffs
define goal compare {

//Retrieve a ’bigger’−fact with your own current and next payoffs in slot values RT1
↪→ and RT3

operator start−retrieval {
WM1 <> nil
WM3 <> nil
RT1 = nil

==>
WM1 −> RT1
WM3 −> RT3
comparison −> RT4

}

//If we retrieve that the first is bigger, don’t play yet, because there may still be bigger
↪→ payoffs later.

operator first−bigger {
RT1 <> nil
RT2 = bigger
RT3 <> nil
RT4 = comparison
WM2 <> end

==>
nil −> WM2
nil −> WM3
findvals −> G1

}

operator first−bigger−end−of−tree {
RT1 <> nil
RT2 = bigger
RT3 <> nil
RT4 = comparison
WM2 = end
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==>
play −> AC1
down −> AC2
done −> WM2
preparenext −> G1

}

//If the second is bigger, play right, and prepare start with goal ’preparenext’
operator second−bigger {

RT1 <> nil
RT2 = not
RT3 <> nil
RT4 = comparison

==>
play −> AC1
right −> AC2
done −> WM2
preparenext −> G1

}
}

//Prepare for a next turn
define goal preparenext {

//Clear working memory and start at ’findvals’ again
operator reset−game {

WM2 = done
==>

nil −> WM1
nil −> WM2
nil −> WM3
findcurrent −> G1

}
}

//Store for all combinations of 0 through 9 whether the first is larger in memory
define init−script {

for i in 1 to 6 {
for j in 1 to 6 {

if (i > j) {
name = ”larger−” + i
name = name + ”−”
name = name + j
add−dm(name, i, ”bigger”, j, ”comparison”)

} else {
name = ”notlarger−” + i
name = name + ”−”
name = name + j
add−dm(name, i, ”not”, j, ”comparison”)

}
}

}
}

define script {
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params = batch−parameters() //Allows reading parameters from a batch file
if(params == ”NA”){ //If those are not present,

params = [1,”b”,”f”] //Use game 1 where player C will play ”b” and ”f” (see
↪→ above for all games). Change to 1,2,3,4,11,13,a,b,e or f, to change the
↪→ game.

}
if((params[0] == 11) || (params[0] == 31)){ //If we’re using a pruned game, set player

↪→ C’s first move to ”C” (to prevent the ”a” if−clause from firing)
params[1] = ”b”

}
trial−start()
if(params[1] == ”a”){ //If C plays ”a”, end the game

issue−reward(1)
trial−end()

}
if(params[1] == ”b”){ //If C plays ”b”, or if the pruned games are used...

if(params[0] == 1){ //Load game 1
screen(
[”node”,”c”,”notcurrent”,”root”,”notend”,
[”node”,”p”,”current”,”notroot”,”notend”,
[”node”,”c”,”notcurrent”,”notroot”,”notend”,
[”node”,”p”,”notcurrent”,”notroot”,”end”,[”leaf”,6,3],[”leaf”,1,4]],
[”leaf”,3,1]],
[”leaf”,1,2]],
[”leaf”,4,1]])

}
if(params[0] == 2){ //Load game 2

screen(
[”node”,”c”,”notcurrent”,”root”,”notend”,
[”node”,”p”,”current”,”notroot”,”notend”,
[”node”,”c”,”notcurrent”,”notroot”,”notend”,
[”node”,”p”,”notcurrent”,”notroot”,”end”,[”leaf”,6,3],[”leaf”,1,4]],
[”leaf”,3,1]],
[”leaf”,1,2]],
[”leaf”,2,1]])

}
if(params[0] == 3){ //Load game 3

screen(
[”node”,”c”,”notcurrent”,”root”,”notend”,
[”node”,”p”,”current”,”notroot”,”notend”,
[”node”,”c”,”notcurrent”,”notroot”,”notend”,
[”node”,”p”,”notcurrent”,”notroot”,”end”,[”leaf”,6,4],[”leaf”,1,4]],
[”leaf”,3,1]],
[”leaf”,1,2]],
[”leaf”,4,1]])

}
if(params[0] == 4){ //Load game 4

screen(
[”node”,”c”,”notcurrent”,”root”,”notend”,
[”node”,”p”,”current”,”notroot”,”notend”,
[”node”,”c”,”notcurrent”,”notroot”,”notend”,
[”node”,”p”,”notcurrent”,”notroot”,”end”,[”leaf”,6,4],[”leaf”,1,4]],
[”leaf”,3,1]],
[”leaf”,1,2]],
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[”leaf”,2,1]])
}
if(params[0] == 11){ //Load game 1’

screen(
[”node”,”p”,”current”,”root”,”notend”,
[”node”,”c”,”notcurrent”,”notroot”,”notend”,
[”node”,”p”,”notcurrent”,”notroot”,”end”,[”leaf”,6,3],[”leaf”,1,4]],
[”leaf”,3,1]],
[”leaf”,1,2]],)

}
if(params[0] == 31){ //Load game 3’

screen(
[”node”,”p”,”current”,”root”,”notend”,
[”node”,”c”,”notcurrent”,”notroot”,”notend”,
[”node”,”p”,”notcurrent”,”notroot”,”end”,[”leaf”,6,4],[”leaf”,1,4]],
[”leaf”,3,1]],
[”leaf”,1,2]],)

}
}

set−data−file−field(0, ”firstmove”)
run−until−action(”play”) //Display the game until the player plays an action
ac = last−action()
if(ac[0]==”play”){

if(ac[1]==”down”){ //If the player moves down, end the game
issue−reward(2)
trial−end()

}
if(ac[1]==”right”){

if(params[2]==”e”){ //If the player moves right and the computer
↪→ moves down afterwards, end the game

issue−reward(1)
trial−end()

}
if(params[2]==”f”){ //If the player moves right and the computer

↪→ moves right, change the location of the token
if(params[0] == 1){

screen(
[”node”,”c”,”notcurrent”,”root”,”notend”,
[”node”,”p”,”notcurrent”,”notroot”,”notend”,
[”node”,”c”,”notcurrent”,”notroot”,”notend”,
[”node”,”p”,”current”,”notroot”,”end”,[”leaf”,6,3],[”leaf

↪→ ”,1,4]],
[”leaf”,3,1]],
[”leaf”,1,2]],
[”leaf”,4,1]])

}
if(params[0] == 2){

screen(
[”node”,”c”,”notcurrent”,”root”,”notend”,
[”node”,”p”,”notcurrent”,”notroot”,”notend”,
[”node”,”c”,”notcurrent”,”notroot”,”notend”,
[”node”,”p”,”current”,”notroot”,”end”,[”leaf”,6,3],[”leaf

↪→ ”,1,4]],
[”leaf”,3,1]],
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[”leaf”,1,2]],
[”leaf”,2,1]])

}
if(params[0] == 3){

screen(
[”node”,”c”,”notcurrent”,”root”,”notend”,
[”node”,”p”,”notcurrent”,”notroot”,”notend”,
[”node”,”c”,”notcurrent”,”notroot”,”notend”,
[”node”,”p”,”current”,”notroot”,”end”,[”leaf”,6,4],[”leaf

↪→ ”,1,4]],
[”leaf”,3,1]],
[”leaf”,1,2]],
[”leaf”,4,1]])

}
if(params[0] == 4){

screen(
[”node”,”c”,”notcurrent”,”root”,”notend”,
[”node”,”p”,”notcurrent”,”notroot”,”notend”,
[”node”,”c”,”notcurrent”,”notroot”,”notend”,
[”node”,”p”,”current”,”notroot”,”end”,[”leaf”,6,4],[”leaf

↪→ ”,1,4]],
[”leaf”,3,1]],
[”leaf”,1,2]],
[”leaf”,2,1]])

}
if(params[0] == 11){

screen(
[”node”,”p”,”notcurrent”,”root”,”notend”,
[”node”,”c”,”notcurrent”,”notroot”,”notend”,
[”node”,”p”,”current”,”notroot”,”end”,[”leaf”,6,3],[”leaf

↪→ ”,1,4]],
[”leaf”,3,1]],
[”leaf”,1,2]],)

}
if(params[0] == 31){

screen(
[”node”,”p”,”notcurrent”,”root”,”notend”,
[”node”,”c”,”notcurrent”,”notroot”,”notend”,
[”node”,”p”,”current”,”notroot”,”end”,[”leaf”,6,4],[”leaf

↪→ ”,1,4]],
[”leaf”,3,1]],
[”leaf”,1,2]],)

}

}
}

}

set−data−file−field(0, ”secondmove”)
run−until−action(”play”) //Play until the player has taken his second turn
ac = last−action() //Issue a reward based on the player’s last action and the game

↪→ being played
if(ac[0]==”play”){

if(ac[1]==”down”){
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issue−reward(4)
trial−end()

}
if(ac[1]==”right”){

if((params[0] == 1) || (params[0] == 2) || (params[0] == 11)){
issue−reward(3)

}
if((params[0] == 3) || (params[0] == 4) || (params[0] == 31)){

issue−reward(4)
}
trial−end()

}
}

}

C: Training models for our myopic and own-payoff models

This section contains the models used to train our myopic and own-payoff models in performing
focus actions. The training model for the myopic model is as follows:

//Gaze t r a i n i n g task by Jord i Top ( s2402319 )
//Gazes through cent ipede games .

// Representat ion o f game :
// s c r e en (
// [” node ” ,”C” ,” notcur rent ” ,
// [” node ” ,”P” ,” cur rent ” ,
// [” node ” ,”C” ,” notcur rent ” ,
// [” node ” ,”P” ,” notcurrent ” , [ ” l e a f ” , 0 , 0 ] , [ ” l e a f ” , 0 , 0 ] ] ,
// [” l e a f ” , 0 , 0 ] ] ,
// [” l e a f ” , 0 , 0 ] ] ,
// [” l e a f ” , 0 , 0 ] ] )

d e f i n e task GazeTrainTaskMyopic {
i n i t i a l −goa l s : ( f i n d c u r r e n t ) // Star t by f i n d i n g where the token

↪→ i s
g oa l s : ( f i n d v a l s compare preparenext )
task−cons tant s : ( b i gge r not c p cur rent notcur rent node l e a f

↪→ root end down r i g h t comparison )
imaginal−a u t o c l e a r : n i l
de fau l t−a c t i v a t i o n : 1 . 0 //Minimum a c t i v a t i o n o f pre−e x i s t i n g

↪→ chunk
r t : −2.0 // R e t r i e v a l th r e sho ld
o l : t // Optimized l e a r n i n g
batch−t r a c e : t
de fau l t−operator−s e l f −as soc : 0 // Defau l t −1.0 , s e l f −a s s o c i a t i o n

↪→ o f operator
de fau l t−operator−as soc : 4 // Defau l t 4 . 0 , a s s o c i a t i o n between

↪→ operator and goa l
}

//Find where the token c u r r e n t l y i s
d e f i n e goa l f i n d c u r r e n t {
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// I f you are l ook ing at the cur rent node , move to goa l ”
↪→ f i n d v a l s ”

operator found−current−node {
V1 = node
WM1 = n i l
V3 = current

==>
f i n d v a l s −> G1

}

// I f you are not l ook ing at the cur rent node , f o cus down ( at
↪→ the next node )

operator not−found−current−node {
V1 = node
WM1 = n i l
V3 = notcurrent

==>
focusdown −> AC1

}
}

//Find p a y o f f s at the cur rent and next node
d e f i n e goa l f i n d v a l s {

// I f you are at the cur rent node , f o cu s at i t s f i r s t l e a f
operator i n i t−read−cur rent {

V1 = node
V3 = current
WM1 = n i l
WM3 = n i l

==>
focus−down−l a s t −> AC1

}

// Store your own payo f f at the cur rent node in WM1
operator read−current− l e a f {

V1 = l e a f
WM1 = n i l
WM3 = n i l

==>
V3 −> WM1
focus−up−s tay −> AC1

}

operator move−next−node {
V1 = node
V3 = current
WM1 <> n i l
WM3 = n i l

==>
focus−down −> AC1

}

//Move to the next l e a f
operator f ind−next−node {
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V1 = node
V3 <> cur rent
WM1 <> n i l
WM3 = n i l

==>
focus−down−l a s t −> AC1

}

// Store your own payo f f f o r the next l e a f in WM3 and move to
↪→ goa l ’ compare ’

operator f ind−next− l e a f {
V1 = l e a f
WM1 <> n i l
WM3 = n i l

==>
V3 −> WM3
focus−up−s tay −> AC1
compare −> G1

}
}

//Compare two p a y o f f s
d e f i n e goa l compare {

operator play−r i g h t {
G1 = compare

==>
play −> AC1
r i g h t −> AC2
done −> WM2
preparenext −> G1

}

}

// Prepare f o r a next turn
d e f i n e goa l preparenext {

// Clear working memory and s t a r t at ’ f i n d v a l s ’ again
operator r e s e t−game {

WM2 = done
==>

n i l −> WM1
n i l −> WM2
n i l −> WM3
f i n d v a l s −> G1

}
}

d e f i n e i n i t−s c r i p t {

}

d e f i n e s c r i p t {
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params = batch−parameters ( )
t r i a l −s t a r t ( )

s c r e en (
[ ” node ” ,” c ” ,” notcur rent ” ,” root ” ,” notend ” ,
[ ” node ” ,”p” ,” cur rent ” ,” notroot ” ,” notend ” ,
[ ” node ” ,” c ” ,” notcur rent ” ,” notroot ” ,” notend ” ,
[ ” node ” ,”p” ,” notcur rent ” ,” notroot ” ,” end ” , [ ” l e a f

↪→ ” , 0 , 0 ] , [ ” l e a f ” , 0 , 0 ] ] ,
[ ” l e a f ” , 0 , 0 ] ] ,
[ ” l e a f ” , 0 , 0 ] ] ,
[ ” l e a f ” , 0 , 0 ] ] )

run−unt i l−ac t i on (” play ”) // Display the game u n t i l the p laye r
↪→ cont inues

s c r e en (
[ ” node ” ,” c ” ,” notcur rent ” ,” root ” ,” notend ” ,
[ ” node ” ,”p” ,” notcur rent ” ,” notroot ” ,” notend ” ,
[ ” node ” ,” c ” ,” notcur rent ” ,” notroot ” ,” notend ” ,
[ ” node ” ,”p” ,” cur rent ” ,” notroot ” ,” end ” , [ ” l e a f ” , 0 , 0 ] , [ ”

↪→ l e a f ” , 0 , 0 ] ] ,
[ ” l e a f ” , 0 , 0 ] ] ,
[ ” l e a f ” , 0 , 0 ] ] ,
[ ” l e a f ” , 0 , 0 ] ] )

run−unt i l−ac t i on (” play ”) // Play u n t i l the p laye r cont inues

i s sue−reward ( )
t r i a l −end ( )

}

The training model for the own-payoff model is as follows:

//Gaze t r a i n i n g task by Jord i Top ( s2402319 )
//Gazes through cent ipede games .

// Representat ion o f game :
// s c r e en (
// [” node ” ,”C” ,” notcur rent ” ,
// [” node ” ,”P” ,” cur rent ” ,
// [” node ” ,”C” ,” notcur rent ” ,
// [” node ” ,”P” ,” notcurrent ” , [ ” l e a f ” , 0 , 0 ] , [ ” l e a f ” , 0 , 0 ] ] ,
// [” l e a f ” , 0 , 0 ] ] ,
// [” l e a f ” , 0 , 0 ] ] ,
// [” l e a f ” , 0 , 0 ] ] )

d e f i n e task GazeTrainTask {
i n i t i a l −goa l s : ( f i n d c u r r e n t ) // Star t by f i n d i n g where the token

↪→ i s
g oa l s : ( f i n d v a l s compare preparenext )
task−cons tant s : ( b i gge r not c p cur rent notcur rent node l e a f

↪→ root end down r i g h t comparison )
imaginal−a u t o c l e a r : n i l
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de fau l t−a c t i v a t i o n : 1 . 0 //Minimum a c t i v a t i o n o f pre−e x i s t i n g
↪→ chunk

r t : −2.0 // R e t r i e v a l th r e sho ld
o l : t // Optimized l e a r n i n g
batch−t r a c e : t
de fau l t−operator−s e l f −as soc : 0 // Defau l t −1.0 , s e l f −a s s o c i a t i o n

↪→ o f operator
}

//Find where the token c u r r e n t l y i s
d e f i n e goa l f i n d c u r r e n t {

// I f you are l ook ing at the cur rent node , move to goa l ”
↪→ f i n d v a l s ”

operator found−current−node {
V1 = node
WM1 = n i l
V3 = current

==>
f i n d v a l s −> G1

}

// I f you are not l ook ing at the cur rent node , f o cus down ( at
↪→ the next node )

operator not−found−current−node {
V1 = node
WM1 = n i l
V3 = notcurrent

==>
focusdown −> AC1

}
}

//Find p a y o f f s at the cur rent and next node ( s )
d e f i n e goa l f i n d v a l s {

// I f you are at the cur rent node , f o cu s at i t s f i r s t l e a f
operator i n i t−read−cur rent {

V1 = node
WM1 = n i l
WM3 = n i l

==>
focus−down−l a s t −> AC1

}

// Store your own payo f f at the cur rent node in WM1
operator read−current− l e a f {

V1 = l e a f
WM1 = n i l
WM3 = n i l

==>
V3 −> WM1
focus−up−s tay −> AC1

}
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operator move−next−node {
V1 = node
V5 <> end
WM1 <> n i l
WM2 = n i l
WM3 = n i l

==>
focus−down −> AC1
notcurrent −> WM2

}

//Move to the next l e a f
operator f ind−next−node {

V1 = node
WM1 <> n i l
WM2 = notcurrent
WM3 = n i l

==>
focus−down−l a s t −> AC1

}

// Store your own payo f f f o r the next l e a f in WM3 and move to
↪→ goa l ’ compare ’

operator f ind−next− l e a f {
V1 = l e a f
WM1 <> n i l
WM2 = notcurrent
WM3 = n i l

==>
V3 −> WM3
focus−up−s tay −> AC1
compare −> G1

}

operator move−next−node−end−of−t r e e {
V1 = node
V5 = end
WM1 <> n i l
WM2 = n i l
WM3 = n i l

==>
focus−down −> AC1
end −> WM2

}

operator f ind−next−l e a f−end−of−t r e e {
V1 = l e a f
WM1 <> n i l
WM2 = end
WM3 = n i l

==>
V3 −> WM3
focus−up−s tay −> AC1
compare −> G1

}
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}

//Compare two p a y o f f s
d e f i n e goa l compare {

operator dont−play {
G1 = compare
WM2 <> end

==>
n i l −> WM2
n i l −> WM3
f i n d v a l s −> G1

}

operator play−r i g h t {
G1 = compare
WM2 = end

==>
play −> AC1
r i g h t −> AC2
done −> WM2
preparenext −> G1

}
}

// Prepare f o r a next turn
d e f i n e goa l preparenext {

// Clear working memory and s t a r t at ’ f i n d v a l s ’ again
operator r e s e t−game {

WM2 = done
==>

n i l −> WM1
n i l −> WM2
n i l −> WM3
f i n d c u r r e n t −> G1

}
}

d e f i n e i n i t−s c r i p t {

}

d e f i n e s c r i p t {

params = batch−parameters ( )
t r i a l −s t a r t ( )

s c r e en (
[ ” node ” ,” c ” ,” notcur rent ” ,” root ” ,” notend ” ,
[ ” node ” ,”p” ,” cur rent ” ,” notroot ” ,” notend ” ,
[ ” node ” ,” c ” ,” notcur rent ” ,” notroot ” ,” notend ” ,
[ ” node ” ,”p” ,” notcur rent ” ,” notroot ” ,” end ” , [ ” l e a f

↪→ ” , 0 , 0 ] , [ ” l e a f ” , 0 , 0 ] ] ,
[ ” l e a f ” , 0 , 0 ] ] ,
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[ ” l e a f ” , 0 , 0 ] ] ,
[ ” l e a f ” , 0 , 0 ] ] )

run−unt i l−ac t i on (” play ”) // Display the game u n t i l the p laye r
↪→ cont inues

s c r e en (
[ ” node ” ,” c ” ,” notcur rent ” ,” root ” ,” notend ” ,
[ ” node ” ,”p” ,” notcur rent ” ,” notroot ” ,” notend ” ,
[ ” node ” ,” c ” ,” notcur rent ” ,” notroot ” ,” notend ” ,
[ ” node ” ,”p” ,” cur rent ” ,” notroot ” ,” end ” , [ ” l e a f ” , 0 , 0 ] , [ ”

↪→ l e a f ” , 0 , 0 ] ] ,
[ ” l e a f ” , 0 , 0 ] ] ,
[ ” l e a f ” , 0 , 0 ] ] ,
[ ” l e a f ” , 0 , 0 ] ] )

run−unt i l−ac t i on (” play ”) // Play u n t i l the p laye r cont inues

i s sue−reward ( )
t r i a l −end ( )

}

D: Automatically generated own-payoff model

This section contains the own-payoff model for Game 1′ of Ghosh et al. (2017) that has automati-
cally been generated by our translation system.

// Automatica l ly generated model
// Created us ing a Java system created by Jord i Top
//PRIMs model c r ea ted from a l o g i c a l formula r epre s en ted in the l o g i c

↪→ presented in
//” Studying s t r a t e g i e s and types o f p l a ye r s : Experiments , l o g i c s and

↪→ c o g n i t i v e models ” by Sujata Ghosh and Rineke Verbrugge in
↪→ Synthese ( in p r e s s )

// Strategy : Myopic 11 : [ root /\ <c>(U(p) = 2) /\ <d><e>(U(p) = 1) /\
↪→ (1<=2) |−−> c ] ( p)

d e f i n e task Myopic 11 {
i n i t i a l −goa l s : ( root−one )
goa l s : ( p l a y d i r p layother u t i l i t y −one u t i l i t y −two comparison−

↪→ one )
task−cons tant s : ( b i gge r not c p cur rent notcur rent dec i s i on−

↪→ node l e a f root comparison r i g h t down)
imaginal−a u t o c l e a r : n i l
de fau l t−a c t i v a t i o n : 1 . 0
r t : −2.0
o l : t
batch−t r a c e : t
de fau l t−operator−as soc : 8 . 0
de fau l t−operator−s e l f −as soc : −2.0

}
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d e f i n e goa l root−one {

operator root−one−check−yes {
WM1 = n i l
V4 = root

==>
n i l −> WM1
u t i l i t y −one −> G1

}

operator root−one−check−no {
WM1 = n i l
V4 <> root

==>
n i l −> WM1
playother −> G1

}
}

d e f i n e goa l u t i l i t y −one {

operator u t i l i t y −one−mov−one {
WM1 = n i l

==>
one −> WM1
focus−down−l a s t −> AC1

}

operator u t i l i t y −one−check−yes {
WM1 = one
V3 = two

==>
n i l −> WM1
V3 −> WM2
u t i l i t y −two −> G1

}

operator u t i l i t y −one−check−no {
WM1 = one
V3 <> two

==>
n i l −> WM1
playother −> G1

}
}

d e f i n e goa l u t i l i t y −two {

operator u t i l i t y −two−mov−one {
WM1 = n i l

==>
one −> WM1
focus−up−s tay −> AC1

}
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operator u t i l i t y −two−mov−two {
WM1 = one

==>
two −> WM1
focus−down −> AC1

}

operator u t i l i t y −two−mov−three {
WM1 = two

==>
three −> WM1
focus−down−l a s t −> AC1

}

operator u t i l i t y −two−check−yes {
WM1 = three
V3 = one

==>
n i l −> WM1
V3 −> WM3
comparison−one −> G1

}

operator u t i l i t y −two−check−no {
WM1 = three
V3 <> one

==>
n i l −> WM1
playother −> G1

}
}

d e f i n e goa l comparison−one {

operator comparison−one−s t a r t−r e t r i e v a l {
WM1 = n i l
RT1 = n i l
WM3 <> n i l
WM2 <> n i l

==>
WM3 −> RT1
WM2 −> RT3
comparison −> RT4

}

operator comparison−one−not−b igge r {
RT2 = not
RT4 = comparison

==>
p l a y d i r −> G1

}

operator comparison−one−b igge r {
RT2 = bigge r
RT4 = comparison
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==>
p layother −> G1

}
}

d e f i n e goa l p l a y d i r {

operator play {
G1 = p l a y d i r

==>
play −> AC1
down −> AC2

}

}

d e f i n e goa l p layother {

operator play−r i g h t {
G1 = playother

==>
play −> AC1
r i g h t −> AC2

}

operator play−down {
G1 = playother

==>
play −> AC1
down −> AC2

}

}

d e f i n e i n i t−s c r i p t {
add−dm(” s t ra t−f ac t −1” ,” s t r a t ” ,” e f r ” ,” c ” ,”down”)
add−dm(” s t ra t−f ac t −2” ,” s t r a t ” ,” e f r ” ,”p” ,”down” ,” r i g h t ”)
add−dm(” s t ra t−f ac t −3” ,” s t r a t ” ,” e f r ” ,”p” ,”down” ,”down”)
add−dm(” s t ra t−f ac t −4” ,” s t r a t ” ,” b i ” ,” c ” ,”down”)
add−dm(” s t ra t−f ac t −5” ,” s t r a t ” ,” b i ” ,”p” ,”down” ,” r i g h t ”)
add−dm(” s t ra t−f ac t −6” ,” s t r a t ” ,” b i ” ,”p” ,”down” ,”down”)
add−dm(” s t ra t−f ac t −7” ,” s t r a t ” ,” op ” ,” c ” ,” r i g h t ”)
add−dm(” s t ra t−f ac t −8” ,” s t r a t ” ,” op ” ,”p” ,” r i g h t ” ,”down”)

add−dm(” not l a rge r−one−one ” ,” one ” ,” not ” ,” one ” ,” comparison ”)
add−dm(” not l a rge r−one−two ” ,” one ” ,” not ” ,” two ” ,” comparison ”)
add−dm(” not l a rge r−one−three ” ,” one ” ,” not ” ,” three ” ,” comparison ”)
add−dm(” not l a rge r−one−f our ” ,” one ” ,” not ” ,” four ” ,” comparison ”)
add−dm(” not l a rge r−one−s i x ” ,” one ” ,” not ” ,” s i x ” ,” comparison ”)
add−dm(” l a rg e r−two−one ” ,” two ” ,” b igge r ” ,” one ” ,” comparison ”)
add−dm(” not l a rge r−two−two ” ,” two ” ,” not ” ,” two ” ,” comparison ”)
add−dm(” not l a rge r−two−three ” ,” two ” ,” not ” ,” three ” ,” comparison ”)
add−dm(” not l a rge r−two−f our ” ,” two ” ,” not ” ,” four ” ,” comparison ”)
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add−dm(” not l a rge r−two−s i x ” ,” two ” ,” not ” ,” s i x ” ,” comparison ”)
add−dm(” l a rg e r−three−one ” ,” three ” ,” b igge r ” ,” one ” ,” comparison ”)
add−dm(” l a rg e r−three−two ” ,” three ” ,” b igge r ” ,” two ” ,” comparison ”)
add−dm(” not l a rge r−three−three ” ,” three ” ,” not ” ,” three ” ,”

↪→ comparison ”)
add−dm(” not l a rge r−three−f our ” ,” three ” ,” not ” ,” four ” ,” comparison

↪→ ”)
add−dm(” not l a rge r−three−s i x ” ,” three ” ,” not ” ,” s i x ” ,” comparison ”)
add−dm(” l a rg e r−four−one ” ,” four ” ,” b igge r ” ,” one ” ,” comparison ”)
add−dm(” l a rg e r−four−two ” ,” four ” ,” b igge r ” ,” two ” ,” comparison ”)
add−dm(” l a rg e r−four−three ” ,” four ” ,” b igge r ” ,” three ” ,” comparison

↪→ ”)
add−dm(” not l a rge r−four−f our ” ,” four ” ,” not ” ,” four ” ,” comparison ”)
add−dm(” not l a rge r−four−s i x ” ,” four ” ,” not ” ,” s i x ” ,” comparison ”)
add−dm(” l a rg e r−s ix−one ” ,” s i x ” ,” b igge r ” ,” one ” ,” comparison ”)
add−dm(” l a rg e r−s ix−two ” ,” s i x ” ,” b igge r ” ,” two ” ,” comparison ”)
add−dm(” l a rg e r−s ix−three ” ,” s i x ” ,” b igge r ” ,” three ” ,” comparison ”)
add−dm(” l a rg e r−s ix−f our ” ,” s i x ” ,” b igge r ” ,” four ” ,” comparison ”)
add−dm(” not l a rge r−s ix−s i x ” ,” s i x ” ,” not ” ,” s i x ” ,” comparison ”)

}

d e f i n e s c r i p t {
t r i a l −s t a r t ( )
s c r e en ( [ ” dec i s i on−node ” ,”p” ,” cur rent ” ,” root ” , [ ” dec i s i on−node ” ,”

↪→ c ” ,” notcurrent ” , [ ” dec i s i on−node ” ,”p” ,” notcur rent ” , [ ” l e a f
↪→ ” ,” s i x ” ,” three ” ] , [ ” l e a f ” ,” one ” ,” four ” ] ] , [ ” l e a f ” ,” three
↪→ ” ,” one ” ] ] , [ ” l e a f ” ,” one ” ,” two ” ] ] )

run−unt i l−ac t i on (” play ”)
i s sue−reward ( )
t r i a l −end ( )

}

E: BI and EFR formulae

The following is a document on BI and EFR formulae for a subset of centipede games, created by
Sujata Ghosh (personal communication).
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Backward induction formulas

July 31, 2017

Consider any game similar in structure to the games in Figure 1, the pay-
offs might differ. Let us assume that actions are part of the observables, that
is, Σ Ď P . The semantics for the actions can be defined appropriately. Let
n1, . . . , n4 denote the four decision nodes of Game 1 of Figure 1, with C playing
at n1 and n3, and P playing at the remaining two nodes n2 and n4. We have
four belief operators for this game, namely two per player. We abbreviate some
formulas that describe the payoff structure of the game:

α :“ xdyxfyxhyppuC “ pCq ^ puP “ pP qq
(from the current node, a d move followed by an f move followed by
an h move lead to the payoff ppC , pP q )

β :“ xdyxfyxgyppuC “ qCq ^ puP “ qP qq
(from the current node, a d move followed by an f move followed by
a g move lead to the payoff pqC , qP q )

γ :“ xdyxeyppuC “ rCq ^ puP “ rP qq
(from the current node, a d move followed by an e move lead to the
payoff prC , rP q )

δ :“ xcyppuC “ sCq ^ puP “ sP qq
(from the current node, a c move leads to the payoff psC , sP q )

χ :“ xb´yxayppuC “ tCq ^ puP “ tP qq
(the current node can be accessed from another node by a b move
from where an a move leads to the payoff ptC , tP q )

Now we can define the conjunction of these five descriptions:

ϕ :“ α^ β ^ γ ^ δ ^ χ

Let ψi denote the conjunction of all the order relations of the rational payoffs
for player i (P tP,Cu) given in any game similar to the games in Figure 1. Evi-
dently, for different games with different payoff structures both ϕ and ψi’s will
differ.
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Backward induction reasoning at the node n2 can be formulated as follows
depending on ϕ and ψi’s:

- η1P : rpϕ^ ψP ^ ψC ^ xb
´yroot^ Bn2,P

g1 xdye^ Bn2,P
g1 xdyxfygq ÞÑ csP

- η1P : rpϕ^ ψP ^ ψC ^ xb
´yroot^ Bn2,P

g1 xdye^ Bn2,P
g1 xdyxfyhq ÞÑ csP

- η1P : rpϕ^ ψP ^ ψC ^ xb
´yroot^ Bn2,P

g1 xdye^ Bn2,P
g1 xdyxfygq ÞÑ dsP

- η1P : rpϕ^ ψP ^ ψC ^ xb
´yroot^ Bn2,P

g1 xdye^ Bn2,P
g1 xdyxfyhq ÞÑ dsP

- η1P : rpϕ^ ψP ^ ψC ^ xb
´yroot^ Bn2,P

g1 xdyf ^ Bn2,P
g1 xdyxfygq ÞÑ csP

- η1P : rpϕ^ ψP ^ ψC ^ xb
´yroot^ Bn2,P

g1 xdyf ^ Bn2,P
g1 xdyxfyhq ÞÑ csP

- η1P : rpϕ^ ψP ^ ψC ^ xb
´yroot^ Bn2,P

g1 xdyf ^ Bn2,P
g1 xdyxfygq ÞÑ dsP

- η1P : rpϕ^ ψP ^ ψC ^ xb
´yroot^ Bn2,P

g1 xdyf ^ Bn2,P
g1 xdyxfyhq ÞÑ dsP

For a game similar in structure given in Figure 2, assuming the nodes to be n1,
n2 and n3, BI reasoning can be formulated in a similar way:

- η1P : rpϕ^ ψP ^ ψC ^ root^ Bn1,P
g1 xdye^ Bn1,P

g1 xdyxfygq ÞÑ csP

- η1P : rpϕ^ ψP ^ ψC ^ root^ Bn1,P
g1 xdye^ Bn1,P

g1 xdyxfyhq ÞÑ csP

- η1P : rpϕ^ ψP ^ ψC ^ root^ Bn1,P
g1 xdye^ Bn1,P

g1 xdyxfygq ÞÑ dsP

- η1P : rpϕ^ ψP ^ ψC ^ root^ Bn1,P
g1 xdye^ Bn1,P

g1 xdyxfyhq ÞÑ dsP

- η1P : rpϕ^ ψP ^ ψC ^ root^ Bn1,P
g1 xdyf ^ Bn1,P

g1 xdyxfygq ÞÑ csP

- η1P : rpϕ^ ψP ^ ψC ^ root^ Bn1,P
g1 xdyf ^ Bn1,P

g1 xdyxfyhq ÞÑ csP

- η1P : rpϕ^ ψP ^ ψC ^ root^ Bn1,P
g1 xdyf ^ Bn1,P

g1 xdyxfygq ÞÑ dsP

- η1P : rpϕ^ ψP ^ ψC ^ root^ Bn1,P
g1 xdyf ^ Bn1,P

g1 xdyxfyhq ÞÑ dsP

Note that ϕ and ψi’s need to be changed according the structure and pay-offs
in these games.
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F: LaTeX symbol list

This section contains a list of uncommon LaTeX symbols used in this thesis and how to reproduce
them in LaTeX, in case any reader wishes to do so. If the symbol is an accent or a modification
of another symbol, we will use the letter a as the to-be-modified symbol. Code enclosed in dollar
signs ($) only work in math mode.

Section of first appearance Symbol LaTeX code
1.2 a′ $a’$

2.1 Φ $\Phi$

2.2 { \{

” } \}

” ı̄ $\textit{\={\i}}$

” a $\overline{a}$

” Σ $\Sigma$

” ρ $\rho$

” λ $\lambda$

” ∅ $\emptyset$

” T $\mathbb{T}$

” ⇒ $\Rightarrow$

” × $\times$

” → $\rightarrow$

” ∈ $\in$

” ~a $\vec{a}$

” | $\mid$

”
a⇒ $\overset{a}{\Rightarrow}$

” ∅ $\varnothing$

” λ̂ $\widehat{\lambda}$

” µ $\mu$

” τ $\tau$

” 6= $\neq$

” |/ $\restrict$ (see note 1)
” Ω $\Omega$

” > $\geqslant$

” σ $\sigma$

” ⇀ $\rightharpoonup$

” D $\mathfrak{D}$

” π $\pi$

” G $\mathbb{G}$

” . . . $\ldots$

” 6 $\leqslant$

” ∪ $\cup$

”
⋃

$\bigcup$

2.2.1 ¬ $\neg$

” ψ $\psi$

” ∨ $\vee$

” 〈 $\langle$

” 〉 $\rangle$

” B $\mathbb{B}$

” 7→ $\mapsto$

” · $\cdot$

” −→ $\longrightarrow$

” U $\mathcal{U}$
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” Q $\mathbb{Q}$

” |= $\models$

” η $\eta$

” J $\llbracket$

” K $\rrbracket$

” Υ $\Upsilon$

” ∩ $\cap$

2.2.2 α $\alpha$

” β $\beta$

” γ $\gamma$

” δ $\delta$

” χ $\chi$

” ϕ $\varphi$

” K $\mathcal{K}$

” X $\mathcal{X}$

Table 5.1: LaTeX symbols used in this thesis

1. The command \restrict has been created for Ghosh & Verbrugge (online first) using the
following code:

\newcommand{\restrict}{\:\raisebox{0.2ex}{$|$}\kern−1.8pt\raisebox{−.1ex}{$\
↪→ scriptscriptstyle /$}\:}
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